1
|
Wu F, Sun C, Zhu Z, Deng L, Yu F, Xie Q, Li C. A multiprotein regulatory module, MED16-MBR1&2, controls MED25 homeostasis during jasmonate signaling. Nat Commun 2025; 16:772. [PMID: 39824838 PMCID: PMC11748718 DOI: 10.1038/s41467-025-56041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability. Conversely, two homologous E3 ubiquitin ligases, MED25-BINDING RING-H2 PROTEIN1 (MBR1) and MBR2, negatively regulate JA-responsive gene expression by promoting MED25 degradation. MED16 competes with MBR1&2 to bind to the von Willebrand Factor A (vWF-A) domain of MED25, thereby antagonizing the MBR1&2-mediated degradation of MED25 in vivo. In addition, we show that MED16 promotes hormone-induced interactions between MYC2 and MED25, leading to the activation of JA-responsive gene expression. Collectively, our findings reveal a multiprotein regulatory module that robustly and tightly maintains MED25 homeostasis, which determines the strength of the transcriptional output of JA signaling.
Collapse
Affiliation(s)
- Fangming Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziying Zhu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qi Xie
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanyou Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
2
|
Castroverde CDM, Kuan C, Kim JH. Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps. Genome 2025; 68:1-13. [PMID: 39499908 DOI: 10.1139/gen-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.
Collapse
Affiliation(s)
| | - Chi Kuan
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jong Hum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Kundu A, Bera P, Mishra S, Vadassery J. Deep metabolomics revealed trajectories of jasmonate signaling-mediated primary metabolism in Arabidopsis upon Spodoptera litura herbivory. PHYSIOLOGIA PLANTARUM 2025; 177:e70035. [PMID: 39775752 DOI: 10.1111/ppl.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025]
Abstract
Plants defend against chewing herbivores by up-regulating jasmonic acid (JA) signaling, which activates downstream signaling cascades and produces numerous secondary metabolites that act as defense molecules against the herbivores. Although secondary metabolism always remains a focus of research, primary metabolism is also reported to be realigned upon herbivory. However, JA signaling-mediated modulation of primary metabolites and their metabolic pathways in plants are mostly unexplored. Here, we applied gas chromatography-mass spectrometry-based untargeted metabolomics aided with computational statistical frameworks on wild type Arabidopsis, mutants of active JA receptor (i.e., CORONATINE-INSENSITIVE 1, COI1-1) and downstream transcription factor (i.e., MYC2) to navigate the JA signaling-mediated primary metabolism alterations during herbivory. Pathway and metabolite's chemical class enrichment analysis revealed JA signaling is crucial for constitutive as well as herbivore-induced primary metabolism and topology of their interaction networks. JA signaling majorly modulated alterations of sugars, amino acids and related metabolites. Herbivory-mediated sugar depletion and induction of methionine for aliphatic glucosinolates are also dependent on JA signaling. Taken together, our results demonstrate trails of JA signaling-mediated primary metabolic alterations associated with herbivory.
Collapse
Affiliation(s)
- Anish Kundu
- Plant Biotechnology and Disease Biology Division, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Paramita Bera
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shruti Mishra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
4
|
Li S, Li J, Li D, Hao J, Hua Z, Wang P, Zhu M, Ge H, Liu Y, Chen H. Genome-wide identification of the eggplant jasmonate ZIM-domain (JAZ) gene family and functional characterization of SmJAZ10 in modulating chlorophyll synthesis in leaves. Int J Biol Macromol 2024; 283:137804. [PMID: 39566784 DOI: 10.1016/j.ijbiomac.2024.137804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
The jasmonate ZIM-domain (JAZ) plays a crucial role in regulating several economic traits in crops. Despite its importance, the characterization of the SmJAZ gene family in eggplant (Solanum melongena L.) has not been documented. In this study, we identified 13 SmJAZ distributed across 9 chromosomes, which were categorized into 5 subgroups based on phylogenetic analysis. Both of them possess TIFY-motif and CCT_2 domains with varying degrees of variation. Promoter cis-element analysis predicted 42 distributed cis-elements that respond to diverse signals. Gene expression analysis demonstrated that SmJAZ exhibited responsiveness to JA, ABA, NaCl, PEG, 4 °C, blue light, and UV-B treatments. Moreover, microRNA interaction predictions identified 150 potential miRNAs, among which ath-miR5021 was found to target 8 SmJAZ mRNAs. Yeast two-hybrid assays demonstrated that most of the SmJAZs were able to interact with SmMYC2 and SmNINJA and could form JAZ-JAZ complexes. Subcellular localization analysis unveiled a diverse array of intranuclear and extranuclear localization signals for SmJAZs. Overexpressing of SmJAZ10 could decrease the chlorophyll content of seedling leaves, and the transcriptome showed that genes related to chlorophyll synthesis, such as SmCHLH, SmPORA, and SmGLK2, underwent down-regulated expression. Overall, these findings serve as a valuable resource for leveraging JA signaling to enhance eggplant quality.
Collapse
Affiliation(s)
- Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianyong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangnan Hao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Hua
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengliang Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Zheng J, Liao Y, Ye J, Xu F, Zhang W, Zhou X, Wang L, He X, Cao Z, Yi Y, Xue Y, Chen Q, Sun J. The transcription factor MYC2 positively regulates terpene trilactone biosynthesis through activating GbGGPPS expression in Ginkgo biloba. HORTICULTURE RESEARCH 2024; 11:uhae228. [PMID: 39415974 PMCID: PMC11480656 DOI: 10.1093/hr/uhae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
Terpene trilactones (TTLs) have important medicinal value, but their low content in Ginkgo biloba leaves makes their exploitation extremely costly, thereby limiting the development of TTL-related industries. It was found that exogenous methyl jasmonate (MeJA) treatment increased the accumulation of TTLs, but the molecular mechanism is still unclear. Here, we identified two bHLH transcription factors in G. biloba, with the protein subcellular localizations in the nucleus. Expression of GbMYC2s was strongly induced by MeJA treatment, and the interactions between GbJAZs and GbMYC2s were demonstrated by yeast two-hybrid and bimolecular fluorescence complementation experiments. Overexpression of GbMYC2_4 and GbMYC2_5 enhanced Arabidopsis root sensitivity and significantly increased TTL content. In addition, GbGGPPS was found to be a common target of GbMYC2_4 and GbMYC2_5 by yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter assays and DAP-seq, and they achieved regulation of GbGGPPS by binding to the G-box. Further findings revealed that GbMYC2_4 and GbMYC2_5 bind the G-box not universally but selectively. Our study revealed that jasmonic acid signaling mediates TTL biosynthesis through the GbJAZ-GbMYC2-GbGGPPS module, which enriches the terpenoid biosynthesis regulatory networks and provides a research basis and target genes for enhancing TTL content through genetic engineering.
Collapse
Affiliation(s)
| | | | | | - Feng Xu
- Corresponding author. E-mail:
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xian Zhou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiao He
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhengyan Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yuwei Yi
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Yansheng Xue
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Jiaxing Sun
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
6
|
Niu J, Yan X, Bai Y, Li W, Lu G, Wang Y, Liu H, Shi Z, Liang J. Integration of Transcriptomics and WGCNA to Characterize Trichoderma harzianum-Induced Systemic Resistance in Astragalus mongholicus for Defense against Fusarium solani. Genes (Basel) 2024; 15:1180. [PMID: 39336771 PMCID: PMC11431081 DOI: 10.3390/genes15091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Beneficial fungi of the genus Trichoderma are among the most widespread biocontrol agents that induce a plant's defense response against pathogens. Fusarium solani is one of the main pathogens that can negatively affect Astragalus mongholicus production and quality. To investigate the impact of Trichoderma harzianum on Astragalus mongholicus defense responses to Fusarium solani, A. mongholicus roots under T. harzianum + F. solani (T + F) treatment and F. solani (F) treatment were sampled and subjected to transcriptomic analysis. A differential expression analysis revealed that 6361 differentially expressed genes (DEGs) responded to T. harzianum induction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 6361 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway, isoflavonoid biosynthesis pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and plant hormone signal transduction pathway. Pathway analysis revealed that the PR1, formononetin biosynthesis, biochanin A biosynthesis, and CHIB, ROS production, and HSP90 may be upregulated by T. harzianum and play important roles in disease resistance. Our study further revealed that the H2O2 content was significantly increased by T. harzianum induction. Formononetin and biochanin A had the potential to suppress F. solani. Weighted gene coexpression network analysis (WGCNA) revealed one module, including 58 DEGs associated with T. harzianum induction. One core hub gene, RPS25, was found to be upregulated by T. harzianum, SA (salicylic acid) and ETH (ethephon). Overall, our data indicate that T. harzianum can induce induced systemic resistance (ISR) and systemic acquired resistance (SAR) in A. mongholicus. The results of this study lay a foundation for a further understanding of the molecular mechanism by which T. harzianum induces resistance in A. mongholicus.
Collapse
Affiliation(s)
- Jingping Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Xiang Yan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuguo Bai
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Wandi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Genglong Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Yuanyuan Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Hongjun Liu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
| | - Jianping Liang
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.N.); (X.Y.); (Y.B.); (W.L.); (G.L.); (Y.W.); (H.L.) (Z.S.)
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Maji S, Waseem M, Sharma MK, Singh M, Singh A, Dwivedi N, Thakur P, Cooper DG, Bisht NC, Fassler JS, Subbarao N, Khurana JP, Bhavesh NS, Thakur JK. MediatorWeb: a protein-protein interaction network database for the RNA polymerase II Mediator complex. FEBS J 2024; 291:3938-3960. [PMID: 38975839 DOI: 10.1111/febs.17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The protein-protein interaction (PPI) network of the Mediator complex is very tightly regulated and depends on different developmental and environmental cues. Here, we present an interactive platform for comparative analysis of the Mediator subunits from humans, baker's yeast Saccharomyces cerevisiae, and model plant Arabidopsis thaliana in a user-friendly web-interface database called MediatorWeb. MediatorWeb provides an interface to visualize and analyze the PPI network of Mediator subunits. The database facilitates downloading the untargeted and unweighted network of Mediator complex, its submodules, and individual Mediator subunits to better visualize the importance of individual Mediator subunits or their submodules. Further, MediatorWeb offers network visualization of the Mediator complex and interacting proteins that are functionally annotated. This feature provides clues to understand functions of Mediator subunits in different processes. In an additional tab, MediatorWeb provides quick access to secondary and tertiary structures, as well as residue-level contact information for Mediator subunits in each of the three model organisms. Another useful feature of MediatorWeb is detection of interologs based on orthologous analyses, which can provide clues to understand the functions of Mediator complex in less explored kingdoms. Thus, MediatorWeb and its features can help the user to understand the role of Mediator complex and its subunits in the transcription regulation of gene expression.
Collapse
Grants
- BT/PR40146/BTIS/137/4/2020 Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40169/BTIS/137/71/2023 Department of Biotechnology, Ministry of Science and Technology, India
- BT/HRD/MK-YRFP/50/27/2021 Department of Biotechnology, Ministry of Science and Technology, India
- BT/HRD/MK-YRFP/50/26/2021 Department of Biotechnology, Ministry of Science and Technology, India
- SERB, Government of India
- ICMR
- Council of Scientific and Industrial Research, India
Collapse
Affiliation(s)
- Sourobh Maji
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohd Waseem
- National Institute of Plant Genome Research, New Delhi, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Maninder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Anamika Singh
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nidhi Dwivedi
- National Institute of Plant Genome Research, New Delhi, India
| | - Pallabi Thakur
- National Institute of Plant Genome Research, New Delhi, India
| | - David G Cooper
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, USA
| | - Naveen C Bisht
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jitendra P Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Jitendra Kumar Thakur
- Plant Transcription Regulation, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
8
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
9
|
Guarino F, Cicatelli A, Nissim WG, Colzi I, Gonnelli C, Basso MF, Vergata C, Contaldi F, Martinelli F, Castiglione S. Epigenetic changes induced by chronic and acute chromium stress treatments in Arabidopsis thaliana identified by the MSAP-Seq. CHEMOSPHERE 2024; 362:142642. [PMID: 38908441 DOI: 10.1016/j.chemosphere.2024.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Chromium (Cr) is an highly toxic metal to plants and causes severe damage to their growth, development, and reproduction. Plant exposure to chronic and acute Cr stress treatments results in significant changes at short time in the gene expression profile and at long time in the genomic DNA methylation profile at a transgenerational level and, consequently, in gene expression. These epigenetic modifications and their implications imposed by the Cr stress are not yet completely known in plants. Herein, were identified the epigenetic changes induced by chronic and acute Cr stress treatments in Arabidopsis thaliana plants using Methylation Sensitive Amplification Polymorphism coupled with next-generation sequencing (MSAP-Seq). First-generation Arabidopsis plants (termed F0 plants) kept under hoagland solution were subjected to Cr stress treatments. For chronic Cr stress, plants were treated through hoagland solution with 2.5 μM Cr during the entire cultivation period until seed harvest. Meanwhile, for acute Cr stress, plants were treated with 5 μM Cr during the first three weeks and returned to unstressful control condition until seed harvest. Seeds from F0 plants were sown and F1 plants were re-submitted to the same Cr stress treatments. The seed germination rate was evaluated from F-2 seeds harvested of F1 plants kept under different Cr stress treatments (0, 10, 20, and 40 μM) compared to the unstressful control condition. These data showed significant changes in the germination rate of F-2 seeds originating from stressed F1 plants compared to F-2 seeds harvested from unstressful control plants. Given this data, F1 plants kept under these chronic and acute Cr stress treatments and unstressful control condition were evaluated for the transgenerational epigenetic modifications using MSAP-Seq. The MSAP-Seq data showed that several genes were modified in their methylation status as a consequence of chronic and acute Cr stress treatment to maintain plant defenses activated. In particular, RNA processing, protein translation, photorespiration, energy production, transmembrane transport, DNA transcription, plant development, and plant resilience were the major biological processes modulated by epigenetic mechanisms identified in F1 plants kept under chronic and acute Cr stress. Therefore, collective data suggested that Arabidopsis plants kept under Cr stress regulate their epigenetic status over generations based on DNA methylation to modulate defense and resilience mechanisms.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Angela Cicatelli
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Ilaria Colzi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Marcos Fernando Basso
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Felice Contaldi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
| | - Stefano Castiglione
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| |
Collapse
|
10
|
Xu Z, Xiao Y, Guo J, Lv Z, Chen W. Relevance and regulation of alternative splicing in plant secondary metabolism: current understanding and future directions. HORTICULTURE RESEARCH 2024; 11:uhae173. [PMID: 39135731 PMCID: PMC11317897 DOI: 10.1093/hr/uhae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
The secondary metabolism of plants is an essential life process enabling organisms to navigate various stages of plant development and cope with ever-changing environmental stresses. Secondary metabolites, abundantly found in nature, possess significant medicinal value. Among the regulatory mechanisms governing these metabolic processes, alternative splicing stands out as a widely observed post-transcriptional mechanism present in multicellular organisms. It facilitates the generation of multiple mRNA transcripts from a single gene by selecting different splicing sites. Selective splicing events in plants are widely induced by various signals, including external environmental stress and hormone signals. These events ultimately regulate the secondary metabolic processes and the accumulation of essential secondary metabolites in plants by influencing the synthesis of primary metabolites, hormone metabolism, biomass accumulation, and capillary density. Simultaneously, alternative splicing plays a crucial role in enhancing protein diversity and the abundance of the transcriptome. This paper provides a summary of the factors inducing alternative splicing events in plants and systematically describes the progress in regulating alternative splicing with respect to different secondary metabolites, including terpenoid, phenolic compounds, and nitrogen-containing compounds. Such elucidation offers critical foundational insights for understanding the role of alternative splicing in regulating plant metabolism and presents novel avenues and perspectives for bioengineering.
Collapse
Affiliation(s)
- Zihan Xu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611103, China
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
11
|
Abdel-Fattah WR, Carlsson M, Hu GZ, Singh A, Vergara A, Aslam R, Ronne H, Björklund S. Growth-regulated co-occupancy of Mediator and Lsm3 at intronic ribosomal protein genes. Nucleic Acids Res 2024; 52:6220-6233. [PMID: 38613396 PMCID: PMC11194063 DOI: 10.1093/nar/gkae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Mediator is a well-known transcriptional co-regulator and serves as an adaptor between gene-specific regulatory proteins and RNA polymerase II. Studies on the chromatin-bound form of Mediator revealed interactions with additional protein complexes involved in various transcription-related processes, such as the Lsm2-8 complex that is part of the spliceosomal U6 small nuclear ribonucleoprotein complex. Here, we employ Chromatin Immunoprecipitation sequencing (ChIP-seq) of chromatin associated with the Lsm3 protein and the Med1 or Med15 Mediator subunits. We identify 86 genes co-occupied by both Lsm3 and Mediator, of which 73 were intron-containing ribosomal protein genes. In logarithmically growing cells, Mediator primarily binds to their promoter regions but also shows a second, less pronounced occupancy at their 3'-exons. During the late exponential phase, we observe a near-complete transition of Mediator from these promoters to a position in their 3'-ends, overlapping the Lsm3 binding sites ∼250 bp downstream of their last intron-exon boundaries. Using an unbiased RNA sequencing approach, we show that transition of Mediator from promoters to the last exon of these genes correlates to reduction of both their messenger RNA levels and splicing ratios, indicating that the Mediator and Lsm complexes cooperate to control growth-regulated expression of intron-containing ribosomal protein genes at the levels of transcription and splicing.
Collapse
Affiliation(s)
- Wael R Abdel-Fattah
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Mattias Carlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Guo-Zhen Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Ajeet Singh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Alexander Vergara
- Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rameen Aslam
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Ronne
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
12
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
13
|
Zhang X, Yu L, Zhang M, Wu T, Song T, Yao Y, Zhang J, Tian J. MdWER interacts with MdERF109 and MdJAZ2 to mediate methyl jasmonate- and light-induced anthocyanin biosynthesis in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1327-1342. [PMID: 38319946 DOI: 10.1111/tpj.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Anthocyanin generation in apples (Malus domestica) and the pigmentation that results from it may be caused by irradiation and through administration of methyl jasmonate (MeJA). However, their regulatory interrelationships associated with fruit coloration are not well defined. To determine whether MdERF109, a transcription factor (TF) involved in light-mediated coloration and anthocyanin biosynthesis, has synergistic effects with other proteins, we performed a yeast two-hybrid assessment and identified another TF, MdWER. MdWER was induced by MeJA treatment, and although overexpression of MdWER alone did not promote anthocyanin accumulation co-overexpression with MdERF109 resulted in significantly increase in anthocyanin biosynthesis. MdWER may form a protein complex with MdERF109 to promote anthocyanin accumulation by enhancing combinations between the proteins and their corresponding genes. In addition, MdWER, as a MeJA responsive protein, interacts with the anthocyanin repressor MdJAZ2. Transient co-expression in apple fruit and protein interaction assays allowed us to conclude that MdERF109 and MdJAZ2 interact with MdWER and take part in the production of anthocyanins upon MeJA treatment and irradiation. Our findings validate a role for the MdERF109-MdWER-MdJAZ2 module in anthocyanin biosynthesis and uncover a novel mechanism for how light and MeJA signals are coordinated anthocyanin biosynthesis in apple fruit.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Lujia Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mengjiao Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tingting Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
14
|
Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. PLANT PHYSIOLOGY 2024; 195:135-154. [PMID: 38290050 PMCID: PMC11060663 DOI: 10.1093/plphys/kiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 42284, USA
| |
Collapse
|
15
|
Yuan C, Hu Y, Liu Q, Xu J, Zhou W, Yu H, Shen L, Qin C. MED8 regulates floral transition in Arabidopsis by interacting with FPA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1234-1247. [PMID: 37565662 DOI: 10.1111/tpj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Success in plant reproduction is highly dependent on the correct timing of the floral transition, which is tightly regulated by the flowering pathways. In the model plant Arabidopsis thaliana, the central flowering repressor FLOWERING LOCUS C (FLC) is precisely regulated by multiple flowering time regulators in the vernalization pathway and autonomous pathway, including FPA. Here we report that Arabidopsis MEDIATOR SUBUNIT 8 (MED8) promotes floral transition in Arabidopsis by recruiting FPA to the FLC locus to repress FLC expression. Loss of MED8 function leads to a significant late-flowering phenotype due to increased FLC expression. We further show that MED8 directly interacts with FPA in the nucleus and recruits FPA to the FLC locus. Moreover, MED8 is indispensable for FPA's function in controlling flowering time and regulating FLC expression. Our study thus reveals a flowering mechanism by which the Mediator subunit MED8 represses FLC expression by facilitating the binding of FPA to the FLC locus to ensure appropriate timing of flowering for reproductive success.
Collapse
Affiliation(s)
- Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yikai Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, 117604, Singapore
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
16
|
Khan FS, Goher F, Paulsmeyer MN, Hu CG, Zhang JZ. Calcium (Ca 2+ ) sensors and MYC2 are crucial players during jasmonates-mediated abiotic stress tolerance in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1025-1034. [PMID: 37422725 DOI: 10.1111/plb.13560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Plants evolve stress-specific responses that sense changes in their external environmental conditions and develop various mechanisms for acclimatization and survival. Calcium (Ca2+ ) is an essential stress-sensing secondary messenger in plants. Ca2+ sensors, including calcium-dependent protein kinases (CDPKs), calmodulins (CaMs), CaM-like proteins (CMLs), and calcineurin B-like proteins (CBLs), are involved in jasmonates (JAs) signalling and biosynthesis. Moreover, JAs are phospholipid-derived phytohormones that control plant response to abiotic stresses. The JAs signalling pathway affects hormone-receptor gene transcription by binding to the basic helix-loop-helix (bHLH) transcription factor. MYC2 acts as a master regulator of JAs signalling module assimilated through various genes. The Ca2+ sensor CML regulates MYC2 and is involved in a distinct mechanism mediating JAs signalling during abiotic stresses. This review highlights the pivotal role of the Ca2+ sensors in JAs biosynthesis and MYC2-mediated JAs signalling during abiotic stresses in plants.
Collapse
Affiliation(s)
- F S Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - F Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Paulsmeyer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Vegetable Crops Research Unit, Madison, Wisconsin, USA
| | - C-G Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - J-Z Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Abukhalaf M, Proksch C, Thieme D, Ziegler J, Hoehenwarter W. Changing turn-over rates regulate abundance of tryptophan, GS biosynthesis, IAA transport and photosynthesis proteins in Arabidopsis growth defense transitions. BMC Biol 2023; 21:249. [PMID: 37940940 PMCID: PMC10634109 DOI: 10.1186/s12915-023-01739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.
Collapse
Affiliation(s)
- Mohammad Abukhalaf
- Present address: Institute for Experimental Medicine, Christian-Albrechts University Kiel, Niemannsweg 11, 24105, Kiel, Germany
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Carsten Proksch
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Domenika Thieme
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Jörg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany
| | - Wolfgang Hoehenwarter
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06122, Halle (Saale), Germany.
| |
Collapse
|
18
|
Yang Q, Tan S, Wang HL, Wang T, Cao J, Liu H, Sha Y, Zhao Y, Xia X, Guo H, Li Z. Spliceosomal protein U2B″ delays leaf senescence by enhancing splicing variant JAZ9β expression to attenuate jasmonate signaling in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1116-1133. [PMID: 37608617 DOI: 10.1111/nph.19198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023]
Abstract
The regulatory framework of leaf senescence is gradually becoming clearer; however, the fine regulation of this process remains largely unknown. Here, genetic analysis revealed that U2 small nuclear ribonucleoprotein B (U2B″), a component of the spliceosome, is a negative regulator of leaf senescence. Mutation of U2B″ led to precocious leaf senescence, whereas overexpression of U2B″ extended leaf longevity. Transcriptome analysis revealed that the jasmonic acid (JA) signaling pathway was activated in the u2b″ mutant. U2B″ enhances the generation of splicing variant JASMONATE ZIM-DOMAIN 9β (JAZ9β) with an intron retention in the Jas motif, which compromises its interaction with CORONATINE INSENSITIVE1 and thus enhances the stability of JAZ9β protein. Moreover, JAZ9β could interact with MYC2 and obstruct its activity, thereby attenuating JA signaling. Correspondingly, overexpression of JAZ9β rescued the early senescence phenotype of the u2b″ mutant. Furthermore, JA treatment promoted expression of U2B″ that was found to be a direct target of MYC2. Overexpression of MYC2 in the u2b″ mutant resulted in a more pronounced premature senescence than that in wild-type plants. Collectively, our findings reveal that the spliceosomal protein U2B″ fine-tunes leaf senescence by enhancing the expression of JAZ9β and thereby attenuating JA signaling.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hairong Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yueqi Sha
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
19
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
20
|
Miccono MDLA, Yang HW, DeMott L, Melotto M. Review: Losing JAZ4 for growth and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111816. [PMID: 37543224 DOI: 10.1016/j.plantsci.2023.111816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
JAZ proteins are involved in the regulation of the jasmonate signaling pathway, which is responsible for various physiological processes, such as defense response, adaptation to abiotic stress, growth, and development in Arabidopsis. The conserved domains of JAZ proteins can serve as binding sites for a broad array of regulatory proteins and the diversity of these protein-protein pairings result in a variety of functional outcomes. Plant growth and defense are two physiological processes that can conflict with each other, resulting in undesirable plant trade-offs. Recent observations have revealed a distinguishing feature of JAZ4; it acts as negative regulator of both plant immunity and growth and development. We suggest that these complex biological processes can be decoupled at the JAZ4 regulatory node, due to prominent expression of JAZ4 in specific tissues and organs. This spatial separation of actions could explain the increased disease resistance and size of the plant root and shoot in the absence of JAZ4. At the tissue level, JAZ4 could play a role in crosstalk between hormones such as ethylene and auxin to control organ differentiation. Deciphering biding of JAZ4 to specific regulators in different tissues and the downstream responses is key to unraveling molecular mechanisms toward developing new crop improvement strategies.
Collapse
Affiliation(s)
- Maria de Los Angeles Miccono
- Department of Plant Sciences, University of California, Davis, CA, USA; Horticulture and Agronomy Graduate Group, University of California, Davis, CA, USA
| | - Ho-Wen Yang
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Logan DeMott
- Department of Plant Sciences, University of California, Davis, CA, USA; Plant Pathology Graduate Group, University of California, Davis, CA, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
21
|
Xu Z, Cheng J, Wang T, Huang Q, Liu P, Zhang M, Zhang P, He L. Novel Jasmonic Acid-Coumarin Pathway in the Eggplant That Inhibits Vitellogenin Gene Expression To Prevent Mite Reproduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13979-13987. [PMID: 37698370 DOI: 10.1021/acs.jafc.3c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Plants activate direct and indirect defense mechanisms in response to perceived herbivore invasion, which results in negative consequences for herbivores. Tetranychus cinnabarinus is a polyphagous generalist herbivore that inflicts substantial agricultural and horticultural damage. Our study revealed that mite feeding significantly increased jasmonic acid (JA) in the eggplant. The damage inflicted by the mites decreased considerably following the artificial application of JA, thereby indicating that JA initiated the defense response of the eggplant against mites. The transcriptomic and metabolomic analyses demonstrated the activation of the JA-coumarin pathway in response to mite feeding. This pathway protects the eggplant by suppressing the reproductive capacity and population size of the mites. The JA and coumarin treatments suppressed the vitellogenin gene (TcVg6) expression level. Additionally, RNA interference with TcVg6 significantly reduced the egg production and hatching rate of mites. In conclusion, the JA-coumarin pathway in the eggplant decreases the egg-hatching rate of mites through suppression of TcVg6.
Collapse
Affiliation(s)
- Zhifeng Xu
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Jinhui Cheng
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Tongyang Wang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Qianqian Huang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Peilin Liu
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Mengyu Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Ping Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400715, People's Republic of China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
22
|
Shen F, Hu C, Huang X, He H, Yang D, Zhao J, Yang X. Advances in alternative splicing identification: deep learning and pantranscriptome. FRONTIERS IN PLANT SCIENCE 2023; 14:1232466. [PMID: 37790793 PMCID: PMC10544900 DOI: 10.3389/fpls.2023.1232466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
In plants, alternative splicing is a crucial mechanism for regulating gene expression at the post-transcriptional level, which leads to diverse proteins by generating multiple mature mRNA isoforms and diversify the gene regulation. Due to the complexity and variability of this process, accurate identification of splicing events is a vital step in studying alternative splicing. This article presents the application of alternative splicing algorithms with or without reference genomes in plants, as well as the integration of advanced deep learning techniques for improved detection accuracy. In addition, we also discuss alternative splicing studies in the pan-genomic background and the usefulness of integrated strategies for fully profiling alternative splicing.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chenyang Hu
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Shanxi Key Lab of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shanxi, China
| | - Xin Huang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hao He
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Deng Yang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jirong Zhao
- Shanxi Key Lab of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shanxi, China
| | - Xiaozeng Yang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
23
|
He K, Du J, Han X, Li H, Kui M, Zhang J, Huang Z, Fu Q, Jiang Y, Hu Y. PHOSPHATE STARVATION RESPONSE1 (PHR1) interacts with JASMONATE ZIM-DOMAIN (JAZ) and MYC2 to modulate phosphate deficiency-induced jasmonate signaling in Arabidopsis. THE PLANT CELL 2023; 35:2132-2156. [PMID: 36856677 PMCID: PMC10226604 DOI: 10.1093/plcell/koad057] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 05/30/2023]
Abstract
Phosphorus (P) is a macronutrient necessary for plant growth and development. Inorganic phosphate (Pi) deficiency modulates the signaling pathway of the phytohormone jasmonate in Arabidopsis thaliana, but the underlying molecular mechanism currently remains elusive. Here, we confirmed that jasmonate signaling was enhanced under low Pi conditions, and the CORONATINE INSENSITIVE1 (COI1)-mediated pathway is critical for this process. A mechanistic investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) repressors physically interacted with the Pi signaling-related core transcription factors PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE2 (PHL2), and PHL3. Phenotypic analyses showed that PHR1 and its homologs positively regulated jasmonate-induced anthocyanin accumulation and root growth inhibition. PHR1 stimulated the expression of several jasmonate-responsive genes, whereas JAZ proteins interfered with its transcriptional function. Furthermore, PHR1 physically associated with the basic helix-loop-helix (bHLH) transcription factors MYC2, MYC3, and MYC4. Genetic analyses and biochemical assays indicated that PHR1 and MYC2 synergistically increased the transcription of downstream jasmonate-responsive genes and enhanced the responses to jasmonate. Collectively, our study reveals the crucial regulatory roles of PHR1 in modulating jasmonate responses and provides a mechanistic understanding of how PHR1 functions together with JAZ and MYC2 to maintain the appropriate level of jasmonate signaling under conditions of Pi deficiency.
Collapse
Affiliation(s)
- Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Huiqiong Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichong Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
24
|
Luo D, Sun W, Cai J, Hu G, Zhang D, Zhang X, Larkin RM, Zhang J, Yang C, Ye Z, Wang T. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:792-805. [PMID: 36582069 PMCID: PMC10037119 DOI: 10.1111/pbi.13997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Jasmonic acid (JA) plays an important role in regulating plant growth and defence responses. Here, we show that a transcription factor that belongs to the B-box (BBX) family named SlBBX20 regulates resistance to Botrytis cinerea in tomato by modulating JA signalling. The response to JA was significantly suppressed when SlBBX20 was overexpressed in tomato. By contrast, the JA response was enhanced in SlBBX20 knockout lines. RNA sequencing analysis provided more evidence that SlBBX20 modulates the expression of genes that are involved in JA signalling. We found that SlBBX20 interacts with SlMED25, a subunit of the Mediator transcriptional co-activator complex, and prevents the accumulation of the SlMED25 protein and transcription of JA-responsive genes. JA contributes to the defence response against necrotrophic pathogens. Knocking out SlBBX20 or overexpressing SlMED25 enhanced tomato resistance to B. cinerea. The resistance was impaired when SlBBX20 was overexpressed in plants that also overexpressed SlMED25. These data show that SlBBX20 attenuates JA signalling by regulating SlMED25. Interestingly, in addition to developing enhanced resistance to B. cinerea, SlBBX20-KO plants also produced higher fruit yields. SlBBX20 is a potential target gene for efforts that aim to develop elite crop varieties using gene editing technologies.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Wenhui Sun
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Jun Cai
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Guoyu Hu
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Danqiu Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Xiaoyan Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Junhong Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Changxian Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Zhibiao Ye
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| |
Collapse
|
25
|
Yan W, Jian Y, Duan S, Guo X, Hu J, Yang X, Li G. Dissection of the Plant Hormone Signal Transduction Network in Late Blight-Resistant Potato Genotype SD20 and Prediction of Key Resistance Genes. PHYTOPATHOLOGY 2023; 113:528-538. [PMID: 36173283 DOI: 10.1094/phyto-04-22-0124-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hormones play an important role in plant disease resistance and defense. Transcriptome data of late blight-resistant potato genotype SD20 treated by ethylene (ET), jasmonate (JA), salicylic acid (SA), and Phytophthora infestans CN152 was analyzed to assess the role of the ET/JA/SA regulatory network in plant disease resistance and defense and predict key resistant genes. The results show that there was significant crossover of differentially expressed genes among all treatments, and common and specific plant disease interaction genes for the ET, JA, and SA treatments were differentially expressed in the CN152 treatment. The resistance and defense genes of the potato genotype SD20 could be induced to regulate metabolic and hormone signaling pathways by alternative splicing in all treatments. Further analysis found that JA and ET pathways can work together synergistically. JA/ET and SA pathways antagonize each other to initiate the expression of calmodulin-domain protein kinases and calmodulin/calmodulin-like and RPM1-interacting protein 4 genes, and they activate HSP-mediated hypersensitive response and defense-related genes. Meanwhile, nine defense genes, including wound-responsive AP2-like factor, glutathione-s-transferase, serine/threonine-protein kinase BRI1, and Avr9/Cf-9 rapidly elicited protein genes, were obtained using weighted gene coexpression network analysis, which provided reliable targets for functional verification. This study provides a theoretical reference for the comprehensive application of plant hormones to improve resistance to potato late blight disease.
Collapse
Affiliation(s)
- Wenyuan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Yinqiao Jian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xiao Guo
- Vegetable Research Institute of Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan 250100, P.R. China
| | - Jun Hu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| | - Xiaohui Yang
- Vegetable Research Institute of Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan 250100, P.R. China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R. China
| |
Collapse
|
26
|
Nitrate availability controls translocation of the transcription factor NAC075 for cell-type-specific reprogramming of root growth. Dev Cell 2022; 57:2638-2651.e6. [PMID: 36473460 DOI: 10.1016/j.devcel.2022.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
Plant root architecture flexibly adapts to changing nitrate (NO3-) availability in the soil; however, the underlying molecular mechanism of this adaptive development remains under-studied. To explore the regulation of NO3--mediated root growth, we screened for low-nitrate-resistant mutant (lonr) and identified mutants that were defective in the NAC transcription factor NAC075 (lonr1) as being less sensitive to low NO3- in terms of primary root growth. We show that NAC075 is a mobile transcription factor relocating from the root stele tissues to the endodermis based on NO3- availability. Under low-NO3- availability, the kinase CBL-interacting protein kinase 1 (CIPK1) is activated, and it phosphorylates NAC075, restricting its movement from the stele, which leads to the transcriptional regulation of downstream target WRKY53, consequently leading to adapted root architecture. Our work thus identifies an adaptive mechanism involving translocation of transcription factor based on nutrient availability and leading to cell-specific reprogramming of plant root growth.
Collapse
|
27
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
28
|
Muhammad D, Clark NM, Haque S, Williams CM, Sozzani R, Long TA. POPEYE intercellular localization mediates cell-specific iron deficiency responses. PLANT PHYSIOLOGY 2022; 190:2017-2032. [PMID: 35920794 PMCID: PMC9614487 DOI: 10.1093/plphys/kiac357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/01/2022] [Indexed: 05/28/2023]
Abstract
Plants must tightly regulate iron (Fe) sensing, acquisition, transport, mobilization, and storage to ensure sufficient levels of this essential micronutrient. POPEYE (PYE) is an iron responsive transcription factor that positively regulates the iron deficiency response, while also repressing genes essential for maintaining iron homeostasis. However, little is known about how PYE plays such contradictory roles. Under iron-deficient conditions, pPYE:GFP accumulates in the root pericycle while pPYE:PYE-GFP is localized to the nucleus in all Arabidopsis (Arabidopsis thaliana) root cells, suggesting that PYE may have cell-specific dynamics and functions. Using scanning fluorescence correlation spectroscopy and cell-specific promoters, we found that PYE-GFP moves between different cells and that the tendency for movement corresponds with transcript abundance. While localization to the cortex, endodermis, and vasculature is required to manage changes in iron availability, vasculature and endodermis localization of PYE-GFP protein exacerbated pye-1 defects and elicited a host of transcriptional changes that are detrimental to iron mobilization. Our findings indicate that PYE acts as a positive regulator of iron deficiency response by regulating iron bioavailability differentially across cells, which may trigger iron uptake from the surrounding rhizosphere and impact root energy metabolism.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Biomathematics Graduate Program, Raleigh, North Carolina 27695, USA
| | - Samiul Haque
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Cranos M Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Biomathematics Graduate Program, Raleigh, North Carolina 27695, USA
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
29
|
Yang Y, Liu F, Liu L, Zhu M, Yuan J, Mai YX, Zou JJ, Le J, Wang Y, Palme K, Li X, Wang Y, Wang L. The unconventional prefoldin RPB5 interactor mediates the gravitropic response by modulating cytoskeleton organization and auxin transport in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1916-1934. [PMID: 35943836 DOI: 10.1111/jipb.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two β-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev :GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Fang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Le Liu
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinfeng Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jun-Jie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| |
Collapse
|
30
|
Chen Y, Kim P, Kong L, Wang X, Tan W, Liu X, Chen Y, Yang J, Chen B, Song Y, An Z, Min Phyon J, Zhang Y, Ding B, Kawabata S, Li Y, Wang Y. A dual-function transcription factor, SlJAF13, promotes anthocyanin biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5559-5580. [PMID: 35552695 DOI: 10.1093/jxb/erac209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Unlike modern tomato (Solanum lycopersicum) cultivars, cv. LA1996 harbors the dominant Aft allele, which is associated with anthocyanin synthesis in tomato fruit peel. However, the control of Aft anthocyanin biosynthesis remains unclear. Here, we used ethyl methanesulfonate-induced and CRISPR/Cas9-mediated mutation of LA1996 to show, respectively, that two class IIIf basic helix-loop-helix (bHLH) transcription factors, SlJAF13 and SlAN1, are involved in the control of anthocyanin synthesis. These transcription factors are key components of the MYB-bHLH-WD40 (MBW) complex, which positively regulates anthocyanin synthesis. Molecular and genetic analyses showed that SlJAF13 functions as an upstream activation factor of SlAN1 by binding directly to the G-Box motif of its promoter region. On the other hand, SlJAZ2, a JA signaling repressor, interferes with formation of the MBW complex to suppress anthocyanin synthesis by directly binding these two bHLH components. Unexpectedly, the transcript level of SlJAZ2 was in turn repressed in a SlJAF13-dependent manner. Mechanistically, SlJAF13 interacts with SlMYC2, inhibiting SlMYC2 activation of SlJAZ2 transcription, thus constituting a negative feedback loop governing anthocyanin accumulation. Taken together, our findings support a sophisticated regulatory network, in which SlJAF13 acts as an upstream dual-function regulator that fine tunes anthocyanin biosynthesis in tomato.
Collapse
Affiliation(s)
- Yunzhu Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Pyol Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xin Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wei Tan
- Horticultural Sub-academy of Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
| | - Xin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuansen Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jianfei Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bowei Chen
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxin Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zeyu An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jong Min Phyon
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yang Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Bing Ding
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Saneyuki Kawabata
- Institute for Sustainable Agroecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Midoricho, Nishitokyo, Tokyo, 188-0002, Japan
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
31
|
Ma P, Pei T, Lv B, Wang M, Dong J, Liang Z. Functional pleiotropism, diversity, and redundancy of Salvia miltiorrhiza Bunge JAZ family proteins in jasmonate-induced tanshinone and phenolic acid biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac166. [PMID: 36204204 PMCID: PMC9531341 DOI: 10.1093/hr/uhac166] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Jasmonate (JA) signaling regulates plant growth and development, biotic and abiotic stress tolerance, and primary and secondary metabolism biosynthesis. It is extensively modulated by JA-ZIM-domain (JAZ) family genes. In previous work, we obtained nine SmJAZ genes of Salvia miltiorrhiza and proved that SmJAZ8 was the core repressor of JA-induced tanshinone and phenolic acid biosynthesis. Here, we demonstrate that SmJAZ3 and SmJAZ4 act as repressors of JA-induced biosynthesis of tanshinones and salvianolic acid B (Sal B). This suggests that SmJAZ3/4 are functionally redundant in tanshinone and Sal B biosynthesis. SmJAZ1/2/5/6/9 are activators of JA-induced tanshinone biosynthesis and repressors of JA-induced Sal B biosynthesis. This demonstrates the redundancy and diversity of SmJAZ1/2/5/6/9 functions. Besides, SmJAZ10 inhibited JA-induced Sal B synthesis, but had no effect on the synthesis of tanshinone. Two-hybrid screening (Y2H) showed that SmJAZs formed homologous or heterogeneous dimers. Y2H and firefly luciferase complementation imaging (LCI) assays revealed that SmJAZs also formed a complex regulatory network with SmMYC2a, SmMYC2b, SmMYB39, and SmPAP1. Quantitative reverse transcription-PCR (qRT-PCR) indicated that SmJAZs regulated each other at the transcriptional level. Herein, we prove that SmJAZs have functional pleiotropism, diversity, and redundancy in JA-induced tanshinone and phenolic acid biosynthesis. This study provides an important clue for further understanding the inherent biological significance and molecular mechanisms of the JAZ family as the gene number increases during plant evolution.
Collapse
Affiliation(s)
| | | | | | - Mei Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | | | | |
Collapse
|
32
|
Tang B, Tan T, Chen Y, Hu Z, Xie Q, Yu X, Chen G. SlJAZ10 and SlJAZ11 mediate dark-induced leaf senescence and regeneration. PLoS Genet 2022; 18:e1010285. [PMID: 35830385 PMCID: PMC9278786 DOI: 10.1371/journal.pgen.1010285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
During evolutionary adaptation, the mechanisms for self-regulation are established between the normal growth and development of plants and environmental stress. The phytohormone jasmonate (JA) is a key tie of plant defence and development, and JASMONATE-ZIM DOMAIN (JAZ) repressor proteins are key components in JA signalling pathways. Here, we show that JAZ expression was affected by leaf senescence from the transcriptomic data. Further investigation revealed that SlJAZ10 and SlJAZ11 positively regulate leaf senescence and that SlJAZ11 can also promote plant regeneration. Moreover, we reveal that the SlJAV1-SlWRKY51 (JW) complex could suppress JA biosynthesis under normal growth conditions. Immediately after injury, SlJAZ10 and SlJAZ11 can regulate the activity of the JW complex through the effects of electrical signals and Ca2+ waves, which in turn affect JA biosynthesis, causing a difference in the regeneration phenotype between SlJAZ10-OE and SlJAZ11-OE transgenic plants. In addition, SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. Together, SlJAZ10 and SlJAZ11 not only act as repressors of JA signalling to leaf senescence, but also regulate plant regeneration through coordinated electrical signals, Ca2+ waves, hormones and transcriptional regulation. Our study provides critical insights into the mechanisms by which SlJAZ11 can induce regeneration. In plants, senescence is the final stage of development, but regeneration can help them beyond the stage. Plants regeneration is essential for propagation, and in cultivated crops to maintain excellent traits as close as possible. JA signaling can sense environmental signals and integrate various regulatory mechanisms to ensure plants regeneration occurs under optimal conditions. In this work, the JAZ-JAV1-WRKY51 complexes with reported was further optimized, the function of SlJAZ10 and SlJAZ11 was identified to promote inhibitory activity of SlJAV1-SlWRKY51 complex which negatively regulated JA biosynthesis by direct binding of the W-box of the SlAOC promoter. The results of further investigation suggest that the differences in regulation of electrical signals, Ca2+ waves, hormones and transcriptional regulation are responsible for the regeneration between SlJAZ10 and SlJAZ11. In addition, we have found that SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. In summary, despite both SlJAZ10 and SlJAZ11 can function as senescence, only SlJAZ11 has an important promoting function for regeneration.
Collapse
Affiliation(s)
- Boyan Tang
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Tingting Tan
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Yating Chen
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Zongli Hu
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Qiaoli Xie
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, People’s Republic of China
- * E-mail: (XY); (GC)
| | - Guoping Chen
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
- * E-mail: (XY); (GC)
| |
Collapse
|
33
|
Transcriptional regulation of plant innate immunity. Essays Biochem 2022; 66:607-620. [PMID: 35726519 PMCID: PMC9528082 DOI: 10.1042/ebc20210100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022]
Abstract
Transcriptional reprogramming is an integral part of plant immunity. Tight regulation of the immune transcriptome is essential for a proper response of plants to different types of pathogens. Consequently, transcriptional regulators are proven targets of pathogens to enhance their virulence. The plant immune transcriptome is regulated by many different, interconnected mechanisms that can determine the rate at which genes are transcribed. These include intracellular calcium signaling, modulation of the redox state, post-translational modifications of transcriptional regulators, histone modifications, DNA methylation, modulation of RNA polymerases, alternative transcription inititation, the Mediator complex and regulation by non-coding RNAs. In addition, on their journey from transcription to translation, mRNAs are further modulated through mechanisms such as nuclear RNA retention, storage of mRNA in stress granules and P-bodies, and post-transcriptional gene silencing. In this review, we highlight the latest insights into these mechanisms. Furthermore, we discuss some emerging technologies that promise to greatly enhance our understanding of the regulation of the plant immune transcriptome in the future.
Collapse
|
34
|
Chen J, Yang S, Fan B, Zhu C, Chen Z. The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. Int J Mol Sci 2022; 23:ijms23116170. [PMID: 35682844 PMCID: PMC9181133 DOI: 10.3390/ijms23116170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 01/25/2023] Open
Abstract
As sessile organisms, plants are constantly exposed to a variety of environmental stresses and have evolved adaptive mechanisms, including transcriptional reprogramming, in order to survive or acclimate under adverse conditions. Over the past several decades, a large number of gene-specific transcription factors have been identified in the transcriptional regulation of plant adaptive responses. The Mediator complex plays a key role in transducing signals from gene-specific transcription factors to the transcription machinery to activate or repress target gene expression. Since its first purification about 15 years ago, plant Mediator complex has been extensively analyzed for its composition and biological functions. Mutants of many plant Mediator subunits are not lethal but are compromised in growth, development and response to biotic and abiotic stress, underscoring a particularly important role in plant adaptive responses. Plant Mediator subunits also interact with partners other than transcription factors and components of the transcription machinery, indicating the complexity of the regulation of gene expression by plant Mediator complex. Here, we present a comprehensive discussion of recent analyses of the structure and function of plant Mediator complex, with a particular focus on its roles in plant adaptive responses to a wide spectrum of environmental stresses and associated biological processes.
Collapse
Affiliation(s)
- Jialuo Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
35
|
Sun B, Shang L, Li Y, Zhang Q, Chu Z, He S, Yang W, Ding X. Ectopic Expression of OsJAZs Alters Plant Defense and Development. Int J Mol Sci 2022; 23:ijms23094581. [PMID: 35562972 PMCID: PMC9103030 DOI: 10.3390/ijms23094581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
A key step in jasmonic acid (JA) signaling is the ligand-dependent assembly of a coreceptor complex comprising the F-box protein COI1 and JAZ transcriptional repressors. The assembly of this receptor complex results in proteasome-mediated degradation of JAZ repressors, which in turn bind and repress MYC transcription factors. Many studies on JAZs have been performed in Arabidopsis thaliana, but the function of JAZs in rice is largely unknown. To systematically reveal the function of OsJAZs, in this study, we compared the various phenotypes resulting from 13 OsJAZs via ectopic expression in Arabidopsis thaliana and the phenotypes of 12 AtJAZs overexpression (OE) lines. Phylogenetic analysis showed that the 25 proteins could be divided into three major groups. Yeast two-hybrid (Y2H) assays revealed that most OsJAZ proteins could form homodimers or heterodimers. The statistical results showed that the phenotypes of the OsJAZ OE plants were quite different from those of AtJAZ OE plants in terms of plant growth, development, and immunity. As an example, compared with other JAZ OE plants, OsJAZ11 OE plants exhibited a JA-insensitive phenotype and enhanced resistance to Pst DC3000. The protein stability after JA treatment of OsJAZ11 emphasized the specific function of the protein. This study aimed to explore the commonalities and characteristics of different JAZ proteins functions from a genetic perspective, and to screen genes with disease resistance value. Overall, the results of this study provide insights for further functional analysis of rice JAZ family proteins.
Collapse
Affiliation(s)
- Baolong Sun
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Luyue Shang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Shengyang He
- Department of Biology, Duke University, Durham, NC 27708, USA;
| | - Wei Yang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Key Laboratory of Quality Improvement of Agricultural Products of Zhejiang Province, College of Modern Agricultural, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (W.Y.); (X.D.)
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.S.); (L.S.); (Y.L.); (Q.Z.)
- Correspondence: (W.Y.); (X.D.)
| |
Collapse
|
36
|
Lin L, Du M, Li S, Sun C, Wu F, Deng L, Chen Q, Li C. Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:871-883. [PMID: 35212455 DOI: 10.1111/jipb.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Grain number is a flexible trait and contributes significantly to grain yield. In rice, the zinc finger transcription factor DROUGHT AND SALT TOLERANCE (DST) controls grain number by directly regulating cytokinin oxidase/dehydrogenase 2 (OsCKX2) expression. Although specific upstream regulators of the DST-OsCKX2 module have been identified, the mechanism employed by DST to regulate the expression of OsCKX2 remains unclear. Here, we demonstrate that DST-interacting protein 1 (DIP1), known as Mediator subunit OsMED25, acts as an interacting coactivator of DST. Phenotypic analyses revealed that OsMED25-RNAi and the osmed25 mutant plants exhibited enlarged panicles, with enhanced branching and spikelet number, similar to the dst mutant. Genetic analysis indicated that OsMED25 acts in the same pathway as the DST-OsCKX2 module to regulate spikelet number per panicle. Further biochemical analysis showed that OsMED25 physically interacts with DST at the promoter region of OsCKX2, and then recruits RNA polymerase II (Pol II) to activate OsCKX2 transcription. Thus, OsMED25 was involved in the communication between DST and Pol II general transcriptional machinery to regulate spikelet number. In general, our findings reveal a novel function of OsMED25 in DST-OsCKX2 modulated transcriptional regulation, thus enhancing our understanding of the regulatory mechanism underlying DST-OsCKX2-mediated spikelet number.
Collapse
Affiliation(s)
- Lihao Lin
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
37
|
Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int J Mol Sci 2022; 23:ijms23073945. [PMID: 35409303 PMCID: PMC8999811 DOI: 10.3390/ijms23073945] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid-derived jasmonates (JAs) play a crucial role in a variety of plant development and defense mechanisms. In recent years, significant progress has been made toward understanding the JA signaling pathway. In this review, we discuss JA biosynthesis, as well as its core signaling pathway, termination mechanisms, and the evolutionary origin of JA signaling. JA regulates not only plant regeneration, reproductive growth, and vegetative growth but also the responses of plants to stresses, including pathogen as well as virus infection, herbivore attack, and abiotic stresses. We also focus on the JA signaling pathway, considering its crosstalk with the gibberellin (GA), auxin, and phytochrome signaling pathways for mediation of the trade-offs between growth and defense. In summary, JA signals regulate multiple outputs of plant defense and growth and act to balance growth and defense in order to adapt to complex environments.
Collapse
Affiliation(s)
- Cong Li
- Correspondence: (C.L.); (D.C.)
| | | | | | | | | | | |
Collapse
|
38
|
Genome-wide analysis of JAZ family genes expression patterns during fig (Ficus carica L.) fruit development and in response to hormone treatment. BMC Genomics 2022; 23:170. [PMID: 35236292 PMCID: PMC8889711 DOI: 10.1186/s12864-022-08420-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.
Collapse
|
39
|
Li J, Feng H, Liu S, Liu P, Chen X, Yang J, He L, Yang J, Chen J. Phosphorylated viral protein evades plant immunity through interfering the function of RNA-binding protein. PLoS Pathog 2022; 18:e1010412. [PMID: 35294497 PMCID: PMC8959173 DOI: 10.1371/journal.ppat.1010412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/28/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it’s the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants. Chinese wheat mosaic virus (CWMV) causes a damaging disease in cereal plants. However, CWMV interacts with host factors to facilitate virus infection is not clear yet. Here, we found that S162 and S165 of CWMV cysteine-rich protein (CRP) are phosphorylated by SAPK7 in vivo and in vitro. Mutational analyses have indicated that these two phosphorylation sites of CRP (CRPS162/165D) promoting CWMV infection in plants, due to the supressed cell death and H2O2 production. Further investigations found the CRPS162/165D can interact with TaUBA2C, while the non-phosphorylatable mutant of CRP (CRPS162/165A) does not. Futhermore, we have determined that CRPS162/165D and TaUBA2C interaction inhibited the formation of TaUBA2C speckles in nucleus to attenuate its RNA- and DNA-binding activity. We also showed that TaUBA2C recruit the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to up-regulated these genes expressions and then induce cell death and H2O2 production in plant. This effect can be supressed by the expression of CRPS162/165D, in a dose-dependent manner. Taken together, our discovery may provide a new sight for the arms race between virus and its host plants.
Collapse
Affiliation(s)
- Juan Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Huimin Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shuang Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JY); (JC)
| |
Collapse
|
40
|
Kashkan I, Timofeyenko K, Růžička K. How alternative splicing changes the properties of plant proteins. QUANTITATIVE PLANT BIOLOGY 2022; 3:e14. [PMID: 37077961 PMCID: PMC10095807 DOI: 10.1017/qpb.2022.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 05/03/2023]
Abstract
Most plant primary transcripts undergo alternative splicing (AS), and its impact on protein diversity is a subject of intensive investigation. Several studies have uncovered various mechanisms of how particular protein splice isoforms operate. However, the common principles behind the AS effects on protein function in plants have rarely been surveyed. Here, on the selected examples, we highlight diverse tissue expression patterns, subcellular localization, enzymatic activities, abilities to bind other molecules and other relevant features. We describe how the protein isoforms mutually interact to underline their intriguing roles in altering the functionality of protein complexes. Moreover, we also discuss the known cases when these interactions have been placed inside the autoregulatory loops. This review is particularly intended for plant cell and developmental biologists who would like to gain inspiration on how the splice variants encoded by their genes of interest may coordinately work.
Collapse
Affiliation(s)
- Ivan Kashkan
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno62500, Czech Republic
| | - Ksenia Timofeyenko
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno62500, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Author for correspondence: K. Růžička, E-mail:
| |
Collapse
|
41
|
Song C, Cao Y, Dai J, Li G, Manzoor MA, Chen C, Deng H. The Multifaceted Roles of MYC2 in Plants: Toward Transcriptional Reprogramming and Stress Tolerance by Jasmonate Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:868874. [PMID: 35548315 PMCID: PMC9082941 DOI: 10.3389/fpls.2022.868874] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 05/12/2023]
Abstract
Environmental stress is one of the major restrictions on plant development and foodstuff production. The adaptive response in plants largely occurs through an intricate signaling system, which is crucial for regulating the stress-responsive genes. Myelocytomatosis (MYC) transcription factors are the fundamental regulators of the jasmonate (JA) signaling branch that participates in plant development and multiple stresses. By binding to the cis-acting elements of a large number of stress-responsive genes, JA-responsive transcription factors activate the stress-resistant defense genes. The mechanism of stress responses concerns myriad regulatory processes at the physiological and molecular levels. Discovering stress-related regulatory factors is of great value in disclosing the response mechanisms of plants to biotic or abiotic stress, which could guide the genetic improvement of plant resistance. This review summarizes recent researches in various aspects of MYC2-mediated JA signaling and emphasizes MYC2 involvement in plant growth and stress response.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yunpeng Cao
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jun Dai
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | | | - Cunwu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- *Correspondence: Hui Deng,
| |
Collapse
|
42
|
DeMott L, Oblessuc PR, Pierce A, Student J, Melotto M. Spatiotemporal regulation of JAZ4 expression and splicing contribute to ethylene- and auxin-mediated responses in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1266-1282. [PMID: 34562337 DOI: 10.1111/tpj.15508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Jasmonic acid (JA) signaling controls several processes related to plant growth, development, and defense, which are modulated by the transcription regulator and receptor JASMONATE-ZIM DOMAIN (JAZ) proteins. We recently discovered that a member of the JAZ family, JAZ4, has a prominent function in canonical JA signaling as well as other mechanisms. Here, we discovered the existence of two naturally occurring splice variants (SVs) of JAZ4 in planta, JAZ4.1 and JAZ4.2, and employed biochemical and pharmacological approaches to determine protein stability and repression capability of these SVs within JA signaling. We then utilized quantitative and qualitative transcriptional studies to determine spatiotemporal expression and splicing patterns in vivo, which revealed developmental-, tissue-, and organ-specific regulation. Detailed phenotypic and expression analyses suggest a role of JAZ4 in ethylene (ET) and auxin signaling pathways differentially within the zones of root development in seedlings. These results support a model in which JAZ4 functions as a negative regulator of ET signaling and auxin signaling in root tissues above the apex. However, in the root apex JAZ4 functions as a positive regulator of auxin signaling possibly independently of ET. Collectively, our data provide insight into the complexity of spatiotemporal regulation of JAZ4 and how this impacts hormone signaling specificity and diversity in Arabidopsis roots.
Collapse
Affiliation(s)
- Logan DeMott
- Department of Plant Sciences, University of California, Davis, CA, USA
- Plant Pathology Graduate Group, University of California, Davis, CA, USA
| | - Paula R Oblessuc
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Alice Pierce
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Joseph Student
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
43
|
The THO/TREX Complex Active in Alternative Splicing Mediates Plant Responses to Salicylic Acid and Jasmonic Acid. Int J Mol Sci 2021; 22:ijms222212197. [PMID: 34830079 PMCID: PMC8619553 DOI: 10.3390/ijms222212197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Salicylic acid (SA) and jasmonic acid (JA) are essential plant immune hormones, which could induce plant resistance to multiple pathogens. However, whether common components are employed by both SA and JA to induce defense is largely unknown. In this study, we found that the enhanced disease susceptibility 8 (EDS8) mutant was compromised in plant defenses to hemibiotrophic pathogen Pseudomonas syringae pv. maculicola ES4326 and necrotrophic pathogen Botrytis cinerea, and was deficient in plant responses to both SA and JA. The EDS8 was identified to be THO1, which encodes a subunit of the THO/TREX complex, by using mapping-by-sequencing. To check whether the EDS8 itself or the THO/TREX complex mediates SA and JA signaling, the mutant of another subunit of the THO/TREX complex, THO3, was tested. THO3 mutation reduced both SA and JA induced defenses, indicating that the THO/TREX complex is critical for plant responses to these two hormones. We further proved that the THO/TREX interacting protein SERRATE, a factor regulating alternative splicing (AS), was involved in plant responses to SA and JA. Thus, the AS events in the eds8 mutant after SA or JA treatment were determined, and we found that the SA and JA induced different alternative splicing events were majorly modulated by EDS8. In summary, our study proves that the THO/TREX complex active in AS is involved in both SA and JA induced plant defenses.
Collapse
|
44
|
Cao L, Tian J, Liu Y, Chen X, Li S, Persson S, Lu D, Chen M, Luo Z, Zhang D, Yuan Z. Ectopic expression of OsJAZ6, which interacts with OsJAZ1, alters JA signaling and spikelet development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1083-1096. [PMID: 34538009 DOI: 10.1111/tpj.15496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Jasmonates (JAs) are key phytohormones that regulate plant responses and development. JASMONATE-ZIM DOMAIN (JAZ) proteins safeguard JA signaling by repressing JA-responsive gene expression in the absence of JA. However, the interaction and cooperative roles of JAZ repressors remain unclear during plant development. Here, we found that OsJAZ6 interacts with OsJAZ1 depending on a single amino acid in the so-called ZIM domain of OsJAZ6 in rice JA signaling transduction and JA-regulated rice spikelet development. In vivo protein distribution analysis revealed that the OsJAZ6 content is efficiently regulated during spikelet development, and biochemical and genetic evidence showed that OsJAZ6 is more sensitive to JA-mediated degradation than OsJAZ1. Through over- and mis-expression experiments, we further showed that the protein stability and levels of OsJAZ6 orchestrate the output of JA signaling during rice spikelet development. A possible mechanism, which outlines how OsJAZ repressors interact and function synergistically in specifying JA signaling output through degradation titration, is also discussed.
Collapse
Affiliation(s)
- Lichun Cao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Tian
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yilin Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Siqi Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Dan Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
45
|
Feng Q, Li L, Liu Y, Shao X, Li X. Jasmonate regulates the FAMA/mediator complex subunit 8-THIOGLUCOSIDE GLUCOHYDROLASE 1 cascade and myrosinase activity. PLANT PHYSIOLOGY 2021; 187:963-980. [PMID: 34608953 PMCID: PMC8491074 DOI: 10.1093/plphys/kiab283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Myrosinases are β-thioglucoside glucosidases that are unique to the Brassicales order. These enzymes hydrolyze glucosinolates to produce compounds that have direct antibiotic effects or that function as signaling molecules in the plant immune system, protecting plants from pathogens and insect pests. However, the effects of jasmonic acid (JA), a plant hormone that is crucial for plant disease resistance, on myrosinase activity remain unclear. Here, we systematically studied the effects of JA on myrosinase activity and explored the associated internal transcriptional regulation mechanisms. Exogenous application of JA significantly increased myrosinase activity, while the inhibition of endogenous JA biosynthesis and signaling reduced myrosinase activity. In addition, some myrosinase genes in Arabidopsis (Arabidopsis thaliana) were upregulated by JA. Further genetic and biochemical evidence showed that transcription factor FAMA interacted with a series of JASMONATE ZIM-DOMAIN proteins and affected JA-mediated myrosinase activity. However, among the JA-upregulated myrosinase genes, only THIOGLUCOSIDE GLUCOHYDROLASE 1 (TGG1) was positively regulated by FAMA. Further biochemical analysis showed that FAMA bound to the TGG1 promoter to directly mediate TGG1 expression in conjunction with Mediator complex subunit 8 (MED8). Together, our results provide evidence that JA acts as an important signal upstream of the FAMA/MED8-TGG1 pathway to positively regulate myrosinase activity in Arabidopsis.
Collapse
Affiliation(s)
- Qingkai Feng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Liping Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo 315832, China
| | - Yan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| |
Collapse
|
46
|
Decoding co-/post-transcriptional complexities of plant transcriptomes and epitranscriptome using next-generation sequencing technologies. Biochem Soc Trans 2021; 48:2399-2414. [PMID: 33196096 DOI: 10.1042/bst20190492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) technologies - Illumina RNA-seq, Pacific Biosciences isoform sequencing (PacBio Iso-seq), and Oxford Nanopore direct RNA sequencing (DRS) - have revealed the complexity of plant transcriptomes and their regulation at the co-/post-transcriptional level. Global analysis of mature mRNAs, transcripts from nuclear run-on assays, and nascent chromatin-bound mRNAs using short as well as full-length and single-molecule DRS reads have uncovered potential roles of different forms of RNA polymerase II during the transcription process, and the extent of co-transcriptional pre-mRNA splicing and polyadenylation. These tools have also allowed mapping of transcriptome-wide start sites in cap-containing RNAs, poly(A) site choice, poly(A) tail length, and RNA base modifications. The emerging theme from recent studies is that reprogramming of gene expression in response to developmental cues and stresses at the co-/post-transcriptional level likely plays a crucial role in eliciting appropriate responses for optimal growth and plant survival under adverse conditions. Although the mechanisms by which developmental cues and different stresses regulate co-/post-transcriptional splicing are largely unknown, a few recent studies indicate that the external cues target spliceosomal and splicing regulatory proteins to modulate alternative splicing. In this review, we provide an overview of recent discoveries on the dynamics and complexities of plant transcriptomes, mechanistic insights into splicing regulation, and discuss critical gaps in co-/post-transcriptional research that need to be addressed using diverse genomic and biochemical approaches.
Collapse
|
47
|
Liu L, Tang Z, Liu F, Mao F, Yujuan G, Wang Z, Zhao X. Normal, novel or none: versatile regulation from alternative splicing. PLANT SIGNALING & BEHAVIOR 2021; 16:1917170. [PMID: 33882794 PMCID: PMC8205018 DOI: 10.1080/15592324.2021.1917170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Pre-mRNA splicing is a vital step in the posttranscriptional regulation of gene expression. Splicing is catalyzed by the spliceosome, a multidalton RNA-protein complex, through two successive transesterifications to yield mature mRNAs. In Arabidopsis, more than 61% of all transcripts from intron-containing genes are alternatively spliced, thereby resulting in transcriptome and subsequent proteome diversities for cellular processes. Moreover, it is estimated that more alternative splicing (AS) events induced by adverse stimuli occur to confer stress tolerance. Recently, increasing AS variants encoding normal or novel proteins, or degraded by nonsense-mediated decay (NMD) and their corresponding splicing factors or regulators acting at the posttranscriptional level have been functionally characterized. This review comprehensively summarizes and highlights the advances in our understanding of the biological functions and underlying mechanisms of AS events and their regulators in Arabidopsis and provides prospects for further research on AS in crops.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’anChina
| | - Ziwei Tang
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’anChina
| | - Feng Mao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
| | - Gu Yujuan
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, WuhanChina
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’anChina
| |
Collapse
|
48
|
Wang HL, Zhang Y, Wang T, Yang Q, Yang Y, Li Z, Li B, Wen X, Li W, Yin W, Xia X, Guo H, Li Z. An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. THE PLANT CELL 2021; 33:1594-1614. [PMID: 33793897 PMCID: PMC8254505 DOI: 10.1093/plcell/koab046] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/01/2021] [Indexed: 05/05/2023]
Abstract
During leaf senescence, the final stage of leaf development, nutrients are recycled from leaves to other organs, and therefore proper control of senescence is thus critical for plant fitness. Although substantial progress has been achieved in understanding leaf senescence in annual plants, the molecular factors that control leaf senescence in perennial woody plants are largely unknown. Using RNA sequencing, we obtained a high-resolution temporal profile of gene expression during autumn leaf senescence in poplar (Populus tomentosa). Identification of hub transcription factors (TFs) by co-expression network analysis of genes revealed that senescence-associated NAC family TFs (Sen-NAC TFs) regulate autumn leaf senescence. Age-dependent alternative splicing (AS) caused an intron retention (IR) event in the pre-mRNA encoding PtRD26, a NAC-TF. This produced a truncated protein PtRD26IR, which functions as a dominant-negative regulator of senescence by interacting with multiple hub Sen-NAC TFs, thereby repressing their DNA-binding activities. Functional analysis of senescence-associated splicing factors identified two U2 auxiliary factors that are involved in AS of PtRD26IR. Correspondingly, silencing of these factors decreased PtRD26IR transcript abundance and induced early senescence. We propose that an age-dependent increase of IR splice variants derived from Sen-NAC TFs is a regulatory program to fine tune the molecular mechanisms that regulate leaf senescence in trees.
Collapse
Affiliation(s)
- Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qi Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bosheng Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xing Wen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wenyang Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Author for correspondence: (Z.L.), (H.G.)
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Author for correspondence: (Z.L.), (H.G.)
| |
Collapse
|
49
|
An JP, Xu RR, Liu X, Zhang JC, Wang XF, You CX, Hao YJ. Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1414-1430. [PMID: 33759251 DOI: 10.1111/tpj.15245] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 05/15/2023]
Abstract
Jasmonate (JA) induces the biosynthesis of anthocyanin and proanthocyanidin. MdMYB9 is essential for modulating the accumulation of both anthocyanin and proanthocyanidin in apple, but the molecular mechanism for induction of anthocyanin and proanthocyanidin biosynthesis by JA is unclear. In this study, we discovered an apple telomere-binding protein (MdTRB1) to be the interacting protein of MdMYB9. A series of biological assays showed that MdTRB1 acted as a positive modulator of anthocyanin and proanthocyanidin accumulation, and is dependent on MdMYB9. MdTRB1 interacted with MdMYB9 and enhanced the activation activity of MdMYB9 to its downstream genes. In addition, we found that the JA signaling repressor MdJAZ1 interacted with MdTRB1 and interfered with the interaction between MdTRB1 and MdMYB9, therefore negatively modulating MdTRB1-promoted biosynthesis of anthocyanin and proanthocyanidin. These results show that the JAZ1-TRB1-MYB9 module dynamically modulates JA-mediated accumulation of anthocyanin and proanthocyanidin. Taken together, our data further expand the functional study of TRB1 and provide insights for further studies of the modulation of anthocyanin and proanthocyanidin biosynthesis by JA.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Rui-Rui Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, 261061, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
50
|
Liu H, Timko MP. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. Int J Mol Sci 2021; 22:ijms22062914. [PMID: 33805647 PMCID: PMC8000993 DOI: 10.3390/ijms22062914] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Plants continually monitor their innate developmental status and external environment and make adjustments to balance growth, differentiation and stress responses using a complex and highly interconnected regulatory network composed of various signaling molecules and regulatory proteins. Phytohormones are an essential group of signaling molecules that work through a variety of different pathways conferring plasticity to adapt to the everchanging developmental and environmental cues. Of these, jasmonic acid (JA), a lipid-derived molecule, plays an essential function in controlling many different plant developmental and stress responses. In the past decades, significant progress has been made in our understanding of the molecular mechanisms that underlie JA metabolism, perception, signal transduction and its crosstalk with other phytohormone signaling pathways. In this review, we discuss the JA signaling pathways starting from its biosynthesis to JA-responsive gene expression, highlighting recent advances made in defining the key transcription factors and transcriptional regulatory proteins involved. We also discuss the nature and degree of crosstalk between JA and other phytohormone signaling pathways, highlighting recent breakthroughs that broaden our knowledge of the molecular bases underlying JA-regulated processes during plant development and biotic stress responses.
Collapse
|