1
|
Du Y, Ye C, Han P, Sheng Y, Li F, Sun H, Zhang J, Li J. The molecular mechanism of transcription factor regulation of grain size in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112434. [PMID: 40023197 DOI: 10.1016/j.plantsci.2025.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Rice is a crucial food crop in China, and the continuous and stable improvement of rice yield is of great significance for ensuring national food security. Grain size in rice is closely related to thousand-grain weight, making it a key factor influencing yield. Identifying genes associated with grain size and elucidating their molecular mechanisms are essential for breeding high-yield, high-quality rice varieties. Transcription factors play a vital role in regulating plant growth and development, and many transcription factor families are crucial in controlling grain size in rice. Here, we review the mechanisms by which transcription factors regulate rice grain size, summarize and evaluate the regulatory mechanisms of transcription factors that have been discovered in recent decades to regulate rice grain size, construct two possible super networks composed of transcription factors as links to regulate rice grain size, and points out the application of transcription factors regulating grain size in rice breeding. This review will provide a roadmap for understanding the regulatory mechanisms of rice grain size and applying these genes to rice breeding using molecular breeding techniques.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| | - Chun Ye
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Peijie Han
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Yile Sheng
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Fei Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Hongzheng Sun
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Jing Zhang
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China
| | - Junzhou Li
- Henan Agricultural University, College of Agronomy / Henan Provincial Key Laboratory of Rice Molecular Breeding and High-Efficiency Production, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Yan P, Wang Y, Cui J, Liu M, Zhu Y, Ma F, Liu Y, Lan D, Dong S, Hu Z, Niu F, Liu Y, Zhang X, He S, Hu J, Yuan X, Li Y, Yang J, Cao L, Luo X. OsMAPKKK5 affects brassinosteroid signal transduction via phosphorylating OsBSK1-1 and regulates rice plant architecture and yield. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1798-1813. [PMID: 39967024 PMCID: PMC12018843 DOI: 10.1111/pbi.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Improving plant architecture and increasing yields are the main goals of rice breeders. However, yield is a complex trait influenced by many yield-related traits. Identifying and characterizing important genes in the coordinated network regulating complex rice traits and their interactions is conducive to cultivating high-yielding rice varieties. In this study, we determined that the interaction between mitogen-activated protein kinase kinase kinase5 (OsMAPKKK5) and brassinosteroid-signalling kinase1-1 (OsBSK1-1) regulates yield-related traits in rice. Specifically, OsMAPKKK5 phosphorylates OsBSK1-1, which enhances the interaction between these two proteins, but adversely affects the OsBSK1-1-OsBRI1 (BR insensitive1) and OsBSK1-1-OsPPKL1 (protein phosphatase with two Kelch-like domains) interactions. Additionally, OsMAPKKK5 disrupts brassinosteroid signal transduction, which prevents OsBZR1 (brassinazole-resistant1) from efficiently entering the nucleus, thereby negatively modulating its function as a transcription factor regulating downstream effector genes, ultimately adversely affecting plant architecture and yield. This study revealed the relationship between the MAPK cascade and the regulatory effects of brassinosteroid on the rice grain yield involves OsMAPKKK5 and OsBSK1-1. The study data may be important for future investigations on the rice yield-regulating molecular network.
Collapse
Affiliation(s)
- Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
- State Key Laboratory of Wetland Conservation and Restoration, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and Institute of Eco‐Chongming, School of Life SciencesFudan UniversityShanghaiChina
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Mingyu Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yu Zhu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yahui Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Dengyong Lan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Shiqing Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Zejun Hu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Fuan Niu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Yang Liu
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| | - Xinwei Zhang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Shicong He
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Jian Hu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Xinyu Yuan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Yizhen Li
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co‐Construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life SciencesFudan UniversityShanghaiChina
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of AgronomyJiangxi Agricultural UniversityNanchangJiangxiChina
| |
Collapse
|
3
|
Jin X, Fu L, Chen C, Liu J, Liu Y, Zhang W, Li X, Liu C, Bu Q, Tian X. OsBSK3 and OsBSK2 regulate grain size and leaf angle via MAPK signaling pathway in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:104. [PMID: 40254664 DOI: 10.1007/s00122-025-04889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025]
Abstract
Grain size and leaf angle are key agronomic traits that determine the final yield. OsBSKs (BRASSINOSTEROID-SIGNALING KINASES) and OsMAPKs (MITOGEN ACTIVATED PROTEIN KINASE) are known to play essential roles in plant growth, development, and stress responses. However, the potential crosstalk between these pathways and their specific roles in regulating grain size and leaf angle remain largely unexplored in rice. Here, we characterized that OsBSKs regulate grain size and leaf angle in rice, and among these, OsBSK2 and OsBSK3 may play more critical roles. The grain size and leaf angle in osbsk3 and osbsk2 mutants are significantly smaller, whereas the OsBSK3-overexpressing lines (OsBSK3-OEs) exhibit considerably larger grain size and leaf angle compared to the others. Furthermore, both OsBSK3 and OsBSK2 interact with OsMKKK10, indirectly activating OsMAPK6 in plant cells. Notably, mutations in MAPK cascade components, such as smg2-1 (an osmkkk10 mutant), smg1-1 (an osmkk4 mutant), and dsg1 (an osmapk6 mutant), resulted in significantly reduced leaf angles. Moreover, these mutations were able to rescue the increased grain size and leaf angle observed in OsBSK3 overexpression lines. Additionally, we also identified OsWRKY53 as a potential downstream target of the OsBSKs-OsMKKK10-OsMKK4-OsMAPK6 cascade in the regulation of grain size and leaf angle. Taken together, the above results not only highlight the essential and specific roles of OsBSK3 and OsBSK2 in regulating rice grain size and leaf angle, but also reveal the mechanism which OsBSK3/OsBSK2 mediate MAPK cascade to regulate rice grain size and leaf angle.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linli Fu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Chunxiao Chen
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yingxiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
4
|
Mo B, Chen X, Yang J, Chen L, Guo W, Wu S, Peng X, Zhang Z. Engineering of photorespiration-dependent glycine betaine biosynthesis improves photosynthetic carbon fixation and panicle architecture in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:979-992. [PMID: 40013515 DOI: 10.1111/jipb.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/28/2025]
Abstract
In C3 plants, photorespiration is an energy expensive pathway that competes with photosynthetic CO2 assimilation and releases CO2 into the atmosphere, potentially reducing C3 plant productivity by 20%-50%. Consequently, reducing the flux through photorespiration has been recognized as a major way to improve C3 crop photosynthetic carbon fixation and productivity. While current research efforts in engineering photorespiration are mainly based on the modification of chloroplast glycolate metabolic steps, only limited studies have explored optimizations in other photorespiratory metabolic steps. Here, we engineered an imGS bypass within the rice mitochondria to bypass the photorespiratory glycine toward glycine betaine, thereby, improving the photosynthetic carbon fixation in rice. The imGS transgenic rice plants exhibited significant accumulation of glycine betaine, reduced photorespiration, and elevated photosynthesis and photosynthate levels. Additionally, the introduction of imGS bypass into rice leads to an increase in the number of branches and grains per panicle which may be related to cytokinin and gibberellin signaling pathways. Taken together, these results suggest diverting mitochondrial glycine from photorespiration toward glycine betaine synthesis can effectively enhance carbon fixation and panicle architecture in rice, offering a promising strategy for developing functional mitochondrial photorespiratory bypasses with the potential to enhance plant productivity.
Collapse
Affiliation(s)
- Benqi Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xifeng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Luyao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Weidong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Shuofan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
5
|
Guo T, Si F, Lu F, Yang L, Chen K, Wang X, Li G, Lu ZQ, Lin HX. Competitive binding of small antagonistic peptides to the OsER1 receptor optimizes rice panicle architecture. PLANT COMMUNICATIONS 2025; 6:101204. [PMID: 39645583 PMCID: PMC11956112 DOI: 10.1016/j.xplc.2024.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Rice panicle architecture is a pivotal trait that strongly contributes to grain yield. Small peptide ligands from the OsEPF/EPFL family synergistically control panicle architecture by recognition of the OsER1 receptor and subsequent activation of the OsMKKK10-OsMKK4-OsMPK6 cascade, indicating that specific ligand-receptor pairs orchestrate rice panicle development. However, how small homologous peptides fine-tune organ morphogenesis by targeting a common receptor remains to be clarified. Here, we report that the small peptide OsEPFL5 acts as a ligand of the OsER1 receptor that inactivates the OsMKKK10-OsMKK4-OsMPK6 cascade, suggesting that OsEPFL5 plays a role opposite to that of the OsEPFL6/7/8/9 subfamily in regulating spikelet number per panicle and grain size. Notably, OsEPFL5 competitively replaces binding of OsEPFL6, OsEPFL7, OsEPFL8, or OsEPFL9 to the OsER1 receptor, revealing antagonistic competition between these small homologous peptides. Specifically enhancing the expression of OsEPFL5 can significantly improve grain yield by suppressing functions of the ligand-receptor pairs OsEPFL6-OsER1, OsEPFL7-OsER1, OsEPFL8-OsER1, and OsEPFL9-OsER1, suggesting that competitive binding to the OsER1 receptor by small antagonistic peptides can optimize rice panicle architecture. Our findings clarify how a receptor agonist and antagonist define inductive and inhibitory cues to shape rice panicle architecture, thus providing a new method for rationally breaking yield-trait coupling by manipulating small antagonistic peptides.
Collapse
Affiliation(s)
- Tao Guo
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fuyan Si
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Lu
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lianlian Yang
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Chen
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetic and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agricultural and Rural Affairs, Guangzhou 510640, China
| | - Xiaopan Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Guanglin Li
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
6
|
Yaseen M, Tariq N, Kanwal R, Farooq A, Wang H, Yuan H. Rice grain size: current regulatory mechanisms and future perspectives. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01626-8. [PMID: 40056359 DOI: 10.1007/s10265-025-01626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Rice is a staple food for over half of the world's population. To feed the growing population, molecular breeders aim to increase grain yield. Grain size is an important factor for crop productivity, and it has been extensively studied. However, molecular breeders face a major challenge in further improving crop productivity in terms of grain yield and quality. Grain size is a complex trait controlled by multiple genes. Over the past few decades, genetic studies have identified various gene families involved in grain size development. The list of molecular mechanisms, and key regulators involved in grain size development is constantly expanding, making it difficult to understand the main regulators that play crucial roles in grain development. In this review, we focus on the major regulators of grain size, including G-protein signaling, the mitogen-activated protein kinase (MAPK) pathway, transcriptional regulation, the ubiquitin-proteasome degradation (UPD) pathway, and phytohormone signaling. These molecular mechanisms directly or indirectly regulate grain size. We provided a comprehensive understanding of the genes involved in these mechanisms and cross discussions about how these mechanisms are interlinked. This review serves as a valuable resource for understanding the molecular mechanisms that govern grain development and can aid in the development of molecular breeding strategies.
Collapse
Affiliation(s)
- Muhammad Yaseen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Naveed Tariq
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rida Kanwal
- College of Resource and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Akasha Farooq
- College of Resource and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Wang Y, Lv Y, Wen Y, Wang J, Hu P, Wu K, Chai B, Gan S, Liu J, Wu Y, Zhu L, Dong N, Tan Y, Wu H, Zhang G, Zhu L, Ren D, Zhang Q, Wang Y, Qian Q, Hu J. GS2 cooperates with IPA1 to control panicle architecture. THE NEW PHYTOLOGIST 2025; 245:2726-2743. [PMID: 39887382 PMCID: PMC11840411 DOI: 10.1111/nph.20412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
Panicle size and grain number are important agronomic traits that determine grain yield in rice. However, the underlying mechanism regulating panicle size and grain number remains largely unknown. Here, we report that GS2 plays an important role in regulating panicle architecture. The RNAi of GS2™ (target site mutation, TM) produced erect and dense panicle with increased primary and secondary branches and grain number per panicle, whereas the overexpression of GS2™ showed longer panicles and fewer grains than wild-type. GS2 directly binds to the GCCA motif and significantly enhances the transcriptional activation ability through the interaction with IPA1. DEP1 is a common target gene of GS2 and IPA1 in regulating branch number and grain number per panicle. The pyramiding of GS2™ and IPA1™1 (Target site mutation1, TM1) on hybrid rice can significantly increase rice yield. Our findings reveal the novel function of GS2 and the molecular mechanism of GS2/IPA1-DEP1 module in controlling panicle architecture.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yang Lv
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yi Wen
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Junge Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Peng Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Shuxian Gan
- Institute of Agricultural Sciences, Xishuangbanna PrefectureJinghongYunnan Province666100China
| | - Jialong Liu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yue Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Nannan Dong
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Yiqing Tan
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Hao Wu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Li Zhu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
| | - Qian Qian
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
| | - Jiang Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhou311401China
- Academician Workstation, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural SciencesSanya572024China
- Hainan Seed Industry LaboratorySanya572024China
| |
Collapse
|
8
|
Liang X, Liu Y, Tian M, Jiang W, Zheng Y, Chen Z, Liu X, Wang L. The natural variation allele OsGSW3.2 in Oryza rufipogon is involved in brassinosteroid signaling and influences grain size and weight. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70110. [PMID: 40131790 PMCID: PMC11936100 DOI: 10.1111/tpj.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Oryza rufipogon is the ancestor of cultivated rice and harbors many elite genes; thus, this plant is an important germplasm for improving rice varieties. Grain size is an important factor in determining rice yield and quality. In this study, we identified a natural variation allele from the O. rufipogon inbred line Huaye3 (HY3), which is located on chromosome 3 and named it GRAIN SIZE and WEIGHT 3.2 (OsGSW3.2). The OsGSW3.2 knockout (KO) mutant presented increased grain size and weight, which was associated with decreased chlorophyll content and long awns. The overexpression of OsGSW3.2HY3 caused a significant decrease in grain size and weight. OsGSW3.2 negatively regulates grain size through cell proliferation. Transcriptomic analysis of spikelet hulls from the KO lines and wild-type HY3 revealed that the differentially expressed genes (DEGs) were enriched mainly in plant-pathogen interactions, plant hormone signal transduction, and the plant MAPK signaling pathway, and so on. A laminar inclination experiment verified that OsGSW3.2 was involved in the BR signaling pathway. Yeast two-hybrid, BiFC, LAC, and pull-down experiments verified that OsGSW3.2 interacted with OsGSK4, which was related to BR signaling, in yeast and plant cells. OsGSW3.2 influenced rice grain size and weight via interaction with OsGSK4. Haplotype analysis of a core collection of cultivated rice revealed that transcriptional accumulation and differential SNPs in the coding region may influence grain size and weight. Our results provide new insight into the role of OsGSW3.2 in affecting grain size and weight, which will help elucidate the genetic basis of rice domestication.
Collapse
Affiliation(s)
- Xiaoyu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Yang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Pharmaceutical Engineering InstituteCollege of Humanities & Information Changchun University of TechnologyChangchun130122China
| | - Min Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Weixun Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Yuebin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of AgricultureSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
9
|
Ueda T, Taniguchi Y, Adachi S, Shenton M, Hori K, Tanaka J. Gene Pyramiding Strategies for Sink Size and Source Capacity for High-Yield Japonica Rice Breeding. RICE (NEW YORK, N.Y.) 2025; 18:6. [PMID: 39945924 PMCID: PMC11825427 DOI: 10.1186/s12284-025-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
In Japan, high-yielding indica rice cultivars such as 'Habataki', 'Takanari', and 'Hokuriku 193' have been bred, and many genes related to the high-yield traits have been isolated from these and other indica cultivars. Many such genes are expected to be effective in increasing the yield of japonica rice, including those that increase sink size. It has been expected that high-yielding japonica rice could be bred by introducing sink-size genes into the genetic background of japonica cultivars such as 'Koshihikari', which show strong cold tolerance, have good taste characteristics, and fetch a high price. However, the corresponding near-isogenic lines did not necessarily produce high yields when tested in the field. In this review, we summarize information on the major high-yield-related rice genes and discuss pyramiding strategies to further increase the yield of japonica rice. In parallel with increasing sink size, source capacity needs to be increased by increasing photosynthetic rate per unit leaf area (single leaf photosynthesis), improving canopy structure, and increasing translocation capacity during the ripening stage. To implement these strategies, innovative breeding methodologies that efficiently produce the combinations of desired alleles are required.
Collapse
Affiliation(s)
- Tadamasa Ueda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yojiro Taniguchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shunsuke Adachi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Matthew Shenton
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Junichi Tanaka
- NARO Headquarters, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
10
|
Zhang J, Lin Q, Wang X, Shao J, Ren Y, Liu X, Feng M, Li S, Sun Q, Luo S, Liu B, Xing X, Chang Y, Cheng Z, Wan J. The DENSE AND ERECT PANICLE1-GRAIN NUMBER ASSOCIATED module enhances rice yield by repressing CYTOKININ OXIDASE 2 expression. THE PLANT CELL 2024; 37:koae309. [PMID: 39660553 DOI: 10.1093/plcell/koae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
The phytohormone cytokinin (CK) positively regulates the activity of the inflorescence meristem (IM). Cytokinin oxidase 2/Grain number 1a (OsCKX2/Gn1a)-mediated degradation of CK in rice (Oryza sativa L.) negatively regulates panicle grain number, whereas DENSE AND ERECT PANICLE 1 (DEP1) positively regulates grain number per panicle (GNP). However, the detailed regulatory mechanism between DEP1 and OsCKX2 remains elusive. Here, we report the GRAS (GIBBERELLIN ACID INSENSITIVE, REPRESSOR OF GA1, and SCARECROW) transcription factor GRAIN NUMBER ASSOCIATED (GNA), previously thought to be involved in the Brassinosteroids (BRs) signaling pathway, directly inhibits OsCKX2 expression in the IM through a DEP1-GNA regulatory module. Overexpressing GNA leads to increased CK levels and consequently higher branch number, GNP, and yield. Both DEP1 and dep1 enhance the inhibitory effect of GNA on OsCKX2 expression through interacting with GNA. GNA promotes the translocation of DEP1 to the nucleus, while the gain-of-function mutant dep1 translocates into the nucleus in the absence of GNA. Our findings provide insight into the regulatory mechanism underlying OsCKX2 and a strategy to improve rice yield.
Collapse
Affiliation(s)
- Jinhui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Jiale Shao
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Xin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Qi Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Bojuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Xinxin Xing
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Yanqi Chang
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
- Chinese Academy of Agricultural Sciences, Nanfan Research Institute, Sanya 572025, China
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and Breeding, Chinese Academy of Agricultural Sciences, Institute of Crop Sciences, Beijing 100081, China
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| |
Collapse
|
11
|
Tan C, Guo X, Dong H, Li M, Chen Q, Cheng M, Pu Z, Yuan Z, Wang J. Meta-QTL mapping for wheat thousand kernel weight. FRONTIERS IN PLANT SCIENCE 2024; 15:1499055. [PMID: 39737382 PMCID: PMC11682887 DOI: 10.3389/fpls.2024.1499055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
Wheat domestication and subsequent genetic improvement have yielded cultivated species with larger seeds compared to wild ancestors. Increasing thousand kernel weight (TKW) remains a crucial goal in many wheat breeding programs. To identify genomic regions influencing TKW across diverse genetic populations, we performed a comprehensive meta-analysis of quantitative trait loci (MQTL), integrating 993 initial QTL from 120 independent mapping studies over recent decades. We refined 242 loci into 66 MQTL, with an average confidence interval (CI) 3.06 times smaller than that of the original QTL. In these 66 MQTL regions, a total of 4,913 candidate genes related to TKW were identified, involved in ubiquitination, phytohormones, G-proteins, photosynthesis, and microRNAs. Expression analysis of the candidate genes showed that 95 were specific to grain and might potentially affect TKW at different seed development stages. These findings enhance our understanding of the genetic factors associated with TKW in wheat, providing reliable MQTL and potential candidate genes for genetic improvement of this trait.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Wang F, Lin J, Yang F, Chen X, Liu Y, Yan L, Chen J, Wang Z, Xie H, Zhang J, Xu H, Chen S. The OsMAPK5-OsWRKY72 module negatively regulates grain length and grain weight in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2648-2663. [PMID: 39474750 PMCID: PMC11622537 DOI: 10.1111/jipb.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Grain size and grain weight are important determinants for grain yield. In this study, we identify a novel OsMAPK5-OsWRKY72 module that negatively regulates grain length and grain weight in rice. We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86 (MH86). OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88. Similar to the osmapk5 MH86 mutants, the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight, whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes. OsWRKY72 targets the W-box motifs in the promoter of OsARF6, an auxin response factor involved in auxin signaling. Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression. The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced, whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced. In addition, auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86. Collectively, our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling, OsWRKY72-mediated transcription regulation, and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice, providing promising targets for molecular breeding of rice varieties with high yield and quality.
Collapse
Affiliation(s)
- Fuxiang Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiexin Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Fan Yang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Yiyi Liu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Lingnan Yan
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Jing Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Huaan Xie
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Jianfu Zhang
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Huibin Xu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| |
Collapse
|
13
|
Wang H, Charagh S, Dong N, Lu F, Wang Y, Cao R, Ma L, Wang S, Jiao G, Xie L, Shao G, Sheng Z, Hu S, Zhao F, Tang S, Chen L, Hu P, Wei X. Genome-Wide Analysis of Heat Shock Protein Family and Identification of Their Functions in Rice Quality and Yield. Int J Mol Sci 2024; 25:11931. [PMID: 39596001 PMCID: PMC11593806 DOI: 10.3390/ijms252211931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Heat shock proteins (Hsps), acting as molecular chaperones, play a pivotal role in plant responses to environmental stress. In this study, we found a total of 192 genes encoding Hsps, which are distributed across all 12 chromosomes, with higher concentrations on chromosomes 1, 2, 3, and 5. These Hsps can be divided into six subfamilies (sHsp, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100) based on molecular weight and homology. Expression pattern data indicated that these Hsp genes can be categorized into three groups: generally high expression in almost all tissues, high tissue-specific expression, and low expression in all tissues. Further analysis of 15 representative genes found that the expression of 14 Hsp genes was upregulated by high temperatures. Subcellular localization analysis revealed seven proteins localized to the endoplasmic reticulum, while others localized to the mitochondria, chloroplasts, and nucleus. We successfully obtained the knockout mutants of above 15 Hsps by the CRISPR/Cas9 gene editing system. Under natural high-temperature conditions, the mutants of eight Hsps showed reduced yield mainly due to the seed setting rate or grain weight. Moreover, the rice quality of most of these mutants also changed, including increased grain chalkiness, decreased amylose content, and elevated total protein content, and the expressions of starch metabolism-related genes in the endosperm of these mutants were disturbed compared to the wild type under natural high-temperature conditions. In conclusion, our study provided new insights into the HSP gene family and found that it plays an important role in the formation of rice quality and yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China; (H.W.); (S.C.); (N.D.); (F.L.); (Y.W.); (R.C.); (L.M.); (S.W.); (G.J.); (L.X.); (G.S.); (Z.S.); (S.H.); (F.Z.); (S.T.); (L.C.)
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China; (H.W.); (S.C.); (N.D.); (F.L.); (Y.W.); (R.C.); (L.M.); (S.W.); (G.J.); (L.X.); (G.S.); (Z.S.); (S.H.); (F.Z.); (S.T.); (L.C.)
| |
Collapse
|
14
|
Zhang F, Wang J, Chen Y, Huang J, Liang W. Genome-Wide Identification of MKK Gene Family and Response to Hormone and Abiotic Stress in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2922. [PMID: 39458871 PMCID: PMC11510841 DOI: 10.3390/plants13202922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Mitogen-activated protein kinase (MAPK/MPK) cascades are pivotal and highly conserved signaling modules widely distributed in eukaryotes; they play essential roles in plant growth and development, as well as biotic and abiotic stress responses. With the development of sequencing technology, the complete genome assembly of rice without gaps, T2T (Telomere-to-Telomere)-NIP (version AGIS-1.0), has recently been released. In this study, we used bioinformatic approaches to identify and analyze the rice MPK kinases (MKKs) based on the complete genome. A total of seven OsMKKs were identified, and their physical and chemical properties, chromosome localization, gene structure, subcellular localization, phylogeny, family evolution, and cis-acting elements were evaluated. OsMKKs can be divided into four subgroups based on phylogenetic relationships, and the family members located in the same evolutionary branch have relatively similar gene structures and conserved domains. Quantitative real-time PCR (qRT-PCR) revealed that all OsMKKs were highly expressed in rice seedling leaves. The expression levels of all OsMKKs were more or less altered under exogenous hormone and abiotic stress treatments, with OsMKK1, OsMKK6, and OsMKK3 being induced under almost all treatments, while the expression of OsMKK4 and OsMKK10-2 was repressed under salt and drought treatments and IAA treatment, respectively. In this study, we also summarized the recent progress in rice MPK cascades, highlighted their diverse functions, and outlined the potential MPK signaling network, facilitating further studies on OsMKK genes and rice MPK cascades.
Collapse
Affiliation(s)
- Fan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Jingjing Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Yiwei Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
| | - Junjun Huang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| | - Weihong Liang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (F.Z.); (J.W.); (Y.C.)
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China
| |
Collapse
|
15
|
Zhang Q, Wu R, Hong T, Wang D, Li Q, Wu J, Zhang H, Zhou K, Yang H, Zhang T, Liu J, Wang N, Ling Y, Yang Z, He G, Zhao F. Natural variation in the promoter of qRBG1/OsBZR5 underlies enhanced rice yield. Nat Commun 2024; 15:8565. [PMID: 39362889 PMCID: PMC11449933 DOI: 10.1038/s41467-024-52928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Seed size, a key determinant of rice yield, is regulated by brassinosteroid (BR); however, the BR pathway in rice has not been fully elucidated. Here, we report the cloning and characterization of the quantitative trait locus Rice Big Grain 1 (qRBG1) from single-segment substitution line Z499. Our data show that qRBG1Z is an unselected rare promoter variation that reduces qRBG1 expression to increase cell number and size, resulting in larger grains, whereas qRBG1 overexpression causes smaller grains in recipient Nipponbare. We demonstrate that qRBG1 encodes a non-canonical BES1 (Bri1-EMS-Suppressor1)/BZR1(Brassinazole-Resistant1) family member, OsBZR5, that regulates grain size upon phosphorylation by OsGSK2 (GSK3-like Kinase2) and binding to D2 (DWARF2) and OFP1 (Ovate-Family-Protein1) promoters. qRBG1 interacts with OsBZR1 to synergistically repress D2, and to antagonistically mediate OFP1 for grain size. Our results reveal a regulatory network controlling grain size via OsGSK2-qRBG1-OsBZR1-D2-OFP1 module, providing a target for improving rice yield.
Collapse
Affiliation(s)
- Qiuli Zhang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Renhong Wu
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Tao Hong
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Dachuan Wang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Qiaolong Li
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Jiayi Wu
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Han Zhang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Kai Zhou
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Hongxia Yang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Ting Zhang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - JinXiang Liu
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Nan Wang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Zhenglin Yang
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
| | - Fangming Zhao
- Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
Lu Y, Wang K, Ngea GLN, Godana EA, Ackah M, Dhanasekaran S, Zhang Y, Su Y, Yang Q, Zhang H. Recent advances in the multifaceted functions of Cys2/His2-type zinc finger proteins in plant growth, development, and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5501-5520. [PMID: 38912636 DOI: 10.1093/jxb/erae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Recent research has highlighted the importance of Cys2/His2-type zinc finger proteins (C2H2-ZFPs) in plant growth and in responses to various stressors, and the complex structures of C2H2-ZFP networks and the molecular mechanisms underlying their responses to stress have received considerable attention. Here, we review the structural characteristics and classification of C2H2-ZFPs, and consider recent research advances in their functions. We systematically introduce the roles of these proteins across diverse aspects of plant biology, encompassing growth and development, and responses to biotic and abiotic stresses, and in doing so hope to lay the foundations for further functional studies of C2H2-ZFPs in the future.
Collapse
Affiliation(s)
- Yuchun Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | | | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Solairaj Dhanasekaran
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yingying Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Zhu L, Shen Y, Dai Z, Miao X, Shi Z. Gγ-protein GS3 Function in Tight Genetic Relation with OsmiR396/GS2 to Regulate Grain Size in Rice. RICE (NEW YORK, N.Y.) 2024; 17:59. [PMID: 39249660 PMCID: PMC11384671 DOI: 10.1186/s12284-024-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Manipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning. Here we showed that expression of GS3 gene, a Gγ-protein encoding gene, that negatively regulates grain size, was greatly down-regulated in the young embryos of MIM396, GRF8OE and GS2OE plants, indicating possible regulation of GS3 gene by OsmiR396/GRF module. Meanwhile, multiple biochemical assays proved possible transcriptional regulation of OsGRF4 and OsGRF8 proteins on GS3 gene. Further genetic relation analysis revealed tight genetic association between not only OsmiR396 and GS3 gene, but also GS2 and GS3 gene. Moreover, we revealed possible regulation of GS2 on four other grain size-regulating G protein encoding genes. Thus, the OsmiR396 pathway and the G protein pathway cross talks to regulate grain size. Therefore, we established a bridge linking the miRNA-transcription factors pathway and the G-protein signaling pathway that regulates grain size in rice.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjie Shen
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyan Dai
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenying Shi
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences Shanghai, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
18
|
Yue Z, Wang Z, Yao Y, Liang Y, Li J, Yin K, Li R, Li Y, Ouyang Y, Xiong L, Hu H. Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice. THE PLANT CELL 2024; 36:3201-3218. [PMID: 38701330 PMCID: PMC11371194 DOI: 10.1093/plcell/koae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many quantitative trait loci (QTLs) and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that was associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five single nucleotide polymophysim (SNP) variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity toward LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG-LARGE2 module mediates grain and leaf size in rice and suggest the potential of WLGhap.B in improving rice yield.
Collapse
Affiliation(s)
- Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanlin Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaili Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Zheng Y, Li M, Sun P, Gao G, Zhang Q, Li Y, Lou G, Wu B, He Y. QTL detection for grain shape and fine mapping of two novel locus qGL4 and qGL6 in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:62. [PMID: 39290202 PMCID: PMC11402885 DOI: 10.1007/s11032-024-01502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Rice grain size and grain weight, which have a great influence on rice quality and yield, are complex quantitative traits that are mediated by grain length (GL), grain width (GW), length-to-width ratio (LWR), and grain thickness (GT). In this study, the BC1F2 and BC1F2:3 populations derived from a cross between two indica rice varieties, Guangzhan 63-4S (GZ63-4S) and Dodda, were used to locate quantitative trait loci (QTL) related to grain size. A total of 30 QTL associated with GL, GW and LWR were detected, of which six QTL were scanned repeatedly in both populations. Two QTL, qGL4 and qGL6, were selected for genetic effect validation and were subsequently fine mapped to 2.359 kb and 176 kb, respectively. LOC_Os04g52240 (known as OsKS2/OsKSL2), which encoding an ent-beyerene synthase and as the only gene found in 2.359 kb interval, was proposed to be the candidate for qGL4. Moreover, the grains of qGL4 homozygous mutant plants generated by the CRISPR-Cas9 system became shorter and wider. In addition, the qGL4 allele from GZ63-4S contributes to the increase of yield per plant. Our study not only laid the foundation for further functional study of qGL4 and map-based cloning of qGL6, but also provided genetic resources for the development of high yield and good quality rice varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01502-8.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Minqi Li
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ping Sun
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430070 China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvementand, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
20
|
Zeng J, Duan M, Wang Y, Li G, You Y, Shi J, Liu C, Zhang J, Xu J, Zhang S, Zhao J. Sporophytic control of tapetal development and pollen fertility by a mitogen-activated protein kinase cascade in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1500-1516. [PMID: 38751028 DOI: 10.1111/jipb.13673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Tapetum, the innermost layer of the anther wall, provides essential nutrients and materials for pollen development. Timely degradation of anther tapetal cells is a prerequisite for normal pollen development in flowering plants. Tapetal cells facilitate male gametogenesis by providing cellular contents after highly coordinated programmed cell death (PCD). Tapetal development is regulated by a transcriptional network. However, the signaling pathway(s) involved in this process are poorly understood. In this study, we report that a mitogen-activated protein kinase (MAPK) cascade composed of OsYDA1/OsYDA2-OsMKK4-OsMPK6 plays an important role in tapetal development and male gametophyte fertility. Loss of function of this MAPK cascade leads to anther indehiscence, enlarged tapetum, and aborted pollen grains. Tapetal cells in osmkk4 and osmpk6 mutants exhibit an increased presence of lipid body-like structures within the cytoplasm, which is accompanied by a delayed occurrence of PCD. Expression of a constitutively active version of OsMPK6 (CA-OsMPK6) can rescue the pollen defects in osmkk4 mutants, confirming that OsMPK6 functions downstream of OsMKK4 in this pathway. Genetic crosses also demonstrated that the MAPK cascade sporophyticly regulates pollen development. Our study reveals a novel function of rice MAPK cascade in plant male reproductive biology.
Collapse
Affiliation(s)
- Jianguo Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manman Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqing Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangtao Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujing You
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhao Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, 65211, MO, USA
| | - Jing Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Han Y, Hu Q, Gong N, Yan H, Khan NU, Du Y, Sun H, Zhao Q, Peng W, Li Z, Zhang Z, Li J. Natural variation in MORE GRAINS 1 regulates grain number and grain weight in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1440-1458. [PMID: 38780111 DOI: 10.1111/jipb.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/14/2024] [Indexed: 05/25/2024]
Abstract
Grain yield is determined mainly by grain number and grain weight. In this study, we identified and characterized MORE GRAINS1 (MOG1), a gene associated with grain number and grain weight in rice (Oryza sativa L.), through map-based cloning. Overexpression of MOG1 increased grain yield by 18.6%-22.3% under field conditions. We determined that MOG1, a bHLH transcription factor, interacts with OsbHLH107 and directly activates the expression of LONELY GUY (LOG), which encodes a cytokinin-activating enzyme and the cell expansion gene EXPANSIN-LIKE1 (EXPLA1), positively regulating grain number per panicle and grain weight. Natural variations in the promoter and coding regions of MOG1 between Hap-LNW and Hap-HNW alleles resulted in changes in MOG1 expression level and transcriptional activation, leading to functional differences. Haplotype analysis revealed that Hap-HNW, which results in a greater number and heavier grains, has undergone strong selection but has been poorly utilized in modern lowland rice breeding. In summary, the MOG1-OsbHLH107 complex activates LOG and EXPLA1 expression to promote cell expansion and division of young panicles through the cytokinin pathway, thereby increasing grain number and grain weight. These findings suggest that Hap-HNW could be used in strategies to breed high-yielding temperate japonica lowland rice.
Collapse
Affiliation(s)
- Yingchun Han
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qianfeng Hu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Nuo Gong
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huimin Yan
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Najeeb Ullah Khan
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanxiu Du
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- Rice Industrial Technology Research Institute, Guizhou University, Guiyang, 550025, China
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Junzhou Li
- Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
22
|
Boccaccini A, Cimini S, Kazmi H, Lepri A, Longo C, Lorrai R, Vittorioso P. When Size Matters: New Insights on How Seed Size Can Contribute to the Early Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:1793. [PMID: 38999633 PMCID: PMC11244240 DOI: 10.3390/plants13131793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
The seed habit is the most complex and successful method of sexual reproduction in vascular plants. It represents a remarkable moment in the evolution of plants that afterward spread on land. In particular, seed size had a pivotal role in evolutionary success and agronomic traits, especially in the field of crop domestication. Given that crop seeds constitute one of the primary products for consumption, it follows that seed size represents a fundamental determinant of crop yield. This adaptative feature is strictly controlled by genetic traits from both maternal and zygotic tissues, although seed development and growth are also affected by environmental cues. Despite being a highly exploited topic for both basic and applied research, there are still many issues to be elucidated for developmental biology as well as for agronomic science. This review addresses a number of open questions related to cues that influence seed growth and size and how they influence seed germination. Moreover, new insights on the genetic-molecular control of this adaptive trait are presented.
Collapse
Affiliation(s)
- Alessandra Boccaccini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Sara Cimini
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, via Álvaro del Portillo, 21, 00128 Rome, Italy; (A.B.); (S.C.)
| | - Hira Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Andrea Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Chiara Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Riccardo Lorrai
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| | - Paola Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (H.K.); (A.L.); (C.L.); (R.L.)
| |
Collapse
|
23
|
Ma Z, Miao J, Yu J, Pan Y, Li D, Xu P, Sun X, Li J, Zhang H, Li Z, Zhang Z. The wall-associated kinase GWN1 controls grain weight and grain number in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:150. [PMID: 38847846 DOI: 10.1007/s00122-024-04658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/25/2024] [Indexed: 07/16/2024]
Abstract
Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.
Collapse
Affiliation(s)
- Zhiqi Ma
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinli Miao
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianping Yu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, The Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinjie Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
24
|
Huang K, Wang Y, Li Y, Zhang B, Zhang L, Duan P, Xu R, Wang D, Liu L, Zhang G, Zhang H, Wang C, Guo N, Hao J, Luo Y, Zhu X, Li Y. Modulation of histone acetylation enables fully mechanized hybrid rice breeding. NATURE PLANTS 2024; 10:954-970. [PMID: 38831046 DOI: 10.1038/s41477-024-01720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Hybrid rice has achieved high grain yield and greatly contributes to food security, but the manual-labour-intensive hybrid seed production process limits fully mechanized hybrid rice breeding. For next-generation hybrid seed production, the use of small-grain male sterile lines to mechanically separate small hybrid seeds from mixed harvest is promising. However, it is difficult to find ideal grain-size genes for breeding ideal small-grain male sterile lines without penalties in the number of hybrid seeds and hybrid rice yield. Here we report that the use of small-grain alleles of the ideal grain-size gene GSE3 in male sterile lines enables fully mechanized hybrid seed production and dramatically increases hybrid seed number in three-line and two-line hybrid rice systems. The GSE3 gene encodes a histone acetyltransferase that binds histones and influences histone acetylation levels. GSE3 is recruited by the transcription factor GS2 to the promoters of their co-regulated grain-size genes and influences the histone acetylation status of their co-regulated genes. Field trials demonstrate that genome editing of GSE3 can be used to immediately improve current elite male sterile lines of hybrid rice for fully mechanized hybrid rice breeding, providing a new perspective for mechanized hybrid breeding in other crops.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingjie Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Hainan Seed Industry Laboratory, Sanya, China
| | - Baolan Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Limin Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Penggen Duan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ran Xu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lijie Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Guozheng Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjie Wang
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Nian Guo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Jianqin Hao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuehua Luo
- School of Breeding and Multiplication, Hainan University, Sanya, China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Yunhai Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agriculture, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
You J, Ye L, Wang D, Zhang Y, Xiao W, Wei M, Wu R, Liu J, He G, Zhao F, Zhang T. Mapping and candidate gene analysis of QTLs for grain shape in a rice chromosome segment substitution line Z485 and breeding of SSSLs. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:39. [PMID: 38766512 PMCID: PMC11099003 DOI: 10.1007/s11032-024-01480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Grain shape is one of the most important factors that affects rice yield. Cloning novel grain shape genes and analyzing their genetic mechanisms are crucial for high yield breeding. In this study, a slender grain CSSL-Z485 with 3-segments substitution in the genetic background of Nipponbare was constructed in rice. Cytological analysis showed that the longer grain length of Z485 was related to the increase in glume cell numbers, while the narrower grain width was associated with the decrease in cell width. Three grain shape-related quantitative trait locus (QTLs), including qGL12, qGW12, and qRLW12, were identified through the F2 population constructed from a cross between Nipponbare and Z485. Furthermore, four single segment substitution lines (SSSLs, S1-S4) carrying the target QTLs were dissected from Z485 by MAS. Finally, three candidate genes of qGL12 for grain length and qGW12 for grain width located in S3 were confirmed by DNA sequencing, RT-qPCR, and protein structure prediction. Specifically, candidate gene 1 encodes a ubiquitin family protein, while candidate genes 2 and 3 encode zinc finger proteins. The results provide valuable germplasm resources for cloning novel grain shape genes and molecular breeding by design. Supplementary information The online version contains supplementary material available at 10.1007/s11032-024-01480-x.
Collapse
Affiliation(s)
- Jing You
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Li Ye
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Dachuan Wang
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Yi Zhang
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Wenwen Xiao
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Mi Wei
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Ruhui Wu
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Jinyan Liu
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Guanghua He
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Fangming Zhao
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| | - Ting Zhang
- Key Laboratory of Crop Molecular Improvement, College of Agronomy and Biotechnology, Rice Research InstituteAcademy of Agricultural SciencesSouthwest University, Chongqing, 400715 China
| |
Collapse
|
26
|
Bai C, Wang GJ, Feng XH, Gao Q, Wang WQ, Xu R, Guo SJ, Shen SY, Ma M, Lin WH, Liu CM, Li Y, Song XJ. OsMAPK6 phosphorylation and CLG1 ubiquitylation of GW6a non-additively enhance rice grain size through stabilization of the substrate. Nat Commun 2024; 15:4300. [PMID: 38773134 PMCID: PMC11109111 DOI: 10.1038/s41467-024-48786-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
The chromatin modifier GRAIN WEIGHT 6a (GW6a) enhances rice grain size and yield. However, little is known about its gene network determining grain size. Here, we report that MITOGEN-ACTIVED PROTEIN KINASE 6 (OsMAPK6) and E3 ligase CHANG LI GENG 1 (CLG1) interact with and target GW6a for phosphorylation and ubiquitylation, respectively. Unexpectedly, however, in vitro and in vivo assays reveal that both of the two post-translational modifications stabilize GW6a. Furthermore, we uncover two major GW6a phosphorylation sites (serine142 and threonine186) targeted by OsMAPK6 serving an important role in modulating grain size. In addition, our genetic and molecular results suggest that the OsMAPK6-GW6a and CLG1-GW6a axes are crucial and operate in a non-additive manner to control grain size. Overall, our findings identify a previously unknown mechanism by which phosphorylation and ubiquitylation non-additively stabilize GW6a to enhance grain size, and reveal correlations and interactions of these posttranslational modifications during rice grain development.
Collapse
Affiliation(s)
- Chen Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao-Jie Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hui Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Gao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Ran Xu
- Sanya Nanfan Research, Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou, 570288, China
| | - Su-Jie Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shao-Yan Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hui Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhai Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Zhou Y, Yang H, Liu E, Liu R, Alam M, Gao H, Gao G, Zhang Q, Li Y, Xiong L, He Y. Fine Mapping of Five Grain Size QTLs Which Affect Grain Yield and Quality in Rice. Int J Mol Sci 2024; 25:4149. [PMID: 38673733 PMCID: PMC11050437 DOI: 10.3390/ijms25084149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (H.Y.); (E.L.); (R.L.); (M.A.); (H.G.); (G.G.); (Q.Z.); (Y.L.); (L.X.)
| |
Collapse
|
28
|
Chen Y, Shi H, Yang G, Liang X, Lin X, Tan S, Guo T, Wang H. OsCRLK2, a Receptor-Like Kinase Identified by QTL Analysis, is Involved in the Regulation of Rice Quality. RICE (NEW YORK, N.Y.) 2024; 17:24. [PMID: 38587574 PMCID: PMC11001810 DOI: 10.1186/s12284-024-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The quality of rice (Oryza sativa L) is determined by a combination of appearance, flavor, aroma, texture, storage characteristics, and nutritional composition. Rice quality directly influences acceptance by consumers and commercial value. The genetic mechanism underlying rice quality is highly complex, and is influenced by genotype, environment, and chemical factors such as starch type, protein content, and amino acid composition. Minor variations in these chemical components may lead to substantial differences in rice quality. Among these components, starch is the most crucial and influential factor in determining rice quality. In this study, quantitative trait loci (QTLs) associated with eight physicochemical properties related to the rapid viscosity analysis (RVA) profile were identified using a high-density sequence map constructed using recombinant inbred lines (RILs). Fifty-nine QTLs were identified across three environments, among which qGT6.4 was a novel locus co-located across all three environments. By integrating RNA-seq data, we identified the differentially expressed candidate gene OsCRLK2 within the qGT6.4 interval. osclrk2 mutants exhibited decreased gelatinization temperature (GT), apparent amylose content (AAC) and viscosity, and increased chalkiness. Furthermore, osclrk2 mutants exhibited downregulated expression of the majority of starch biosynthesis-related genes compared to wild type (WT) plants. In summary, OsCRLK2, which encodes a receptor-like protein kinase, appears to consistently influence rice quality across different environments. This discovery provides a new genetic resource for use in the molecular breeding of rice cultivars with improved quality.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Hanfeng Shi
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Guili Yang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Xueyu Liang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Xiaolian Lin
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Siping Tan
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China.
| | - Hui Wang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
29
|
Mei E, He M, Xu M, Tang J, Liu J, Liu Y, Hong Z, Li X, Wang Z, Guan Q, Tian X, Bu Q. OsWRKY78 regulates panicle exsertion via gibberellin signaling pathway in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:771-786. [PMID: 38470298 DOI: 10.1111/jipb.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Panicle exsertion is one of the crucial agronomic traits in rice (Oryza sativa). Shortening of panicle exsertion often leads to panicle enclosure and severely reduces seed production. Gibberellin (GA) plays important roles in regulating panicle exsertion. However, the underlying mechanism and the relative regulatory network remain elusive. Here, we characterized the oswrky78 mutant showing severe panicle enclosure, and found that the defect of oswrky78 is caused by decreased bioactive GA contents. Biochemical analysis demonstrates that OsWRKY78 can directly activate GA biosynthesis and indirectly suppress GA metabolism. Moreover, we found OsWRKY78 can interact with and be phosphorylated by mitogen-activated protein kinase (MAPK) kinase OsMAPK6, and this phosphorylation can enhance OsWRKY78 stability and is necessary for its biological function. Taken together, these results not only reveal the critical function of OsWRKY78, but also reveal its mechanism via mediating crosstalk between MAPK and the GA signaling pathway in regulating panicle exsertion.
Collapse
Affiliation(s)
- Enyang Mei
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Tang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Jiali Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yingxiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hong
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenyu Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiaojie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyun Bu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| |
Collapse
|
30
|
Sar P, Gupta S, Behera M, Chakraborty K, Ngangkham U, Verma BC, Banerjee A, Hanjagi PS, Bhaduri D, Shil S, Kumar J, Mandal NP, Kole PC, Purugganan MD, Roy S. Exploring Genetic Diversity within aus Rice Germplasm: Insights into the Variations in Agro-morphological Traits. RICE (NEW YORK, N.Y.) 2024; 17:20. [PMID: 38526679 DOI: 10.1186/s12284-024-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
The aus (Oryza sativa L.) varietal group comprises of aus, boro, ashina and rayada seasonal and/or field ecotypes, and exhibits unique stress tolerance traits, making it valuable for rice breeding. Despite its importance, the agro-morphological diversity and genetic control of yield traits in aus rice remain poorly understood. To address this knowledge gap, we investigated the genetic structure of 181 aus accessions using 399,115 SNP markers and evaluated them for 11 morpho-agronomic traits. Through genome-wide association studies (GWAS), we aimed to identify key loci controlling yield and plant architectural traits.Our population genetic analysis unveiled six subpopulations with strong geographical patterns. Subpopulation-specific differences were observed in most phenotypic traits. Principal component analysis (PCA) of agronomic traits showed that principal component 1 (PC1) was primarily associated with panicle traits, plant height, and heading date, while PC2 and PC3 were linked to primary grain yield traits. GWAS using PC1 identified OsSAC1 on Chromosome 7 as a significant gene influencing multiple agronomic traits. PC2-based GWAS highlighted the importance of OsGLT1 and OsPUP4/ Big Grain 3 in determining grain yield. Haplotype analysis of these genes in the 3,000 Rice Genome Panel revealed distinct genetic variations in aus rice.In summary, this study offers valuable insights into the genetic structure and phenotypic diversity of aus rice accessions. We have identified significant loci associated with essential agronomic traits, with GLT1, PUP4, and SAC1 genes emerging as key players in yield determination.
Collapse
Affiliation(s)
- Puranjoy Sar
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Sonal Gupta
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Motilal Behera
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Koushik Chakraborty
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Umakanta Ngangkham
- Manipur Center, ICAR Research Complex for NEH Region, Imphal, Manipur, 795 004, India
| | - Bibhash Chandra Verma
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Amrita Banerjee
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Prashantkumar S Hanjagi
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Debarati Bhaduri
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753 006, India
| | - Sandip Shil
- Research Centre - Mohitnagar, ICAR-Central Plantation Crops Research Institute, Jalpaiguri, West Bengal, 735 101, India
| | - Jitendra Kumar
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Nimai Prasad Mandal
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India
| | - Paresh Chandra Kole
- Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati, Sriniketan, West Bengal, 731236, India
| | | | - Somnath Roy
- Central Rainfed Upland Rice Research Station, ICAR-National Rice Research Institute, Hazaribag, Jharkhand, 825 301, India.
| |
Collapse
|
31
|
Gong X, Chen J, Chen Y, He Y, Jiang D. Advancements in Rice Leaf Development Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:904. [PMID: 38592944 PMCID: PMC10976080 DOI: 10.3390/plants13060904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Rice leaf morphology is a pivotal component of the ideal plant architecture, significantly impacting rice yield. The process of leaf development unfolds through three distinct stages: the initiation of leaf primordia, the establishment and maintenance of polarity, and leaf expansion. Genes regulating leaf morphology encompass transcription factors, hormones, and miRNAs. An in-depth synthesis and categorization of genes associated with leaf development, particularly those successfully cloned, hold paramount importance in unraveling the complexity of rice leaf development. Furthermore, it provides valuable insights into the potential for molecular-level manipulation of rice leaf types. This comprehensive review consolidates the stages of rice leaf development, the genes involved, molecular regulatory pathways, and the influence of plant hormones. Its objective is to establish a foundational understanding of the creation of ideal rice leaf forms and their practical application in molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Dagang Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (X.G.); (J.C.); (Y.C.); (Y.H.)
| |
Collapse
|
32
|
Wei S, Yu Z, Du F, Cao F, Yang M, Liu C, Qi Z, Chen Q, Zou J, Wang J. Integrated Transcriptomic and Proteomic Characterization of a Chromosome Segment Substitution Line Reveals the Regulatory Mechanism Controlling the Seed Weight in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:908. [PMID: 38592937 PMCID: PMC10975824 DOI: 10.3390/plants13060908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Soybean is the major global source of edible oils and vegetable proteins. Seed size and weight are crucial traits determining the soybean yield. Understanding the molecular regulatory mechanism underlying the seed weight and size is helpful for improving soybean genetic breeding. The molecular regulatory pathways controlling the seed weight and size were investigated in this study. The 100-seed weight, seed length, seed width, and seed weight per plant of a chromosome segment substitution line (CSSL) R217 increased compared with those of its recurrent parent 'Suinong14' (SN14). Transcriptomic and proteomic analyses of R217 and SN14 were performed at the seed developmental stages S15 and S20. In total, 2643 differentially expressed genes (DEGs) and 208 differentially accumulated proteins (DAPs) were detected at S15, and 1943 DEGs and 1248 DAPs were detected at S20. Furthermore, integrated transcriptomic and proteomic analyses revealed that mitogen-activated protein kinase signaling and cell wall biosynthesis and modification were potential pathways associated with seed weight and size control. Finally, 59 candidate genes that might control seed weight and size were identified. Among them, 25 genes were located on the substituted segments of R217. Two critical pathways controlling seed weight were uncovered in our work. These findings provided new insights into the seed weight-related regulatory network in soybean.
Collapse
Affiliation(s)
- Siming Wei
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Zhenhai Yu
- Heilongjiang Province Green Food Science Institute, Harbin 150028, China;
| | - Fangfang Du
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Fubin Cao
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Zhaoming Qi
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Jianan Zou
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| | - Jinhui Wang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.W.); (F.D.); (F.C.); (M.Y.); (C.L.); (Z.Q.)
| |
Collapse
|
33
|
Zhang H, Tang S, Wang H, Wang Y, Zhi H, Liu B, Zhang R, Ma Q, Jia G, Feng B, Diao X. Genetic diversity of grain yield traits and identification of a grain weight gene SiTGW6 in foxtail millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:84. [PMID: 38493242 DOI: 10.1007/s00122-024-04586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
KEY MESSAGE Agronomic traits were evaluated in 1250 foxtail millet accessions, and a crucial gene SiTGW6 governing grain yield was identified. Elite haplotypes and dCAPS markers developed for SiTGW6 facilitate molecular breeding. A comprehensive evaluation of phenotypic characteristics and genetic diversity in germplasm resources are important for gene discovery and breeding improvements. In this study, we conducted a comprehensive evaluation of 1250 foxtail millet varieties, assessing seven grain yield-related traits and fourteen common agronomic traits over two years. Principal component analysis, correlation analysis, and cluster analysis revealed a strong positive correlation between 1000-grain weight and grain width with grain yield, emphasizing their importance in foxtail millet breeding. Additionally, we found that panicle weight positively correlated with 1000-grain weight but negatively correlated with branch and tiller numbers, indicating selection factors during domestication and breeding. Using this information, we identified 27 germplasm resources suitable for high-yield foxtail millet breeding. Furthermore, through an integration of haplotype variations and phenotype association analysis, we pinpointed a crucial gene, SiTGW6, responsible for governing grain yield in foxtail millet. SiTGW6 encodes an IAA-glucose hydrolase, primarily localized in the cytoplasm and predominantly expressed in flowering panicles. Employing RNAseq analysis, we identified 1439 differentially expressed genes across various SiTGW6 haplotypes. Functional enrichment analysis indicating that SiTGW6 regulates grain yield through the orchestration of auxin and glucan metabolism, as well as plant hormone signaling pathways. Additionally, we have identified elite haplotypes and developed dCAPS markers for SiTGW6, providing valuable technical tools to facilitate molecular breeding efforts in foxtail millet.
Collapse
Affiliation(s)
- Hui Zhang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Honglu Wang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yannan Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Renliang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Ma
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
34
|
Fan C, Xu D, Wang C, Chen Z, Dou T, Qin D, Guo A, Zhao M, Pei H, Zhao M, Zhang R, Wang K, Zhang J, Ni Z, Guo G. Natural variations of HvSRN1 modulate the spike rachis node number in barley. PLANT COMMUNICATIONS 2024; 5:100670. [PMID: 37563835 PMCID: PMC10811343 DOI: 10.1016/j.xplc.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Grain number, one of the major determinants of yield in Triticeae crops, is largely determined by spikelet number and spike rachis node number (SRN). Here, we identified three quantitative trait loci (QTLs) for SRN using 145 recombinant inbred lines derived from a barley R90/1815D cross. qSRN1, the major-effect QTL, was mapped to chromosome 2H and explained up to 38.77% of SRN variation. Map-based cloning revealed that qSRN1 encodes the RAWUL domain-containing protein HvSRN1. Further analysis revealed that two key SNPs in the HvSRN1 promoter region (∼2 kb upstream of the transcription start site) affect the transcript level of HvSRN1 and contribute to variation in SRN. Similar to its orthologous proteins OsLAX2 and ZmBA2, HvSRN1 showed protein-protein interactions with HvLAX1, suggesting that the LAX2-LAX1 model for spike morphology regulation may be conserved in Poaceae crops. CRISPR-Cas9-induced HvSRN1 mutants showed reduced SRN but increased grain size and weight, demonstrating a trade-off effect. Our results shed light on the role of HvSRN1 variation in regulating the balance between grain number and weight in barley.
Collapse
Affiliation(s)
- Chaofeng Fan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Dongdong Xu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China; Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chunchao Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Zhaoyan Chen
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Tingyu Dou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Dandan Qin
- Key Laboratory for Crop Molecular Breeding of Ministry of Agriculture and Rural Affairs, Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Aikui Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Meng Zhao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Honghong Pei
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Mengwei Zhao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Renxu Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Ke Wang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Jing Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China
| | - Zhongfu Ni
- Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Ganggang Guo
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing 100081, China.
| |
Collapse
|
35
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
36
|
Wang W, Chen W, Wang J. FRIZZLE PANICLE (FZP) regulates rice spikelets development through modulating cytokinin metabolism. BMC PLANT BIOLOGY 2023; 23:650. [PMID: 38102566 PMCID: PMC10724965 DOI: 10.1186/s12870-023-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenqiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junmin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
37
|
Liu J, Liu J, He M, Zhang C, Liu Y, Li X, Wang Z, Jin X, Sui J, Zhou W, Bu Q, Tian X. OsMAPK6 positively regulates rice cold tolerance at seedling stage via phosphorylating and stabilizing OsICE1 and OsIPA1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:10. [PMID: 38103049 DOI: 10.1007/s00122-023-04506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Rice is a chilling-sensitive plant, and extremely low temperatures seriously decrease rice production. Several genes involved in chilling stress have been reported in rice; however, the chilling signaling in rice remains largely unknown. Here, we investigated the chilling tolerance phenotype of overexpression of constitutive active OsMAPK6 (CAMAPK6-OE) and OsMAPK6 mutant dsg1, and demonstrated that OsMAPK6 positively regulated rice chilling tolerance. It was shown that, under cold stress, the survival rate of dsg1 was significantly lower than that of WT, whereas CAMAPK6-OE display higher survival rate than WT. Physiological assays indicate that ion leakage and dead cell in dsg1 was much more severe than those in WT and CAMAPK6-OE. Consistently, expression of chilling responsive genes in dsg1, including OsCBFs and OsTPP1, was significantly lower than that of in WT and CAMAPK6-OE. Biochemical analyses revealed that chilling stress promotes phosphorylation of OsMAPK6. Besides, we found that OsMAPK6 interacts with and phosphorylates two key regulators in rice cold signaling, OsIPA1 and OsICE1, and then enhance their protein stability. Overall, our results revealed a cold-induced OsMAPK6-OsICE1/OsIPA1 signaling cascade by which OsMAPK6 was involved in rice chilling tolerance, which provides novel insights to understand rice cold response at seedling stage.
Collapse
Affiliation(s)
- Jiali Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaxin Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Mingliang He
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yingxiang Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenyu Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xin Jin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Sui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Wenyan Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
38
|
Awale P, McSteen P. Hormonal regulation of inflorescence and intercalary meristems in grasses. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102451. [PMID: 37739867 DOI: 10.1016/j.pbi.2023.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Hormones played a fundamental role in improvement of yield in cereal grasses. Natural variants affecting gibberellic acid (GA) and auxin pathways were used to breed semi-dwarf varieties of rice, wheat, and sorghum, during the "Green Revolution" in the 20th century. Since then, variants with altered GA and cytokinin homeostasis have been used to breed cereals with increased grain number. These yield improvements were enabled by hormonal regulation of intercalary and inflorescence meristems. Recent advances have highlighted additional pathways, beyond the traditional CLAVATA-WUSCHEL pathway, in the regulation of auxin and cytokinin in inflorescence meristems, and have expanded our understanding of the role of GA in intercalary meristems.
Collapse
Affiliation(s)
- Prameela Awale
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
39
|
Yadav B, Majhi A, Phagna K, Meena MK, Ram H. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 2023; 23:317. [PMID: 37837547 DOI: 10.1007/s10142-023-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.
Collapse
Affiliation(s)
- Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashis Majhi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Phagna
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
40
|
Wang J, Huang J, Bao J, Li X, Zhu L, Jin J. Rice domestication-associated transcription factor PROSTRATE GROWTH 1 controls plant and panicle architecture by regulating the expression of LAZY 1 and OsGIGANTEA, respectively. MOLECULAR PLANT 2023; 16:1413-1426. [PMID: 37621089 DOI: 10.1016/j.molp.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
Plant architecture and panicle architecture are two critical agronomic traits that greatly affect the yield of rice (Oryza sativa). PROSTRATE GROWTH 1 (PROG1) encodes a key C2H2-type zinc-finger transcription factor and has pleiotropic effects on the regulation of both plant and panicle architecture, thereby influencing the grain yield. However, the molecular mechanisms through which PROG1 controls plant and panicle architecture remain unclear. In this study, we showed that PROG1 directly binds the LAZY 1 (LA1) promoter and acts as a repressor to inhibit LA1 expression. Conversely, LA1 acts as a repressor of PROG1 by directly binding to the PROG1 promoter. These two genes play antagonistic roles in shaping plant architecture by regulating both tiller angle and tiller number. Interestingly, our data showed that PROG1 controls panicle architecture through direct binding to the intragenic regulatory regions of OsGIGANTEA (OsGI) and subsequent activation of its expression. Collectively, we have identified two crucial targets of PROG1, LA1 and OsGI, shedding light on the molecular mechanisms underlying plant and panicle architecture control by PROG1. Our study provides valuable insights into the regulation of key domestication-related traits in rice and identifies potential targets for future high-yield rice breeding.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinlin Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xizhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
41
|
Wei Y, Liu Z, Lv T, Xu Y, Wei Y, Liu W, Liu L, Wang A, Li T. Ethylene enhances MdMAPK3-mediated phosphorylation of MdNAC72 to promote apple fruit softening. THE PLANT CELL 2023; 35:2887-2909. [PMID: 37132483 PMCID: PMC10396387 DOI: 10.1093/plcell/koad122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The phytohormone ethylene plays an important role in promoting the softening of climacteric fruits, such as apples (Malus domestica); however, important aspects of the underlying regulatory mechanisms are not well understood. In this study, we identified apple MITOGEN-ACTIVATED PROTEIN KINASE 3 (MdMAPK3) as an important positive regulator of ethylene-induced apple fruit softening during storage. Specifically, we show that MdMAPK3 interacts with and phosphorylates the transcription factor NAM-ATAF1/2-CUC2 72 (MdNAC72), which functions as a transcriptional repressor of the cell wall degradation-related gene POLYGALACTURONASE1 (MdPG1). The increase in MdMAPK3 kinase activity was induced by ethylene, which promoted the phosphorylation of MdNAC72 by MdMAPK3. Additionally, MdPUB24 functions as an E3 ubiquitin ligase to ubiquitinate MdNAC72, resulting in its degradation via the 26S proteasome pathway, which was enhanced by ethylene-induced phosphorylation of MdNAC72 by MdMAPK3. The degradation of MdNAC72 increased the expression of MdPG1, which in turn promoted apple fruit softening. Notably, using variants of MdNAC72 that were mutated at specific phosphorylation sites, we observed that the phosphorylation state of MdNAC72 affected apple fruit softening during storage. This study thus reveals that the ethylene-MdMAPK3-MdNAC72-MdPUB24 module is involved in ethylene-induced apple fruit softening, providing insights into climacteric fruit softening.
Collapse
Affiliation(s)
- Yun Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhi Liu
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Tianxing Lv
- Liaoning Institute of Pomology, Xiongyue 115009, China
| | - Yaxiu Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yajing Wei
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Li Liu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Li
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
42
|
Li Y, Wu S, Huang Y, Ma X, Tan L, Liu F, Lv Q, Zhu Z, Hu M, Fu Y, Zhang K, Gu P, Xie D, Sun H, Sun C. OsMADS17 simultaneously increases grain number and grain weight in rice. Nat Commun 2023; 14:3098. [PMID: 37248234 DOI: 10.1038/s41467-023-38726-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
During the processes of rice domestication and improvement, a trade-off effect between grain number and grain weight was a major obstacle for increasing yield. Here, we identify a critical gene COG1, encoding the transcription factor OsMADS17, with a 65-bp deletion in the 5' untranslated region (5' UTR) presented in cultivated rice increasing grain number and grain weight simultaneously through decreasing mRNA translation efficiency. OsMADS17 controls grain yield by regulating multiple genes and that the interaction with one of them, OsAP2-39, has been characterized. Besides, the expression of OsMADS17 is regulated by OsMADS1 directly. It indicates that OsMADS1-OsMADS17-OsAP2-39 participates in the regulatory network controlling grain yield, and downregulation of OsMADS17 or OsAP2-39 expression can further improve grain yield by simultaneously increasing grain number and grain weight. Our findings provide insights into understanding the molecular basis co-regulating rice yield-related traits, and offer a strategy for breeding higher-yielding rice varieties.
Collapse
Affiliation(s)
- Yuanjie Li
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Sheng Wu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
- MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Yongyu Huang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xin Ma
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lubin Tan
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fengxia Liu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Zuofeng Zhu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Meixia Hu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yongcai Fu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Kun Zhang
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ping Gu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | - Hongying Sun
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| | - Chuanqing Sun
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
43
|
Manna M, Rengasamy B, Sinha AK. Revisiting the role of MAPK signalling pathway in plants and its manipulation for crop improvement. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37157977 DOI: 10.1111/pce.14606] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important signalling event associated with every aspect of plant growth, development, yield, abiotic and biotic stress adaptation. Being a central metabolic pathway, it is a vital target for manipulation for crop improvement. In this review, we have summarised recent advancements in understanding involvement of MAPK signalling in modulating abiotic and biotic stress tolerance, architecture and yield of plants. MAPK signalling cross talks with reactive oxygen species (ROS) and abscisic acid (ABA) signalling events in bringing about abiotic stress adaptation in plants. The intricate involvement of MAPK pathway with plant's pathogen defence ability has also been identified. Further, recent research findings point towards participation of MAPK signalling in shaping plant architecture and yield. These make MAPK pathway an important target for crop improvement and we discuss here various strategies to tweak MAPK signalling components for designing future crops with improved physiology and phenotypes.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
44
|
Chen L, Song H, Xin J, Dong G, Xu F, Su Y, Yang M, Sun H. Comprehensive genome-wide identification and functional characterization of MAPK cascade gene families in Nelumbo. Int J Biol Macromol 2023; 233:123543. [PMID: 36740124 DOI: 10.1016/j.ijbiomac.2023.123543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade signaling pathway plays pivotal roles in various plant biological processes. However, systematic study of MAPK cascade gene families is yet to be conducted in lotus. Herein, 198 putative MAPK genes, including 152 MAP3Ks, 15 MKKs, and 31 MPKs genes were identified in Nelumbo. Segmental duplication was identified as the predominant factor driving MAPK cascade gene family expansion in lotus. MAPK cascade genes in N. nucifera and N. lutea shared high degree of sequence homologies, with 84, 9, and 19 homologous MAP3K, MKK, and MPK gene pairs being detected between the two species, respectively, with most genes predominantly undergoing purifying selection. Gene expression profiling indicated that NnMAPK cascade genes were extensively involved in plant development and submergence stress response. Co-expression analysis revealed potential interaction between transcription factors (TFs) and NnMAPK cascade genes in various biological processes. NnMKK showed predicted interactions with multiple NnMAP3K or NnMPK proteins, which suggested that functional diversity of MAPK cascade genes could be as a result of their complex protein interaction mechanisms. This first systematic analysis of MAPK cascade families in lotus provides deeper insights into their evolutionary dynamics and functional properties, which potentially could be crucial for lotus genetic improvement.
Collapse
Affiliation(s)
- Lin Chen
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| | - Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
45
|
Guo T, Lu ZQ, Xiong Y, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, Guo SQ, Lei JJ, Liao B, Chai J, Lin HX. Optimization of rice panicle architecture by specifically suppressing ligand-receptor pairs. Nat Commun 2023; 14:1640. [PMID: 36964129 PMCID: PMC10039049 DOI: 10.1038/s41467-023-37326-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Rice panicle architecture determines the grain number per panicle and therefore impacts grain yield. The OsER1-OsMKKK10-OsMKK4-OsMPK6 pathway shapes panicle architecture by regulating cytokinin metabolism. However, the specific upstream ligands perceived by the OsER1 receptor are unknown. Here, we report that the EPIDERMAL PATTERNING FACTOR (EPF)/EPF-LIKE (EPFL) small secreted peptide family members OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 synergistically contribute to rice panicle morphogenesis by recognizing the OsER1 receptor and activating the mitogen-activated protein kinase cascade. Notably, OsEPFL6, OsEPFL7, OsEPFL8, and OsEPFL9 negatively regulate spikelet number per panicle, but OsEPFL8 also controls rice spikelet fertility. A osepfl6 osepfl7 osepfl9 triple mutant had significantly enhanced grain yield without affecting spikelet fertility, suggesting that specifically suppressing the OsEPFL6-OsER1, OsEPFL7-OsER1, and OsEPFL9-OsER1 ligand-receptor pairs can optimize rice panicle architecture. These findings provide a framework for fundamental understanding of the role of ligand-receptor signaling in rice panicle development and demonstrate a potential method to overcome the trade-off between spikelet number and fertility.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yehui Xiong
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
Jiang C, Xu Z, Fan X, Zhou Q, Ji G, Chen L, Yu Q, Liao S, Zhao Y, Feng B, Wang T. Identification and validation of quantitative trait loci for fertile spikelet number per spike and grain number per fertile spikelet in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:69. [PMID: 36952062 DOI: 10.1007/s00122-023-04297-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
A major and stable QTL for fertile spikelet number per spike and grain number per fertile spikelet identified in a 4.96-Mb interval on chromosome 2A was validated in different genetic backgrounds. Fertile spikelet number per spike (FSN) and grain number per fertile spikelet (GNFS) contribute greatly to wheat yield improvement. To detect quantitative trait loci (QTL) associated with FSN and GNFS, we used a recombinant inbred line population crossed by Zhongkemai 13F10 and Chuanmai 42 in eight environments. Two Genomic regions associated with FSN were detected on chromosomes 2A and 6A using bulked segregant exome sequencing analysis. After the genetic linkage maps were constructed, four QTL QFsn.cib-2A, QFsn.cib-6A, QGnfs.cib-2A and QGnfs.cib-6A were identified in three or more environments. Among them, two major QTL QFsn.cib-2A (LOD = 4.67-9.34, PVE = 6.66-13.05%) and QGnfs.cib-2A (LOD = 5.27-11.68, PVE = 7.95-16.71%) were detected in seven and six environments, respectively. They were co-located in the same region, namely QFsn/Gnfs.cib-2A. The developed linked Kompetitive Allele Specific PCR (KASP) markers further validated this QTL in a different genetic background. QFsn/Gnfs.cib-2A showed pleiotropic effects on grain number per spike (GNS) and spike compactness (SC), and had no effect on grain weight. Since QFsn/Gnfs.cib-2A might be a new locus, it and the developed KASP markers can be used in wheat breeding. According to haplotype analysis, QFsn/Gnfs.cib-2A was identified as a target of artificial selection during wheat improvement. Based on haplotype analysis, sequence differences, spatiotemporal expression patterns, and gene annotation, the potential candidate genes for QFsn/Gnfs.cib-2A were predicted. These results provide valuable information for fine mapping and cloning gene(s) underlying QFsn/Gnfs.cib-2A.
Collapse
Affiliation(s)
- Cheng Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangen Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
47
|
Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. THE PLANT CELL 2023; 35:1076-1091. [PMID: 36519262 PMCID: PMC10015164 DOI: 10.1093/plcell/koac364] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 05/16/2023]
Abstract
Grain size is an important agronomic trait, but our knowledge about grain size determination in crops is still limited. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a special ubiquitin proteasome system that is involved in degrading misfolded or incompletely folded proteins in the ER. Here, we report that SMALL GRAIN 3 (SMG3) and DECREASED GRAIN SIZE 1 (DGS1), an ERAD-related E2-E3 enzyme pair, regulate grain size and weight through the brassinosteroid (BR) signaling pathway in rice (Oryza sativa). SMG3 encodes a homolog of Arabidopsis (Arabidopsis thaliana) UBIQUITIN CONJUGATING ENZYME 32, which is a conserved ERAD-associated E2 ubiquitin conjugating enzyme. SMG3 interacts with another grain size regulator, DGS1. Loss of function of SMG3 or DGS1 results in small grains, while overexpression of SMG3 or DGS1 leads to long grains. Further analyses showed that DGS1 is an active E3 ubiquitin ligase and colocates with SMG3 in the ER. SMG3 and DGS1 are involved in BR signaling. DGS1 ubiquitinates the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and affects its accumulation. Genetic analysis suggests that SMG3, DGS1, and BRI1 act together to regulate grain size and weight. In summary, our findings identify an ERAD-related E2-E3 pair that regulates grain size and weight, which gives insight into the function of ERAD in grain size control and BR signaling.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiyue Yu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tuanyao Chai
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Xu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- College of Tropical Crops Hainan University, Hainan University, Haikou 570288, China
| | - Yunhai Li
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The Innovative of Seed Design, Chinese Academy of Sciences, Sanya 572025, China
| |
Collapse
|
48
|
Li S, Shen Y, Zheng S, Zhu Q, Cai L, Wang Y, Zhao X. ZjFAS2 is involved in the fruit coloration in Ziziphus jujuba Mill. by regulating anthocyanin accumulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1142757. [PMID: 36968382 PMCID: PMC10036858 DOI: 10.3389/fpls.2023.1142757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Fruit color is one of the most important traits of jujube (Ziziphus jujuba Mill.). However, the differences in the pigments of different varieties of Jujube are not well studied. In addition, the genes responsible for fruit color and their underlying molecular mechanisms remain unclear. In this study, two jujube varieties, namely "Fengmiguan" (FMG) and "Tailihong" (TLH), were considered. The metabolites from jujube fruits were investigated using ultra-high-performance liquid chromatography/tandem mass spectrometry. Transcriptome was used to screen anthocyanin regulatory genes. The gene function was confirmed by overexpression and transient expression experiments. The gene expression was analyzed by quantitative reverse transcription polymerase chain reaction analyses and subcellular localization. Yeast-two-hybrid and bimolecular fluorescence complementation were used to screen and identify the interacting protein. These cultivars differed in color owing to their respective anthocyanin accumulation patterns. Three and seven types of anthocyanins were found in FMG and TLH, respectively, which played a key role in the process of fruit coloration. ZjFAS2 positively regulates anthocyanin accumulation. The expression profile of ZjFAS2 exhibited its different expression trends in different tissues and varieties. Subcellular localization experiments showed that ZjFAS2 was localized to the nucleus and membrane. A total of 36 interacting proteins were identified, and the possibility of ZjFAS2 interacting with ZjSHV3 to regulate jujube fruit coloration was studied. Herein, we investigated the role of anthocyanins in the different coloring patterns of the jujube fruits and provided a foundation for elucidating the molecular mechanism underlying jujube fruit coloration.
Collapse
|
49
|
Chen F, Yong J, Zhang G, Liu M, Wang Q, Zhong H, Pan Y, Chen P, Weng Y, Li Y. An LTR retrotransposon insertion inside CsERECTA for an LRR receptor-like serine/threonine-protein kinase results in compact (cp) plant architecture in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:31. [PMID: 36894705 DOI: 10.1007/s00122-023-04273-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
The compact (cp) phenotype in cucumber (Cucumis sativus L.) is an important plant architecture-related trait with a great potential for cucumber improvement. In this study, we conducted map-based cloning of the cp locus, identified and functionally characterized the candidate gene. Comparative microscopic analysis suggested that the short internode in the cp mutant is due to fewer cell numbers. Fine genetic mapping delimited cp into an 8.8-kb region on chromosome 4 harboring only one gene, CsERECTA (CsER) that encodes a leucine-rich repeat receptor-like kinase. A 5.5-kb insertion of a long terminal repeat retrotransposon in the 22nd exon resulted in loss-of-function of CsER in the cp plant. Spatiotemporal expression analysis in cucumber and CsER promoter-driven GUS assays in Arabidopsis indicated that CsER was highly expressed in the stem apical meristem and young organs, but the expression level was similar in the wild type and mutant cucumber plants. However, CsER protein accumulation was reduced in the mutant as revealed by western hybridization. The mutation in cp also did not seem to affect self-association of CsER for formation of dimers. Ectopic expression of CsER in Arabidopsis was able to rescue the plant height of the loss-of-function AtERECTA mutant, whereas the compact inflorescence and small rosette leaves of the mutant could be partially recovered. Transcriptome profiling in the mutant and wild type cucumber plants revealed hormone biosynthesis/signaling, and photosynthesis pathways associated with CsER-dependent regulatory network. Our work provides new insights for the use of cp in cucumber breeding.
Collapse
Affiliation(s)
- Feifan Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Jianpeng Yong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mengying Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiqi Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huili Zhong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53705, USA.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
50
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|