1
|
Zhuo C, Wang X, Shrestha HK, Abraham PE, Hettich RL, Chen F, Barros J, Dixon RA. Major facilitator family transporters specifically enhance caffeyl alcohol uptake during C-lignin biosynthesis. THE NEW PHYTOLOGIST 2025; 246:1520-1535. [PMID: 39645576 DOI: 10.1111/nph.20325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
The mode of transport of lignin monomers to the sites of polymerization in the apoplast remains controversial. C-Lignin is a recently discovered form of lignin found in some seed coats that is composed exclusively of units derived from caffeyl alcohol. RNA-seq and proteome analyses identified a number of transporters co-expressed with C-lignin deposition in the seed coat of Cleome hassleriana. Cloning and influx/efflux analysis assays in yeast identified two low-affinity transporters, ChPLT3 and ChSUC1, that were active with caffeyl alcohol but not with the classical monolignols p-coumaryl, coniferyl, and sinapyl alcohols, consistent with molecular modeling and docking studies. Expression of ChPLT3 in Arabidopsis seedlings enhanced root growth in the presence of caffeyl alcohol, and expression of ChPLT3 and ChSUC1 correlated with lignin C-unit content in hairy roots of Medicago truncatula. We present a model, consistent with phylogenetic and evolutionary considerations, whereby passive caffeyl alcohol transport may be supplemented by hitchhiking on secondary active transporters to ensure the synthesis of C-lignin, and inhibition of synthesis of G-lignin, in the apoplast.
Collapse
Affiliation(s)
- Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Paul E Abraham
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Robert L Hettich
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jaime Barros
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
2
|
Wang H, Cui C, Wang J, Du Z, Wu K, Jiang X, Zheng Y, Zhao F, Jing B, Liu Y, Mei H, Zhang H. Fine mapping and functional characterization of SiLAC3 in regulating brown seed coat pigmentation, integrated transcriptomic and metabolomic analyses in sesame (Sesamum indicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109599. [PMID: 39923418 DOI: 10.1016/j.plaphy.2025.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
The color of the seed coat in sesame is a critical breeding trait, with significant implications for seed quality and consumer preferences. However, the genetic foundation and regulatory mechanisms underlying seed coat colors remain largely unexplored. Earlier, we identified a quantitative trait locus (QTL), qBSCchr6, associated with brown-colored seed coats in sesame. Currently, we utilized a recombinant inbred line (RIL) G3010, which harbors qBSCchr6 and crossed it with the white-seeded cultivar (YZ8) to develop an F2 population for QTL fine mapping. Through detailed recombinant analysis, qBSCchr6 was fine mapped to a narrow 83.4 kb genomic interval, co-segregating with the molecular marker BSC_SNV23. Within this interval, we identified SIN_1023239 for the brown-colored seed coat, which we have designated as SiLAC3. SiLAC3 encodes a laccase enzyme with three putative multicopper oxidase domains essential for its function. Sequence analysis revealed that a single nucleotide variant in the multicopper oxidase_3 domain is critical for the expression of brown seed coat phenotype. To further elucidate the role of SiLAC3, we employed a combination of chemical staining, transcriptomics, and metabolomics analyses. Our results indicate that the lignin biosynthesis pathway is crucial for brown seed coat pigmentation, with SiLAC3 facilitating oxidative polymerization of coniferyl alcohol in the seed coat. These findings advance our understanding of genetic and molecular mechanisms underlying seed coat color in sesame and offer a foundation to improve this trait in breeding programs.
Collapse
Affiliation(s)
- Han Wang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengqi Cui
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Jingjing Wang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Zhenwei Du
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Ke Wu
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Xiaolin Jiang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Yongzhan Zheng
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Fengli Zhao
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China
| | - Bing Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanyang Liu
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Hongxian Mei
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Haiyang Zhang
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China; Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
3
|
Cernekova N, Hricovini M, Vostrejs P, Kovalcik A. Innovative antimicrobial lignins: Extraction and characterization for advanced hydrogel applications. Int J Biol Macromol 2025; 307:141959. [PMID: 40074121 DOI: 10.1016/j.ijbiomac.2025.141959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
The antioxidant and antimicrobial activities of lignin are often emphasized; however, not every type exhibits these properties. In this work, water-soluble fractions of alkali lignin (AL), poly-(caffeyl alcohol) lignin (PCFA), pyrolytic lignin (PL) and grape seed lignin (GSL) were prepared. The original and water-soluble lignin fractions were comprehensively characterized using high-resolution 2D NMR spectroscopy. Notably, water-soluble fractions of PCFA, PL and GSL lignins exhibited 3.6 to 3.9 higher antioxidant activities than the original lignins despite having a phenolic content of approximately 12 % to 55 % lower. Additionally, these fractions demonstrated antimicrobial activities against Micrococcus luteus, Serratia marcescens and Escherichia coli. The potential of water-soluble lignin fractions as active modifiers for physically crosslinked hydrogels was also investigated. Specifically, PL/F lignin served as an antioxidant and antimicrobial agent for modifying carrageenan without disrupting its viscoelastic and swelling behaviour. Carrageenan hydrogels with 6 % PL/F lignin showed an antioxidant activity of 219.6 mg TE g-1 hydrogel and reduction rates of 43.9 % against M. luteus, 31.6 % against S. marcescens and 20.6 % against E. coli.
Collapse
Affiliation(s)
- Nicole Cernekova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Michal Hricovini
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 548 38 Bratislava, Slovakia
| | - Pavel Vostrejs
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Adriana Kovalcik
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
4
|
Chen S, Li S, Dai S, Song Z, Cui X, Liu Z, Xu M. EjLAC12 is involved in postharvest chilling injury in loquat fruits by regulating lignin polymerization. PHYSIOLOGIA PLANTARUM 2025; 177:e70237. [PMID: 40265225 DOI: 10.1111/ppl.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Loquat fruits are susceptible to chilling injury at low temperatures following harvest, and heat shock treatment (HT) effectively mitigates chilling-induced lignification in these fruits. Laccase (LAC) is involved in lignin deposition. In this study, 43 laccase genes were identified based on the loquat genome, and the expression patterns of laccases were analyzed during fruit development and postharvest storage. The expression pattern analysis and subcellular localization revealed that EjLAC12 is involved in the regulation of lignin biosynthesis. Furthermore, the overexpression of EjLAC12 in tomato plants resulted in increased lignin and flavonoid contents. Overall, EjLAC12 promotes the accumulation of lignin during low-temperature storage, whereas HT treatment can alleviate its transcription, thereby mitigating postharvest chilling-induced lignification in loquat fruits.
Collapse
Affiliation(s)
- Shoubing Chen
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
| | - Shuaijie Li
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Shengjie Dai
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Zhikai Song
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Xiaoyu Cui
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
| | - Zhenning Liu
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Meng Xu
- Shandong Province Crop Molecular Design and Precision Breeding Laboratory of University Specialties, Linyi University, Linyi, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| |
Collapse
|
5
|
Yao R, Liu Y, Ouyang L, He D, Yan L, Chen Y, Huai D, Wang Z, Kang Y, Wang Q, Jiang H, Lei Y, Liao B, Wang X. Genome-wide analysis of the laccase gene family in Arachis hypogaea and functional characterization of AhLAC63 involved in lignin biosynthesis and abiotic stress. Int J Biol Macromol 2025; 289:138886. [PMID: 39701230 DOI: 10.1016/j.ijbiomac.2024.138886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Plant laccases (LACs) play a vital role in lignification and participate in multiple biotic/abiotic stress responses. However, little is known about their role in lignin deposition and stress resistance in cultivated peanut (Arachis hypogaea L.). In this study, 80 putative peanut laccase genes (AhLACs) were identified and clustered into seven distinct phylogenetic groups. While the AhLAC members of group VI were lost, a novel specific group VIII was discovered in peanut. AhLACs within same group generally have similar gene structures and protein motif organizations. Expression pattern and subcellular cellular analysis revealed that AhLAC63 is a candidate gene involved in lignification and abiotic stress response. In addition, introducing AhLAC63 into the Arabidopsis laccase mutant (lac4 lac11) restored its lignin contents and abiotic stress tolerance. Moreover, the overexpression of AhLAC63 significantly altered phenylpropanoid metabolism flux and increased lignin content in peanut hairy roots. This study not only enables the further exploration of LAC biological functions in peanut, but also provides new gene resources for improving stress resistance in crops.
Collapse
Affiliation(s)
- Ruonan Yao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yue Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Lei Ouyang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Qianqian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China.
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China.
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Xu M, He S, Zhang H, Gao S, Yin M, Li X, Du G. Gibberellin regulates the synthesis of stone cells in 'Nanguo' pear via the PuMYB91-PuERF023 module. PHYSIOLOGIA PLANTARUM 2025; 177:e70074. [PMID: 39854105 DOI: 10.1111/ppl.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025]
Abstract
Stone cells are one of the limiting factors affecting pear fruit quality and commodity value. The formation of stone cell is highly correlated with lignin deposition. However, the molecular mechanism of stone cell formation and regulation is still unclear. Here, we observed that exogenous application of GA significantly inhibited the formation of stone cells and also decreased the content of lignin in 'Nanguo' (Pyrus ussuriensis) pear fruits. The key gene PuPRX73 involved in the lignin synthesis pathway was further identified using RT-PCR, and GA-treatment significantly inhibited the expression of PuPRX73. Overexpression or silencing of PuPRX73 in pear fruits significantly increases or decreases the content of stone cells and lignin. We identified the transcription factors PuMYB91 and PuERF023 using mRNA-seq and their expression was significantly decreased after GA-treatment. Transient overexpression of PuMYB91 and PuERF023 promotes lignin and stone cells content in pear fruits, while silencing of PuMYB91 and PuERF023 led to the opposite results and inhibited the expression of PuPRX73. Yeast one-hybrid (Y1H) and GUS activity analysis revealed that PuMYB91 and PuERF023 directly bind and activate the PuPRX73 promoter, and co-transfection of PuMYB91 and PuERF023 in Nicotiana benthamiana leaves further promoted the promoter activity of PuPRX73. Furthermore, we found that PuMYB91 interacted with PuERF023 in vitro by using Yeast two-hybrid assays (Y2H). In conclusion, our results revealed that exogenous GA-treatment inhibits stone cell production by suppressing the expression of PuMYB91 and PuERF023 in pear fruits.
Collapse
Affiliation(s)
- Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shan He
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Zhang
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Siyang Gao
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Mingxin Yin
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Li
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Guodong Du
- Key Laboratory of Fruit Postharvest Biology, Liaoning Province; College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Maeda N, Aoki D, Fujiyasu S, Matsushita Y, Yoshida M, Hiraide H, Mitsuda H, Tobimatsu Y, Fukushima K. The distribution of monolignol glucosides coincides with lignification during the formation of compression wood in Pinus thunbergii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17209. [PMID: 39673723 PMCID: PMC11776043 DOI: 10.1111/tpj.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
The distributions of monolignol glucosides (MLGs) in compression and opposite woods of Pinus thunbergii were assessed using cryo-time-of-flight secondary ion mass spectrometry to investigate their involvement in lignification. p-Glucocoumaryl alcohol (PG) was identified in the region of the differentiating xylem adjacent to the cambial zone only in compression wood, whereas coniferin (CF) was similarly localized in both compression and opposite woods. Their distribution from the phloem to the xylem was evaluated by high-performance liquid chromatography (HPLC) using serial tangential sections. Variations in storage amounts of CF and PG in the stem of P. thunbergii agreed with lignification stages of the tracheid, supporting the idea that MLGs act as a storage and transportation form of lignin precursors. The imaging of monolignol (ML)-dependent active lignification sites using fluorescence-tagged MLs supported distinct distribution patterns of MLGs for lignification in compression and opposite woods. Methylation-thioacidolysis was applied to compression and opposite wood samples to examine the structural difference between the guaiacyl (G) and p-hydroxyphenyl (H) units in lignin. Most of the H units in compression wood were detected as lignin end groups via thioacidolysis. PG was detected in opposite wood by HPLC; however, the H unit was not detected by thioacidolysis. The differences in ML and MLG distributions, enzyme activity, and resultant lignin structures between the G and H units suggest the possibility of individual mechanisms regulating the heterogeneous structures of G and H unit in lignin.
Collapse
Affiliation(s)
- Naoki Maeda
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Dan Aoki
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Syunya Fujiyasu
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Yasuyuki Matsushita
- Institute of AgricultureTokyo University of Agriculture and TechnologyTokyo183‐8509Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokashoUji611‐0011Japan
| | - Hayato Mitsuda
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokashoUji611‐0011Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
8
|
Li Y, Zhang W, Huang Y, Cui G, Zhang X. Exogenous silicon improved the cell wall stability by activating non-structural carbohydrates and structural carbohydrates metabolism in salt and drought stressed Glycyrrhiza uralensis stem. Int J Biol Macromol 2024; 283:137817. [PMID: 39561835 DOI: 10.1016/j.ijbiomac.2024.137817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
The plant cell wall is a crucial barrier against environmental stress, mainly composed of lignin and carbohydrates such as cellulose, hemicellulose, and pectin. This study explored the direct regulatory mechanism of silicon (Si) on cell wall components of Glycyrrhiza uralensis (G. uralensis) stems under salt and drought (S + D) stress and the indirect regulatory mechanism of non-structural carbohydrates on structural carbohydrates, mediated by uridine diphosphate glucose (UDPG), through joint physiological, biochemical, and transcriptomic analyses. Under S + D stress, Si increased the contents of cell wall components, altered the structure of cell wall, and directly promoted cell wall re-construction by regulating gene expression levels and enzyme activities related to cell wall biosynthesis. Meanwhile, Si facilitated the accumulation of carbohydrates by regulating enzyme activities and gene expression levels in the anabolic pathway of polysaccharides, thereby promoting UDPG conversion and indirectly providing substrates for cell wall synthesis. In conclusion, Si directly and indirectly facilitates the synthesis of cell wall components by regulating both cell wall metabolism and non-structural carbohydrates metabolism, thus reinforcing the cell wall, enhancing its stability, and improving the salt and drought tolerance of G. uralensis stems.
Collapse
Affiliation(s)
- Yi Li
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yufang Huang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Gaochang Cui
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
9
|
Ishida K, Yamamoto S, Makino T, Tobimatsu Y. Expression of laccase and ascorbate oxidase affects lignin composition in Arabidopsis thaliana stems. JOURNAL OF PLANT RESEARCH 2024; 137:1177-1187. [PMID: 39373803 DOI: 10.1007/s10265-024-01585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Lignin is a phenolic polymer that is a major source of biomass. Oxidative enzymes, such as laccase and peroxidase, are required for lignin polymerisation. Laccase is a member of the multicopper oxidase family and has a high amino acid sequence similarity with ascorbate oxidase. However, the process of functional differentiation between the two enzymes remains poorly understood. In this study, the common ancestry sequence of laccase and ascorbate oxidase (AncMCO) was predicted via phylogenetic reconstruction, and its in vivo effect on lignin biosynthesis in Arabidopsis thaliana was assessed. The estimated AncMCO sequence conserved key residues that coordinate with copper ions, implying that the electron transfer system is likely to be conserved in AncMCO. However, multiple insertions/deletions corresponding to protein surface structures have been found between laccase, ascorbate oxidase, and AncMCO. The overexpression of canonical laccase (AtLAC4) and ascorbate oxidase (AtAAO1) in A. thaliana resulted in notable increases of syringyl/guaiacyl lignin unit ratio in stems, whereas, in contrast, the overexpression of AncMCO did not show any detectable change in lignin deposition. Transcriptomic analysis revealed that the AtAAO1-overexpressing line exhibited significant changes in the expression of a wide range of cell wall biosynthesis genes. These results highlight the importance of the molecular evolution of multicopper oxidase, which drives lignin biosynthesis during plant evolution.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK.
| | - Senri Yamamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| |
Collapse
|
10
|
Kumari S, Rai N, Singh S, Saha P, Bisen MS, Pandey-Rai S. Heterologous expression of AaLac1 gene in hairy roots and its role in secondary metabolism under PEG-induced osmotic stress condition in Artemisia annua L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1611-1629. [PMID: 39506999 PMCID: PMC11535012 DOI: 10.1007/s12298-024-01516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
This study explores the Laccase gene (AaLac) family along with AaLac1 expression in hairy roots of A. annua. 42 AaLacs were identified by detecting three conserved domains: Cu-oxidase, Cu oxidase-2, and Cu oxidase-3. The physicochemical properties show that AaLacs are proteins with 541-1075 amino acids. These proteins are stable, with an instability index less than 40. Phylogenetic and motif studies have shown structural variants in AaLacs, suggesting functional divergence. 22 AaLac cis-regulatory elements were selected for their roles in drought stress, metabolic modulations, defense, and stress responses. A comparison of AtLac and AaLac proteins showed that 11 AtLacs mitigates stress reactions. In silico expression, analysis of 11 AtLacs showed that AtLac84 may function under osmotic stress. Thus, the Homolog AaLac1 was selected by expression profiling. The real-time PCR results showed that AaLac1 enhances osmotic stress tolerance in shoot and root samples. It was also used to analyze AaLac1, ADS, and CYP71AV1 gene expression in hairy roots via induction. The transformed hairy roots exhibited a greater capacity for PEG-induced osmotic stress tolerance in contrast to the untransformed roots. The gene expression analysis also depicted a significant increment in expression of AaLac1, ADS, and CYP71AV1 genes to 3.8, 6.9, and 3.1 folds respectively. The transformed hairy roots exhibited a significant increase of 2.2 and 1.4 fold in flavonoid and phenolic content respectively. Also, lignin content and artemisinin content increased by 7.05 folds and 95.6% with respect to the control. Thus, transformed hairy roots of A. annua under PEG-induced osmotic stress demonstrate the involvement of the AaLac1 gene in stress responses, lignin biosynthesis, and secondary metabolism production. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01516-8.
Collapse
Affiliation(s)
- Sabitri Kumari
- Laboratory of Morphogenesis, Centre of Advance Study, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Nidhi Rai
- Laboratory of Morphogenesis, Centre of Advance Study, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Sneha Singh
- Laboratory of Morphogenesis, Centre of Advance Study, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Pajeb Saha
- Laboratory of Morphogenesis, Centre of Advance Study, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Mansi Singh Bisen
- Laboratory of Morphogenesis, Centre of Advance Study, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005 India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Centre of Advance Study, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
11
|
Wang Y, Wang Q, Zhang F, Han C, Li W, Ren M, Wang Y, Qi K, Xie Z, Zhang S, Tao S. PbARF19-mediated auxin signaling regulates lignification in pear fruit stone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112103. [PMID: 38657909 DOI: 10.1016/j.plantsci.2024.112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The stone cells in pear fruits cause rough flesh and low juice, seriously affecting the taste. Lignin has been demonstrated as the main component of stone cells. Auxin, one of the most important plant hormone, regulates most physiological processes in plants including lignification. However, the concentration effect and regulators of auxin on pear fruits stone cell formation remains unclear. Here, endogenous indole-3-acetic acid (IAA) and stone cells were found to be co-localized in lignified cells by immunofluorescence localization analysis. The exogenous treatment of different concentrations of IAA demonstrated that the application of 200 µM IAA significantly reduced stone cell content, while concentrations greater than 500 µM significantly increased stone cell content. Besides, 31 auxin response factors (ARFs) were identified in pear genome. Putative ARFs were predicted as critical regulators involved in the lignification of pear flesh cells by phylogenetic relationship and expression analysis. Furthermore, the negative regulation of PbARF19 on stone cell formation in pear fruit was demonstrated by overexpression in pear fruitlets and Arabidopsis. These results illustrated that the PbARF19-mediated auxin signal plays a critical role in the lignification of pear stone cell by regulating lignin biosynthetic genes. This study provides theoretical and practical guidance for improving fruit quality in pear production.
Collapse
Affiliation(s)
- Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Li
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Dixon RA, Puente-Urbina A, Beckham GT, Román-Leshkov Y. Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:239-263. [PMID: 39038247 DOI: 10.1146/annurev-arplant-062923-022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA;
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allen Puente-Urbina
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T Beckham
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Pan C, Zhang M, Chen J, Lu H, Zhao X, Chen X, Wang L, Guo P, Liu S. miR397 regulates cadmium stress response by coordinating lignin polymerization in the root exodermis in Kandelia obovata. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134313. [PMID: 38669927 DOI: 10.1016/j.jhazmat.2024.134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.
Collapse
Affiliation(s)
- Chenglang Pan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China.
| | - Mingxiong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Xuemei Zhao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xiaofeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Technology Innovation Center for Monitoringand Restoration Engineering of Ecological Fragile Zonein Southeast China, Ministry of Natural Resources, Fuzhou 350001, China
| | - Pingping Guo
- Fujian Minjiang River Estuary Wetland National Nature Reserve Administrative Office, Fuzhou 350001, China
| | - Shuyu Liu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Li XY, Li ZF, Zhang XL, Yang MQ, Wu PQ, Huang MJ, Huang HQ. Adaptation mechanism of three Impatiens species to different habitats based on stem morphology, lignin and MYB4 gene. BMC PLANT BIOLOGY 2024; 24:453. [PMID: 38789944 PMCID: PMC11127381 DOI: 10.1186/s12870-024-05115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Impatiens is an important genus with rich species of garden plants, and its distribution is extremely extensive, which is reflected in its diverse ecological environment. However, the specific mechanisms of Impatiens' adaptation to various environments and the mechanism related to lignin remain unclear. RESULTS Three representative Impatiens species,Impatiens chlorosepala (wet, low degree of lignification), Impatiens uliginosa (aquatic, moderate degree of lignification) and Impatiens rubrostriata (terrestrial, high degree of lignification), were selected and analyzed for their anatomical structures, lignin content and composition, and lignin-related gene expression. There are significant differences in anatomical parameters among the stems of three Impatiens species, and the anatomical structure is consistent with the determination results of lignin content. Furthermore, the thickness of the xylem and cell walls, as well as the ratio of cell wall thickness to stem diameter have a strong correlation with lignin content. The anatomical structure and degree of lignification in Impatiens can be attributed to the plant's growth environment, morphology, and growth rate. Our analysis of lignin-related genes revealed a negative correlation between the MYB4 gene and lignin content. The MYB4 gene may control the lignin synthesis in Impatiens by controlling the structural genes involved in the lignin synthesis pathway, such as HCT, C3H, and COMT. Nonetheless, the regulation pathway differs between species of Impatiens. CONCLUSIONS This study demonstrated consistency between the stem anatomy of Impatiens and the results obtained from lignin content and composition analyses. It is speculated that MYB4 negatively regulates the lignin synthesis in the stems of three Impatiens species by regulating the expression of structural genes, and its regulation mechanism appears to vary across different Impatiens species. This study analyses the variations among different Impatiens plants in diverse habitats, and can guide further molecular investigations of lignin biosynthesis in Impatiens.
Collapse
Affiliation(s)
- Xin-Yi Li
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Ze-Feng Li
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Xiao-Li Zhang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Meng-Qing Yang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Pei-Qing Wu
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China
| | - Mei-Juan Huang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China.
| | - Hai-Quan Huang
- Southwest Forestry University, College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Kunming, Yunnan, 650224, China.
| |
Collapse
|
15
|
Li D, Zhang H, Zhou Q, Tao Y, Wang S, Wang P, Wang A, Wei C, Liu S. The Laccase Family Gene CsLAC37 Participates in Resistance to Colletotrichum gloeosporioides Infection in Tea Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:884. [PMID: 38592904 PMCID: PMC10975366 DOI: 10.3390/plants13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Fungal attacks have become a major obstacle in tea plantations. Colletotrichum gloeosporioides is one of the most devastating fungal pathogens in tea plantations that can severely affect tea yield and quality. However, the molecular mechanism of resistance genes involved in anthracnose is still largely unknown in tea plants. Here, we found that the laccase gene CsLAC37 was involved in the response to fungal infection based on a transcriptome analysis. The full-length CDS of CsLAC37 was cloned, and its protein sequence had the closest relationship with the Arabidopsis AtLAC15 protein compared to other AtLACs. Tissue-specific expression analysis showed that CsLAC37 had higher expression levels in mature leaves and stems than in the other tissues. Subcellular localization showed that the CsLAC37 protein was predominantly localized in the cell membrane. The expression levels of CsLAC37 were upregulated at different time points under cold, salt, SA, and ABA treatments. qRT-PCR confirmed that CsLAC37 responded to both Pestalotiopsis-like species and C. gloeosporioides infections. Functional validation showed that the hydrogen peroxide (H2O2) content increased significantly, and POD activity decreased in leaves after antisense oligonucleotide (AsODN) treatment compared to the controls. The results demonstrated that CsLAC37 may play an important role in resistance to anthracnose, and the findings provide a theoretical foundation for molecular breeding of tea varieties with resistance to fungal diseases.
Collapse
Affiliation(s)
- Dangqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Qianqian Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Yongning Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Pengke Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Aoni Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; (D.L.); (H.Z.); (Q.Z.); (Y.T.); (P.W.); (A.W.); (C.W.)
| |
Collapse
|
16
|
Uddin N, Li X, Ullah MW, Sethupathy S, Ma K, Zahoor, Elboughdiri N, Khan KA, Zhu D. Lignin developmental patterns and Casparian strip as apoplastic barriers: A review. Int J Biol Macromol 2024; 260:129595. [PMID: 38253138 DOI: 10.1016/j.ijbiomac.2024.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Lignin and Casparian strips are two essential components of plant cells that play critical roles in plant development regulate nutrients and water across the plants cell. Recent studies have extensively investigated lignin diversity and Casparian strip formation, providing valuable insights into plant physiology. This review presents the established lignin biosynthesis pathway, as well as the developmental patterns of lignin and Casparian strip and transcriptional network associated with Casparian strip formation. It describes the biochemical and genetic mechanisms that regulate lignin biosynthesis and deposition in different plants cell types and tissues. Additionally, the review highlights recent studies that have uncovered novel lignin biosynthesis genes and enzymatic pathways, expanding our understanding of lignin diversity. This review also discusses the developmental patterns of Casparian strip in roots and their role in regulating nutrient and water transport, focusing on recent genetic and molecular studies that have identified regulators of Casparian strip formation. Previous research has shown that lignin biosynthesis genes also play a role in Casparian strip formation, suggesting that these processes are interconnected. In conclusion, this comprehensive overview provides insights into the developmental patterns of lignin diversity and Casparian strip as apoplastic barriers. It also identifies future research directions, including the functional characterization of novel lignin biosynthesis genes and the identification of additional regulators of Casparian strip formation. Overall, this review enhances our understanding of the complex and interconnected processes that drive plant growth, pathogen defense, regulation and development.
Collapse
Affiliation(s)
- Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Li
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Keyu Ma
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
17
|
Xu L, Tang Y, Yang Y, Wang D, Wang H, Du J, Bai Y, Su S, Zhao C, Li L. Microspore-expressed SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen development in wheat. THE NEW PHYTOLOGIST 2023; 239:102-115. [PMID: 36994607 DOI: 10.1111/nph.18917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 06/02/2023]
Abstract
Sporopollenin is one of the most structurally sophisticated and chemically recalcitrant biopolymers. In higher plants, sporopollenin is the dominant component of exine, the outer wall of pollen grains, and contains covalently linked phenolics that protect the male gametes from harsh environments. Although much has been learned about the biosynthesis of sporopollenin precursors in the tapetum, the nutritive cell layer surrounding developing microspores, little is known about how the biopolymer is assembled on the microspore surface. We identified SCULP1 (SKS clade universal in pollen) as a seed plant conserved clade of the multicopper oxidase family. We showed that SCULP1 in common wheat (Triticum aestivum) is specifically expressed in the microspore when sporopollenin assembly takes place, localized to the developing exine, and binds p-coumaric acid in vitro. Through genetic, biochemical, and 3D reconstruction analyses, we demonstrated that SCULP1 is required for p-coumaroylation of sporopollenin, exine integrity, and pollen viability. Moreover, we found that SCULP1 accumulation is compromised in thermosensitive genic male sterile wheat lines and its expression partially restored exine integrity and male fertility. These findings identified a key microspore protein in autonomous sporopollenin polymer assembly, thereby laying the foundation for elucidating and engineering sporopollenin biosynthesis.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yimiao Tang
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Hybrid Wheat, Beijing, 100097, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dezhou Wang
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Hybrid Wheat, Beijing, 100097, China
| | - Haijun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianmei Du
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yajun Bai
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shichao Su
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Hybrid Wheat, Beijing, 100097, China
| | - Changping Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Institute of Hybrid Wheat, Beijing, 100097, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Ha CM, Escamilla-Trevino L, Zhuo C, Pu Y, Bryant N, Ragauskas AJ, Xiao X, Li Y, Chen F, Dixon RA. Systematic approaches to C-lignin engineering in Medicago truncatula. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:100. [PMID: 37308891 DOI: 10.1186/s13068-023-02339-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/10/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND C-lignin is a homopolymer of caffeyl alcohol present in the seed coats of a variety of plant species including vanilla orchid, various cacti, and the ornamental plant Cleome hassleriana. Because of its unique chemical and physical properties, there is considerable interest in engineering C-lignin into the cell walls of bioenergy crops as a high-value co-product of bioprocessing. We have used information from a transcriptomic analysis of developing C. hassleriana seed coats to suggest strategies for engineering C-lignin in a heterologous system, using hairy roots of the model legume Medicago truncatula. RESULTS We systematically tested strategies for C-lignin engineering using a combination of gene overexpression and RNAi-mediated knockdown in the caffeic acid/5-hydroxy coniferaldehyde 3/5-O-methyltransferase (comt) mutant background, monitoring the outcomes by analysis of lignin composition and profiling of monolignol pathway metabolites. In all cases, C-lignin accumulation required strong down-regulation of caffeoyl CoA 3-O-methyltransferase (CCoAOMT) paired with loss of function of COMT. Overexpression of the Selaginella moellendorffii ferulate 5-hydroxylase (SmF5H) gene in comt mutant hairy roots resulted in lines that unexpectedly accumulated high levels of S-lignin. CONCLUSION C-Lignin accumulation of up to 15% of total lignin in lines with the greatest reduction in CCoAOMT expression required the strong down-regulation of both COMT and CCoAOMT, but did not require expression of a heterologous laccase, cinnamyl alcohol dehydrogenase (CAD) or cinnamoyl CoA reductase (CCR) with preference for 3,4-dihydroxy-substituted substrates in M. truncatula hairy roots. Cell wall fractionation studies suggested that the engineered C-units are not present in a heteropolymer with the bulk of the G-lignin.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Luis Escamilla-Trevino
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
| | - Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Arthur J Ragauskas
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ying Li
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA.
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
19
|
Li Y, Meng X, Meng R, Cai T, Pu Y, Zhao ZM, Ragauskas AJ. Valorization of homogeneous linear catechyl lignin: opportunities and challenges. RSC Adv 2023; 13:12750-12759. [PMID: 37101533 PMCID: PMC10124587 DOI: 10.1039/d3ra01546g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Lignin is the dominant aromatic renewable polymer on earth. Generally, its complex and heterogeneous structure hinders its high-value utilization. Catechyl lignin (C-lignin), a novel lignin discovered in the seed coats of vanilla and several members of Cactaceae, has received increasing attention due to its unique homogeneous linear structure. Obtaining substantial amounts of C-lignin either by gene regulation or effective isolation is essential to advance C-lignin's valorization. Through a fundamental understanding of the biosynthesis process, genetic engineering to promote the accumulation of C-lignin in certain plants was developed to facilitate C-lignin valorization. Various isolation methods were also developed to isolate C-lignin, among which deep eutectic solvents (DESs) treatment is one of the most promising approaches to fractionate C-lignin from biomass materials. Since C-lignin is composed of homogeneous catechyl units, depolymerization to produce catechol monomers demonstrates a promising way for value-added utilization of C-lignin. Reductive catalytic fractionation (RCF) represents another emerging technology for effective depolymerizing C-lignin, leading to a narrow distribution of lignin-derived aromatic products (e.g., propyl and propenyl catechol). Meanwhile, the linear molecular structure predisposes C-lignin as a potential promising feedstock for preparing carbon fiber materials. In this review, the biosynthesis of this unique C-lignin in plants is summarized. C-lignin isolation from plants and various depolymerization approaches to obtaining aromatic products are overviewed with highlights on RCF process. Exploring new application areas based on C-lignin's unique homogeneous linear structure is also discussed with its potential for high-value utilization in the future.
Collapse
Affiliation(s)
- Yibing Li
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University Hohhot 010021 China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville TN 37996 USA
| | - Rongqian Meng
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University Hohhot 010021 China
| | - Ting Cai
- Inner Mongolia Autonomous Region Agriculture and Animal Husbandry Technology Extension Center Hohhot 010010 China
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University Hohhot 010021 China
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville TN 37996 USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville TN 37996 USA
- Center for Bioenergy Innovation (CBI), Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture Knoxville TN 37996 USA
| |
Collapse
|
20
|
Zhu J, Zhang H, Huang K, Guo R, Zhao J, Xie H, Zhu J, Gu H, Chen H, Li G, Wei C, Liu S. Comprehensive analysis of the laccase gene family in tea plant highlights its roles in development and stress responses. BMC PLANT BIOLOGY 2023; 23:129. [PMID: 36882726 PMCID: PMC9990228 DOI: 10.1186/s12870-023-04134-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Laccase (LAC) is the pivotal enzyme responsible for the polymerization of monolignols and stress responses in plants. However, the roles of LAC genes in plant development and tolerance to diverse stresses are still largely unknown, especially in tea plant (Camellia sinensis), one of the most economically important crops worldwide. RESULTS In total, 51 CsLAC genes were identified, they were unevenly distributed on different chromosomes and classified into six groups based on phylogenetic analysis. The CsLAC gene family had diverse intron-exon patterns and a highly conserved motif distribution. Cis-acting elements in the promoter demonstrated that promoter regions of CsLACs encode various elements associated with light, phytohormones, development and stresses. Collinearity analysis identified some orthologous gene pairs in C. sinensis and many paralogous gene pairs among C. sinensis, Arabidopsis and Populus. Tissue-specific expression profiles revealed that the majority of CsLACs had high expression in roots and stems and some members had specific expression patterns in other tissues, and the expression patterns of six genes by qRT‒PCR were highly consistent with the transcriptome data. Most CsLACs showed significant variation in their expression level under abiotic (cold and drought) and biotic (insect and fungus) stresses via transcriptome data. Among them, CsLAC3 was localized in the plasma membrane and its expression level increased significantly at 13 d under gray blight treatment. We found that 12 CsLACs were predicted to be targets of cs-miR397a, and most CsLACs showed opposite expression patterns compared to cs-miR397a under gray blight infection. Additionally, 18 highly polymorphic SSR markers were developed, these markers can be widely used for diverse genetic studies of tea plants. CONCLUSIONS This study provides a comprehensive understanding of the classification, evolution, structure, tissue-specific profiles, and (a)biotic stress responses of CsLAC genes. It also provides valuable genetic resources for functional characterization towards enhancing tea plant tolerance to multiple (a)biotic stresses.
Collapse
Affiliation(s)
- Jiaxin Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongxiu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Rui Guo
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Jingjuan Zhao
- Lu'an Institute of Product Quality Supervision and Inspection, Lu'an City, China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Honglian Gu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Guoqiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
21
|
Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. THE PLANT CELL 2023; 35:889-909. [PMID: 36449969 DOI: 10.1101/2022.05.04.490011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.
Collapse
Affiliation(s)
- Leonard Blaschek
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Emiko Murozuka
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Delphine Ménard
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
22
|
Blaschek L, Murozuka E, Serk H, Ménard D, Pesquet E. Different combinations of laccase paralogs nonredundantly control the amount and composition of lignin in specific cell types and cell wall layers in Arabidopsis. THE PLANT CELL 2023; 35:889-909. [PMID: 36449969 PMCID: PMC9940878 DOI: 10.1093/plcell/koac344] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 05/12/2023]
Abstract
Vascular plants reinforce the cell walls of the different xylem cell types with lignin phenolic polymers. Distinct lignin chemistries differ between each cell wall layer and each cell type to support their specific functions. Yet the mechanisms controlling the tight spatial localization of specific lignin chemistries remain unclear. Current hypotheses focus on control by monomer biosynthesis and/or export, while cell wall polymerization is viewed as random and nonlimiting. Here, we show that combinations of multiple individual laccases (LACs) are nonredundantly and specifically required to set the lignin chemistry in different cell types and their distinct cell wall layers. We dissected the roles of Arabidopsis thaliana LAC4, 5, 10, 12, and 17 by generating quadruple and quintuple loss-of-function mutants. Loss of these LACs in different combinations led to specific changes in lignin chemistry affecting both residue ring structures and/or aliphatic tails in specific cell types and cell wall layers. Moreover, we showed that LAC-mediated lignification has distinct functions in specific cell types, waterproofing fibers, and strengthening vessels. Altogether, we propose that the spatial control of lignin chemistry depends on different combinations of LACs with nonredundant activities immobilized in specific cell types and cell wall layers.
Collapse
Affiliation(s)
- Leonard Blaschek
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Emiko Murozuka
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Delphine Ménard
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Edouard Pesquet
- Arrhenius Laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Liao B, Wang C, Li X, Man Y, Ruan H, Zhao Y. Genome-wide analysis of the Populus trichocarpa laccase gene family and functional identification of PtrLAC23. FRONTIERS IN PLANT SCIENCE 2023; 13:1063813. [PMID: 36733583 PMCID: PMC9887407 DOI: 10.3389/fpls.2022.1063813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Biofuel is a kind of sustainable, renewable and environment friendly energy. Lignocellulose from the stems of woody plants is the main raw material for "second generation biofuels". Lignin content limits fermentation yield and is therefore a major obstacle in biofuel production. Plant laccase plays an important role in the final step of lignin formation, which provides a new strategy for us to obtain ideal biofuels by regulating the expression of laccase genes to directly gain the desired lignin content or change the composition of lignin. METHODS Multiple sequence alignment and phylogenetic analysis were used to classify PtrLAC genes; sequence features of PtrLACs were revealed by gene structure and motif composition analysis; gene duplication, interspecific collinearity and Ka/Ks analysis were conducted to identify ancient PtrLACs; expression levels of PtrLAC genes were measured by RNA-Seq data and qRT-PCR; domain analysis combine with cis-acting elements prediction together showed the potential function of PtrLACs. Furthermore, Alphafold2 was used to simulate laccase 3D structures, proLAC23::LAC23-eGFP transgenic Populus stem transects were applied to fluorescence observation. RESULTS A comprehensive analysis of the P. trichocarpa laccase gene (PtLAC) family was performed. Some ancient PtrLAC genes such as PtrLAC25, PtrLAC19 and PtrLAC41 were identified. Gene structure and distribution of conserved motifs clearly showed sequence characteristics of each PtrLAC. Combining published RNA-Seq data and qRT-PCR analysis, we revealed the expression pattern of PtrLAC gene family. Prediction results of cis-acting elements show that PtrLAC gene regulation was closely related to light. Through above analyses, we selected 5 laccases and used Alphafold2 to simulate protein 3D structures, results showed that PtrLAC23 may be closely related to the lignification. Fluorescence observation of proLAC23::LAC23-eGFP transgenic Populus stem transects and qRT-PCR results confirmed our hypothesis again. DISCUSSION In this study, we fully analyzed the Populus trichocarpa laccase gene family and identified key laccase genes related to lignification. These findings not only provide new insights into the characteristics and functions of Populus laccase, but also give a new understanding of the broad prospects of plant laccase in lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Boyang Liao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Chencan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Xiaoxu Li
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Yi Man
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| | - Hang Ruan
- School of Cyber Science and Technology, Beihang University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
| |
Collapse
|
24
|
Yang QQ, Hua WP, Zou HL, Yang JX, Wang XZ, Zhang T, Wang DH, Zhu XJ, Cao XY. Overexpression of SmLAC25 promotes lignin accumulation and decreases salvianolic acid content in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111462. [PMID: 36126879 DOI: 10.1016/j.plantsci.2022.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Laccase (LAC) is a blue multicopper oxidase that contains four copper ions, which is involved in lignin polymerization and flavonoid biosynthesis in plants. Although dozens of LAC genes have been identified in Salvia miltiorrhiza Bunge (a model medicinal plant), most have not been functionally characterized. Here, we explored the expression patterns and the functionality of SmLAC25 in S. miltiorrhiza. SmLAC25 has a higher expression level in roots and responds to methyl jasmonate, auxin, abscisic acid, and gibberellin stimuli. The SmLAC25 protein is localized in the cytoplasm and chloroplasts. Recombinant SmLAC25 protein could oxidize coniferyl alcohol and sinapyl alcohol, two monomers of G-lignin and S-lignin. To investigate its function, we generated SmLAC25-overexpressed S. miltiorrhiza plantlets and hairy roots. The lignin content increased significantly in all SmLAC25-overexpressed plantlets and hairy roots, compared with the controls. However, the concentrations of rosmarinic acid and salvianolic acid B decreased significantly in all the SmLAC25-overexpressed lines. Further studies revealed that the transcription levels of some key enzyme genes in the lignin synthesis pathway (e.g., SmCCR and SmCOMT) were significantly improved in the SmLAC25-overexpressed lines, while the expression levels of multiple enzyme genes in the salvianolic acid biosynthesis pathway were inhibited. We speculated that the overexpression of SmLAC25 promoted the metabolic flux of lignin synthesis, which resulted in a decreased metabolic flux to the salvianolic acid biosynthesis pathway.
Collapse
Affiliation(s)
- Qian-Qian Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Wen-Ping Hua
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710100, China
| | - Hao-Lan Zou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Jia-Xin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiang-Zeng Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dong-Hao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiao-Jia Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Xiao-Yan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
25
|
Xu XP, Cao QY, Guan QX, Mohammadi MA, Di Cai R, Chen XH, Zhang ZH, Chen YK, Xuhan X, Lin YL, Lai ZX. Genome-wide identification of miRNAs and targets associated with cell wall biosynthesis: Differential roles of dlo-miR397a and dlo-miR408-3p during early somatic embryogenesis in longan. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111372. [PMID: 35863557 DOI: 10.1016/j.plantsci.2022.111372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The dynamic alterations in cell wall (CW) biosynthesis play an essential role in physiological isolation during the plant somatic embryogenesis (SE). However, the mechanisms underlying the functions of cell wall-associated miRNAs (CW-miRNA) remain poorly understood in plant SE. Here, we have identified 36 distinct candidate miRNAs associated with CW biosynthesis from longan third-generation genome as well as miRNA transcriptome, and modified RLM-RACE validated four distinct miRNA, which specifically targeted four CW-related genes. More importantly, we found that the dlo-miR397a-antagomir significantly enhanced DlLAC7 expression and improved laccase activity. Interestingly, inhibition of dlo-miR397a increased CW lignin deposition and promoted the tightening of protodermal cell by miRNA-mimic technology during early SE. Moreover, overexpression of dlo-miR408-3p (dlo-miR408-3p-agomir) markedly decreased DlLAC12 expression. dlo-miR408-3p-agomir activated rapid cell division, thus promoting the globular embryo (GE) development, which might be due to high DNA synthesis activity in protoepidermal cells, rather than affecting lignin synthesis. The subcellular location also indicated that both DlLAC7 and DlLAC12 proteins were primarily localized in CW and regulated CW biosynthesis. Overall, our findings provided new insight on the molecular regulatory networks comprising various miRNAs associated with cell wall, and established that dlo-miR397a and dlo-miR408-3p played differential roles during early SE in longan. The findings also shed some light on the potential role of miRNA target DlLAC regulating in vivo embryonic development of plant.
Collapse
Affiliation(s)
- Xiao Ping Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, China
| | - Qing Ying Cao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qing Xu Guan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohammad Aqa Mohammadi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Rou Di Cai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao Hui Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zi Hao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Kun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xu Xuhan
- Institut de la Recherche Interdisciplinaire de Toulouse, IRIT-ARI, 31300 Toulouse, France
| | - Yu Ling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Zhong Xiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
26
|
The temptation from homogeneous linear catechyl lignin. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Abstract
Lignin, a rigid polymer composed of phenolic subunits with high molecular weight and complex structure, ranks behind only cellulose in the contribution to the biomass of plants. Therefore, lignin can be used as a new environmentally friendly resource for the industrial production of a variety of polymers, dyes and adhesives. Since laccase was found to be able to degrade lignin, increasing attention had been paid to the valorization of lignin. Research has mainly focused on the identification of lignin-degrading enzymes, which play a key role in lignin biodegradation, and the potential application of lignin degradation products. In this review, we describe the source, catalytic specificity and enzyme reaction mechanism of the four classes of the lignin-degrading enzymes so far discovered. In addition, the major pathways of lignin biodegradation and the applications of the degradative products are also discussed. Lignin-degrading bacteria or enzymes can be used in combination with chemical pretreatment for the production of value-added chemicals from lignin, providing a promising strategy for lignin valorization.
Collapse
|
28
|
Wang Y, Gui C, Wu J, Gao X, Huang T, Cui F, Liu H, Sethupathy S. Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Front Bioeng Biotechnol 2022; 10:917459. [PMID: 35845403 PMCID: PMC9283729 DOI: 10.3389/fbioe.2022.917459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin is essential for plant growth, structural integrity, biotic/abiotic stress resistance, and water transport. Besides, lignin constitutes 10–30% of lignocellulosic biomass and is difficult to utilize for biofuel production. Over the past few decades, extensive research has uncovered numerous metabolic pathways and genes involved in lignin biosynthesis, several of which have been highlighted as the primary targets for genetic manipulation. However, direct manipulation of lignin biosynthesis is often associated with unexpected abnormalities in plant growth and development for unknown causes, thus limiting the usefulness of genetic engineering for biomass production and utilization. Recent advances in understanding the complex regulatory mechanisms of lignin biosynthesis have revealed new avenues for spatial and temporal modification of lignin in lignocellulosic plants that avoid growth abnormalities. This review explores recent work on utilizing specific transcriptional regulators to modify lignin biosynthesis at both tissue and cellular levels, focusing on using specific promoters paired with functional or regulatory genes to precisely control lignin synthesis and achieve biomass production with desired properties. Further advances in designing more appropriate promoters and other regulators will increase our capacity to modulate lignin content and structure in plants, thus setting the stage for high-value utilization of lignin in the future.
Collapse
Affiliation(s)
- Yongli Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| | - Cunjin Gui
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangyan Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xing Gao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fengjie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Yongli Wang, ; Sivasamy Sethupathy,
| |
Collapse
|
29
|
Zhang J, Liu Y, Li C, Yin B, Liu X, Guo X, Zhang C, Liu D, Hwang I, Li H, Lu H. PtomtAPX is an autonomous lignification peroxidase during the earliest stage of secondary wall formation in Populus tomentosa Carr. NATURE PLANTS 2022; 8:828-839. [PMID: 35851622 DOI: 10.1038/s41477-022-01181-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
At present, a cooperative process hypothesis is used to explain the supply of enzyme (class III peroxidases and/or laccases) and substrates during lignin polymerization. However, it remains elusive how xylem cells meet the needs of early lignin rapid polymerization during secondary cell wall formation. Here we provide evidence that a mitochondrial ascorbate peroxidase (PtomtAPX) is responsible for autonomous lignification during the earliest stage of secondary cell wall formation in Populus tomentosa. PtomtAPX was relocated to cell walls undergoing programmed cell death and catalysed lignin polymerization in vitro. Aberrant phenotypes were caused by altered PtomtAPX expression levels in P. tomentosa. These results reveal that PtomtAPX is crucial for catalysing lignin polymerization during the early stages of secondary cell wall formation and xylem development, and describe how xylem cells provide autonomous enzymes needed for lignin polymerization during rapid formation of the secondary cell wall by coupling with the programmed cell death process.
Collapse
Affiliation(s)
- Jiaxue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Conghui Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Bin Yin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiatong Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaorui Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chong Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Di Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
30
|
Jiao Y, Gong X, Qi K, Xie Z, Wang Y, Yuan K, Pan Q, Zhang S, Shiratake K, Khanizadeh S, Tao S. Transcriptome analysis provides new ideas for studying the regulation of glucose-induced lignin biosynthesis in pear calli. BMC PLANT BIOLOGY 2022; 22:310. [PMID: 35754039 PMCID: PMC9235211 DOI: 10.1186/s12870-022-03658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Glucose can be involved in metabolic activities as a structural substance or signaling molecule and plays an important regulatory role in fruit development. Glucose metabolism is closely related to the phenylpropanoid pathway, but the specific role of glucose in regulating lignin biosynthesis in pear fruit is still unclear. The transcriptome of pear calli generated from fruit and treated with glucose was analyzed to investigate the role of glucose in lignin biosynthesis. RESULTS The treatment of exogenous glucose significantly enhanced the accumulation of lignin in pear calli. A total of 6566 differentially expressed genes were obtained by transcriptome sequencing. Glycolysis was found to be the pathway with significant changes. Many differentially expressed genes were enriched in secondary metabolic pathways, especially the phenylpropanoid pathway. Expression of structural genes (PbPAL, PbHCT, PbCOMT, PbPRX) in lignin biosynthesis was up-regulated after glucose treatment. In addition, glucose might regulate lignin biosynthesis through interactions with ABA, GA, and SA signaling. Several candidate MYB transcription factors involved in glucose-induced lignin biosynthesis have also been revealed. The qRT-PCR analyses showed that the expression pattern of PbPFP at early developmental stage in 'Dangshansuli' fruits was consistent with the trend of lignin content. Transient expression of PbPFP resulted in a significant increase of lignin content in 'Dangshansuli' fruits at 35 days after full bloom (DAB) and tobacco leaves, indicating that PbPFP (Pbr015118.1) might be associated with the enhancement of lignin biosynthesis in response to glucose treatment. CONCLUSIONS PbPFP plays a positive role in regulating lignin biosynthesis in response to glucose treatment. This study may reveal the regulatory pathway related to lignin accumulation in pear calli induced by glucose.
Collapse
Affiliation(s)
- Yuru Jiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xin Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yanling Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kaili Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Qi Pan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | | | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Genome-Wide Identification of Switchgrass Laccases Involved in Lignin Biosynthesis and Heavy-Metal Responses. Int J Mol Sci 2022; 23:ijms23126530. [PMID: 35742972 PMCID: PMC9224244 DOI: 10.3390/ijms23126530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Plant laccase genes belong to a multigene family, play key roles in lignin polymerization, and participate in the resistance of plants to biotic and abiotic stresses. Switchgrass is an important resource for forage and bioenergy production, yet information about the switchgrass laccase gene family is scarce. Using bioinformatic approaches, a genome-wide analysis of the laccase multigene family in switchgrass was carried out in this study. In total, 49 laccase genes (PvLac1 to PvLac49) were identified; these can be divided into five subclades, and 20 of them were identified as targets of miR397. The tandem and segmental duplication of laccase genes on Chr05 and Chr08 contributed to the expansion of the laccase family. The laccase proteins shared conserved signature sequences but displayed relatively low sequence similarity, indicating the potential functional diversity of switchgrass laccases. Switchgrass laccases exhibited distinct tissue/organ expression patterns, revealing that some laccases might be involved in the lignification process during stem development. All five of the laccase isoforms selected from different subclades responded to heavy metal. The immediate response of lignin-related laccases, as well as the delayed response of low-abundance laccases, to heavy-metal treatment shed light on the multiple roles of laccase isoforms in response to heavy-metal stress.
Collapse
|
32
|
Li G, Zeng X, Li Y, Li J, Huang X, Zhao D. BRITTLE CULM17, a Novel Allele of TAC4, Affects the Mechanical Properties of Rice Plants. Int J Mol Sci 2022; 23:ijms23105305. [PMID: 35628116 PMCID: PMC9140386 DOI: 10.3390/ijms23105305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Lodging resistance of rice (Oryza sativa L.) has always been a hot issue in agricultural production. A brittle stem mutant, osbc17, was identified by screening an EMS (Ethylmethane sulfonate) mutant library established in our laboratory. The stem segments and leaves of the mutant were obviously brittle and fragile, with low mechanical strength. Examination of paraffin sections of flag leaf and internode samples indicated that the number of cell layers in mechanical tissue of the mutant was decreased compared with the wild type, Pingtangheinuo, and scanning electron microscopy revealed that the mechanical tissue cell walls of the mutant were thinner. Lignin contents of the internodes of mature-stage rice were significantly lower in the mutant than in the wild type. By the MutMap method, we found candidate gene OsBC17, which was located on rice chromosome 2 and had a 2433 bp long coding sequence encoding a protein sequence of 810 amino acid residues with unknown function. According to LC-MS/MS analysis of intermediate products of the lignin synthesis pathway, the accumulation of caffeyl alcohol in the osbc17 mutant was significantly higher than in Pingtangheinuo. Caffeyl alcohol can be polymerized to the catechyl lignin monomer by laccase ChLAC8; however, ChLAC8 and OsBC17 are not homologous proteins, which suggests that the osbc17 gene is involved in this process by regulating laccase expression.
Collapse
Affiliation(s)
- Guangzheng Li
- The State Key Laboratory of Green Pesticide and Agricultural Biological Engineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China;
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Jianrong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Xiaozhen Huang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
| | - Degang Zhao
- The State Key Laboratory of Green Pesticide and Agricultural Biological Engineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China;
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; (X.Z.); (Y.L.); (J.L.); (X.H.)
- Guizhou Plant Conservation Center, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Correspondence:
| |
Collapse
|
33
|
Zhuo C, Wang X, Docampo-Palacios M, Sanders BC, Engle NL, Tschaplinski TJ, Hendry JI, Maranas CD, Chen F, Dixon RA. Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. SCIENCE ADVANCES 2022; 8:eabm8145. [PMID: 35263134 PMCID: PMC8906750 DOI: 10.1126/sciadv.abm8145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/17/2022] [Indexed: 05/25/2023]
Abstract
The factors controlling lignin composition remain unclear. Catechyl (C)-lignin is a homopolymer of caffeyl alcohol with unique properties as a biomaterial and precursor of industrial chemicals. The lignin synthesized in the seed coat of Cleome hassleriana switches from guaiacyl (G)- to C-lignin at around 12 to 14 days after pollination (DAP), associated with a rerouting of the monolignol pathway. Lack of synthesis of caffeyl alcohol limits C-lignin formation before around 12 DAP, but coniferyl alcohol is still synthesized and highly accumulated after 14 DAP. We propose a model in which, during C-lignin biosynthesis, caffeyl alcohol noncompetitively inhibits oxidation of coniferyl alcohol by cell wall laccases, a process that might limit movement of coniferyl alcohol to the apoplast. Developmental changes in both substrate availability and laccase specificity together account for the metabolic fates of G- and C-monolignols in the Cleome seed coat.
Collapse
Affiliation(s)
- Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xin Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Maite Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
| | - Brian C. Sanders
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nancy L. Engle
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John I. Hendry
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Costas D. Maranas
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
34
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
35
|
Agustin MB, de Carvalho DM, Lahtinen MH, Hilden K, Lundell T, Mikkonen KS. Laccase as a Tool in Building Advanced Lignin-Based Materials. CHEMSUSCHEM 2021; 14:4615-4635. [PMID: 34399033 PMCID: PMC8597079 DOI: 10.1002/cssc.202101169] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Indexed: 05/22/2023]
Abstract
Lignin is an abundant natural feedstock that offers great potential as a renewable substitute for fossil-based resources. Its polyaromatic structure and unique properties have attracted significant research efforts. The advantages of an enzymatic over chemical or thermal approach to construct or deconstruct lignins are that it operates in mild conditions, requires less energy, and usually uses non-toxic chemicals. Laccase is a widely investigated oxidative enzyme that can catalyze the polymerization and depolymerization of lignin. Its dual nature causes a challenge in controlling the overall direction of lignin-laccase catalysis. In this Review, the factors that affect laccase-catalyzed lignin polymerization were summarized, evaluated, and compared to identify key features that favor lignin polymerization. In addition, a critical assessment of the conditions that enable production of novel lignin hybrids via laccase-catalyzed grafting was presented. To assess the industrial relevance of laccase-assisted lignin valorization, patented applications were surveyed and industrial challenges and opportunities were analyzed. Finally, our perspective in realizing the full potential of laccase in building lignin-based materials for advanced applications was deduced from analysis of the limitations governing laccase-assisted lignin polymerization and grafting.
Collapse
Affiliation(s)
- Melissa B. Agustin
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of Helsinki00014HelsinkiFinland
| | - Danila Morais de Carvalho
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of Helsinki00014HelsinkiFinland
| | - Maarit H. Lahtinen
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of Helsinki00014HelsinkiFinland
| | - Kristiina Hilden
- Department of MicrobiologyFaculty of Agriculture and ForestryUniversity of Helsinki00014HelsinkiFinland
- Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiP.O. Box 6500014HelsinkiFinland
| | - Taina Lundell
- Department of MicrobiologyFaculty of Agriculture and ForestryUniversity of Helsinki00014HelsinkiFinland
- Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiP.O. Box 6500014HelsinkiFinland
| | - Kirsi S. Mikkonen
- Department of Food and NutritionFaculty of Agriculture and ForestryUniversity of Helsinki00014HelsinkiFinland
- Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiP.O. Box 6500014HelsinkiFinland
| |
Collapse
|
36
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|
37
|
Yao T, Feng K, Xie M, Barros J, Tschaplinski TJ, Tuskan GA, Muchero W, Chen JG. Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704697. [PMID: 34484267 PMCID: PMC8416159 DOI: 10.3389/fpls.2021.704697] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
The phenylpropanoid pathway serves as a rich source of metabolites in plants and provides precursors for lignin biosynthesis. Lignin first appeared in tracheophytes and has been hypothesized to have played pivotal roles in land plant colonization. In this review, we summarize recent progress in defining the lignin biosynthetic pathway in lycophytes, monilophytes, gymnosperms, and angiosperms. In particular, we review the key structural genes involved in p-hydroxyphenyl-, guaiacyl-, and syringyl-lignin biosynthesis across plant taxa and consider and integrate new insights on major transcription factors, such as NACs and MYBs. We also review insight regarding a new transcriptional regulator, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, canonically identified as a key enzyme in the shikimate pathway. We use several case studies, including EPSP synthase, to illustrate the evolution processes of gene duplication and neo-functionalization in lignin biosynthesis. This review provides new insights into the genetic engineering of the lignin biosynthetic pathway to overcome biomass recalcitrance in bioenergy crops.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Jaime Barros
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
38
|
Zou H, Guo X, Yang R, Wang S, Li L, Niu J, Wang D, Cao X. MiR408- SmLAC3 Module Participates in Salvianolic Acid B Synthesis in Salvia miltiorrhiza. Int J Mol Sci 2021; 22:ijms22147541. [PMID: 34299156 PMCID: PMC8306038 DOI: 10.3390/ijms22147541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression involved in plant development and abiotic stress responses. Recently, miRNAs have also been reported to be engaged in the regulation of secondary plant metabolism. However, there are few functional studies of miRNAs in medicinal plants. For this study, we obtained Sm-miR408 interference lines to investigate the function of Sm-miR408 in a medicinal model plant (Salvia miltiorrhiza). It was found that inhibiting the expression of Sm-miR408 could increase the content of salvianolic acid B and rosmarinic acid in the roots. The SmLAC3 and Sm-miR408 expression patterns were analyzed by qRT-PCR. A 5’ RLM-RACE assay confirmed that Sm-miR408 targets and negatively regulates SmLAC3. Moreover, the overexpression of SmLAC3 in S. miltiorrhiza promoted the accumulation of salvianolic acids in the roots. Furthermore, the lignin content of the roots in overexpressed SmLAC3 lines was decreased. Taken together, these findings indicated that Sm-miR408 modulates the accumulation of phenolic acids in S. miltiorrhiza by targeting SmLAC3 expression levels.
Collapse
|
39
|
Hiraide H, Tobimatsu Y, Yoshinaga A, Lam PY, Kobayashi M, Matsushita Y, Fukushima K, Takabe K. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. THE NEW PHYTOLOGIST 2021; 230:2186-2199. [PMID: 33570753 PMCID: PMC8252379 DOI: 10.1111/nph.17264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/26/2023]
Abstract
The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2 L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.
Collapse
Affiliation(s)
- Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Arata Yoshinaga
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Pui Ying Lam
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Masaru Kobayashi
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Keiji Takabe
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| |
Collapse
|
40
|
Yonekura-Sakakibara K, Yamamura M, Matsuda F, Ono E, Nakabayashi R, Sugawara S, Mori T, Tobimatsu Y, Umezawa T, Saito K. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. THE PLANT CELL 2021; 33:129-152. [PMID: 33751095 PMCID: PMC8136895 DOI: 10.1093/plcell/koaa014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/20/2020] [Indexed: 05/03/2023]
Abstract
Lignans/neolignans are generally synthesized from coniferyl alcohol (CA) in the cinnamate/monolignol pathway by oxidation to generate the corresponding radicals with subsequent stereoselective dimerization aided by dirigent proteins (DIRs). Genes encoding oxidases and DIRs for neolignan biosynthesis have not been identified previously. In Arabidopsis thaliana, the DIR AtDP1/AtDIR12 plays an essential role in the 8-O-4' coupling in neolignan biosynthesis by unequivocal structural determination of the compound missing in the atdp1 mutant as a sinapoylcholine (SC)-conjugated neolignan, erythro-3-{4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-1-hydroxymethylethoxy]-3,5-dimethoxyphenyl}acryloylcholine. Phylogenetic analyses showed that AtDP1/AtDIR12 belongs to the DIR-a subfamily composed of DIRs for 8-8' coupling of monolignol radicals. AtDP1/AtDIR12 is specifically expressed in outer integument 1 cells in developing seeds. As a putative oxidase for neolignan biosynthesis, we focused on AtLAC5, a laccase gene coexpressed with AtDP1/AtDIR12. In lac5 mutants, the abundance of feruloylcholine (FC)-conjugated neolignans decreased to a level comparable to those in the atdp1 mutant. In addition, SC/FC-conjugated neolignans were missing in the seeds of mutants defective in SCT/SCPL19, an enzyme that synthesizes SC. These results strongly suggest that AtDP1/AtDIR12 and AtLAC5 are involved in neolignan biosynthesis via SC/FC. A tetrazolium penetration assay showed that seed coat permeability increased in atdp1 mutants, suggesting a protective role of neolignans in A. thaliana seeds.
Collapse
Affiliation(s)
- Keiko Yonekura-Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Fumio Matsuda
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika, Soraku-gun, Kyoto 619-0284, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
- Author for correspondence: ,
| |
Collapse
|
41
|
Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:180-209. [PMID: 33325112 DOI: 10.1111/jipb.13054] [Citation(s) in RCA: 631] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Phenylpropanoid metabolism is one of the most important metabolisms in plants, yielding more than 8,000 metabolites contributing to plant development and plant-environment interplay. Phenylpropanoid metabolism materialized during the evolution of early freshwater algae that were initiating terrestrialization and land plants have evolved multiple branches of this pathway, which give rise to metabolites including lignin, flavonoids, lignans, phenylpropanoid esters, hydroxycinnamic acid amides, and sporopollenin. Recent studies have revealed that many factors participate in the regulation of phenylpropanoid metabolism, and modulate phenylpropanoid homeostasis when plants undergo successive developmental processes and are subjected to stressful environments. In this review, we summarize recent progress on elucidating the contribution of phenylpropanoid metabolism to the coordination of plant development and plant-environment interaction, and metabolic flux redirection among diverse metabolic routes. In addition, our review focuses on the regulation of phenylpropanoid metabolism at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and in response to phytohormones and biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
42
|
O'Leary BM. The Lure of Lignin: Deciphering High-value Lignin Formation in Seed Coats. THE PLANT CELL 2020; 32:3652-3653. [PMID: 33077492 PMCID: PMC7721337 DOI: 10.1105/tpc.20.00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Brendan M O'Leary
- ARC Centre of Excellence in Plant Energy BiologyUniversity of Western AustraliaPerth, Australia
| |
Collapse
|