1
|
Salvador-Mira M, Gimenez-Moya P, Manso-Aznar A, Sánchez-Córdoba E, Sevilla-Diez MA, Chico V, Nombela I, Puente-Marin S, Roher N, Perez L, Dučić T, Benseny-Cases N, Perez-Berna AJ, Ortega-Villaizan MDM. Viral vaccines promote endoplasmic reticulum stress-induced unfolding protein response in teleost erythrocytes. Eur J Cell Biol 2025; 104:151490. [PMID: 40252498 DOI: 10.1016/j.ejcb.2025.151490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
Most available evidence points to a proviral role for endoplasmic reticulum (ER) stress, as many viruses exploit it to promote viral replication. In contrast, few studies have linked ER stress to the antiviral immune response, and even fewer to the vaccine-induced immune response. In this work, we demonstrated that ER stress is a key molecular link in the immune response of teleost erythrocytes or red blood cells (RBCs) under vaccine stimulation. Moreover, the unfolded protein response (UPRER) triggered by ER stress may work together with autophagy and related cellular mechanisms as part of a coordinated immune response in RBCs. We unveiled biochemical changes in the lipid-protein profile of vaccine-treated RBCs by synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-µFTIR) associated with the modulation of ER expansion, increased mitochondrial number, and vesicular structures detected by soft X-ray cryotomography (cryo-SXT). We found a positive correlation between both morphological and biochemical changes and the expression of genes related to UPRER, autophagy, mitochondrial stress, vesicle trafficking, and extracellular vesicle release. These processes in RBCs are ideal cellular targets for the development of more specific prophylactic tools with greater immunogenic capacity than currently available options.
Collapse
Affiliation(s)
- Maria Salvador-Mira
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Paula Gimenez-Moya
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Alba Manso-Aznar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ester Sánchez-Córdoba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Manuel A Sevilla-Diez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB) & Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Tanja Dučić
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Núria Benseny-Cases
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain.
| |
Collapse
|
2
|
Salvador-Mira M, Sanchez-Cordoba E, Solivella M, Nombela I, Puente-Marin S, Chico V, Perez L, Perez-Berna AJ, Ortega-Villaizan MDM. Endoplasmic reticulum stress triggers unfolded protein response as an antiviral strategy of teleost erythrocytes. Front Immunol 2024; 15:1466870. [PMID: 39660123 PMCID: PMC11628393 DOI: 10.3389/fimmu.2024.1466870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Fish nucleated red blood cells (RBCs), also known as erythrocytes, play a crucial role in maintaining immune system balance by modulating protein expression in response to various stimuli, including viral attack. This study explores the intriguing behavior of rainbow trout RBCs when faced with the viral hemorrhagic septicemia virus (VHSV), focusing on the endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Methods Rainbow trout RBCs were Ficoll-purified and exposed to ultraviolet (UV)-inactivated VHSV or live VHSV at different multiplicities of infection (MOIs). Using cryo-soft X-ray tomography (cryo-SXT), we uncovered structural and cellular modifications in RBCs exposed to UV-inactivated VHSV. Moreover, RBCs were treated with 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, to investigate its effect on viral replication. Quantitative real-time PCR was also used to analyze the expression of genes related to the UPR and other related cellular pathways. Results and discussion Beyond their antiviral response, RBCs undergo notable intracellular changes to combat the virus. Cryo-SXT highlighted a significant increase in the ER volume. This increase is associated with ER stress and the activation of the UPR pathway. Interestingly, VHSV replication levels augmented in RBCs under ER-stress inhibition by 4-PBA treatment, suggesting that rainbow trout RBCs tune up ER stress to control viral replication. Therefore, our findings suggested the induction of ER stress and subsequent activation UPR signaling in the antiviral response of RBCs to VHSV. The results open a new line of investigation to uncover additional mechanisms that may become novel cellular targets for the development of RBC-targeted antiviral strategies.
Collapse
Affiliation(s)
- Maria Salvador-Mira
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ester Sanchez-Cordoba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Manuel Solivella
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | | | - Maria del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| |
Collapse
|
3
|
Wang J, Kishimoto M, Jozaki T, Kumeda T, Higashiguchi T, Sunahara A, Ohiro H, Yamasaki K, Namba S. Water-window x-ray emission from laser-produced Au plasma under optimal target thickness and focus conditions. Phys Rev E 2023; 107:065211. [PMID: 37464616 DOI: 10.1103/physreve.107.065211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023]
Abstract
Optimal laser irradiation conditions for water-window (WW) x-ray emission (2.3-4.4 nm) from an Au plasma are investigated to develop a laboratory-scale WW x-ray source. A minimum Au target thickness of 1 µm is obtained for a laser intensity of ∼10^{13} W/cm^{2} by observing the intensity drop in the WW spectra. Au targets produced by thermal evaporation are found to have a higher conversion efficiency than commercial foil targets for WW x-ray radiation. In addition, optimal laser spots for fixed laser energies (240 and 650 mJ) are found for an Au target ∼1 mm in front of the focal point, where suitable conditions for plasma temperature and plume volume coupling are achieved. The mechanism of the optimal target thickness and spot size can be well explained using a radiation hydrodynamic simulation code.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Maki Kishimoto
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Tomoyuki Jozaki
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Tomohiro Kumeda
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Takeshi Higashiguchi
- Department of Electrical and Electronic Engineering, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Tochigi, Japan
| | - Atsushi Sunahara
- Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita 565-0871, Osaka, Japan
- Center for Material under Extreme Environment, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, USA
| | - Hikari Ohiro
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Kotaro Yamasaki
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| | - Shinichi Namba
- Department of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Hiroshima, Japan
| |
Collapse
|
4
|
Guzzi F, Gianoncelli A, Billè F, Carrato S, Kourousias G. Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy. Life (Basel) 2023; 13:life13030629. [PMID: 36983785 PMCID: PMC10051220 DOI: 10.3390/life13030629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems.
Collapse
Affiliation(s)
- Francesco Guzzi
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
- Correspondence:
| | - Alessandra Gianoncelli
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Fulvio Billè
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Sergio Carrato
- Department of Engineering and Architecture (DIA), University of Trieste, 34127 Trieste, Italy
| | - George Kourousias
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
5
|
Jadhav AC, Kounatidis I. Correlative Cryo-imaging Using Soft X-Ray Tomography for the Study of Virus Biology in Cells and Tissues. Subcell Biochem 2023; 106:169-196. [PMID: 38159227 DOI: 10.1007/978-3-031-40086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are obligate intracellular pathogens that depend on their host cell machinery and metabolism for their replicative life cycle. Virus entry, replication, and assembly are dynamic processes that lead to the reorganisation of host cell components. Therefore, a complete understanding of the viral processes requires their study in the cellular context where advanced imaging has been proven valuable in providing the necessary information. Among the available imaging techniques, soft X-ray tomography (SXT) at cryogenic temperatures can provide three-dimensional mapping to 25 nm resolution and is ideally suited to visualise the internal organisation of virus-infected cells. In this chapter, the principles and practices of synchrotron-based cryo-soft X-ray tomography (cryo-SXT) in virus research are presented. The potential of the cryo-SXT in correlative microscopy platforms is also demonstrated through working examples of reovirus and hepatitis research at Beamline B24 (Diamond Light Source Synchrotron, UK) and BL09-Mistral beamline (ALBA Synchrotron, Spain), respectively.
Collapse
Affiliation(s)
- Archana C Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
6
|
Fernández-González C, Guedeja-Marrón A, Rodilla BL, Arché-Nuñez A, Corcuera R, Lucas I, González MT, Varela M, de la Presa P, Aballe L, Pérez L, Ruiz-Gómez S. Electrodeposited Magnetic Nanowires with Radial Modulation of Composition. NANOMATERIALS 2022; 12:nano12152565. [PMID: 35893533 PMCID: PMC9370789 DOI: 10.3390/nano12152565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
In the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction. In this work, we report the possibility of introducing changes in the composition along the radial direction, increasing the degrees of freedom to harness the magnetization. In particular, we report the synthesis, using template-assisted deposition, of FeNi (or Co) magnetic nanowires, coated with a Au/Co (Au/FeNi) bilayer. The diameter of the nanowire as well as the thickness of both layers can be tuned at will. In addition to a detailed structural characterization, we report a preliminary study on the magnetic properties, establishing the role of each layer in the global collective behavior of the system.
Collapse
Affiliation(s)
- Claudia Fernández-González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Beatriz L. Rodilla
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Ana Arché-Nuñez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Rubén Corcuera
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Irene Lucas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Teresa González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Maria Varela
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Patricia de la Presa
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Instituto de Magnetismo Aplicado, 28230 Las Rozas, Spain
| | - Lucía Aballe
- Alba Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain;
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Surface Science and Magnetism of Low Dimensional Systems, UCM, Unidad Asociada al IQFR-CSIC, 28040 Madrid, Spain
- Correspondence: (L.P.); (S.R.-G.)
| | - Sandra Ruiz-Gómez
- Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
- Correspondence: (L.P.); (S.R.-G.)
| |
Collapse
|
7
|
Castroflorio E, Pérez Berná AJ, López-Márquez A, Badosa C, Loza-Alvarez P, Roldán M, Jiménez-Mallebrera C. The Capillary Morphogenesis Gene 2 Triggers the Intracellular Hallmarks of Collagen VI-Related Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23147651. [PMID: 35886995 PMCID: PMC9322809 DOI: 10.3390/ijms23147651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen VI-related disorders (COL6-RD) represent a severe form of congenital disease for which there is no treatment. Dominant-negative pathogenic variants in the genes encoding α chains of collagen VI are the main cause of COL6-RD. Here we report that patient-derived fibroblasts carrying a common single nucleotide variant mutation are unable to build the extracellular collagen VI network. This correlates with the intracellular accumulation of endosomes and lysosomes triggered by the increased phosphorylation of the collagen VI receptor CMG2. Notably, using a CRISPR-Cas9 gene-editing tool to silence the dominant-negative mutation in patients’ cells, we rescued the normal extracellular collagen VI network, CMG2 phosphorylation levels, and the accumulation of endosomes and lysosomes. Our findings reveal an unanticipated role of CMG2 in regulating endosomal and lysosomal homeostasis and suggest that mutated collagen VI dysregulates the intracellular environment in fibroblasts in collagen VI-related muscular dystrophy.
Collapse
Affiliation(s)
- Enrico Castroflorio
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
- Correspondence: (E.C.); (C.J.-M.)
| | | | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
| | - Pablo Loza-Alvarez
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
| | - Mónica Roldán
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Unitat de Microscòpia Confocal i Imatge Cellular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Cecilia Jiménez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
- Department of Genetics, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.C.); (C.J.-M.)
| |
Collapse
|
8
|
Okolo CA. A guide into the world of high-resolution 3D imaging: the case of soft X-ray tomography for the life sciences. Biochem Soc Trans 2022; 50:649-663. [PMID: 35257156 PMCID: PMC9162464 DOI: 10.1042/bst20210886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022]
Abstract
In the world of bioimaging, every choice made determines the quality and content of the data collected. The choice of imaging techniques for a study could showcase or dampen expected outcomes. Synchrotron radiation is indispensable for biomedical research, driven by the need to see into biological materials and capture intricate biochemical and biophysical details at controlled environments. The same need drives correlative approaches that enable the capture of heterologous but complementary information when studying any one single target subject. Recently, the applicability of one such synchrotron technique in bioimaging, soft X-ray tomography (SXT), facilitates exploratory and basic research and is actively progressing towards filling medical and industrial needs for the rapid screening of biomaterials, reagents and processes of immediate medical significance. Soft X-ray tomography at cryogenic temperatures (cryoSXT) fills the imaging resolution gap between fluorescence microscopy (in the hundreds of nanometers but relatively accessible) and electron microscopy (few nanometers but requires extensive effort and can be difficult to access). CryoSXT currently is accessible, fully documented, can deliver 3D imaging to 25 nm resolution in a high throughput fashion, does not require laborious sample preparation procedures and can be correlated with other imaging techniques. Here, we present the current state of SXT and outline its place within the bioimaging world alongside a guided matrix that aids decision making with regards to the applicability of any given imaging technique to a particular project. Case studies where cryoSXT has facilitated a better understanding of biological processes are highlighted and future directions are discussed.
Collapse
Affiliation(s)
- Chidinma Adanna Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| |
Collapse
|
9
|
Zhou KJ, Walters A, Garcia-Fernandez M, Rice T, Hand M, Nag A, Li J, Agrestini S, Garland P, Wang H, Alcock S, Nistea I, Nutter B, Rubies N, Knap G, Gaughran M, Yuan F, Chang P, Emmins J, Howell G. I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:563-580. [PMID: 35254322 PMCID: PMC8900866 DOI: 10.1107/s1600577522000601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/17/2022] [Indexed: 05/27/2023]
Abstract
The I21 beamline at Diamond Light Source is dedicated to advanced resonant inelastic X-ray scattering (RIXS) for probing charge, orbital, spin and lattice excitations in materials across condensed matter physics, applied sciences and chemistry. Both the beamline and the RIXS spectrometer employ divergent variable-line-spacing gratings covering a broad energy range of 280-3000 eV. A combined energy resolution of ∼35 meV (16 meV) is readily achieved at 930 eV (530 eV) owing to the optimized optics and the mechanics. Considerable efforts have been paid to the design of the entire beamline, particularly the implementation of the collection mirrors, to maximize the X-ray photon throughput. The continuous rotation of the spectrometer over 150° under ultra high vacuum and a cryogenic manipulator with six degrees of freedom allow accurate mappings of low-energy excitations from solid state materials in momentum space. Most importantly, the facility features a unique combination of the high energy resolution and the high photon throughput vital for advanced RIXS applications. Together with its stability and user friendliness, I21 has become one of the most sought after RIXS beamlines in the world.
Collapse
Affiliation(s)
- Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Andrew Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | | | - Thomas Rice
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Matthew Hand
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Jiemin Li
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Stefano Agrestini
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Peter Garland
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Hongchang Wang
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Simon Alcock
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Ioana Nistea
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Brian Nutter
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Nicholas Rubies
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Giles Knap
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Martin Gaughran
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Fajin Yuan
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Peter Chang
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - John Emmins
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - George Howell
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
10
|
Groen J, Palanca A, Aires A, Conesa JJ, Maestro D, Rehbein S, Harkiolaki M, Villar AV, Cortajarena AL, Pereiro E. Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids. Chem Sci 2021; 12:15090-15103. [PMID: 34909150 PMCID: PMC8612387 DOI: 10.1039/d1sc04183e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Revealing the intracellular location of novel therapeutic agents is paramount for the understanding of their effect at the cell ultrastructure level. Here, we apply a novel correlative cryo 3D imaging approach to determine the intracellular fate of a designed protein–nanomaterial hybrid with antifibrotic properties that shows great promise in mitigating myocardial fibrosis. Cryo 3D structured illumination microscopy (cryo-3D-SIM) pinpoints the location and cryo soft X-ray tomography (cryo-SXT) reveals the ultrastructural environment and subcellular localization of this nanomaterial with spatial correlation accuracy down to 70 nm in whole cells. This novel high resolution 3D cryo correlative approach unambiguously locates the nanomaterial after overnight treatment within multivesicular bodies which have been associated with endosomal trafficking events by confocal microscopy. Moreover, this approach allows assessing the cellular response towards the treatment by evaluating the morphological changes induced. This is especially relevant for the future usage of nanoformulations in clinical practices. This correlative super-resolution and X-ray imaging strategy joins high specificity, by the use of fluorescence, with high spatial resolution at 30 nm (half pitch) provided by cryo-SXT in whole cells, without the need of staining or fixation, and can be of particular benefit to locate specific molecules in the native cellular environment in bio-nanomedicine. A novel 3D cryo correlative approach locates designed therapeutic protein–nanomaterial hybrids in whole cells with high specificity and resolution. Detection of treatment-induced morphological changes, crucial for pre-clinical studies, are revealed.![]()
Collapse
Affiliation(s)
- J Groen
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| | - A Palanca
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Anatomy and Cell Biology, University of Cantabria 39011 Santander Spain
| | - A Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain
| | - J J Conesa
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain .,National Center for Biotechnology CSIC (CNB-CSIC), Department of Macromolecular Structures Cantoblanco 28049 Madrid Spain
| | - D Maestro
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain
| | - S Rehbein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Bessy II D-12489 Berlin Germany
| | - M Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - A V Villar
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Physiology and Pharmacology, University of Cantabria Avd. Herrera Oria s/n Santander Spain
| | - A L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain .,Ikerbasque, Basque Foundation for Science 48009 Bilbao Spain
| | - E Pereiro
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| |
Collapse
|
11
|
Perez-Berna AJ, Benseny-Cases N, Rodríguez MJ, Valcarcel R, Carrascosa JL, Gastaminza P, Pereiro E. Monitoring reversion of hepatitis C virus-induced cellular alterations by direct-acting antivirals using cryo soft X-ray tomography and infrared microscopy. Acta Crystallogr D Struct Biol 2021; 77:1365-1377. [PMID: 34726165 PMCID: PMC8561738 DOI: 10.1107/s2059798321009955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) is an enveloped RNA virus. One of the hallmarks of HCV infection is a rearrangement of the host cell membranes, known as the `membranous web'. Full-field cryo soft X-ray tomography (cryo-SXT) in the water-window energy range (284-543 eV) was performed on the MISTRAL beamline to investigate, in whole unstained cells, the morphology of the membranous rearrangements induced in HCV replicon-harbouring cells in conditions close to the living physiological state. All morphological alterations could be reverted by a combination of sofosbuvir/daclatasvir, which are clinically approved antivirals (direct-acting antivirals; DAAs) for HCV infection. Correlatively combining cryo-SXT and 2D synchrotron-based infrared microscopy provides critical information on the chemical nature of specific infection-related structures, which allows specific patterns of the infection process or the DAA-mediated healing process to be distinguished.
Collapse
Affiliation(s)
- Ana J. Perez-Berna
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| | - Nuria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| | - María José Rodríguez
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Valcarcel
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| | - José L. Carrascosa
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| |
Collapse
|
12
|
Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ. Imaging of Virus-Infected Cells with Soft X-ray Tomography. Viruses 2021; 13:2109. [PMID: 34834916 PMCID: PMC8618346 DOI: 10.3390/v13112109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.
Collapse
Affiliation(s)
- Damià Garriga
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Bárbara M. Calisto
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Diego S. Ferrero
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, 08028 Barcelona, Spain;
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | | |
Collapse
|
13
|
Improving a Rapid Alignment Method of Tomography Projections by a Parallel Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The high resolution of synchrotron cryo-nano tomography can be easily undermined by setup instabilities and sample stage deficiencies such as runout or backlash. At the cost of limiting the sample visibility, especially in the case of bio-specimens, high contrast nano-beads are often added to the solution to provide a set of landmarks for a manual alignment. However, the spatial distribution of these reference points within the sample is difficult to control, resulting in many datasets without a sufficient amount of such critical features for tracking. Fast automatic methods based on tomography consistency are thus desirable, especially for biological samples, where regular, high contrast features can be scarce. Current off-the-shelf implementations of such classes of algorithms are slow if used on a real-world high-resolution dataset. In this paper, we present a fast implementation of a consistency-based alignment algorithm especially tailored to a multi-GPU system. Our implementation is released as open-source.
Collapse
|
14
|
Okolo CA, Kounatidis I, Groen J, Nahas KL, Balint S, Fish TM, Koronfel MA, Cortajarena AL, Dobbie IM, Pereiro E, Harkiolaki M. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 2021; 16:2851-2885. [PMID: 33990802 DOI: 10.1038/s41596-021-00522-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Kamal L Nahas
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Thomas M Fish
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A Koronfel
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eva Pereiro
- Beamline 09-MISTRAL, ALBA Synchrotron, Barcelona, Spain
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
15
|
Sorrentino A, Malucelli E, Rossi F, Cappadone C, Farruggia G, Moscheni C, Perez-Berna AJ, Conesa JJ, Colletti C, Roveri N, Pereiro E, Iotti S. Calcite as a Precursor of Hydroxyapatite in the Early Biomineralization of Differentiating Human Bone-Marrow Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22094939. [PMID: 34066542 PMCID: PMC8125725 DOI: 10.3390/ijms22094939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans. In fact, up to now, biomineralization core knowledge has been provided by investigations on the advanced phases of this process. In this study, we characterize the contents of calcium depositions in human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days using synchrotron-based cryo-soft-X-ray tomography and cryo-XANES microscopy. The reported results suggest crystalline calcite as a precursor of hydroxyapatite depositions within the cells in the biomineralization process. In particular, both calcite and hydroxyapatite were detected within the cell during the early phase of osteogenic differentiation. This striking finding may redefine most of the biomineralization models published so far, taking into account that they have been formulated using murine samples while studies in human cell lines are still scarce.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- Correspondence:
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milan, Italy;
| | - Ana J. Perez-Berna
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Jose Javier Conesa
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Chiara Colletti
- Chemical Center S.r.l, Granarolo dell’ Emilia, 40057 Bologna, Italy; (C.C.); (N.R.)
| | - Norberto Roveri
- Chemical Center S.r.l, Granarolo dell’ Emilia, 40057 Bologna, Italy; (C.C.); (N.R.)
| | - Eva Pereiro
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
16
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Gil S, Solano E, Martínez-Trucharte F, Martínez-Esaín J, Pérez-Berná AJ, Conesa JJ, Kamma-Lorger C, Alsina M, Sabés M. Multiparametric analysis of the effectiveness of cisplatin on cutaneous squamous carcinoma cells using two different types of adjuvants. PLoS One 2020; 15:e0230022. [PMID: 32143211 PMCID: PMC7060073 DOI: 10.1371/journal.pone.0230022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to regulate the cytotoxicity of cisplatin (cisPt) minimizing its adverse effects. For this purpose, the lowest cisPt concentration needed to obtain a significant positive response in cutaneous squamous cell carcinoma (cSCC) was explored. Two adjuvant agents as gold nanoparticles (AuNP) and chelating tricine were tested as enhancers in cisPt treatment. Effectiveness of all treatments was assessed by means of biochemical techniques, which offer quantitative data, as well as two microscopy–based techniques that provided qualitative cell imaging. The present work confirms the effectiveness of free cisplatin at very low concentrations. In order to enhance its effectiveness while the side effects were probably diminished, cisPt 3.5 μM was administered with AuNP 2.5 mM, showing an effectiveness practically equal to that observed with free cisPt. However, the second treatment investigated, based on cisPt 3.5 μM combined with tricine 50 mM, enhanced drug effectiveness, increasing the percentage of cells dying by apoptosis. This treatment was even better in terms of cell damage than free cisPt at 15 μM. Images obtained by TEM and cryo-SXT confirmed these results, since a notable number of apoptotic bodies were detected when cisPt was combined with tricine. Thus, tricine was clearly a better adjuvant for cisPt treatments.
Collapse
Affiliation(s)
- Silvia Gil
- Hospital Clínic de Barcelona, Barcelona, Spain
- Hospital Parc Taulí, Sabadell, Barcelona, Spain
- * E-mail:
| | | | | | | | | | | | - Christina Kamma-Lorger
- Australian Synchrotron–Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | | | - Manel Sabés
- ALBA Synchrotron Light Source, Barcelona, Spain
- Unitat de Biofísica, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
18
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
19
|
Conesa JJ, Carrasco AC, Rodríguez‐Fanjul V, Yang Y, Carrascosa JL, Cloetens P, Pereiro E, Pizarro AM. Unambiguous Intracellular Localization and Quantification of a Potent Iridium Anticancer Compound by Correlative 3D Cryo X‐Ray Imaging. Angew Chem Int Ed Engl 2019; 59:1270-1278. [DOI: 10.1002/anie.201911510] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Indexed: 02/06/2023]
Affiliation(s)
- José Javier Conesa
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
- Current address: Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
| | | | | | - Yang Yang
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - José L. Carrascosa
- Department of Structure of Macromolecules Centro Nacional de Biotecnología/CSIC 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| | - Peter Cloetens
- ID16A beamline ESRF-The European Synchrotron 38043 Grenoble France
| | - Eva Pereiro
- MISTRAL beamline ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | - Ana M. Pizarro
- IMDEA Nanociencia Faraday 9 28049 Madrid Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA 28049 Madrid Spain
| |
Collapse
|
20
|
Procopio A, Malucelli E, Pacureanu A, Cappadone C, Farruggia G, Sargenti A, Castiglioni S, Altamura D, Sorrentino A, Giannini C, Pereiro E, Cloetens P, Maier JAM, Iotti S. Chemical Fingerprint of Zn-Hydroxyapatite in the Early Stages of Osteogenic Differentiation. ACS CENTRAL SCIENCE 2019; 5:1449-1460. [PMID: 31482128 PMCID: PMC6716342 DOI: 10.1021/acscentsci.9b00509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/01/2023]
Abstract
The core knowledge about biomineralization is provided by studies on the advanced phases of the process mainly occurring in the extracellular matrix. Here, we investigate the early stages of biomineralization by evaluating the chemical fingerprint of the initial mineral nuclei deposition in the intracellular milieu and their evolution toward hexagonal hydroxyapatite. The study is conducted on human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days, exploiting laboratory X-ray diffraction techniques and cutting-edge developments of synchrotron-based 2D and 3D cryo-X-ray microscopy. We demonstrate that biomineralization starts with Zn-hydroxyapatite nucleation within the cell, rapidly evolving toward hexagonal hydroxyapatite crystals, very similar in composition and structure to the one present in human bone. These results provide experimental evidence of the germinal role of Zn in hydroxyapatite nucleation and foster further studies on the intracellular molecular mechanisms governing the initial phases of bone tissue formation.
Collapse
Affiliation(s)
- Alessandra Procopio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | | | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| | - Azzurra Sargenti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Peter Cloetens
- ID16A Beamline, ESRF, the European Synchrotron, Grenoble 38043, France
| | - Jeanette A M Maier
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| |
Collapse
|
21
|
Groen J, Conesa JJ, Valcárcel R, Pereiro E. The cellular landscape by cryo soft X-ray tomography. Biophys Rev 2019; 11:611-619. [PMID: 31273607 PMCID: PMC6682196 DOI: 10.1007/s12551-019-00567-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Imaging techniques in structural cell biology are indispensable to understand cell organization and machinery. In this frame, cryo soft X-ray tomography (cryo-SXT), a synchrotron-based imaging technique, is used to analyze the ultrastructure of intact, cryo-preserved cells at nanometric spatial resolution bridging electron microscopy and visible light fluorescence. With their unique interaction with matter and high penetration depth, X-rays are a very useful and complementary source to obtain both high-resolution and quantitative information. In this review, we are elaborating a typical cryo correlative workflow at the Mistral Beamline at the Alba Synchrotron (Spain) with the goal of providing a cartographic description of the cell by cryo-SXT that illustrates the possibilities this technique brings for specific localization of cellular features, organelle organization, and particular events in specific structural cell biology research.
Collapse
Affiliation(s)
- J. Groen
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| | - J. J. Conesa
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
- Department of Macromolecular Structures, Cantoblanco, 28049 Madrid, Spain
| | - R. Valcárcel
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| | - E. Pereiro
- Mistral Beamline, Alba Light Source (Cells), Cerdanyola del Valles, 08290 Barcelona, Spain
| |
Collapse
|
22
|
Varsano N, Beghi F, Dadosh T, Elad N, Pereiro E, Haran G, Leiserowitz L, Addadi L. The Effect of the Phospholipid Bilayer Environment on Cholesterol Crystal Polymorphism. Chempluschem 2019; 84:338-344. [DOI: 10.1002/cplu.201800632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Neta Varsano
- Department of Structural BiologyWeizmann Institute of Science 234 Herzl Street Rehovot Israel
| | - Fabio Beghi
- Department of ChemistryUniversità Degli Studi di Milano Italy
| | - Tali Dadosh
- Department of Chemical Research SupportWeizmann Institute of Science
| | - Nadav Elad
- Department of Chemical Research SupportWeizmann Institute of Science
| | - Eva Pereiro
- MISTRAL Beamline-Experiments DivisionALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| | - Gilad Haran
- Department of Chemical & Biological PhysicsWeizmann Institute of Science
| | | | - Lia Addadi
- Department of Structural BiologyWeizmann Institute of Science 234 Herzl Street Rehovot Israel
| |
Collapse
|
23
|
Native-state imaging of calcifying and noncalcifying microalgae reveals similarities in their calcium storage organelles. Proc Natl Acad Sci U S A 2018; 115:11000-11005. [PMID: 30287487 PMCID: PMC6205483 DOI: 10.1073/pnas.1804139115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coccolithophores are abundant unicellular marine algae that produce calcified scales via a controlled intracellular process. Understanding the cellular controls over the calcification process is a pressing need to predict the influence of changing oceanic conditions on these major contributors to global marine calcification and carbon fluxes. Using several microalgae, and a combination of state-of-the-art cryoelectron and cryo soft X-ray microscopy, we demonstrate that the recently discovered calcium stores of coccolithophores are similar to the common calcium storage organelles of noncalcifying organisms. These results relate questions of environmental and evolutionary significance to a large body of physiological and molecular genetic findings of better-characterized organisms, and therefore provide fresh entry points for understanding calcification in coccolithophores. Calcium storage organelles are common to all eukaryotic organisms and play a pivotal role in calcium signaling and cellular calcium homeostasis. In most organelles, the intraorganellar calcium concentrations rarely exceed micromolar levels. Acidic organelles called acidocalcisomes, which concentrate calcium into dense phases together with polyphosphates, are an exception. These organelles have been identified in diverse organisms, but, to date, only in cells that do not form calcium biominerals. Recently, a compartment storing molar levels of calcium together with phosphorous was discovered in an intracellularly calcifying alga, the coccolithophore Emiliania huxleyi, raising a possible connection between calcium storage organelles and calcite biomineralization. Here we used cryoimaging and cryospectroscopy techniques to investigate the anatomy and chemical composition of calcium storage organelles in their native state and at nanometer-scale resolution. We show that the dense calcium phase inside the calcium storage compartment of the calcifying coccolithophore Pleurochrysis carterae and the calcium phase stored in acidocalcisomes of the noncalcifying alga Chlamydomonas reinhardtii have common features. Our observations suggest that this strategy for concentrating calcium is a widespread trait and has been adapted for coccolith formation. The link we describe between acidocalcisomal calcium storage and calcium storage in coccolithophores implies that our physiological and molecular genetic understanding of acidocalcisomes could have relevance to the calcium pathway underlying coccolithophore calcification, offering a fresh entry point for mechanistic investigations on the adaptability of this process to changing oceanic conditions.
Collapse
|
24
|
Dučić T, Paunesku T, Chen S, Ninković M, Speling S, Wilke C, Lai B, Woloschak G. Structural and elemental changes in glioblastoma cells in situ: complementary imaging with high resolution visible light- and X-ray microscopy. Analyst 2018; 142:356-365. [PMID: 27981320 DOI: 10.1039/c6an02532c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different sample preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. Each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.
Collapse
Affiliation(s)
- Tanja Dučić
- CELLS - ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain.
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, 300 E. Superior St, Chicago, IL 60611, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Milena Ninković
- Department of Neurosurgery, Georg-August University Medical Centre, 37075 Göttingen, Germany
| | - Swetlana Speling
- Department of Neurosurgery, Georg-August University Medical Centre, 37075 Göttingen, Germany
| | - Charlene Wilke
- Northwestern University, Biological Imaging Facility, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Barry Lai
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University, 300 E. Superior St, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Hierro-Rodriguez A, Gürsoy D, Phatak C, Quirós C, Sorrentino A, Álvarez-Prado LM, Vélez M, Martín JI, Alameda JM, Pereiro E, Ferrer S. 3D reconstruction of magnetization from dichroic soft X-ray transmission tomography. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:1144-1152. [PMID: 29979176 DOI: 10.1107/s1600577518005829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.
Collapse
Affiliation(s)
| | - Doga Gürsoy
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Carlos Quirós
- Departamento de Física, Universidad de Oviedo, Oviedo 33007, Spain
| | | | | | - Maria Vélez
- Departamento de Física, Universidad de Oviedo, Oviedo 33007, Spain
| | | | | | - Eva Pereiro
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Salvador Ferrer
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| |
Collapse
|
26
|
Otón J, Pereiro E, Conesa JJ, Chichón FJ, Luque D, Rodríguez JM, Pérez-Berná AJ, Sorzano COS, Klukowska J, Herman GT, Vargas J, Marabini R, Carrascosa JL, Carazo JM. XTEND: Extending the depth of field in cryo soft X-ray tomography. Sci Rep 2017; 7:45808. [PMID: 28374769 PMCID: PMC5379191 DOI: 10.1038/srep45808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
We have developed a new data collection method and processing framework in full field cryo soft X-ray tomography to computationally extend the depth of field (DOF) of a Fresnel zone plate lens. Structural features of 3D-reconstructed eukaryotic cells that are affected by DOF artifacts in standard reconstruction are now recovered. This approach, based on focal series projections, is easily applicable with closed expressions to select specific data acquisition parameters.
Collapse
Affiliation(s)
- Joaquín Otón
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - José J Conesa
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Francisco J Chichón
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Daniel Luque
- Centro Nacional de Microbiología, ISCIII, Majadahonda, Madrid, 28220, Spain
| | - Javier M Rodríguez
- Centro Nacional de Microbiología, ISCIII, Majadahonda, Madrid, 28220, Spain
| | - Ana J Pérez-Berná
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | | | - Joanna Klukowska
- Department of Computer Science, The Graduate Center, City University of New York, NY 10016, USA
| | - Gabor T Herman
- Department of Computer Science, The Graduate Center, City University of New York, NY 10016, USA
| | - Javier Vargas
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| | - Roberto Marabini
- Escuela Politécnica Superior, Univ. Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain.,Unidad Asociada CNB-Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia),Cantoblanco, Madrid, 28049, Spain
| | - José M Carazo
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
27
|
Otón J, Pereiro E, Pérez-Berná AJ, Millach L, Sorzano COS, Marabini R, Carazo JM. Characterization of transfer function, resolution and depth of field of a soft X-ray microscope applied to tomography enhancement by Wiener deconvolution. BIOMEDICAL OPTICS EXPRESS 2016; 7:5092-5103. [PMID: 28018727 PMCID: PMC5175554 DOI: 10.1364/boe.7.005092] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/18/2016] [Accepted: 10/22/2016] [Indexed: 05/05/2023]
Abstract
Full field soft X-ray microscopy is becoming a powerful imaging technique to analyze whole cells preserved under cryo conditions. Images obtained in these X-ray microscopes can be combined by tomographic reconstruction to quantitatively estimate the three-dimensional (3D) distribution of absorption coefficients inside the cell. The impulse response of an imaging system is one of the factors that limits the quality of the X-ray microscope reconstructions. The main goal of this work is to experimentally measure the 3D impulse response and to assess the optical resolution and depth of field of the Mistral microscope at ALBA synchrotron (Barcelona, Spain). To this end we measure the microscope apparent transfer function (ATF) and we use it to design a deblurring Wiener filter, obtaining an increase in the image quality when applied to experimental datasets collected at ALBA.
Collapse
Affiliation(s)
- Joaquín Otón
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, 28049, Madrid,
Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290, Barcelona,
Spain
| | - Ana J. Pérez-Berná
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, 08290, Barcelona,
Spain
| | - Laia Millach
- Facultat de Biociències. Departament de Genètica i Microbiologia. UAB. Cerdanyola del Vallès, 08193, Barcelona,
Spain
| | | | - Roberto Marabini
- Escuela Politecnica Superior, Univ. Autonoma de Madrid, Cantoblanco, 28049, Madrid,
Spain
| | - José M. Carazo
- Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, 28049, Madrid,
Spain
| |
Collapse
|
28
|
Varsano N, Dadosh T, Kapishnikov S, Pereiro E, Shimoni E, Jin X, Kruth HS, Leiserowitz L, Addadi L. Development of Correlative Cryo-soft X-ray Tomography and Stochastic Reconstruction Microscopy. A Study of Cholesterol Crystal Early Formation in Cells. J Am Chem Soc 2016; 138:14931-14940. [PMID: 27934213 DOI: 10.1021/jacs.6b07584] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a high resolution correlative method involving cryo-soft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM), which provides information in three dimensions on large cellular volumes at 70 nm resolution. Cryo-SXT morphologically identified and localized aggregations of carbon-rich materials. STORM identified specific markers on the desired epitopes, enabling colocalization between the identified objects, in this case cholesterol crystals, and the cellular environment. The samples were studied under ambient and cryogenic conditions without dehydration or heavy metal staining. The early events of cholesterol crystal development were investigated in relation to atherosclerosis, using as model macrophage cell cultures enriched with LDL particles. Atherosclerotic plaques build up in arteries in a slow process involving cholesterol crystal accumulation. Cholesterol crystal deposition is a crucial stage in the pathological cascade. Our results show that cholesterol crystals can be identified and imaged at a very early stage on the cell plasma membrane and in intracellular locations. This technique can in principle be applied to other biological samples where specific molecular identification is required in conjunction with high resolution 3D-imaging.
Collapse
Affiliation(s)
| | | | - Sergey Kapishnikov
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, 08290 Cerdanyola del Valles, Barcelona, Spain
| | | | - Xueting Jin
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | - Howard S Kruth
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | | | | |
Collapse
|
29
|
Ramírez-Santiago G, Robles-Valero J, Morlino G, Cruz-Adalia A, Pérez-Martínez M, Zaldivar A, Torres-Torresano M, Chichón FJ, Sorrentino A, Pereiro E, Carrascosa JL, Megías D, Sorzano COS, Sánchez-Madrid F, Veiga E. Clathrin regulates lymphocyte migration by driving actin accumulation at the cellular leading edge. Eur J Immunol 2016; 46:2376-2387. [PMID: 27405273 PMCID: PMC6485598 DOI: 10.1002/eji.201646291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/07/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022]
Abstract
Lymphocyte migration, which is essential for effective immune responses, belongs to the so-called amoeboid migration. The lymphocyte migration is up to 100 times faster than between mesenchymal and epithelial cell types. Migrating lymphocytes are highly polarized in three well-defined structural and functional zones: uropod, medial zone, and leading edge (LE). The actiomyosin-dependent driving force moves forward the uropod, whereas massive actin rearrangements protruding the cell membrane are observed at the LE. These actin rearrangements resemble those observed at the immunological synapse driven by clathrin, a protein normally involved in endocytic processes. Here, we used cell lines as well as primary lymphocytes to demonstrate that clathrin and clathrin adaptors colocalize with actin at the LE of migrating lymphocytes, but not in other cellular zones that accumulate both clathrin and actin. Moreover, clathrin and clathrin adaptors, including Hrs, the clathrin adaptor for multivesicular bodies, drive local actin accumulation at the LE. Clathrin recruitment at the LE resulted necessary for a complete cell polarization and further lymphocyte migration in both 2D and 3D migration models. Therefore, clathrin, including the clathrin population associated to internal vesicles, controls lymphocyte migration by regulating actin rearrangements occurring at the LE.
Collapse
Affiliation(s)
- Guillermo Ramírez-Santiago
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain
| | - Javier Robles-Valero
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, Madrid, Spain
| | - Giulia Morlino
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, Madrid, Spain
| | - Aranzazu Cruz-Adalia
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain
| | | | - Airen Zaldivar
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
| | - Mónica Torres-Torresano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, Cerdanyola del Vallès, Barcelona, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, Cerdanyola del Vallès, Barcelona, Spain
| | - José L Carrascosa
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
- Unidad Asociada CNB (CSIC)-Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Cantoblanco, Madrid, Spain
| | - Diego Megías
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Oscar S Sorzano
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Macromolecular Structures, Madrid, Spain
| | | | - Esteban Veiga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular & Cellular Biology, Madrid, Spain.
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, Madrid, Spain.
| |
Collapse
|
30
|
Pérez-Berná AJ, Rodríguez MJ, Chichón FJ, Friesland MF, Sorrentino A, Carrascosa JL, Pereiro E, Gastaminza P. Structural Changes In Cells Imaged by Soft X-ray Cryo-Tomography During Hepatitis C Virus Infection. ACS NANO 2016; 10:6597-611. [PMID: 27328170 DOI: 10.1021/acsnano.6b01374] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chronic hepatitis C virus (HCV) infection causes severe liver disease in millions of humans worldwide. Pathogenesis of HCV infection is strongly driven by a deficient immune response of the host, although intersection of different aspects of the virus life cycle with cellular homeostasis is emerging as an important player in the pathogenesis and progression of the disease. Cryo soft X-ray tomography (cryo-SXT) was performed to investigate the ultrastructural alterations induced by the interference of HCV replication with cellular homeostasis. Native, whole cell, three-dimensional (3D) maps were obtained in HCV replicon-harboring cells and in a surrogate model of HCV infection. Tomograms from HCV-replicating cells show blind-ended endoplasmic reticulum tubules with pseudospherical extrusions and marked alterations of mitochondrial morphology that correlated spatially with the presence of endoplasmic reticulum alterations, suggesting a short-range influence of the viral machinery on mitochondrial homeostasis. Both mitochondrial and endoplasmic reticulum alterations could be reverted by a combination of sofosbuvir/daclatasvir, which are clinically approved direct-acting antivirals for the treatment of chronic HCV infection. In addition to providing structural insight into cellular aspects of HCV pathogenesis, our study illustrates how cryo-SXT is a powerful 3D wide-field imaging tool for the assessment and understanding of complex cellular processes in a setting of near-native whole hydrated cells. Our results also constitute a proof of concept for the use of cryo-SXT as a platform that enables determining the potential impact of candidate compounds on the ultrastructure of the cell that may assist drug development at a preclinical level.
Collapse
Affiliation(s)
- Ana Joaquina Pérez-Berná
- MISTRAL Beamline Experiments Division, ALBA Synchrotron Light Source , Cerdanyola del Vallès, 08290 Barcelona, Spain
| | | | | | | | - Andrea Sorrentino
- MISTRAL Beamline Experiments Division, ALBA Synchrotron Light Source , Cerdanyola del Vallès, 08290 Barcelona, Spain
| | | | - Eva Pereiro
- MISTRAL Beamline Experiments Division, ALBA Synchrotron Light Source , Cerdanyola del Vallès, 08290 Barcelona, Spain
| | | |
Collapse
|
31
|
Pedreira P, Sics I, Sorrentino A, Pereiro E, Aballe L, Foerster M, Pérez-Dieste V, Escudero C, Nicolas J. Optical pseudomotors for soft x-ray beamlines. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:052002. [PMID: 27250382 DOI: 10.1063/1.4949339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Optical elements of soft x-ray beamlines usually have motorized translations and rotations that allow for the fine alignment of the beamline. This is to steer the photon beam at some positions and to correct the focus on slits or on sample. Generally, each degree of freedom of a mirror induces a change of several parameters of the beam. Inversely, several motions are required to actuate on a single optical parameter, keeping the others unchanged. We define optical pseudomotors as combinations of physical motions of the optical elements of a beamline, which allow modifying one optical parameter without affecting the others. We describe a method to obtain analytic relationships between physical motions of mirrors and the corresponding variations of the beam parameters. This method has been implemented and tested at two beamlines at ALBA, where it is used to control the focus of the photon beam and its position independently.
Collapse
Affiliation(s)
- P Pedreira
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - I Sics
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - A Sorrentino
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - E Pereiro
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - L Aballe
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - M Foerster
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - V Pérez-Dieste
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - C Escudero
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - J Nicolas
- ALBA Synchrotron Light Source, Ctra.BP1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| |
Collapse
|
32
|
Sviben S, Gal A, Hood MA, Bertinetti L, Politi Y, Bennet M, Krishnamoorthy P, Schertel A, Wirth R, Sorrentino A, Pereiro E, Faivre D, Scheffel A. A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga. Nat Commun 2016; 7:11228. [PMID: 27075521 PMCID: PMC4834641 DOI: 10.1038/ncomms11228] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/25/2016] [Indexed: 02/07/2023] Open
Abstract
Coccoliths are calcitic particles produced inside the cells of unicellular marine
algae known as coccolithophores. They are abundant components of sea-floor
carbonates, and the stoichiometry of calcium to other elements in fossil coccoliths
is widely used to infer past environmental conditions. Here we study cryo-preserved
cells of the dominant coccolithophore Emiliania huxleyi using
state-of-the-art nanoscale imaging and spectroscopy. We identify a compartment,
distinct from the coccolith-producing compartment, filled with high concentrations
of a disordered form of calcium. Co-localized with calcium are high concentrations
of phosphorus and minor concentrations of other cations. The amounts of calcium
stored in this reservoir seem to be dynamic and at a certain stage the compartment
is in direct contact with the coccolith-producing vesicle, suggesting an active role
in coccolith formation. Our findings provide insights into calcium accumulation in
this important calcifying organism. Coccolithophores are unicellular marine algae that produce calcitic
particles inside their cells. Here the authors study cells of the dominant
coccolithophore Emiliania huxleyi and identify an intracellular compartment that
is filled with high concentrations of a disordered form of calcium.
Collapse
Affiliation(s)
- Sanja Sviben
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Assaf Gal
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.,Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Matthew A Hood
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.,Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Yael Politi
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Mathieu Bennet
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | | | - Andreas Schertel
- Carl Zeiss Microscopy GmbH, Global Applications Support, Oberkochen 73447, Germany
| | - Richard Wirth
- Department of Geomaterials, GeoForschungsZentrum Potsdam, Potsdam 14473, Germany
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona 08290, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona 08290, Spain
| | - Damien Faivre
- Department of Biomaterials, Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - André Scheffel
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
33
|
Dörling B, Ryan JD, Craddock JD, Sorrentino A, El Basaty A, Gomez A, Garriga M, Pereiro E, Anthony JE, Weisenberger MC, Goñi AR, Müller C, Campoy-Quiles M. Photoinduced p- to n-type Switching in Thermoelectric Polymer-Carbon Nanotube Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2782-9. [PMID: 26853701 DOI: 10.1002/adma.201505521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Indexed: 05/11/2023]
Abstract
UV-induced switching from p- to n-type character is demonstrated during deposition of carbon-nanotube-conjugated polymer composites. This opens the possibility to photopattern n-type regions within an otherwise p-type film, which has a potential for complementary circuitry or, as shown here, thermoelectric generators made from a single solution.
Collapse
Affiliation(s)
- Bernhard Dörling
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| | - Jason D Ryan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - John D Craddock
- Center for Applied Energy Research, University of Kentucky, Lexington, KY, 40511, USA
| | | | - Ahmed El Basaty
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
- Department of Basic Science, Faculty of Industrial Education, Helwan University, Cairo, Egypt
| | - Andrés Gomez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| | - Miquel Garriga
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08193, Cerdanyola del Vallés, Spain
| | - John E Anthony
- Center for Applied Energy Research, University of Kentucky, Lexington, KY, 40511, USA
| | | | - Alejandro R Goñi
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Mariano Campoy-Quiles
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, 08193, Spain
| |
Collapse
|
34
|
Olivares-Marín M, Sorrentino A, Lee RC, Pereiro E, Wu NL, Tonti D. Spatial Distributions of Discharged Products of Lithium-Oxygen Batteries Revealed by Synchrotron X-ray Transmission Microscopy. NANO LETTERS 2015; 15:6932-8. [PMID: 26339872 DOI: 10.1021/acs.nanolett.5b02862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The discharge products of ether-based Li-O2 cells were grown directly on common carbon-coated TEM grids and observed by oxidation-state-sensitive full field transmission soft X-ray microscopy (TXM). The acquired data have permitted to quantify and localize with spatial resolution the distribution of the oxygen discharge products in these samples (i.e., lithium superoxide, peroxide, and carbonates) and appreciate several compositional, structural, and morphological aspects. Most of the peroxide particles had a toroidal shape, often with a central hole usually open on only one side, and which included significant amounts of superoxide-like phases (LiO2/Li2O2 ratio between 0.2 and 0.5). Smaller particles had smaller or no superoxide content, from which we infer that abundance of soluble LiO2 may have a role in toroid formation. Significant amount of carbonates were found irregularly distributed on the electrode surface, occasionally appearing as small particles and aggregates, and mostly coating lithium peroxide particles. This suggests the formation of a barrier that, similar to the solid electrolyte interface (SEI) critical in Li-ion batteries, requires an appropriate management for a reversible operation.
Collapse
Affiliation(s)
- Mara Olivares-Marín
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC) , Campus UAB, ES 08193 Bellaterra, Barcelona, Spain
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division , 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Rung-Chuan Lee
- Department of Chemical Engineering, National Taiwan University , Taipei 10617, Taiwan
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division , 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Nae-Lih Wu
- Department of Chemical Engineering, National Taiwan University , Taipei 10617, Taiwan
| | - Dino Tonti
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC) , Campus UAB, ES 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
35
|
Sorrentino A, Nicolás J, Valcárcel R, Chichón FJ, Rosanes M, Avila J, Tkachuk A, Irwin J, Ferrer S, Pereiro E. MISTRAL: a transmission soft X-ray microscopy beamline for cryo nano-tomography of biological samples and magnetic domains imaging. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1112-7. [PMID: 26134819 DOI: 10.1107/s1600577515008632] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/03/2015] [Indexed: 05/12/2023]
Abstract
The performance of MISTRAL is reported, the soft X-ray transmission microscopy beamline at the ALBA light source (Barcelona, Spain) which is primarily dedicated to cryo soft X-ray tomography (cryo-SXT) for three-dimensional visualization of whole unstained cells at spatial resolutions down to 30 nm (half pitch). Short acquisition times allowing for high-throughput and correlative microscopy studies have promoted cryo-SXT as an emerging cellular imaging tool for structural cell biologists bridging the gap between optical and electron microscopy. In addition, the beamline offers the possibility of imaging magnetic domains in thin magnetic films that are illustrated here with an example.
Collapse
Affiliation(s)
- Andrea Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Josep Nicolás
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Ricardo Valcárcel
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | | | - Marc Rosanes
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Jose Avila
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | | | | | - Salvador Ferrer
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| |
Collapse
|
36
|
Selin M, Fogelqvist E, Werner S, Hertz HM. Tomographic reconstruction in soft x-ray microscopy using focus-stack back-projection. OPTICS LETTERS 2015; 40:2201-2204. [PMID: 26393699 DOI: 10.1364/ol.40.002201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tomographic reconstruction in soft x-ray microscopy is a powerful technique for obtaining high-resolution 3D images of biological samples. However, the depth of focus of such zone-plate-based microscopes is typically shorter than the thickness of many relevant biological objects, challenging the validity of the projection assumption used in conventional reconstruction algorithms. In order to make full use of the soft x-ray microscopes' high resolution, the tomographic reconstruction needs to take the depth of focus into account. Here we present a method to achieve high resolution in the full sample when the depth of focus is short compared to the sample thickness. The method relies on the back-projection of focus-stacked image data from x-ray microscopy. We demonstrate the method on theoretical and experimental data.
Collapse
|
37
|
Otón J, Sorzano COS, Marabini R, Pereiro E, Carazo JM. Measurement of the modulation transfer function of an X-ray microscope based on multiple Fourier orders analysis of a Siemens star. OPTICS EXPRESS 2015; 23:9567-72. [PMID: 25968993 DOI: 10.1364/oe.23.009567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Soft X-ray tomography (SXT) is becoming a powerful imaging technique to analyze eukaryotic whole cells close to their native state. Central to the analysis of the quality of SXT 3D reconstruction is the estimation of the spatial resolution and Depth of Field of the X-ray microscope. In turn, the characterization of the Modulation Transfer Function (MTF) of the optical system is key to calculate both parameters. Consequently, in this work we introduce a fully automated technique to accurately estimate the transfer function of such an optical system. Our proposal is based on the preprocessing of the experimental images to obtain an estimate of the input pattern, followed by the analysis in Fourier space of multiple orders of a Siemens Star test sample, extending in this way its measured frequency range.
Collapse
|
38
|
Cruz-Adalia A, Ramirez-Santiago G, Calabia-Linares C, Torres-Torresano M, Feo L, Galán-Díez M, Fernández-Ruiz E, Pereiro E, Guttmann P, Chiappi M, Schneider G, Carrascosa JL, Chichón FJ, Martínez Del Hoyo G, Sánchez-Madrid F, Veiga E. T cells kill bacteria captured by transinfection from dendritic cells and confer protection in mice. Cell Host Microbe 2015; 15:611-22. [PMID: 24832455 DOI: 10.1016/j.chom.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 01/18/2014] [Accepted: 03/16/2014] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) phagocytose, process, and present bacterial antigens to T lymphocytes to trigger adaptive immunity. In vivo, bacteria can also be found inside T lymphocytes. However, T cells are refractory to direct bacterial infection, leaving the mechanisms by which bacteria invade T cells unclear. We show that T cells take up bacteria from infected DCs by the process of transinfection, which requires direct contact between the two cells and is enhanced by antigen recognition. Prior to transfer, bacteria localize to the immunological synapse, an intimate DC/T cell contact structure that activates T cells. Strikingly, T cells efficiently eliminate the transinfecting bacteria within the first hours after infection. Transinfected T cells produced high levels of proinflammatory cytokines and were able to protect mice from bacterial challenge following adoptive transfer. Thus, T lymphocytes can capture and kill bacteria in a manner reminiscent of innate immunity.
Collapse
Affiliation(s)
- Aránzazu Cruz-Adalia
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Guillermo Ramirez-Santiago
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Carmen Calabia-Linares
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Mónica Torres-Torresano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Lidia Feo
- Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain
| | - Marta Galán-Díez
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, 28006 Madrid, Spain; Microbiology and Immunology Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Elena Fernández-Ruiz
- Instituto de Investigación Sanitaria Princesa, Hospital de la Princesa, 28006 Madrid, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Peter Guttmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Michele Chiappi
- Department Macromolecular, Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain
| | - Gerd Schneider
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Soft Matters and Functional Materials, Electron Storage Ring BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - José López Carrascosa
- Department Macromolecular, Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Cantoblanco, Madrid, Spain
| | - Francisco Javier Chichón
- Department Macromolecular, Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | | | - Esteban Veiga
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Department of Molecular and Cellular Biology, Darwin, 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa, Hospital de Santa Cristina, 28009 Madrid, Spain.
| |
Collapse
|
39
|
Park SJ, Weon BM, Lee JS, Lee J, Kim J, Je JH. Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat Commun 2014; 5:4369. [PMID: 25007777 PMCID: PMC4104447 DOI: 10.1038/ncomms5369] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/10/2014] [Indexed: 12/22/2022] Open
Abstract
One of the most questionable issues in wetting is the force balance that includes the vertical component of liquid surface tension. On soft solids, the vertical component leads to a microscopic protrusion of the contact line, that is, a 'wetting ridge'. The wetting principle determining the tip geometry of the ridge is at the heart of the issues over the past half century. Here we reveal a universal wetting principle from the ridge tips directly visualized with high spatio-temporal resolution of X-ray microscopy. We find that the cusp of the ridge is bent with an asymmetric tip, whose geometry is invariant during ridge growth or by surface softness. This singular asymmetry is deduced by linking the macroscopic and microscopic contact angles to Young and Neuman laws, respectively. Our finding shows that this dual-scale approach would be contributable to a general framework in elastowetting, and give hints to issues in cell-substrate interaction and elasto-capillary problems.
Collapse
Affiliation(s)
- Su Ji Park
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Byung Mook Weon
- School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, South Korea
| | - Ji San Lee
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Junho Lee
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Jinkyung Kim
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Jung Ho Je
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| |
Collapse
|
40
|
Duke E, Dent K, Razi M, Collinson LM. Biological applications of cryo-soft X-ray tomography. J Microsc 2014; 255:65-70. [PMID: 24942982 DOI: 10.1111/jmi.12139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/22/2014] [Indexed: 01/15/2023]
Abstract
X-rays are used for imaging many different types of biological specimen, ranging from live organisms to the individual cells and proteins from which they are made. The level of detail achieved as a result of the imaging varies depending on both the sample and the technique used. One of the most recent technical developments in X-ray imaging is that of the soft X-ray microscope, designed to allow the internal structure of individual biological cells to be explored. With a field of view of ∼10-20 × ∼10-20 μm, a penetration depth of ∼10 μm and a resolution of ∼40 nm(3), the soft X-ray microscope neatly fits between the imaging capabilities of light and electron microscopes.
Collapse
Affiliation(s)
- E Duke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | | | | | | |
Collapse
|
41
|
Dent KC, Hagen C, Grünewald K. Critical step-by-step approaches toward correlative fluorescence/soft X-ray cryo-microscopy of adherent mammalian cells. Methods Cell Biol 2014; 124:179-216. [PMID: 25287842 DOI: 10.1016/b978-0-12-801075-4.00009-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Soft X-ray cryo-microscopy/tomography with its extraordinary capability to map vitreous cells with high absorption contrast in their full three-dimensional extent, and at a resolution exceeding super-resolution fluorescence microscopy, is a valuable tool for integrative structural cell biology. Focusing on cell biological applications, its ongoing methodological development gained momentum by combining it with fluorescence cryo-microscopy, thus correlating highly resolved structural and specific information in situ. In this chapter, we provide a basic description of the techniques, as well as an overview of equipment and methods available to carry out correlative soft X-ray cryo-tomography experiments on frozen-hydrated cells grown on a planar support. Our aim here is to suggest ways that biologically representative data can be recorded to the highest possible resolution, while also keeping in mind the limitations of the technique during data acquisition and analysis. We have written from our perspective as electron cryo-microscopists/structural cell biologists who have experience using correlative fluorescence/cryoXM/T at synchrotron beamlines presently available for external users in Europe (HZB TXM at U41-FSGM, BESSY II, Berlin/Germany; Carl Zeiss TXMs at MISTRAL, ALBA, Barcelona/Spain, and B24, DLS, Oxfordshire, UK).
Collapse
Affiliation(s)
- Kyle C Dent
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christoph Hagen
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Parkinson DY, Knoechel C, Yang C, Larabell CA, Le Gros MA. Automatic alignment and reconstruction of images for soft X-ray tomography. J Struct Biol 2011; 177:259-66. [PMID: 22155289 DOI: 10.1016/j.jsb.2011.11.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/17/2011] [Accepted: 11/23/2011] [Indexed: 01/23/2023]
Abstract
Soft X-ray tomography (SXT) is a powerful imaging technique that generates quantitative, 3D images of the structural organization of whole cells in a near-native state. SXT is also a high-throughput imaging technique. At the National Center for X-ray Tomography (NCXT), specimen preparation and image collection for tomographic reconstruction of a whole cell require only minutes. Aligning and reconstructing the data, however, take significantly longer. Here we describe a new component of the high throughput computational pipeline used for processing data at the NCXT. We have developed a new method for automatic alignment of projection images that does not require fiducial markers or manual interaction with the software. This method has been optimized for SXT data sets, which routinely involve full rotation of the specimen. This software gives users of the NCXT SXT instrument a new capability - virtually real-time initial 3D results during an imaging experiment, which can later be further refined. The new code, Automatic Reconstruction 3D (AREC3D), is also fast, reliable, and robust. The fundamental architecture of the code is also adaptable to high performance GPU processing, which enables significant improvements in speed and fidelity.
Collapse
Affiliation(s)
- Dilworth Y Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
43
|
Kaulich B, Thibault P, Gianoncelli A, Kiskinova M. Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:083002. [PMID: 21411893 DOI: 10.1088/0953-8984/23/8/083002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in microscopy techniques based on x-rays have opened unprecedented opportunities in terms of spatial resolution, combined with chemical and morphology sensitivity, to analyze solid, soft and liquid matter. The advent of ultrabright third and fourth generation photon sources and the continuous development of x-ray optics and detectors has pushed the limits of imaging and spectroscopic analysis to structures as small as a few tens of nanometers. Specific interactions of x-rays with matter provide elemental and chemical sensitivity that have made x-ray spectromicroscopy techniques a very attractive tool, complementary to other microscopies, for characterization in all actual research fields. The x-ray penetration power meets the demand to examine samples too thick for electron microscopes implementing 3D imaging and recently also 4D imaging which adds time resolution as well. Implementation of a variety of phase contrast techniques enhances the structural sensitivity, especially for the hard x-ray regime. Implementation of lensless or diffraction imaging helps to enhance the lateral resolution of x-ray imaging to the wavelength dependent diffraction limit.
Collapse
Affiliation(s)
- Burkhard Kaulich
- ELETTRA-Sincrotrone Trieste, Strada Statale 14, km 163.5 in Area Science Park, I-34149 Trieste-Basovizza, Italy.
| | | | | | | |
Collapse
|