1
|
Shaked N, Sorrentino A, Varsano N, Addadi S, Porat Z, Pinkas I, Weiner S, Addadi L. Guanine crystal formation by the unicellular organism Phacotus lenticularis is part of a cellular stress response. PLoS One 2025; 20:e0316193. [PMID: 39937809 DOI: 10.1371/journal.pone.0316193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/07/2024] [Indexed: 02/14/2025] Open
Abstract
Organic crystals, and in particular guanine crystals, are widely used by multicellular organisms for manipulating light and producing structural colors. Many single celled eukaryotic organisms also produce organic crystals, and guanine is the most abundant type produced. Their functions are thought to be related to the fact that guanine is nitrogen rich. Here we studied a freshwater unicellular eukaryotic alga, Phacotus lenticularis, and found that when the growth medium is depleted in phosphorus, the alga stops reproducing and produces intracellular birefringent particles inside vesicles. Cryo-SEM showed that these particles are faceted and are located within membranes inside the cell. Using Raman spectroscopy, we showed that these particles are β-guanine crystals. 3D tomograms produced using cryo-soft-X-ray-microscopy quantitatively documented the increase in cell volume and distribution of guanine crystals within the cells with increasing time of phosphorous deprivation. The tomograms also showed additional morphological changes in other cellular organelles, namely starch granules, chloroplasts, nuclear DNA and membranes. The combined observations all indicate that under phosphorous depletion, the algal cells undergo a massive stress response. As guanine crystal formation is part of this response, we conclude that guanine crystals are formed in response to stress, and this is not related to nitrogen availability. Upon addition of phosphate to the P-depleted media, the algal cells, with their guanine crystals, resume reproduction. From this we conclude that the guanine crystals somehow contribute to the recovery from stress.
Collapse
Affiliation(s)
- Noy Shaked
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Sorrentino
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sefi Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Steve Weiner
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lia Addadi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
2
|
Mangin CC, Benzerara K, Bergot M, Menguy N, Alonso B, Fouteau S, Méheust R, Chevrier DM, Godon C, Turrini E, Mehta N, Duverger A, Travert C, Busigny V, Duprat E, Bolzoni R, Cruaud C, Viollier E, Jézéquel D, Vallenet D, Lefèvre CT, Monteil CL. Magnetotactic bacteria affiliated with diverse Pseudomonadota families biomineralize intracellular Ca-carbonate. THE ISME JOURNAL 2025; 19:wrae260. [PMID: 39776138 PMCID: PMC11773610 DOI: 10.1093/ismejo/wrae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes. Here new observations suggest that magnetotactic bacteria previously identified in the sediments and water column of Lake Pavin (France) were only a small fraction of the diversity of bacteria producing intracellular amorphous calcium carbonates. To explore this diversity further, we conducted a comprehensive investigation of magnetotactic populations with refractive granules using a combination of environmental microbiology, genomic and mineralogy approaches on cells sorted by micromanipulation. Several species belonging to divergent genera of two Pseudomonadota classes were identified and characterized. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectrometry support that all these species indeed form intracellular amorphous calcium carbonates. Cryo soft X-ray tomography experiments conducted on ice-vitrified cells, enabled 3D investigation of inclusions volume, which was found to occupy 44-68% of the cell volume. Metabolic network modeling highlighted different metabolic abilities of Alpha- and Gammaproteobacteria, including methylotrophy and CO2 fixation via the reverse Krebs cycle or the Calvin-Benson-Bassham cycle. Overall, this study strengthens a convergent evolution scenario for intracellular carbonatogenesis in Bacteria, and further supports that it is promoted by the fixation of CO2 in anoxic environments.
Collapse
Affiliation(s)
- Camille C Mangin
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Marine Bergot
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Béatrice Alonso
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| | - Stéphanie Fouteau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Raphaël Méheust
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Daniel M Chevrier
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| | - Christian Godon
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| | - Elsa Turrini
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| | - Neha Mehta
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Arnaud Duverger
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Cynthia Travert
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Vincent Busigny
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Romain Bolzoni
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu, 75005 Paris, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Université Évry, Université Paris-Saclay, 91057 Evry, France
| | - Eric Viollier
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE–IPSL, CEA–CNRS–UVSQ–Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Didier Jézéquel
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris F-75005, France
- UMR CARRTEL, INRAE & Université Savoie Mont Blanc, Thonon-les-Bains 74200, France
| | - David Vallenet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Christopher T Lefèvre
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| | - Caroline L Monteil
- Aix-Marseille Université, CNRS, CEA, BIAM, UMR7265 Institut de Biosciences and Biotechnologies d’Aix-Marseille, Cadarache research centre, F-13115 Saint-Paul-lez-Durance, France
| |
Collapse
|
3
|
Huang WL, Chen CL, Lin ZJ, Hsieh CC, Hua MDS, Cheng CC, Cheng TH, Lai LJ, Chang CR. Soft X-ray tomography analysis of mitochondria dynamics in Saccharomyces cerevisiae. Biol Direct 2024; 19:126. [PMID: 39614383 DOI: 10.1186/s13062-024-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Mitochondria are highly dynamic organelles that constantly undergo processes of fission and fusion. The changes in mitochondrial dynamics shape the organellar morphology and influence cellular activity regulation. Soft X-ray tomography (SXT) allows for three-dimensional imaging of cellular structures while they remain in their natural, hydrated state, which omits the need for cell fixation and sectioning. Synchrotron facilities globally primarily use flat grids as sample carriers for SXT analysis, focusing on adherent cells. To investigate mitochondrial morphology and structure in hydrated yeast cells using SXT, it is necessary to establish a method that employs the flat grid system for examining cells in suspension. RESULTS We developed a procedure to adhere suspended yeast cells to a flat grid for SXT analysis. Using this protocol, we obtained images of wild-type yeast cells, strains with mitochondrial dynamics defects, and mutant cells possessing distinctive mitochondria. The SXT images align well with the results from fluorescent microscopy. Optimized organellar visualization was achieved by constructing three-dimensional models of entire yeast cells. CONCLUSIONS In this study, we characterized the mitochondrial network in yeast cells using SXT. The optimized sample preparation procedure was effective for suspended cells like yeast, utilizing a flat grid system to analyze mitochondrial structure through SXT. The findings corresponded with the mitochondrial morphology observed under fluorescence microscopy, both in regular and disrupted dynamic equilibrium. With the acquired image of unique mitochondria in Δhap2 cells, our results revealed that intricate details of organelles, such as mitochondria and vacuoles in yeast cells, can be characterized using SXT. Therefore, this optimized system supports the expanded application of SXT for studying organellar structure and morphology in suspended cells.
Collapse
Affiliation(s)
- Wei-Ling Huang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chang-Lin Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Zi-Jing Lin
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chia-Chun Hsieh
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Mo Da-Sang Hua
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chih-Chan Cheng
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Lee-Jene Lai
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan.
| | - Chuang-Rung Chang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Salvador-Mira M, Sanchez-Cordoba E, Solivella M, Nombela I, Puente-Marin S, Chico V, Perez L, Perez-Berna AJ, Ortega-Villaizan MDM. Endoplasmic reticulum stress triggers unfolded protein response as an antiviral strategy of teleost erythrocytes. Front Immunol 2024; 15:1466870. [PMID: 39660123 PMCID: PMC11628393 DOI: 10.3389/fimmu.2024.1466870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Fish nucleated red blood cells (RBCs), also known as erythrocytes, play a crucial role in maintaining immune system balance by modulating protein expression in response to various stimuli, including viral attack. This study explores the intriguing behavior of rainbow trout RBCs when faced with the viral hemorrhagic septicemia virus (VHSV), focusing on the endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Methods Rainbow trout RBCs were Ficoll-purified and exposed to ultraviolet (UV)-inactivated VHSV or live VHSV at different multiplicities of infection (MOIs). Using cryo-soft X-ray tomography (cryo-SXT), we uncovered structural and cellular modifications in RBCs exposed to UV-inactivated VHSV. Moreover, RBCs were treated with 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, to investigate its effect on viral replication. Quantitative real-time PCR was also used to analyze the expression of genes related to the UPR and other related cellular pathways. Results and discussion Beyond their antiviral response, RBCs undergo notable intracellular changes to combat the virus. Cryo-SXT highlighted a significant increase in the ER volume. This increase is associated with ER stress and the activation of the UPR pathway. Interestingly, VHSV replication levels augmented in RBCs under ER-stress inhibition by 4-PBA treatment, suggesting that rainbow trout RBCs tune up ER stress to control viral replication. Therefore, our findings suggested the induction of ER stress and subsequent activation UPR signaling in the antiviral response of RBCs to VHSV. The results open a new line of investigation to uncover additional mechanisms that may become novel cellular targets for the development of RBC-targeted antiviral strategies.
Collapse
Affiliation(s)
- Maria Salvador-Mira
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ester Sanchez-Cordoba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Manuel Solivella
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Ivan Nombela
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Sara Puente-Marin
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Veronica Chico
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | - Luis Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| | | | - Maria del Mar Ortega-Villaizan
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (IDiBE-UMH), Elche, Spain
| |
Collapse
|
5
|
Masó-Martínez M, Bond J, Okolo CA, Jadhav AC, Harkiolaki M, Topham PD, Fernández-Castané A. An Integrated Approach to Elucidate the Interplay between Iron Uptake Dynamics and Magnetosome Formation at the Single-Cell Level in Magnetospirillum gryphiswaldense. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62557-62570. [PMID: 39480433 PMCID: PMC11565563 DOI: 10.1021/acsami.4c15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Iron is a crucial element integral to various fundamental biological molecular mechanisms, including magnetosome biogenesis in magnetotactic bacteria (MTB). Magnetosomes are formed through the internalization and biomineralization of iron into magnetite crystals. However, the interconnected mechanisms by which MTB uptake and regulate intracellular iron for magnetosome biomineralization remain poorly understood, particularly at the single-cell level. To gain insights we employed a holistic multiscale approach, i.e., from elemental iron species to bacterial populations, to elucidate the interplay between iron uptake dynamics and magnetosome formation in Magnetospirillum gryphiswaldense MSR-1 under near-native conditions. We combined a correlative microscopy approach integrating light and X-ray tomography with analytical techniques, such as flow cytometry and inductively coupled plasma spectroscopy, to evaluate the effects of iron and oxygen availability on cellular growth, magnetosome biogenesis, and intracellular iron pool in MSR-1. Our results revealed that increased iron availability under microaerobic conditions significantly promoted the formation of longer magnetosome chains and increased intracellular iron uptake, with a saturation point at 300 μM iron citrate. Beyond this threshold, additional iron did not further extend the magnetosome chain length or increase total intracellular iron levels. Moreover, our work reveals (i) a direct correlation between the labile Fe2+ pool size and magnetosome content, with higher intracellular iron concentrations correlating with increased magnetosome production, and (ii) the existence of an intracellular iron pool, distinct from magnetite, persisting during all stages of biomineralization. This study offers insights into iron dynamics in magnetosome biomineralization at a single-cell level, potentially enhancing the industrial biomanufacturing of magnetosomes.
Collapse
Affiliation(s)
- Marta Masó-Martínez
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Josh Bond
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Chidinma A Okolo
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Archana C Jadhav
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
| | - Maria Harkiolaki
- Beamline
B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United
Kingdom
- Chemistry
Department, University of Warwick, Coventry CV4 7SH, United Kingdom
| | - Paul D Topham
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| | - Alfred Fernández-Castané
- Energy
and Bioproducts Research Institute, Aston
University, Birmingham B4 7ET, United
Kingdom
- Aston
Institute for Membrane Excellence, Aston
University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
6
|
Gupta R, Goswami Y, Yuan L, Roy B, Pereiro E, Shivashankar GV. Correlative light and soft X-ray tomography of in situ mesoscale heterochromatin structure in intact cells. Sci Rep 2024; 14:27706. [PMID: 39532928 PMCID: PMC11557596 DOI: 10.1038/s41598-024-77361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Heterochromatin organization is critical to many genome-related programs including transcriptional silencing and DNA repair. While super-resolution imaging, electron microscopy, and multiomics methods have provided indirect insights into the heterochromatin organization, a direct measurement of mesoscale heterochromatin ultrastructure is still missing. We use a combination of correlative light microscopy and cryo-soft X-ray tomography (CLXT) to analyze heterochromatin organization in the intact hydrated state of human mammary fibroblast cells. Our analysis reveals that the heterochromatin ultra-structure has a typical mean domain size of approximately 80 nm and a mean separation of approximately 120 nm between domains. Functional perturbations yield further insights into the molecular density and alterations in the mesoscale organization of the heterochromatin regions. Furthermore, our polymer simulations provide a mechanistic basis for the experimentally observed size and separation distributions of the mesoscale chromatin domains. Collectively, our results provide direct, label-free observation of heterochromatin organization in the intact hydrated state of cells.
Collapse
Affiliation(s)
- Rajshikhar Gupta
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Yagyik Goswami
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
| | - Luezhen Yuan
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bibhas Roy
- Department of Biological Sciences, BITS Pilani Hyderabad Campus, Secunderabad, India
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona, Spain
| | - G V Shivashankar
- Laboratory of Nanoscale Biology, Paul Scherrer Institut, Villigen, Aargau, Switzerland.
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Wu K, Wang JP, Natekar NA, Ciannella S, González-Fernández C, Gomez-Pastora J, Bao Y, Liu J, Liang S, Wu X, Nguyen T Tran L, Mercedes Paz González K, Choe H, Strayer J, Iyer PR, Chalmers J, Chugh VK, Rezaei B, Mostufa S, Tay ZW, Saayujya C, Huynh Q, Bryan J, Kuo R, Yu E, Chandrasekharan P, Fellows B, Conolly S, Hadimani RL, El-Gendy AA, Saha R, Broomhall TJ, Wright AL, Rotherham M, El Haj AJ, Wang Z, Liang J, Abad-Díaz-de-Cerio A, Gandarias L, Gubieda AG, García-Prieto A, Fdez-Gubieda ML. Roadmap on magnetic nanoparticles in nanomedicine. NANOTECHNOLOGY 2024; 36:042003. [PMID: 39395441 PMCID: PMC11539342 DOI: 10.1088/1361-6528/ad8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 10/12/2024] [Indexed: 10/14/2024]
Abstract
Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States of America
| | - Jinming Liu
- Western Digital Corporation, San Jose, CA, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Xian Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Linh Nguyen T Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | | | - Hyeon Choe
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob Strayer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Poornima Ramesh Iyer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeffrey Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Elaine Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Steven Conolly
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Thomas J Broomhall
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Zhiyi Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiarong Liang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Lucía Gandarias
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA—UMR 7265, Saint-Paul-lez-Durance, France
- Dpto. Electricidad y Electrónica, Universidad del País Vasco—UPV/EHU, Leioa, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco–UPV/EHU, Bilbao, Spain
| | | |
Collapse
|
8
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
9
|
Moya C, Escoda-Torroella M, Rodríguez-Álvarez J, Figueroa AI, García Í, Ferrer-Vidal IB, Gallo-Cordova A, Puerto Morales M, Aballe L, Fraile Rodríguez A, Labarta A, Batlle X. Unveiling the crystal and magnetic texture of iron oxide nanoflowers. NANOSCALE 2024; 16:1942-1951. [PMID: 38170857 DOI: 10.1039/d3nr04608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Iron oxide nanoflowers (IONF) are densely packed multi-core aggregates known for their high saturation magnetization and initial susceptibility, as well as low remanence and coercive field. This study reports on how the local magnetic texture originating at the crystalline correlations among the cores determines the special magnetic properties of individual IONF over a wide size range from 40 to 400 nm. Regardless of this significant size variation in the aggregates, all samples exhibit a consistent crystalline correlation that extends well beyond the IONF cores. Furthermore, a nearly zero remnant magnetization, together with the presence of a persistently blocked state, and almost temperature-independent field-cooled magnetization, support the existence of a 3D magnetic texture throughout the IONF. This is confirmed by magnetic transmission X-ray microscopy images of tens of individual IONF, showing, in all cases, a nearly demagnetized state caused by the vorticity of the magnetic texture. Micromagnetic simulations agree well with these experimental findings, showing that the interplay between the inter-core direct exchange coupling and the demagnetizing field is responsible for the highly vortex-like spin configuration that stabilizes at low magnetic fields and appears to have partial topological protection. Overall, this comprehensive study provides valuable insights into the impact of crystalline texture on the magnetic properties of IONF over a wide size range, offering a deeper understanding of their potential applications in fields such as biomedicine and water remediation.
Collapse
Affiliation(s)
- Carlos Moya
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mariona Escoda-Torroella
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Javier Rodríguez-Álvarez
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Adriana I Figueroa
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Íker García
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - Inés Batalla Ferrer-Vidal
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - A Gallo-Cordova
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - M Puerto Morales
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Lucía Aballe
- ALBA Synchrotron Light Facility, CELLS, 08290 Barcelona, Spain
| | - Arantxa Fraile Rodríguez
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Amílcar Labarta
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Xavier Batlle
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Maisuradze M, Li M, Mullaliu A, Sorrentino A, Tonti D, Passerini S, Giorgetti M. Mapping Heterogeneity of Pristine and Aged Li- and Na-Mnhcf Cathode by Synchrotron-Based Energy-Dependent Full Field Transmission X-ray Microscopy. SMALL METHODS 2023; 7:e2300718. [PMID: 37608445 DOI: 10.1002/smtd.202300718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Manganese hexacyanoferrate is a promising cathode material for lithium and sodium ion batteries, however, it suffers of capacity fading during the cycling process. To access the structural and functional characteristics at the nanometer scale, fresh and cycled electrodes are extracted and investigated by transmission soft X-ray microscopy, which allows chemical characterization with spatial resolution from position-dependent x-ray spectra at the Mn L-, Fe L- and N K-edges. Furthermore, soft X-rays prove to show superior sensitivity toward Fe, compare to hard X-rays. Inhomogeneities within the samples are identified, increasing in the aged electrodes, more dramatically in the Li-ion system, which explains the poorer cycle life as Li-ion cathode material. Local spectra, revealing different oxidation states over the sample with strong correlation between the Fe L-edge, Mn L-edge, and N K-edge, imply a coupling between redox centers and an electron delocalization over the host framework.
Collapse
Affiliation(s)
- Mariam Maisuradze
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, Bologna, 40136, Italy
| | - Min Li
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, Bologna, 40136, Italy
| | - Angelo Mullaliu
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallés, 08290, Spain
| | - Dino Tonti
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB Bellaterra, Cerdanyola del Vallès, 08193, Spain
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome, 00185, Italy
| | - Marco Giorgetti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, Bologna, 40136, Italy
| |
Collapse
|
11
|
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, Iotti S, Maier JA. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Sci Rep 2023; 13:15133. [PMID: 37704683 PMCID: PMC10499809 DOI: 10.1038/s41598-023-42333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
High glucose-induced endothelial dysfunction is the early event that initiates diabetes-induced vascular disease. Here we employed Cryo Soft X-ray Tomography to obtain three-dimensional maps of high D-glucose-treated endothelial cells and their controls at nanometric spatial resolution. We then correlated ultrastructural differences with metabolic rewiring. While the total mitochondrial mass does not change, high D-glucose promotes mitochondrial fragmentation, as confirmed by the modulation of fission-fusion markers, and dysfunction, as demonstrated by the drop of membrane potential, the decreased oxygen consumption and the increased production of reactive oxygen species. The 3D ultrastructural analysis also indicates the accumulation of lipid droplets in cells cultured in high D-glucose. Indeed, because of the decrease of fatty acid β-oxidation induced by high D-glucose concentration, triglycerides are esterified into fatty acids and then stored into lipid droplets. We propose that the increase of lipid droplets represents an adaptive mechanism to cope with the overload of glucose and associated oxidative stress and metabolic dysregulation.
Collapse
Affiliation(s)
- Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
| | - Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| |
Collapse
|
12
|
Sorrentino A, Rossi F, Picone G, Malucelli E, Perez-Berna AJ, Iotti S, Pereiro E. Correlative Cryo Soft X-ray Tomography and Spectromicroscopy to Study Ca Biomineralization Processes in Frozen Hydrated Whole Cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1160-1161. [PMID: 37613479 DOI: 10.1093/micmic/ozad067.593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eva Pereiro
- Alba Light Source, MISTRAL beamline, Cerdanyola del Valles, Spain
| |
Collapse
|
13
|
Herguedas-Alonso AE, Aballe L, Fullerton J, Vélez M, Martín JI, Sorrentino A, Pereiro E, Ferrer S, Quirós C, Hierro-Rodriguez A. A fast magnetic vector characterization method for quasi two-dimensional systems and heterostructures. Sci Rep 2023; 13:9639. [PMID: 37316525 DOI: 10.1038/s41598-023-36803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023] Open
Abstract
The use of magnetic vector tomography/laminography has opened a 3D experimental window to access the magnetization at the nanoscale. These methods exploit the dependence of the magnetic contrast in transmission to recover its 3D configuration. However, hundreds of different angular projections are required leading to large measurement times. Here we present a fast method to dramatically reduce the experiment time specific for quasi two-dimensional magnetic systems. The algorithm uses the Beer-Lambert equation in the framework of X-ray transmission microscopy to obtain the 3D magnetic configuration of the sample. It has been demonstrated in permalloy microstructures, reconstructing the magnetization vector field with a reduced number of angular projections obtaining quantitative results. The throughput of the methodology is × 10-× 100 times faster than conventional magnetic vector tomography, making this characterization method of general interest for the community.
Collapse
Affiliation(s)
- A E Herguedas-Alonso
- Departamento de Física, Universidad de Oviedo, 33007, Oviedo, Spain.
- ALBA Synchrotron, 08290, Cerdanyola del Vallès, Spain.
| | - L Aballe
- ALBA Synchrotron, 08290, Cerdanyola del Vallès, Spain
| | - J Fullerton
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - M Vélez
- Departamento de Física, Universidad de Oviedo, 33007, Oviedo, Spain
- CINN (CSIC-Universidad de Oviedo), 33940, El Entrego, Spain
| | - J I Martín
- Departamento de Física, Universidad de Oviedo, 33007, Oviedo, Spain
- CINN (CSIC-Universidad de Oviedo), 33940, El Entrego, Spain
| | - A Sorrentino
- ALBA Synchrotron, 08290, Cerdanyola del Vallès, Spain
| | - E Pereiro
- ALBA Synchrotron, 08290, Cerdanyola del Vallès, Spain
| | - S Ferrer
- ALBA Synchrotron, 08290, Cerdanyola del Vallès, Spain
| | - C Quirós
- Departamento de Física, Universidad de Oviedo, 33007, Oviedo, Spain
- CINN (CSIC-Universidad de Oviedo), 33940, El Entrego, Spain
| | - A Hierro-Rodriguez
- Departamento de Física, Universidad de Oviedo, 33007, Oviedo, Spain.
- CINN (CSIC-Universidad de Oviedo), 33940, El Entrego, Spain.
| |
Collapse
|
14
|
Rojas‐Gómez A, Dosil SG, Chichón FJ, Fernández‐Gallego N, Ferrarini A, Calvo E, Calzada‐Fraile D, Requena S, Otón J, Serrano A, Tarifa R, Arroyo M, Sorrentino A, Pereiro E, Vázquez J, Valpuesta JM, Sánchez‐Madrid F, Martín‐Cófreces NB. Chaperonin CCT controls extracellular vesicle production and cell metabolism through kinesin dynamics. J Extracell Vesicles 2023; 12:e12333. [PMID: 37328936 PMCID: PMC10276179 DOI: 10.1002/jev2.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/02/2023] [Indexed: 06/18/2023] Open
Abstract
Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.
Collapse
Affiliation(s)
- Amelia Rojas‐Gómez
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Sara G. Dosil
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Francisco J. Chichón
- Cryoelectron Microscopy UnitCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Nieves Fernández‐Gallego
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Alessia Ferrarini
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Enrique Calvo
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Diego Calzada‐Fraile
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Silvia Requena
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Joaquin Otón
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
- ALBA Synchrotron Light SourceBarcelonaSpain
| | - Alvaro Serrano
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Rocio Tarifa
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
| | - Montserrat Arroyo
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
| | | | | | - Jesus Vázquez
- Laboratory of Cardiovascular ProteomicsFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - José M. Valpuesta
- Department of Macromolecular StructureCentro Nacional de Biotecnología (CNB‐CSIC)MadridSpain
| | - Francisco Sánchez‐Madrid
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Noa B. Martín‐Cófreces
- Immunology ServiceHospital Universitario de la Princesa, UAM, IIS‐IPMadridSpain
- Area of Vascular Pathophysiology, Laboratory of Intercellular CommunicationFundación Centro Nacional de Investigaciones Cardiovasculares‐Carlos IIIMadridSpain
- CIBER de Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| |
Collapse
|
15
|
Rossi F, Picone G, Cappadone C, Sorrentino A, Columbaro M, Farruggia G, Catelli E, Sciutto G, Prati S, Oliete R, Pasini A, Pereiro E, Iotti S, Malucelli E. Shedding Light on Osteosarcoma Cell Differentiation: Impact on Biomineralization and Mitochondria Morphology. Int J Mol Sci 2023; 24:ijms24108559. [PMID: 37239904 DOI: 10.3390/ijms24108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor and its etiology has recently been associated with osteogenic differentiation dysfunctions. OS cells keep a capacity for uncontrolled proliferation showing a phenotype similar to undifferentiated osteoprogenitors with abnormal biomineralization. Within this context, both conventional and X-ray synchrotron-based techniques have been exploited to deeply characterize the genesis and evolution of mineral depositions in a human OS cell line (SaOS-2) exposed to an osteogenic cocktail for 4 and 10 days. A partial restoration of the physiological biomineralization, culminating with the formation of hydroxyapatite, was observed at 10 days after treatment together with a mitochondria-driven mechanism for calcium transportation within the cell. Interestingly, during differentiation, mitochondria showed a change in morphology from elongated to rounded, indicating a metabolic reprogramming of OS cells possibly linked to an increase in glycolysis contribution to energy metabolism. These findings add a dowel to the genesis of OS giving new insights on the development of therapeutic strategies able to restore the physiological mineralization in OS cells.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Marta Columbaro
- Piattaforma di Microscopia Elettronica, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| | - Emilio Catelli
- Department of Chemistry "G. Ciamician", Università di Bologna, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Giorgia Sciutto
- Department of Chemistry "G. Ciamician", Università di Bologna, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Silvia Prati
- Department of Chemistry "G. Ciamician", Università di Bologna, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Robert Oliete
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Alice Pasini
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Università 50, 47522 Cesena, Italy
| | - Eva Pereiro
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
16
|
Guzzi F, Gianoncelli A, Billè F, Carrato S, Kourousias G. Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy. Life (Basel) 2023; 13:life13030629. [PMID: 36983785 PMCID: PMC10051220 DOI: 10.3390/life13030629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems.
Collapse
Affiliation(s)
- Francesco Guzzi
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
- Correspondence:
| | - Alessandra Gianoncelli
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Fulvio Billè
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - Sergio Carrato
- Department of Engineering and Architecture (DIA), University of Trieste, 34127 Trieste, Italy
| | - George Kourousias
- Elettra—Sincrotrone Trieste, Strada Statale 14—km 163,500 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
17
|
Linklater DP, Le Guével X, Kosyer E, Rubanov S, Bryant G, Hanssen E, Baulin VA, Pereiro E, Perera PG, Wandiyanto JV, Angulo A, Juodkazis S, Ivanova EP. Functionalized Gold Nanoclusters Promote Stress Response in COS‐7 Cells. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Xavier Le Guével
- Cancer Targets and Experimental Therapeutics Institute for Advanced Biosciences University of Grenoble Alpes 38700 La Tronche France
| | - Erim Kosyer
- STEM College School of Science RMIT University Melbourne VIC 3000 Australia
| | - Sergey Rubanov
- Ian Holmes Imaging Centre Bio21 University of Melbourne Parkville 3052 VIC Australia
| | - Gary Bryant
- STEM College School of Science RMIT University Melbourne VIC 3000 Australia
| | - Eric Hanssen
- Ian Holmes Imaging Centre Bio21 University of Melbourne Parkville 3052 VIC Australia
| | - Vladimir A. Baulin
- Departament de Química Física i Inorgànica Universitat Rovira i Virgili C/Marcel.lí Domingo s/n 43007 Tarragona Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division ALBA Synchrotron Light Source Cerdanyola del Vallès 08290 Barcelona Spain
| | | | - Jason V. Wandiyanto
- Optical Sciences Centre Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Ana Angulo
- Immunology Unit Department of Biomedical Sciences Faculty of Medicine and Health Sciences University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
| | - Saulius Juodkazis
- Optical Sciences Centre Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Elena P. Ivanova
- STEM College School of Science RMIT University Melbourne VIC 3000 Australia
| |
Collapse
|
18
|
Zhang C, Wu Z, Dang Z, Tian L, Guan Y, Liu G, Tian Y. On-Line Fluorescence Microscopy for Identification and Imaging of Apoptotic Cell with Synchrotron-Based Soft X-ray Tomography. MICROMACHINES 2023; 14:326. [PMID: 36838026 PMCID: PMC9963497 DOI: 10.3390/mi14020326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Synchrotron-based soft X-ray tomography (SXT), providing three-dimensional morphology and quantitative distribution of linear absorption coefficient (LAC) of the imaged objects, is widely used in many fields to obtain ultra-structure images, especially in cellular imaging. Off-line fluorescence microscopies (FMs) are combined to identify the type of organelles and status of cells. However, deformation and displacement usually occur during the transfer and loading process, which decreases the precision of two-modal images' registration. In this paper, we report on an on-line FM, at the SXT station (BL07W) of the National Synchrotron Radiation Laboratory (NSRL), which avoids deformation and displacement. Therefore, researchers can easily find the sample and take the useful data without tedious post-processing. Combining SXT with on-line FM, we achieved the identification and high-resolution imaging of an apoptotic cell. The experiments revealed that the LAC of the nucleus of the apoptotic cell was larger than that of a normal cell, which could be explained by nucleus pyknosis of the apoptotic cell.
Collapse
Affiliation(s)
| | - Zhao Wu
- Correspondence: (Z.W.); (Y.T.)
| | | | | | | | | | | |
Collapse
|
19
|
Loconte V, Chen J, Vanslembrouck B, Ekman AA, McDermott G, Le Gros MA, Larabell CA. Soft X-ray tomograms provide a structural basis for whole-cell modeling. FASEB J 2023; 37:e22681. [PMID: 36519968 PMCID: PMC10107707 DOI: 10.1096/fj.202200253r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Developing in silico models that accurately reflect a whole, functional cell is an ongoing challenge in biology. Current efforts bring together mathematical models, probabilistic models, visual representations, and data to create a multi-scale description of cellular processes. A realistic whole-cell model requires imaging data since it provides spatial constraints and other critical cellular characteristics that are still impossible to obtain by calculation alone. This review introduces Soft X-ray Tomography (SXT) as a powerful imaging technique to visualize and quantify the mesoscopic (~25 nm spatial scale) organelle landscape in whole cells. SXT generates three-dimensional reconstructions of cellular ultrastructure and provides a measured structural framework for whole-cell modeling. Combining SXT with data from disparate technologies at varying spatial resolutions provides further biochemical details and constraints for modeling cellular mechanisms. We conclude, based on the results discussed here, that SXT provides a foundational dataset for a broad spectrum of whole-cell modeling experiments.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Jian‐Hua Chen
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Bieke Vanslembrouck
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Axel A. Ekman
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Gerry McDermott
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Mark A. Le Gros
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Carolyn A. Larabell
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| |
Collapse
|
20
|
Cossa A, Trépout S, Wien F, Groen J, Le Brun E, Turbant F, Besse L, Pereiro E, Arluison V. Cryo soft X-ray tomography to explore Escherichia coli nucleoid remodeling by Hfq master regulator. J Struct Biol 2022; 214:107912. [PMID: 36283630 DOI: 10.1016/j.jsb.2022.107912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
Abstract
The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.
Collapse
Affiliation(s)
- Antoine Cossa
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Sylvain Trépout
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France; Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia.
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
| | - Johannes Groen
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Etienne Le Brun
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Eva Pereiro
- Mistral Beamline, Alba Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France; Université Paris Cité, UFR Sciences du vivant, 75006 Paris cedex, France.
| |
Collapse
|
21
|
Ilin AM, van der Graaf CM, Yusta I, Sorrentino A, Sánchez-Andrea I, Sánchez-España J. Glycerol amendment enhances biosulfidogenesis in acid mine drainage-affected areas: An incubation column experiment. Front Bioeng Biotechnol 2022; 10:978728. [PMID: 36105607 PMCID: PMC9464833 DOI: 10.3389/fbioe.2022.978728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022] Open
Abstract
Microbial sulfate (SO42−) reduction in Acid Mine Drainage (AMD) environments can ameliorate the acidity and extreme metal concentrations by consumption of protons via the reduction of SO42− to hydrogen sulfide (H2S) and the concomitant precipitation of metals as metal sulfides. The activity of sulfate-reducing bacteria can be stimulated by the amendment of suitable organic carbon sources in these generally oligotrophic environments. Here, we used incubation columns (IC) as model systems to investigate the effect of glycerol amendment on the microbial community composition and its effect on the geochemistry of sediment and waters in AMD environments. The ICs were built with natural water and sediments from four distinct AMD-affected sites with different nutrient regimes: the oligotrophic Filón Centro and Guadiana acidic pit lakes, the Tintillo river (Huelva, Spain) and the eutrophic Brunita pit lake (Murcia, Spain). Physicochemical parameters were monitored during 18 months, and the microbial community composition was determined at the end of incubation through 16S rRNA gene amplicon sequencing. SEM-EDX analysis of sediments and suspended particulate matter was performed to investigate the microbially-induced mineral (neo)formation. Glycerol amendment strongly triggered biosulfidogenesis in all ICs, with pH increase and metal sulfide formation, but the effect was much more pronounced in the ICs from oligotrophic systems. Analysis of the microbial community composition at the end of the incubations showed that the SRB Desulfosporosinus was among the dominant taxa observed in all sulfidogenic columns, whereas the SRB Desulfurispora, Desulfovibrio and Acididesulfobacillus appeared to be more site-specific. Formation of Fe3+ and Al3+ (oxy)hydroxysulfates was observed during the initial phase of incubation together with increasing pH while formation of metal sulfides (predominantly, Zn, Fe and Cu sulfides) was observed after 1–5 months of incubation. Chemical analysis of the aqueous phase at the end of incubation showed almost complete removal of dissolved metals (Cu, Zn, Cd) in the amended ICs, while Fe and SO42− increased towards the water-sediment interface, likely as a result of the reductive dissolution of Fe(III) minerals enhanced by Fe-reducing bacteria. The combined geochemical and microbiological analyses further establish the link between biosulfidogenesis and natural attenuation through metal sulfide formation and proton consumption.
Collapse
Affiliation(s)
- A. M. Ilin
- Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
- *Correspondence: A. M. Ilin, ; J. Sánchez-España,
| | - C. M. van der Graaf
- Laboratory of Microbiology, Wageningen University (WUR), Wageningen, Netherlands
| | - I. Yusta
- Department of Geology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
| | - A. Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallés, Barcelona, Spain
| | - I. Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University (WUR), Wageningen, Netherlands
| | - J. Sánchez-España
- Mine Wastes and Environmental Geochemistry Research Group, Department of Geological Resources for the Ecological Transition, (CN IGME-CSIC), Madrid, Spain
- *Correspondence: A. M. Ilin, ; J. Sánchez-España,
| |
Collapse
|
22
|
Fernández-González C, Guedeja-Marrón A, Rodilla BL, Arché-Nuñez A, Corcuera R, Lucas I, González MT, Varela M, de la Presa P, Aballe L, Pérez L, Ruiz-Gómez S. Electrodeposited Magnetic Nanowires with Radial Modulation of Composition. NANOMATERIALS 2022; 12:nano12152565. [PMID: 35893533 PMCID: PMC9370789 DOI: 10.3390/nano12152565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
In the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction. In this work, we report the possibility of introducing changes in the composition along the radial direction, increasing the degrees of freedom to harness the magnetization. In particular, we report the synthesis, using template-assisted deposition, of FeNi (or Co) magnetic nanowires, coated with a Au/Co (Au/FeNi) bilayer. The diameter of the nanowire as well as the thickness of both layers can be tuned at will. In addition to a detailed structural characterization, we report a preliminary study on the magnetic properties, establishing the role of each layer in the global collective behavior of the system.
Collapse
Affiliation(s)
- Claudia Fernández-González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Beatriz L. Rodilla
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Ana Arché-Nuñez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Rubén Corcuera
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Irene Lucas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Teresa González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Maria Varela
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Patricia de la Presa
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Instituto de Magnetismo Aplicado, 28230 Las Rozas, Spain
| | - Lucía Aballe
- Alba Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain;
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Surface Science and Magnetism of Low Dimensional Systems, UCM, Unidad Asociada al IQFR-CSIC, 28040 Madrid, Spain
- Correspondence: (L.P.); (S.R.-G.)
| | - Sandra Ruiz-Gómez
- Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
- Correspondence: (L.P.); (S.R.-G.)
| |
Collapse
|
23
|
Linklater DP, Le Guével X, Bryant G, Baulin VA, Pereiro E, Perera PGT, Wandiyanto JV, Juodkazis S, Ivanova EP. Lethal Interactions of Atomically Precise Gold Nanoclusters and Pseudomonas aeruginosa and Staphylococcus aureus Bacterial Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32634-32645. [PMID: 35758190 DOI: 10.1021/acsami.2c04410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasmall metal nanoclusters (NCs) are employed in an array of diagnostic and therapeutic applications due to their tunable photoluminescence, high biocompatibility, polyvalent effect, ease of modification, and photothermal stability. However, gold nanoclusters' (AuNCs') intrinsically antimicrobial properties remain poorly explored and are not well understood. Here, we share an insight into the antimicrobial action of atomically precise AuNCs based on their ability to passively translocate across the bacterial membrane. Functionalized by a hydrophilic modified-bidentate sulfobetaine zwitterionic molecule (AuNC-ZwBuEt) or a more hydrophobic monodentate-thiolate, mercaptohexanoic acid (AuNC-MHA) molecule, 2 nm AuNCs were lethal to both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. The bactericidal efficiency was found to be bacterial strain-, time-, and concentration-dependent. The direct visualizations of the translocation of AuNCs and AuNC-cell and subcellular interactions were investigated using cryo-soft X-ray nano-tomography, transmission electron microscopy (TEM), and scanning TEM energy-dispersive spectroscopy analyses. AuNC-MHA were identified in the bacterial cytoplasm within 30 min, without evidence of the loss of membrane integrity. It is proposed that the bactericidal effect of AuNCs is attributed to their size, which allows for efficient energy-independent translocation across the cell membrane. The internalization of both AuNCs caused massive internal damage to the cells, including collapsed subcellular structures and altered cell morphology, leading to the eventual loss of cellular integrity.
Collapse
Affiliation(s)
- Denver P Linklater
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xavier Le Guével
- Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences, University of Grenoble Alpes, Site Santé─Allée des Alpes, La Tronche 38700, France
| | - Gary Bryant
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Vladimir A Baulin
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/ Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès 08290, Barcelona, Spain
| | | | - Jason V Wandiyanto
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Elena P Ivanova
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
24
|
Castroflorio E, Pérez Berná AJ, López-Márquez A, Badosa C, Loza-Alvarez P, Roldán M, Jiménez-Mallebrera C. The Capillary Morphogenesis Gene 2 Triggers the Intracellular Hallmarks of Collagen VI-Related Muscular Dystrophy. Int J Mol Sci 2022; 23:ijms23147651. [PMID: 35886995 PMCID: PMC9322809 DOI: 10.3390/ijms23147651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen VI-related disorders (COL6-RD) represent a severe form of congenital disease for which there is no treatment. Dominant-negative pathogenic variants in the genes encoding α chains of collagen VI are the main cause of COL6-RD. Here we report that patient-derived fibroblasts carrying a common single nucleotide variant mutation are unable to build the extracellular collagen VI network. This correlates with the intracellular accumulation of endosomes and lysosomes triggered by the increased phosphorylation of the collagen VI receptor CMG2. Notably, using a CRISPR-Cas9 gene-editing tool to silence the dominant-negative mutation in patients’ cells, we rescued the normal extracellular collagen VI network, CMG2 phosphorylation levels, and the accumulation of endosomes and lysosomes. Our findings reveal an unanticipated role of CMG2 in regulating endosomal and lysosomal homeostasis and suggest that mutated collagen VI dysregulates the intracellular environment in fibroblasts in collagen VI-related muscular dystrophy.
Collapse
Affiliation(s)
- Enrico Castroflorio
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
- Correspondence: (E.C.); (C.J.-M.)
| | | | - Arístides López-Márquez
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
| | - Carmen Badosa
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
| | - Pablo Loza-Alvarez
- ICFO-The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain;
| | - Mónica Roldán
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Unitat de Microscòpia Confocal i Imatge Cellular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Cecilia Jiménez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; (A.L.-M.); (C.B.)
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
- Centro de Investigaciones Biomédicas en Red de Enfermedades Rara (CIBERER), 28029 Madrid, Spain
- Department of Genetics, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (E.C.); (C.J.-M.)
| |
Collapse
|
25
|
Zamora-Perez P, Xiao C, Sanles-Sobrido M, Rovira-Esteva M, Conesa JJ, Mulens-Arias V, Jaque D, Rivera-Gil P. Multiphoton imaging of melanoma 3D models with plasmonic nanocapsules. Acta Biomater 2022; 142:308-319. [PMID: 35104657 DOI: 10.1016/j.actbio.2022.01.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
We report the synthesis of plasmonic nanocapsules and the cellular responses they induce in 3D melanoma models for their perspective use as a photothermal therapeutic agent. The wall of the nanocapsules is composed of polyelectrolytes. The inner part is functionalized with discrete gold nanoislands. The cavity of the nanocapsules contains a fluorescent payload to show their ability for loading a cargo. The nanocapsules exhibit simultaneous two-photon luminescent, fluorescent properties and X-ray contrasting ability. The average fluorescence lifetime (τ) of the nanocapsules measured with FLIM (0.3 ns) is maintained regardless of the intracellular environment, thus proving their abilities for bioimaging of models such as 3D spheroids with a complex architecture. Their multimodal imaging properties are exploited for the first time to study tumorspheres cellular responses exposed to the nanocapsules. Specifically, we studied cellular uptake, toxicity, intracellular fate, generation of reactive oxygen species, and effect on the levels of hypoxia by using multi-photon and confocal laser scanning microscopy. Because of the high X-ray attenuation and atomic number of the gold nanostructure, we imaged the nanocapsule-cell interactions without processing the sample. We confirmed maintenance of the nanocapsules' geometry in the intracellular milieu with no impairment of the cellular ultrastructure. Furthermore, we observed the lack of cellular toxicity and no alteration in oxygen or reactive oxygen species levels. These results in 3D melanoma models contribute to the development of these nanocapsules for their exploitation in future applications as agents for imaging-guided photothermal therapy. STATEMENT OF SIGNIFICANCE: The novelty of the work is that our plasmonic nanocapsules are multimodal. They are responsive to X-ray and to multiphoton and single-photon excitation. This allowed us to study their interaction with 2D and 3D cellular structures and specifically to obtain information on tumor cell parameters such as hypoxia, reactive oxygen species, and toxicity. These nanocapsules will be further validated as imaging-guided photothermal probes.
Collapse
|
26
|
Hermosa J, Hierro-Rodríguez A, Quirós C, Vélez M, Sorrentino A, Aballe L, Pereiro E, Ferrer S, Martín JI. Two-Step Resist Deposition of E-Beam Patterned Thick Py Nanostructures for X-ray Microscopy. MICROMACHINES 2022; 13:mi13020204. [PMID: 35208328 PMCID: PMC8880630 DOI: 10.3390/mi13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
Patterned elements of permalloy (Py) with a thickness as large as 300 nm have been defined by electron beam lithography on X-ray-transparent 50 nm thick membranes in order to characterize their magnetic structure via Magnetic Transmission X-ray Microscopy (MTXM). To avoid the situation where the fragility of the membranes causes them to break during the lithography process, it has been found that the spin coating of the resist must be applied in two steps. The MTXM results show that our samples have a central domain wall, as well as other types of domain walls, if the nanostructures are wide enough.
Collapse
Affiliation(s)
- Javier Hermosa
- Departamento de Física, Universidad de Oviedo, 33007 Oviedo, Spain; (J.H.); (A.H.-R.); (C.Q.); (M.V.)
| | - Aurelio Hierro-Rodríguez
- Departamento de Física, Universidad de Oviedo, 33007 Oviedo, Spain; (J.H.); (A.H.-R.); (C.Q.); (M.V.)
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-Universidad de Oviedo, 33940 El Entrego, Principado de Asturias, Spain
| | - Carlos Quirós
- Departamento de Física, Universidad de Oviedo, 33007 Oviedo, Spain; (J.H.); (A.H.-R.); (C.Q.); (M.V.)
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-Universidad de Oviedo, 33940 El Entrego, Principado de Asturias, Spain
| | - María Vélez
- Departamento de Física, Universidad de Oviedo, 33007 Oviedo, Spain; (J.H.); (A.H.-R.); (C.Q.); (M.V.)
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-Universidad de Oviedo, 33940 El Entrego, Principado de Asturias, Spain
| | - Andrea Sorrentino
- ALBA Synchrotron, 08290 Cerdanyola del Vallès, Spain; (A.S.); (L.A.); (E.P.); (S.F.)
| | - Lucía Aballe
- ALBA Synchrotron, 08290 Cerdanyola del Vallès, Spain; (A.S.); (L.A.); (E.P.); (S.F.)
| | - Eva Pereiro
- ALBA Synchrotron, 08290 Cerdanyola del Vallès, Spain; (A.S.); (L.A.); (E.P.); (S.F.)
| | - Salvador Ferrer
- ALBA Synchrotron, 08290 Cerdanyola del Vallès, Spain; (A.S.); (L.A.); (E.P.); (S.F.)
| | - José I. Martín
- Departamento de Física, Universidad de Oviedo, 33007 Oviedo, Spain; (J.H.); (A.H.-R.); (C.Q.); (M.V.)
- Centro de Investigación en Nanomateriales y Nanotecnología (CINN), CSIC-Universidad de Oviedo, 33940 El Entrego, Principado de Asturias, Spain
- Correspondence:
| |
Collapse
|
27
|
Cossa A, Wien F, Turbant F, Kaczorowski T, Węgrzyn G, Arluison V, Pérez-Berná AJ, Trépout S, Pereiro E. Evaluation of the Role of Bacterial Amyloid on Nucleoid Structure Using Cryo-Soft X-Ray Tomography. Methods Mol Biol 2022; 2538:319-333. [PMID: 35951309 DOI: 10.1007/978-1-0716-2529-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial chromosomal DNA is packed within a non-membranous structure, the nucleoid, thanks to nucleoid associated proteins (NAPs). The role of bacterial amyloid has recently emerged among these NAPs, particularly with the nucleoid-associated protein Hfq that plays a direct role in DNA compaction. In this chapter, we present a 3D imaging technique, cryo-soft X-ray tomography (cryo-SXT) to obtain a detailed 3D visualization of subcellular bacterial structures, especially the nucleoid. Cryo-SXT imaging of native unlabeled cells enables observation of the nucleoid in 3D with a high resolution, allowing to evidence in vivo the role of amyloids on DNA compaction. The precise experimental methods to obtain 3D tomograms will be presented.
Collapse
Affiliation(s)
- Antoine Cossa
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, Orsay, France
- National Center of Biotechnology, CSIC, Campus Univ. Autónoma de Madrid, Madrid, Spain
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
| | - Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette, France
- Université de Paris Cité, Paris, France
| | | | - Sylvain Trépout
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, Orsay, France
| | - Eva Pereiro
- Mistral Beamline, Alba Light Source, Barcelona, Spain.
| |
Collapse
|
28
|
Groen J, Palanca A, Aires A, Conesa JJ, Maestro D, Rehbein S, Harkiolaki M, Villar AV, Cortajarena AL, Pereiro E. Correlative 3D cryo X-ray imaging reveals intracellular location and effect of designed antifibrotic protein-nanomaterial hybrids. Chem Sci 2021; 12:15090-15103. [PMID: 34909150 PMCID: PMC8612387 DOI: 10.1039/d1sc04183e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Revealing the intracellular location of novel therapeutic agents is paramount for the understanding of their effect at the cell ultrastructure level. Here, we apply a novel correlative cryo 3D imaging approach to determine the intracellular fate of a designed protein–nanomaterial hybrid with antifibrotic properties that shows great promise in mitigating myocardial fibrosis. Cryo 3D structured illumination microscopy (cryo-3D-SIM) pinpoints the location and cryo soft X-ray tomography (cryo-SXT) reveals the ultrastructural environment and subcellular localization of this nanomaterial with spatial correlation accuracy down to 70 nm in whole cells. This novel high resolution 3D cryo correlative approach unambiguously locates the nanomaterial after overnight treatment within multivesicular bodies which have been associated with endosomal trafficking events by confocal microscopy. Moreover, this approach allows assessing the cellular response towards the treatment by evaluating the morphological changes induced. This is especially relevant for the future usage of nanoformulations in clinical practices. This correlative super-resolution and X-ray imaging strategy joins high specificity, by the use of fluorescence, with high spatial resolution at 30 nm (half pitch) provided by cryo-SXT in whole cells, without the need of staining or fixation, and can be of particular benefit to locate specific molecules in the native cellular environment in bio-nanomedicine. A novel 3D cryo correlative approach locates designed therapeutic protein–nanomaterial hybrids in whole cells with high specificity and resolution. Detection of treatment-induced morphological changes, crucial for pre-clinical studies, are revealed.![]()
Collapse
Affiliation(s)
- J Groen
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| | - A Palanca
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Anatomy and Cell Biology, University of Cantabria 39011 Santander Spain
| | - A Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain
| | - J J Conesa
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain .,National Center for Biotechnology CSIC (CNB-CSIC), Department of Macromolecular Structures Cantoblanco 28049 Madrid Spain
| | - D Maestro
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain
| | - S Rehbein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Bessy II D-12489 Berlin Germany
| | - M Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - A V Villar
- Instituto de Biomedicina y Biotecnologia de Cantabria (IBBTEC), University of Cantabria, CSIC 39011 Santander Spain.,Department of Physiology and Pharmacology, University of Cantabria Avd. Herrera Oria s/n Santander Spain
| | - A L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia San Sebastian Spain .,Ikerbasque, Basque Foundation for Science 48009 Bilbao Spain
| | - E Pereiro
- MISTRAL Beamline, Experiments Division, ALBA Synchrotron Light Source Cerdanyola del Valles 08290 Barcelona Spain
| |
Collapse
|
29
|
Perez-Berna AJ, Benseny-Cases N, Rodríguez MJ, Valcarcel R, Carrascosa JL, Gastaminza P, Pereiro E. Monitoring reversion of hepatitis C virus-induced cellular alterations by direct-acting antivirals using cryo soft X-ray tomography and infrared microscopy. Acta Crystallogr D Struct Biol 2021; 77:1365-1377. [PMID: 34726165 PMCID: PMC8561738 DOI: 10.1107/s2059798321009955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatitis C virus (HCV) is an enveloped RNA virus. One of the hallmarks of HCV infection is a rearrangement of the host cell membranes, known as the `membranous web'. Full-field cryo soft X-ray tomography (cryo-SXT) in the water-window energy range (284-543 eV) was performed on the MISTRAL beamline to investigate, in whole unstained cells, the morphology of the membranous rearrangements induced in HCV replicon-harbouring cells in conditions close to the living physiological state. All morphological alterations could be reverted by a combination of sofosbuvir/daclatasvir, which are clinically approved antivirals (direct-acting antivirals; DAAs) for HCV infection. Correlatively combining cryo-SXT and 2D synchrotron-based infrared microscopy provides critical information on the chemical nature of specific infection-related structures, which allows specific patterns of the infection process or the DAA-mediated healing process to be distinguished.
Collapse
Affiliation(s)
- Ana J. Perez-Berna
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| | - Nuria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| | - María José Rodríguez
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Valcarcel
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| | - José L. Carrascosa
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, 08290 Cerdanyola del Valles, Spain
| |
Collapse
|
30
|
Fehse M, Iadecola A, Simonelli L, Longo A, Stievano L. The rise of X-ray spectroscopies for unveiling the functional mechanisms in batteries. Phys Chem Chem Phys 2021; 23:23445-23465. [PMID: 34664565 DOI: 10.1039/d1cp03263a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synchrotron-based techniques have been key tools in the discovery, understanding, and development of battery materials. In this review, some of the most suitable X-ray spectroscopy related techniques employed for addressing diverse scientific cases connected to battery science are highlighted. Furthermore, current shortcomings, intrinsic limitations, and ongoing challenges of individual techniques are pointed out, providing an outlook of future trends that are relevant to the battery research community. In particular, the ongoing development of next generation synchrotrons, machine learning algorithms for data analysis and combined theoretical/experimental approaches will enhance the already powerful assets of these advanced spectroscopic methods.
Collapse
Affiliation(s)
| | - Antonella Iadecola
- Rééseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, Amiens, France
| | | | - Alessandro Longo
- European Synchrotron Radiation Facility, Grenoble, France.,Istituto per lo Studio dei Materiali Nanostrutturati, ISMN-CNR UOS di Palermo, Palermo, Italy
| | - Lorenzo Stievano
- Rééseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS, Amiens, France.,ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
31
|
Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ. Imaging of Virus-Infected Cells with Soft X-ray Tomography. Viruses 2021; 13:2109. [PMID: 34834916 PMCID: PMC8618346 DOI: 10.3390/v13112109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.
Collapse
Affiliation(s)
- Damià Garriga
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Bárbara M. Calisto
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Diego S. Ferrero
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, 08028 Barcelona, Spain;
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | | |
Collapse
|
32
|
Improving a Rapid Alignment Method of Tomography Projections by a Parallel Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The high resolution of synchrotron cryo-nano tomography can be easily undermined by setup instabilities and sample stage deficiencies such as runout or backlash. At the cost of limiting the sample visibility, especially in the case of bio-specimens, high contrast nano-beads are often added to the solution to provide a set of landmarks for a manual alignment. However, the spatial distribution of these reference points within the sample is difficult to control, resulting in many datasets without a sufficient amount of such critical features for tracking. Fast automatic methods based on tomography consistency are thus desirable, especially for biological samples, where regular, high contrast features can be scarce. Current off-the-shelf implementations of such classes of algorithms are slow if used on a real-world high-resolution dataset. In this paper, we present a fast implementation of a consistency-based alignment algorithm especially tailored to a multi-GPU system. Our implementation is released as open-source.
Collapse
|
33
|
Soft X-ray Microscopy Techniques for Medical and Biological Imaging at TwinMic—Elettra. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Progress in nanotechnology calls for material probing techniques of high sensitivity and resolution. Such techniques are also used for high-impact studies of nanoscale materials in medicine and biology. Soft X-ray microscopy has been successfully used for investigating complex biological processes occurring at micrometric and sub-micrometric length scales and is one of the most powerful tools in medicine and the life sciences. Here, we present the capabilities of the TwinMic soft X-ray microscopy end-station at the Elettra synchrotron in the context of medical and biological imaging, while we also describe novel uses and developments.
Collapse
|
34
|
Kapishnikov S, Hempelmann E, Elbaum M, Als‐Nielsen J, Leiserowitz L. Malaria Pigment Crystals: The Achilles' Heel of the Malaria Parasite. ChemMedChem 2021; 16:1515-1532. [PMID: 33523575 PMCID: PMC8252759 DOI: 10.1002/cmdc.202000895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/14/2022]
Abstract
The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquine-hematin complex, at the vacuole's membrane.
Collapse
Affiliation(s)
- Sergey Kapishnikov
- Dept. of Chemical Research SupportWeizmann Institute of ScienceRehovot7610001Israel
| | - Ernst Hempelmann
- Center of Cellular and Molecular Biology of DiseasesInstituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP)City of Knowledge0843 (Republic ofPanama
| | - Michael Elbaum
- Dept. of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot7610001Israel
| | - Jens Als‐Nielsen
- Niels Bohr InstituteUniversity of Copenhagen2100CopenhagenDenmark
| | - Leslie Leiserowitz
- Dept. of Molecular Chemistry and Materials ScienceWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
35
|
Okolo CA, Kounatidis I, Groen J, Nahas KL, Balint S, Fish TM, Koronfel MA, Cortajarena AL, Dobbie IM, Pereiro E, Harkiolaki M. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc 2021; 16:2851-2885. [PMID: 33990802 DOI: 10.1038/s41596-021-00522-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).
Collapse
Affiliation(s)
- Chidinma A Okolo
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | | | - Kamal L Nahas
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stefan Balint
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Thomas M Fish
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Mohamed A Koronfel
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Eva Pereiro
- Beamline 09-MISTRAL, ALBA Synchrotron, Barcelona, Spain
| | - Maria Harkiolaki
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
36
|
Sorrentino A, Malucelli E, Rossi F, Cappadone C, Farruggia G, Moscheni C, Perez-Berna AJ, Conesa JJ, Colletti C, Roveri N, Pereiro E, Iotti S. Calcite as a Precursor of Hydroxyapatite in the Early Biomineralization of Differentiating Human Bone-Marrow Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22094939. [PMID: 34066542 PMCID: PMC8125725 DOI: 10.3390/ijms22094939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Biomineralization is the process by which living organisms generate organized mineral crystals. In human cells, this phenomenon culminates with the formation of hydroxyapatite, which is a naturally occurring mineral form of calcium apatite. The mechanism that explains the genesis within the cell and the propagation of the mineral in the extracellular matrix still remains largely unexplained, and its characterization is highly controversial, especially in humans. In fact, up to now, biomineralization core knowledge has been provided by investigations on the advanced phases of this process. In this study, we characterize the contents of calcium depositions in human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days using synchrotron-based cryo-soft-X-ray tomography and cryo-XANES microscopy. The reported results suggest crystalline calcite as a precursor of hydroxyapatite depositions within the cells in the biomineralization process. In particular, both calcite and hydroxyapatite were detected within the cell during the early phase of osteogenic differentiation. This striking finding may redefine most of the biomineralization models published so far, taking into account that they have been formulated using murine samples while studies in human cell lines are still scarce.
Collapse
Affiliation(s)
- Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- Correspondence:
| | - Francesca Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, Università degli Studi di Milano, 20157 Milan, Italy;
| | - Ana J. Perez-Berna
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Jose Javier Conesa
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Chiara Colletti
- Chemical Center S.r.l, Granarolo dell’ Emilia, 40057 Bologna, Italy; (C.C.); (N.R.)
| | - Norberto Roveri
- Chemical Center S.r.l, Granarolo dell’ Emilia, 40057 Bologna, Italy; (C.C.); (N.R.)
| | - Eva Pereiro
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain; (A.S.); (A.J.P.-B.); (J.J.C.); (E.P.)
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (F.R.); (C.C.); (G.F.); (S.I.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
37
|
Creation and observation of Hopfions in magnetic multilayer systems. Nat Commun 2021; 12:1562. [PMID: 33692363 PMCID: PMC7946913 DOI: 10.1038/s41467-021-21846-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Among topological solitons, magnetic skyrmions are two-dimensional particle-like objects with a continuous winding of the magnetization, and magnetic Hopfions are three-dimensional objects that can be formed from a closed loop of twisted skyrmion strings. Theoretical models suggest that magnetic Hopfions can be stabilized in frustrated or chiral magnetic systems, and target skymions can be transformed into Hopfions by adapting their perpendicular magnetic anisotropy, but their experimental verification has been elusive so far. Here, we present an experimental study of magnetic Hopfions that are created in Ir/Co/Pt multilayers shaped into nanoscale disks, known to host target skyrmions. To characterize three-dimensional spin textures that distinguish Hopfions from target skyrmions magnetic images are recorded with surface-sensitive X-ray photoemission electron microscopy and bulk-sensitive soft X-ray transmission microscopy using element-specific X-ray magnetic circular dichroism effects as magnetic contrast. These results could stimulate further investigations of Hopfions and their potential application in three-dimensional spintronics devices. In three dimensions, magnetic Skyrmions can form extended strings. By connecting the ends of a Skyrmionic string, a magnetic Hopfion is formed. Here, the authors present experimental evidence for the appearance of Hopfions, a topological soliton defined by a Hopf number, in a magnetic system.
Collapse
|
38
|
Revealing 3D magnetization of thin films with soft X-ray tomography: magnetic singularities and topological charges. Nat Commun 2020; 11:6382. [PMID: 33318487 PMCID: PMC7736288 DOI: 10.1038/s41467-020-20119-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
The knowledge of how magnetization looks inside a ferromagnet is often hindered by the limitations of the available experimental methods which are sensitive only to the surface regions or limited in spatial resolution. Here we report a vector tomographic reconstruction based on soft X-ray transmission microscopy and magnetic dichroism data, which has allowed visualizing the three-dimensional magnetization in a ferromagnetic thin film heterostructure. Different non-trivial topological textures have been resolved and the determination of their topological charge has allowed us to identify a Bloch point and a meron-like texture. Our method relies only on experimental data and might be of wide application and interest in 3D nanomagnetism. Although magnetic tomography has been used in the past to determine the 3D magnetization of materials its application to thin films remains challenging. Here the authors reconstruct the magnetization of a thin film, enabling the measurement of topological charges of magnetic singularities.
Collapse
|
39
|
Kahil K, Varsano N, Sorrentino A, Pereiro E, Rez P, Weiner S, Addadi L. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae. Proc Natl Acad Sci U S A 2020; 117:30957-30965. [PMID: 33229583 PMCID: PMC7733801 DOI: 10.1073/pnas.1918195117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. The primary mesenchyme cells (PMCs) are the cells that are responsible for spicule formation. PMCs endocytose sea water from the larval internal body cavity into a network of vacuoles and vesicles, where calcium ions are concentrated until they precipitate in the form of amorphous calcium carbonate (ACC). The mineral is subsequently transferred to the syncytium, where the spicule forms. Using cryo-soft X-ray microscopy we imaged intracellular calcium-containing particles in the PMCs and acquired Ca-L2,3 X-ray absorption near-edge spectra of these Ca-rich particles. Using the prepeak/main peak (L2'/ L2) intensity ratio, which reflects the atomic order in the first Ca coordination shell, we determined the state of the calcium ions in each particle. The concentration of Ca in each of the particles was also determined by the integrated area in the main Ca absorption peak. We observed about 700 Ca-rich particles with order parameters, L2'/ L2, ranging from solution to hydrated and anhydrous ACC, and with concentrations ranging between 1 and 15 M. We conclude that in each cell the calcium ions exist in a continuum of states. This implies that most, but not all, water is expelled from the particles. This cellular process of calcium concentration may represent a widespread pathway in mineralizing organisms.
Collapse
Affiliation(s)
- Keren Kahil
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Neta Varsano
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Andrea Sorrentino
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290 Barcelona, Spain
| | - Peter Rez
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Steve Weiner
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
40
|
Dehlinger A, Seim C, Stiel H, Twamley S, Ludwig A, Kördel M, Grötzsch D, Rehbein S, Kanngießer B. Laboratory Soft X-Ray Microscopy with an Integrated Visible-Light Microscope-Correlative Workflow for Faster 3D Cell Imaging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1124-1132. [PMID: 33023699 DOI: 10.1017/s1431927620024447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Laboratory transmission soft X-ray microscopy (L-TXM) has emerged as a complementary tool to synchrotron-based TXM and high-resolution biomedical 3D imaging in general in recent years. However, two major operational challenges in L-TXM still need to be addressed: a small field of view and a potentially misaligned rotation stage. As it is not possible to alter the magnification during operation, the field of view in L-TXM is usually limited to a few tens of micrometers. This complicates locating areas and objects of interest in the sample. Additionally, if the rotation axis of the sample stage cannot be adjusted prior to the experiments, an efficient workflow for tomographic imaging cannot be established, as refocusing and sample repositioning will become necessary after each recorded projection. Both these limitations have been overcome with the integration of a visible-light microscope (VLM) into the L-TXM system. Here, we describe the calibration procedure of the goniometer sample stage and the integrated VLM and present the resulting 3D imaging of a test sample. In addition, utilizing this newly integrated VLM, the extracellular matrix of cryofixed THP-1 cells (human acute monocytic leukemia cells) was visualized by L-TXM for the first time in the context of an ongoing biomedical research project.
Collapse
Affiliation(s)
- Aurélie Dehlinger
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, Berlin10623, Germany
- Berlin Laboratory for Innovative X-ray technologies (BLiX), Hardenbergstraße 36, Berlin10623, Germany
| | - Christian Seim
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, Berlin10623, Germany
- Berlin Laboratory for Innovative X-ray technologies (BLiX), Hardenbergstraße 36, Berlin10623, Germany
| | - Holger Stiel
- Berlin Laboratory for Innovative X-ray technologies (BLiX), Hardenbergstraße 36, Berlin10623, Germany
- Max-Born-Institut (MBI) im Forschungsverbund Berlin e.V., Max-Born-Straße 2A, Berlin12489, Germany
| | - Shailey Twamley
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Charitéplatz 1, 10117Berlin, Germany
| | - Antje Ludwig
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medizinische Klinik für Kardiologie und Angiologie, Campus Mitte, Charitéplatz 1, 10117Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Charitéplatz 1, 10117Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Radiologie, Charitéplatz 1, 10117Berlin, Germany
| | - Mikael Kördel
- Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm106 91, Sweden
| | - Daniel Grötzsch
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, Berlin10623, Germany
- Berlin Laboratory for Innovative X-ray technologies (BLiX), Hardenbergstraße 36, Berlin10623, Germany
| | - Stefan Rehbein
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15, Berlin12489, Germany
| | - Birgit Kanngießer
- Technische Universität Berlin, Institut für Optik und Atomare Physik, Hardenbergstraße 36, Berlin10623, Germany
- Berlin Laboratory for Innovative X-ray technologies (BLiX), Hardenbergstraße 36, Berlin10623, Germany
| |
Collapse
|
41
|
Shapiro DA, Babin S, Celestre RS, Chao W, Conley RP, Denes P, Enders B, Enfedaque P, James S, Joseph JM, Krishnan H, Marchesini S, Muriki K, Nowrouzi K, Oh SR, Padmore H, Warwick T, Yang L, Yashchuk VV, Yu YS, Zhao J. An ultrahigh-resolution soft x-ray microscope for quantitative analysis of chemically heterogeneous nanomaterials. SCIENCE ADVANCES 2020; 6:6/51/eabc4904. [PMID: 33328228 PMCID: PMC7744074 DOI: 10.1126/sciadv.abc4904] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/02/2020] [Indexed: 05/30/2023]
Abstract
The analysis of chemical states and morphology in nanomaterials is central to many areas of science. We address this need with an ultrahigh-resolution scanning transmission soft x-ray microscope. Our instrument provides multiple analysis tools in a compact assembly and can achieve few-nanometer spatial resolution and high chemical sensitivity via x-ray ptychography and conventional scanning microscopy. A novel scanning mechanism, coupled to advanced x-ray detectors, a high-brightness x-ray source, and high-performance computing for analysis provide a revolutionary step forward in terms of imaging speed and resolution. We present x-ray microscopy with 8-nm full-period spatial resolution and use this capability in conjunction with operando sample environments and cryogenic imaging, which are now routinely available. Our multimodal approach will find wide use across many fields of science and facilitate correlative analysis of materials with other types of probes.
Collapse
Affiliation(s)
- David A Shapiro
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | - Richard S Celestre
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weilun Chao
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Raymond P Conley
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Peter Denes
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bjoern Enders
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- National Energy Research Scientific Computing Center, Berkeley, CA 94720, USA
| | - Pablo Enfedaque
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan James
- Information Technology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John M Joseph
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Harinarayan Krishnan
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Stefano Marchesini
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Krishna Muriki
- Information Technology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kasra Nowrouzi
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Advanced Quantum Testbed, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sharon R Oh
- Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Howard Padmore
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tony Warwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lee Yang
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Valeriy V Yashchuk
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Young-Sang Yu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiangtao Zhao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
42
|
Four-Dimensional Characterization of the Babesia divergens Asexual Life Cycle, from the Trophozoite to the Multiparasite Stage. mSphere 2020; 5:5/5/e00928-20. [PMID: 33055261 PMCID: PMC7565898 DOI: 10.1128/msphere.00928-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Babesiosis is a disease caused by intraerythrocytic Babesia parasites, which possess many clinical features that are similar to those of malaria. This worldwide disease is increasing in frequency and geographical range and has a significant impact on human and animal health. Babesia divergens is one of the species responsible for human and cattle babesiosis causing death unless treated promptly. When B. divergens infects its vertebrate hosts, it reproduces asexually within red blood cells. During its asexual life cycle, B. divergens builds a population of numerous intraerythrocytic (IE) parasites of difficult interpretation. This complex population is largely unexplored, and we have therefore combined three- and four-dimensional imaging techniques to elucidate the origin, architecture, and kinetics of IE parasites. Unveiling the nature of these parasites has provided a vision of the B. divergens asexual cycle in unprecedented detail and is a key step to develop control strategies against babesiosis. Babesia is an apicomplexan parasite of significance that causes the disease known as babesiosis in domestic and wild animals and in humans worldwide. Babesia infects vertebrate hosts and reproduces asexually by a form of binary fission within erythrocytes/red blood cells (RBCs), yielding a complex pleomorphic population of intraerythrocytic parasites. Seven of them, clearly visible in human RBCs infected with Babesia divergens, are considered the main forms and named single, double, and quadruple trophozoites, paired and double paired pyriforms, tetrad or Maltese Cross, and multiparasite stage. However, these main intraerythrocytic forms coexist with RBCs infected with transient parasite combinations of unclear origin and development. In fact, little is understood about how Babesia builds this complex population during its asexual life cycle. By combining cryo-soft X-ray tomography and video microscopy, main and transitory parasites were characterized in a native whole cellular context and at nanometric resolution. The architecture and kinetics of the parasite population was observed in detail and provide additional data to the previous B. divergens asexual life cycle model that was built on light microscopy. Importantly, the process of multiplication by binary fission, involving budding, was visualized in live parasites for the first time, revealing that fundamental changes in cell shape and continuous rounds of multiplication occur as the parasites go through their asexual multiplication cycle. A four-dimensional asexual life cycle model was built highlighting the origin of several transient morphological forms that, surprisingly, intersperse in a chronological order between one main stage and the next in the cycle. IMPORTANCE Babesiosis is a disease caused by intraerythrocytic Babesia parasites, which possess many clinical features that are similar to those of malaria. This worldwide disease is increasing in frequency and geographical range and has a significant impact on human and animal health. Babesia divergens is one of the species responsible for human and cattle babesiosis causing death unless treated promptly. When B. divergens infects its vertebrate hosts, it reproduces asexually within red blood cells. During its asexual life cycle, B. divergens builds a population of numerous intraerythrocytic (IE) parasites of difficult interpretation. This complex population is largely unexplored, and we have therefore combined three- and four-dimensional imaging techniques to elucidate the origin, architecture, and kinetics of IE parasites. Unveiling the nature of these parasites has provided a vision of the B. divergens asexual cycle in unprecedented detail and is a key step to develop control strategies against babesiosis.
Collapse
|
43
|
Reineck P, Abraham AN, Poddar A, Shukla R, Abe H, Ohshima T, Gibson BC, Dekiwadia C, Conesa JJ, Pereiro E, Gelmi A, Bryant G. Multimodal Imaging and Soft X-Ray Tomography of Fluorescent Nanodiamonds in Cancer Cells. Biotechnol J 2020; 16:e2000289. [PMID: 32975037 DOI: 10.1002/biot.202000289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Multimodal imaging promises to revolutionize the understanding of biological processes across scales in space and time by combining the strengths of multiple imaging techniques. Fluorescent nanodiamonds (FNDs) are biocompatible, chemically inert, provide high contrast in light- and electron-based microscopy, and are versatile optical quantum sensors. Here it is demonstrated that FNDs also provide high absorption contrast in nanoscale 3D soft X-ray tomograms with a resolution of 28 nm in all dimensions. Confocal fluorescence, atomic force, and scanning electron microscopy images of FNDs inside and on the surface of PC3 cancer cells with sub-micrometer precision are correlated. FNDs are found inside ≈1 µm sized vesicles present in the cytoplasm, providing direct evidence of the active uptake of bare FNDs by cancer cells. Imaging artefacts are quantified and separated from changes in cell morphology caused by sample preparation. These results demonstrate the utility of FNDs in multimodal imaging, contribute to the understanding of the fate of FNDs in cells, and open up new possibilities for biological imaging and sensing across the nano- and microscale.
Collapse
Affiliation(s)
- Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Amanda N Abraham
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Arpita Poddar
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Hiroshi Abe
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Takeshi Ohshima
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, 370-1292, Japan
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria, 3001, Australia
| | - José J Conesa
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments division, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments division, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Amy Gelmi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Gary Bryant
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
44
|
Ruiz-Gómez S, Fernández-González C, Martínez E, Raposo V, Sorrentino A, Foerster M, Aballe L, Mascaraque A, Ferrer S, Pérez L. Helical surface magnetization in nanowires: the role of chirality. NANOSCALE 2020; 12:17880-17885. [PMID: 32840551 DOI: 10.1039/d0nr05424k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanomagnetism is nowadays expanding into three dimensions, triggered by the discovery of new magnetic phenomena and their potential use in applications. This shift towards 3D structures should be accompanied by strategies and methodologies to map the tridimensional spin textures associated. We present here a combination of dichroic X-ray transmission microscopy at different angles and micromagnetic simulations allowing to determine the magnetic configuration of cylindrical nanowires. We have applied it to permalloy nanowires with equispaced chemical barriers that can act as pinning sites for domain walls. The magnetization at the core is longitudinal and generates at the surface of the wire helical magnetization. Different types of domain walls are found at the pinning sites, which respond differently to applied fields depending on the relative chirality of the adjacent domains.
Collapse
Affiliation(s)
- Sandra Ruiz-Gómez
- Dept Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sanz-Hernández D, Hierro-Rodriguez A, Donnelly C, Pablo-Navarro J, Sorrentino A, Pereiro E, Magén C, McVitie S, de Teresa JM, Ferrer S, Fischer P, Fernández-Pacheco A. Artificial Double-Helix for Geometrical Control of Magnetic Chirality. ACS NANO 2020; 14:8084-8092. [PMID: 32633492 PMCID: PMC7497658 DOI: 10.1021/acsnano.0c00720] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/26/2020] [Indexed: 05/06/2023]
Abstract
Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.
Collapse
Affiliation(s)
- Dédalo Sanz-Hernández
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Unité
Mixte de Physique, CNRS, Thales, Université
Paris-Saclay, 91767 Palaiseau, France
| | - Aurelio Hierro-Rodriguez
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow G12 8QQ, U.K.
- Departamento
de Física, Universidad de Oviedo, 33007 Oviedo, Spain
- CINN
(CSIC-Universidad de Oviedo), 33940 El Entrego, Spain
| | - Claire Donnelly
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Javier Pablo-Navarro
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | | | - Eva Pereiro
- ALBA
Synchrotron, 08290 Cerdanyola del Vallès, Spain
| | - César Magén
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain
| | - Stephen McVitie
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - José María de Teresa
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain
| | | | - Peter Fischer
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Physics
Department, University of California Santa
Cruz, Santa
Cruz, California 95064, United States
| | - Amalio Fernández-Pacheco
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
46
|
Hempel C, Kapishnikov S, Perez-Berna AJ, Werner S, Guttmann P, Pereiro E, Qvortrup K, Andresen TL. The need to freeze-Dehydration during specimen preparation for electron microscopy collapses the endothelial glycocalyx regardless of fixation method. Microcirculation 2020; 27:e12643. [PMID: 32542908 DOI: 10.1111/micc.12643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The endothelial glycocalyx covers the luminal surface of the endothelium and plays key roles in vascular function. Despite its biological importance, ideal visualization techniques are lacking. The current study aimed to improve the preservation and subsequent imaging quality of the endothelial glycocalyx. METHODS In mice, the endothelial glycocalyx was contrasted with a mixture of lanthanum and dysprosium (LaDy). Standard chemical fixation was compared with high-pressure frozen specimens processed with freeze substitution. Also, isolated brain microvessels and cultured endothelial cells were high-pressure frozen and by transmission soft x-rays, imaged under cryogenic conditions. RESULTS The endothelial glycocalyx was in some tissues significantly more voluminous from chemically fixed specimens compared with high-pressure frozen specimens. LaDy labeling introduced excessive absorption contrast, which impeded glycocalyx measurements in isolated brain microvessels when using transmission soft x-rays. In non-contrasted vessels, the glycocalyx was not resolved. LaDy-contrasted, cultured brain endothelial cells allowed to assess glycocalyx volume in vitro. CONCLUSIONS Both chemical and cryogenic fixation followed by dehydration lead to substantial collapse of the glycocalyx. Cryogenic fixation without freeze substitution could be a way forward although transmission soft x-ray tomography based solely on amplitude contrast seems unsuitable.
Collapse
Affiliation(s)
- Casper Hempel
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Centre for Medical Parasitology, Department for Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Kapishnikov
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephan Werner
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Peter Guttmann
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy (CFIM), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
47
|
Jamme F, Cinquin B, Gohon Y, Pereiro E, Réfrégiers M, Froissard M. Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:772-778. [PMID: 32381780 PMCID: PMC7206545 DOI: 10.1107/s1600577520003847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells.
Collapse
Affiliation(s)
- Frédéric Jamme
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Bertrand Cinquin
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Yann Gohon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - Eva Pereiro
- MISTRAL Beamline, ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | | | - Marine Froissard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
48
|
Gil S, Solano E, Martínez-Trucharte F, Martínez-Esaín J, Pérez-Berná AJ, Conesa JJ, Kamma-Lorger C, Alsina M, Sabés M. Multiparametric analysis of the effectiveness of cisplatin on cutaneous squamous carcinoma cells using two different types of adjuvants. PLoS One 2020; 15:e0230022. [PMID: 32143211 PMCID: PMC7060073 DOI: 10.1371/journal.pone.0230022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
The objective of this study was to regulate the cytotoxicity of cisplatin (cisPt) minimizing its adverse effects. For this purpose, the lowest cisPt concentration needed to obtain a significant positive response in cutaneous squamous cell carcinoma (cSCC) was explored. Two adjuvant agents as gold nanoparticles (AuNP) and chelating tricine were tested as enhancers in cisPt treatment. Effectiveness of all treatments was assessed by means of biochemical techniques, which offer quantitative data, as well as two microscopy–based techniques that provided qualitative cell imaging. The present work confirms the effectiveness of free cisplatin at very low concentrations. In order to enhance its effectiveness while the side effects were probably diminished, cisPt 3.5 μM was administered with AuNP 2.5 mM, showing an effectiveness practically equal to that observed with free cisPt. However, the second treatment investigated, based on cisPt 3.5 μM combined with tricine 50 mM, enhanced drug effectiveness, increasing the percentage of cells dying by apoptosis. This treatment was even better in terms of cell damage than free cisPt at 15 μM. Images obtained by TEM and cryo-SXT confirmed these results, since a notable number of apoptotic bodies were detected when cisPt was combined with tricine. Thus, tricine was clearly a better adjuvant for cisPt treatments.
Collapse
Affiliation(s)
- Silvia Gil
- Hospital Clínic de Barcelona, Barcelona, Spain
- Hospital Parc Taulí, Sabadell, Barcelona, Spain
- * E-mail:
| | | | | | | | | | | | - Christina Kamma-Lorger
- Australian Synchrotron–Australian Nuclear Science and Technology Organisation, Clayton, Victoria, Australia
| | | | - Manel Sabés
- ALBA Synchrotron Light Source, Barcelona, Spain
- Unitat de Biofísica, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
49
|
Kepsutlu B, Wycisk V, Achazi K, Kapishnikov S, Pérez-Berná AJ, Guttmann P, Cossmer A, Pereiro E, Ewers H, Ballauff M, Schneider G, McNally JG. Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS NANO 2020; 14:2248-2264. [PMID: 31951375 DOI: 10.1021/acsnano.9b09264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1-6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Virginia Wycisk
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Katharina Achazi
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Sergey Kapishnikov
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Ana Joaquina Pérez-Berná
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Peter Guttmann
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Antje Cossmer
- Division 1.1 - Inorganic Trace Analysis , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Str. 11 , 12489 Berlin , Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Helge Ewers
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Chemistry and Biochemisty, Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Thielallee 63 , 14195 Berlin , Germany
| | - Matthias Ballauff
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - Gerd Schneider
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - James G McNally
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| |
Collapse
|
50
|
Witte K, Späth A, Finizio S, Donnelly C, Watts B, Sarafimov B, Odstrcil M, Guizar-Sicairos M, Holler M, Fink RH, Raabe J. From 2D STXM to 3D Imaging: Soft X-ray Laminography of Thin Specimens. NANO LETTERS 2020; 20:1305-1314. [PMID: 31951418 DOI: 10.1021/acs.nanolett.9b04782] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
X-ray tomography has become an indispensable tool for studying complex 3D interior structures with high spatial resolution. Three-dimensional imaging using soft X-rays offers powerful contrast mechanisms but has seen limited success with tomography due to the restrictions imposed by the much lower energy of the probe beam. The generalized geometry of laminography, characterized by a tilted axis of rotation, provides nm-scale 3D resolution for the investigation of extended (mm range) but thin (μm to nm) samples that are well suited to soft X-ray studies. This work reports on the implementation of soft X-ray laminography (SoXL) at the scanning transmission X-ray spectromicroscope of the PolLux beamline at the Swiss Light Source, Paul Scherrer Institut, which enables 3D imaging of extended specimens from 270 to 1500 eV. Soft X-ray imaging provides contrast mechanisms for both chemical sensitivity to molecular bonds and oxidation states and magnetic dichroism due to the much stronger attenuation of X-rays in this energy range. The presented examples of applications range from functionalized nanomaterials to biological photonic crystals and sophisticated nanoscaled magnetic domain patterns, thus illustrating the wide fields of research that can benefit from SoXL.
Collapse
Affiliation(s)
- Katharina Witte
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Andreas Späth
- Department Chemie und Pharmazie, Physikalische Chemie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Simone Finizio
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Claire Donnelly
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge , CB3 0HE , United Kingdom
| | - Benjamin Watts
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Blagoj Sarafimov
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Michal Odstrcil
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Manuel Guizar-Sicairos
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Mirko Holler
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| | - Rainer H Fink
- Department Chemie und Pharmazie, Physikalische Chemie , Friedrich-Alexander-Universität Erlangen-Nürnberg , Egerlandstrasse 3 , 91058 Erlangen , Germany
| | - Jörg Raabe
- Swiss Light Source , Paul Scherrer Institut , Forschungsstrasse 111 , 5232 Villigen , Switzerland
| |
Collapse
|