1
|
Oberthür D, Hakanpää J, Chatziefthymiou S, Pompidor G, Bean R, Chapman HN, Weckert E. Present and future structural biology activities at DESY and the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:474-485. [PMID: 39964790 DOI: 10.1107/s1600577525000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025]
Abstract
Structural biology investigations using synchrotron radiation have a long history at the photon science facilities at DESY. Presently, EMBL and DESY operate state-of-the-art macromolecular crystallography and biological SAXS stations at the synchrotron radiation source PETRA III for the international user community. New experimental opportunities for experiments with femtosecond temporal resolution and for extremely small macromolecular crystals have become available with the advent of X-ray free-electron lasers (XFELs) such as the European XFEL. Within large international collaborations, groups at DESY and the European XFEL have contributed significantly to the development of experimental and data analysis methods to enable serial crystallography experiments at both XFELs and high-brilliance synchrotron radiation sources. The available portfolio of analytical infrastructure in photon science at DESY has attracted several campus partners to contribute to the development of instruments and methods and provide their own complementary experimental techniques, thereby establishing a fruitful scientific environment to make significant contributions to present and future societal challenges in the field of life sciences.
Collapse
Affiliation(s)
- Dominik Oberthür
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johanna Hakanpää
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Guilllaume Pompidor
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Henry N Chapman
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Edgar Weckert
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
2
|
Kim J, Hyun H, Kim S, Hwang SM, Kim MJ, Jang D, Kim KS, Shin J, Kim S, Hwang J, Lee SY, Park E, Kim S, Eom I, Song C, Nam D. Development of the Nanobeam X-ray Experiments instrument at PAL-XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:466-473. [PMID: 39937517 DOI: 10.1107/s1600577525000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
A Nanobeam X-ray Experiments (NXE) instrument was developed and installed at the hard X-ray beamline of the Pohang Accelerator Laboratory X-ray Free Electron Laser. This instrument consists of a diagnostic system, focusing optics, an X-ray diffraction endstation and a femtosecond laser delivery system. The NXE instrument enables sophisticated X-ray experiments using nanofocused X-rays. At a 9.5 keV X-ray energy, the beam was successfully focused to 390 nm × 230 nm at the focal plane using Kirkpatrick-Baez mirrors. Following the successful commissioning experiments in December 2021 and April 2022, the instrument became available for regular user experiments in January 2023. The first user experiment was conducted in January 2024. This article provides detailed information on the beamline optics, the NXE instrument, and its performance and capabilities.
Collapse
Affiliation(s)
- Jangwoo Kim
- PLS-II Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - HyoJung Hyun
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seonghan Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sun Min Hwang
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Myong Jin Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dogeun Jang
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kyung Sook Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaeyong Shin
- 4GSR Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sejin Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Junha Hwang
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Yun Lee
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Eunyoung Park
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sangsoo Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Intae Eom
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Changyong Song
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Daewoong Nam
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Koliyadu JCP, Moško D, Asimakopoulou EM, Bellucci V, Birnšteinová Š, Bean R, Letrun R, Kim C, Kirkwood H, Giovanetti G, Jardon N, Szuba J, Guest T, Koch A, Grünert J, Szeles P, Villanueva-Perez P, Reuter F, Ohl CD, Noack MA, Garcia-Moreno F, Kuglerová-Valdová Z, Juha L, Nikl M, Yashiro W, Soyama H, Eakins D, Korsunsky AM, Uličný J, Meents A, Chapman HN, Mancuso AP, Sato T, Vagovič P. Development of MHz X-ray phase contrast imaging at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:17-28. [PMID: 39565194 PMCID: PMC11708855 DOI: 10.1107/s160057752400986x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
We report on recent developments that enable megahertz hard X-ray phase contrast imaging (MHz XPCI) experiments at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL facility (EuXFEL). We describe the technical implementation of the key components, including an MHz fast camera and a modular indirect X-ray microscope system based on fast scintillators coupled through a high-resolution optical microscope, which enable full-field X-ray microscopy with phase contrast of fast and irreversible phenomena. The image quality for MHz XPCI data showed significant improvement compared with a pilot demonstration of the technique using parallel beam illumination, which also allows access to up to 24 keV photon energies at the SPB/SFX instrument of the EuXFEL. With these developments, MHz XPCI was implemented as a new method offered for a broad user community (academic and industrial) and is accessible via standard user proposals. Furthermore, intra-train pulse diagnostics with a high few-micrometre spatial resolution and recording up to 128 images of consecutive pulses in a train at up to 1.1 MHz repetition rate is available upstream of the instrument. Together with the diagnostic camera upstream of the instrument and the MHz XPCI setup at the SPB/SFX instrument, simultaneous two-plane measurements for future beam studies and feedback for machine parameter tuning are now possible.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chan Kim
- European XFEL GmbHSchenefeldGermany
| | | | | | | | | | - Trey Guest
- European XFEL GmbHSchenefeldGermany
- Department of Chemistry and Physics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
| | | | | | | | | | - Fabian Reuter
- Faculty of Natural Sciences, Institute for PhysicsOtto von Guericke University MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Claus-Dieter Ohl
- Faculty of Natural Sciences, Institute for PhysicsOtto von Guericke University MagdeburgUniversitätsplatz 239106MagdeburgGermany
| | - Mike Andreas Noack
- Institute of Materials Science and Technology, Technische Universität Berlin, Hardenbergstrasse 36, 10623Berlin, Germany
| | - Francisco Garcia-Moreno
- Institute of Materials Science and Technology, Technische Universität Berlin, Hardenbergstrasse 36, 10623Berlin, Germany
- Institute of Applied MaterialsHelmholtz-Zentrum Berlin für Materialien und EnergieHahn-Meitner-Platz 114109BerlinGermany
| | | | - Libor Juha
- FZU – Institute of PhysicsCzech Academy of SciencesPragueCzech Republic
| | - Martin Nikl
- FZU – Institute of PhysicsCzech Academy of SciencesPragueCzech Republic
| | - Wataru Yashiro
- International Center for Synchrotron Radiation Innovation Smart (SRIS)Tohoku UniversityKatahira 2-1-1, Aoba-kuSendaiMiyagi980-8577Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversityKatahira 2-1-1, Aoba-kuSendaiMiyagi980-8577Japan
- Department of Applied Physics, School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Hitoshi Soyama
- Department of FinemechanicsTohoku University6-6-01 Aramaki, Aoba-kuSendai980-8579Japan
| | - Daniel Eakins
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUnited Kingdom
| | - Alexander M. Korsunsky
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUnited Kingdom
| | | | - Alke Meents
- Center for Free-Electron Laser Science (CFEL)Deutsches Elektronen-Synchrotron (DESY)Notkestrasse 8522607HamburgGermany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science (CFEL)Deutsches Elektronen-Synchrotron (DESY)Notkestrasse 8522607HamburgGermany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbHSchenefeldGermany
- Department of Chemistry and Physics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoria3086Australia
- Diamond Light Source LtdHarwell Science and Innovation CampusDidcotOX11 0DEUnited Kingdom
| | | | - Patrik Vagovič
- European XFEL GmbHSchenefeldGermany
- Center for Free-Electron Laser Science (CFEL)Deutsches Elektronen-Synchrotron (DESY)Notkestrasse 8522607HamburgGermany
| |
Collapse
|
4
|
Patel J, Round A, de Wijn R, Vakili M, Giovanetti G, Melo DFMVE, E J, Sikorski M, Koliyadu J, Koua FHM, Sato T, Mancuso A, Peele A, Abbey B. Real-time analysis of liquid jet sample delivery stability for an X-ray free-electron laser using machine vision. J Appl Crystallogr 2024; 57:1859-1870. [PMID: 39628876 PMCID: PMC11611288 DOI: 10.1107/s1600576724009853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 12/06/2024] Open
Abstract
Automated evaluation of optical microscopy images of liquid jets, commonly used for sample delivery at X-ray free-electron lasers (XFELs), enables real-time tracking of the jet position and liquid jet hit rates, defined here as the proportion of XFEL pulses intersecting with the liquid jet. This method utilizes machine vision for preprocessing, feature extraction, segmentation and jet detection as well as tracking to extract key physical characteristics (such as the jet angle) from optical microscopy images captured during experiments. To determine the effectiveness of these tools in monitoring jet stability and enhancing sample delivery efficiency, we conducted XFEL experiments with various sample compositions (pure water, buffer and buffer with crystals), nozzle designs and jetting conditions. We integrated our real-time analysis algorithm into the Karabo control system at the European XFEL. The results indicate that the algorithm performs well in monitoring the jet angle and provides a quantitative characterization of liquid jet stability through optical image analysis conducted during experiments.
Collapse
Affiliation(s)
- Jaydeep Patel
- School of Computing, Engineering and Mathematical SciencesLa Trobe UniversityMelbourneVictoriaAustralia
| | | | | | - Mohammad Vakili
- European XFELSchenefeldGermany
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | | | | | | | | | | | | | | | - Adrian Mancuso
- School of Computing, Engineering and Mathematical SciencesLa Trobe UniversityMelbourneVictoriaAustralia
- European XFELSchenefeldGermany
- Diamond Light SourceDidcotUnited Kingdom
| | - Andrew Peele
- School of Computing, Engineering and Mathematical SciencesLa Trobe UniversityMelbourneVictoriaAustralia
- Australian SynchrotronAustralian Nuclear Science and Technology Organisation (ANSTO)ClaytonVictoriaAustralia
| | - Brian Abbey
- School of Computing, Engineering and Mathematical SciencesLa Trobe UniversityMelbourneVictoriaAustralia
- La Trobe Institute for Molecular Science (LIMS)La Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
5
|
Kapetanaki SM, Coquelle N, von Stetten D, Byrdin M, Rios-Santacruz R, Bean R, Bielecki J, Boudjelida M, Fekete Z, Grime GW, Han H, Hatton C, Kantamneni S, Kharitonov K, Kim C, Kloos M, Koua FHM, de Diego Martinez I, Melo D, Rane L, Round A, Round E, Sarma A, Schubert R, Schulz J, Sikorski M, Vakili M, Valerio J, Vitas J, de Wijn R, Wrona A, Zala N, Pearson A, Dörner K, Schirò G, Garman EF, Lukács A, Weik M. Crystal structure of a bacterial photoactivated adenylate cyclase determined by serial femtosecond and serial synchrotron crystallography. IUCRJ 2024; 11:991-1006. [PMID: 39470573 PMCID: PMC11533990 DOI: 10.1107/s2052252524010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
OaPAC is a recently discovered blue-light-using flavin adenosine dinucleotide (BLUF) photoactivated adenylate cyclase from the cyanobacterium Oscillatoria acuminata that uses adenosine triphosphate and translates the light signal into the production of cyclic adenosine monophosphate. Here, we report crystal structures of the enzyme in the absence of its natural substrate determined from room-temperature serial crystallography data collected at both an X-ray free-electron laser and a synchrotron, and we compare these structures with cryo-macromolecular crystallography structures obtained at a synchrotron by us and others. These results reveal slight differences in the structure of the enzyme due to data collection at different temperatures and X-ray sources. We further investigate the effect of the Y6W mutation in the BLUF domain, a mutation which results in a rearrangement of the hydrogen-bond network around the flavin and a notable rotation of the side chain of the critical Gln48 residue. These studies pave the way for picosecond-millisecond time-resolved serial crystallography experiments at X-ray free-electron lasers and synchrotrons in order to determine the early structural intermediates and correlate them with the well studied picosecond-millisecond spectroscopic intermediates.
Collapse
Affiliation(s)
- Sofia M. Kapetanaki
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Nicolas Coquelle
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL)Hamburg Unit c/o DESYNotkestrasse 8522607HamburgGermany
| | - Martin Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Ronald Rios-Santacruz
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Mohamed Boudjelida
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Zsuzsana Fekete
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Geoffrey W. Grime
- Surrey Ion Beam CentreUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Huijong Han
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Caitlin Hatton
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | | | - Chan Kim
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Marco Kloos
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | - Diogo Melo
- European XFELHolzkoppel 422869SchenefeldGermany
| | - Lukas Rane
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Adam Round
- European XFELHolzkoppel 422869SchenefeldGermany
| | | | | | | | | | | | | | | | - Jovana Vitas
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | | | | | - Ninon Zala
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Arwen Pearson
- Institute for Nanostructure and Solid-State PhysicsUniversität HamburgHARBOR, Luruper Chaussee 14922761HamburgGermany
| | | | - Giorgio Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| | - Elspeth F. Garman
- Department of BiochemistryUniversity of OxfordDorothy Crowfoot Hodgkin Building, South Parks RoadOxfordOX1 3QUUnited Kingdom
| | - András Lukács
- Department of Biophysics, Medical SchoolUniversity of PecsSzigeti Street 127624PécsHungary
| | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale38044GrenobleFrance
| |
Collapse
|
6
|
Bellucci V, Birnsteinova S, Sato T, Letrun R, Koliyadu JCP, Kim C, Giovanetti G, Deiter C, Samoylova L, Petrov I, Lopez Morillo L, Graceffa R, Adriano L, Huelsen H, Kollmann H, Tran Calliste TN, Korytar D, Zaprazny Z, Mazzolari A, Romagnoni M, Asimakopoulou EM, Yao Z, Zhang Y, Ulicny J, Meents A, Chapman HN, Bean R, Mancuso A, Villanueva-Perez P, Vagovic P. Development of crystal optics for X-ray multi-projection imaging for synchrotron and XFEL sources. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1534-1550. [PMID: 39431964 PMCID: PMC11542665 DOI: 10.1107/s1600577524008488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024]
Abstract
X-ray multi-projection imaging (XMPI) is an emerging experimental technique for the acquisition of rotation-free, time-resolved, volumetric information on stochastic processes. The technique is developed for high-brilliance light-source facilities, aiming to address known limitations of state-of-the-art imaging methods in the acquisition of 4D sample information, linked to their need for sample rotation. XMPI relies on a beam-splitting scheme, that illuminates a sample from multiple, angularly spaced viewpoints, and employs fast, indirect, X-ray imaging detectors for the collection of the data. This approach enables studies of previously inaccessible phenomena of industrial and societal relevance such as fractures in solids, propagation of shock waves, laser-based 3D printing, or even fast processes in the biological domain. In this work, we discuss in detail the beam-splitting scheme of XMPI. More specifically, we explore the relevant properties of X-ray splitter optics for their use in XMPI schemes, both at synchrotron insertion devices and XFEL facilities. Furthermore, we describe two distinct XMPI schemes, designed to faciliate large samples and complex sample environments. Finally, we present experimental proof of the feasibility of MHz-rate XMPI at the European XFEL. This detailed overview aims to state the challenges and the potential of XMPI and act as a stepping stone for future development of the technique.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL GmbHSchenefeldGermany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andrea Mazzolari
- University of Ferrara, Ferrara, Italy
- INFN – Istituto Nazionale di Fisica NucleareFerraraItaly
| | - Marco Romagnoni
- University of Ferrara, Ferrara, Italy
- INFN – Istituto Nazionale di Fisica NucleareFerraraItaly
| | | | - Zisheng Yao
- Synchrotron Radiation Research and NanoLund, Lund University, Sweden
| | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Sweden
| | | | - Alke Meents
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | | | - Adrian Mancuso
- European XFEL GmbHSchenefeldGermany
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0DEUnited Kingdom
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria3086, Australia
| | | | - Patrik Vagovic
- European XFEL GmbHSchenefeldGermany
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| |
Collapse
|
7
|
Dörner K, Smyth P, Schulz J. Sample delivery for structural biology at the European XFEL. Methods Enzymol 2024; 709:105-129. [PMID: 39608941 DOI: 10.1016/bs.mie.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free electron lasers (XFELs) is a valuable technique for time-resolved structural studies on enzymes. This method allows for the collection of high-resolution datasets of protein structures at various time points during a reaction initiated by light or mixing. Experiments are performed under non-cryogenic conditions and allow the collection of radiation damage free structures. At the European XFEL (EuXFEL), SFX experiments are mainly performed with liquid jets produced by gas dynamic virtual nozzles (GDVNs) and less frequent with a high viscous extruder (HVE). In this chapter we describe these delivery methods, with the focus on GDVNs. Instrumentation, sample requirements, and preparation steps for SFX beamtimes are discussed. Other sample delivery methods available at the EuXFEL are briefly introduced at the end of this chapter.
Collapse
|
8
|
Konold PE, Monrroy L, Bellisario A, Filipe D, Adams P, Alvarez R, Bean R, Bielecki J, Bódizs S, Ducrocq G, Grubmueller H, Kirian RA, Kloos M, Koliyadu JCP, Koua FHM, Larkiala T, Letrun R, Lindsten F, Maihöfer M, Martin AV, Mészáros P, Mutisya J, Nimmrich A, Okamoto K, Round A, Sato T, Valerio J, Westphal D, Wollter A, Yenupuri TV, You T, Maia F, Westenhoff S. Microsecond time-resolved X-ray scattering by utilizing MHz repetition rate at second-generation XFELs. Nat Methods 2024; 21:1608-1611. [PMID: 38969722 PMCID: PMC11399097 DOI: 10.1038/s41592-024-02344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Detecting microsecond structural perturbations in biomolecules has wide relevance in biology, chemistry and medicine. Here we show how MHz repetition rates at X-ray free-electron lasers can be used to produce microsecond time-series of protein scattering with exceptionally low noise levels of 0.001%. We demonstrate the approach by examining Jɑ helix unfolding of a light-oxygen-voltage photosensory domain. This time-resolved acquisition strategy is easy to implement and widely applicable for direct observation of structural dynamics of many biochemical processes.
Collapse
Affiliation(s)
- Patrick E Konold
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Alfredo Bellisario
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Diogo Filipe
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Patrick Adams
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Roberto Alvarez
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | | | | | - Szabolcs Bódizs
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Gabriel Ducrocq
- Department of Computer and Information Science (IDA), Linköping University, Linköping, Sweden
- The Division of Statistics and Machine Learning (STIMA), Linköping University, Linköping, Sweden
| | - Helmut Grubmueller
- Department of Computer and Information Science (IDA), Linköping University, Linköping, Sweden
| | | | - Marco Kloos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jayanath C P Koliyadu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Taru Larkiala
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Fredrik Lindsten
- Department of Computer and Information Science (IDA), Linköping University, Linköping, Sweden
- The Division of Statistics and Machine Learning (STIMA), Linköping University, Linköping, Sweden
| | - Michael Maihöfer
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew V Martin
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Petra Mészáros
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - August Wollter
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tong You
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Filipe Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Sebastian Westenhoff
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Stransky M, E J, Jurek Z, Santra R, Bean R, Ziaja B, Mancuso AP. Computational study of diffraction image formation from XFEL irradiated single ribosome molecule. Sci Rep 2024; 14:10617. [PMID: 38720133 PMCID: PMC11078940 DOI: 10.1038/s41598-024-61314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Single particle imaging at atomic resolution is perhaps one of the most desired goals for ultrafast X-ray science with X-ray free-electron lasers. Such a capability would create great opportunity within the biological sciences, as high-resolution structural information of biosamples that may not crystallize is essential for many research areas therein. In this paper, we report on a comprehensive computational study of diffraction image formation during single particle imaging of a macromolecule, containing over one hundred thousand non-hydrogen atoms. For this study, we use a dedicated simulation framework, SIMEX, available at the European XFEL facility. Our results demonstrate the full feasibility of computational single-particle imaging studies for biological samples of realistic size. This finding is important as it shows that the SIMEX platform can be used for simulations to inform relevant single-particle-imaging experiments and help to establish optimal parameters for these experiments. This will enable more focused and more efficient single-particle-imaging experiments at XFEL facilities, making the best use of the resource-intensive XFEL operation.
Collapse
Affiliation(s)
- Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland.
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic.
| | - Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Krakow, Poland
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
10
|
Reinke PYA, Schubert R, Oberthür D, Galchenkova M, Rahmani Mashhour A, Günther S, Chretien A, Round A, Seychell BC, Norton-Baker B, Kim C, Schmidt C, Koua FHM, Tolstikova A, Ewert W, Peña Murillo GE, Mills G, Kirkwood H, Brognaro H, Han H, Koliyadu J, Schulz J, Bielecki J, Lieske J, Maracke J, Knoska J, Lorenzen K, Brings L, Sikorski M, Kloos M, Vakili M, Vagovic P, Middendorf P, de Wijn R, Bean R, Letrun R, Han S, Falke S, Geng T, Sato T, Srinivasan V, Kim Y, Yefanov OM, Gelisio L, Beck T, Doré AS, Mancuso AP, Betzel C, Bajt S, Redecke L, Chapman HN, Meents A, Turk D, Hinrichs W, Lane TJ. SARS-CoV-2 M pro responds to oxidation by forming disulfide and NOS/SONOS bonds. Nat Commun 2024; 15:3827. [PMID: 38714735 PMCID: PMC11076503 DOI: 10.1038/s41467-024-48109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/19/2024] [Indexed: 05/10/2024] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.
Collapse
Affiliation(s)
- Patrick Y A Reinke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Anaïs Chretien
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Brandon Charles Seychell
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | - Brenna Norton-Baker
- Max Plank Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Chemistry, University of California at Irvine, Irvine, CA, 92697-2025, USA
| | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Faisal H M Koua
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Wiebke Ewert
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Gisel Esperanza Peña Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Grant Mills
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Julia Lieske
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Julia Maracke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Lea Brings
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mohammad Vakili
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Patrik Vagovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Philipp Middendorf
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Seonghyun Han
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sven Falke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Tian Geng
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, CB21 6DG, Cambridge, UK
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Vasundara Srinivasan
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Oleksandr M Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Luca Gelisio
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tobias Beck
- Institute of Physical Chemistry, Department of Chemistry, Universität Hamburg, Grindelallee 117, 20146, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew S Doré
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, CB21 6DG, Cambridge, UK
- CHARM Therapeutics Ltd., B900 Babraham Research Campus, CB22 3AT, Cambridge, UK
| | - Adrian P Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- La Trobe Institute for Molecular Science, Department of Chemistry and Physics, La Trobe University, Melbourne, VIC, 3086, Australia
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE, Didcot, UK
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Department of Chemistry, Universität Hamburg, Build. 22a, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Saša Bajt
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Universität zu Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Alke Meents
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dušan Turk
- Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Jamova 39, 1000, Ljubljana, Slovenia
| | - Winfried Hinrichs
- Universität Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany.
- CHARM Therapeutics Ltd., B900 Babraham Research Campus, CB22 3AT, Cambridge, UK.
| |
Collapse
|
11
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
12
|
Chretien A, Nagel MF, Botha S, de Wijn R, Brings L, Dörner K, Han H, Koliyadu JCP, Letrun R, Round A, Sato T, Schmidt C, Secareanu RC, von Stetten D, Vakili M, Wrona A, Bean R, Mancuso A, Schulz J, Pearson AR, Kottke T, Lorenzen K, Schubert R. Light-induced Trp in/Met out Switching During BLUF Domain Activation in ATP-bound Photoactivatable Adenylate Cyclase OaPAC. J Mol Biol 2024; 436:168439. [PMID: 38185322 DOI: 10.1016/j.jmb.2024.168439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.
Collapse
Affiliation(s)
- Anaïs Chretien
- European XFEL GmbH, Schenefeld, Germany; Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Marius F Nagel
- Department of Chemistry and Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | | | | | | | | | | | | | | | | | | | | | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | | | | | | | | | - Arwen R Pearson
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Tilman Kottke
- Department of Chemistry and Medical School OWL, Bielefeld University, Bielefeld, Germany
| | | | | |
Collapse
|
13
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Vorovitch MF, Samygina VR, Pichkur E, Konarev PV, Peters G, Khvatov EV, Ivanova AL, Tuchynskaya KK, Konyushko OI, Fedotov AY, Armeev G, Shaytan KV, Kovalchuk MV, Osolodkin DI, Egorov AM, Ishmukhametov AA. Preparation and characterization of inactivated tick-borne encephalitis virus samples for single-particle imaging at the European XFEL. Acta Crystallogr D Struct Biol 2024; 80:44-59. [PMID: 38164954 DOI: 10.1107/s2059798323010562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 1012 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses. Tick-borne encephalitis virus (TBEV) represents an attractive model system for the development of enveloped virus purification and concentration protocols, given the availability of large amounts of inactivated virus material provided by vaccine-manufacturing facilities. Here, the development of a TBEV vaccine purification and concentration scheme is presented combined with a quality-control protocol that allows substantial amounts of highly concentrated non-aggregated suspension to be obtained. Preliminary single-particle imaging experiments were performed for this sample at the European XFEL, showing distinct diffraction patterns.
Collapse
Affiliation(s)
- Mikhail F Vorovitch
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | | | - Evgeny Pichkur
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | | | - Georgy Peters
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | - Evgeny V Khvatov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alla L Ivanova
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Ksenia K Tuchynskaya
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Olga I Konyushko
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Anton Y Fedotov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Grigory Armeev
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Konstantin V Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | | | - Dmitry I Osolodkin
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alexey M Egorov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Aydar A Ishmukhametov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| |
Collapse
|
15
|
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, Oberthür D. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX. Proc Natl Acad Sci U S A 2023; 120:e2203241120. [PMID: 38015839 PMCID: PMC10710082 DOI: 10.1073/pnas.2203241120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Collapse
Affiliation(s)
| | - Marina Galchenkova
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Hannah L. Best
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Anna Munke
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Salah Awel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Gisel Pena
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Juraj Knoska
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | | | | | - Hyun-Woo Park
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Dennis K. Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Alessandra Henkel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Viviane Kremling
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Bjarne Klopprogge
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Mark T. Young
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Marco Kloos
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | - Grant Mills
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Chan Kim
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Paul Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, 22761Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Luca Gelisio
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, 22869Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Brian A. Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Henry N. Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Centre for Ultrafast Imaging, Universität Hamburg, 22761Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761Hamburg, Germany
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | | | - Colin Berry
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Dominik Oberthür
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| |
Collapse
|
16
|
Soyama H, Liang X, Yashiro W, Kajiwara K, Asimakopoulou EM, Bellucci V, Birnsteinova S, Giovanetti G, Kim C, Kirkwood HJ, Koliyadu JCP, Letrun R, Zhang Y, Uličný J, Bean R, Mancuso AP, Villanueva-Perez P, Sato T, Vagovič P, Eakins D, Korsunsky AM. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging. ULTRASONICS SONOCHEMISTRY 2023; 101:106715. [PMID: 38061251 PMCID: PMC10750113 DOI: 10.1016/j.ultsonch.2023.106715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.
Collapse
Affiliation(s)
- Hitoshi Soyama
- Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | - Xiaoyu Liang
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Wataru Yashiro
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kentaro Kajiwara
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | | | | | | | | | - Chan Kim
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Jozef Uličný
- Faculty of Science, Department of Biophysics, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovakia
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adrian P Mancuso
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Diamond House, Didcot, OX11 0DE, UK; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pablo Villanueva-Perez
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Patrik Vagovič
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany; Center for Free-Electron Laser (CFEL), DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Daniel Eakins
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Alexander M Korsunsky
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
17
|
Lima FA, Otte F, Vakili M, Ardana-Lamas F, Biednov M, Dall’Antonia F, Frankenberger P, Gawelda W, Gelisio L, Han H, Huang X, Jiang Y, Kloos M, Kluyver T, Knoll M, Kubicek K, Bermudez Macias IJ, Schulz J, Turkot O, Uemura Y, Valerio J, Wang H, Yousef H, Zalden P, Khakhulin D, Bressler C, Milne C. Experimental capabilities for liquid jet samples at sub-MHz rates at the FXE Instrument at European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1168-1182. [PMID: 37860937 PMCID: PMC10624029 DOI: 10.1107/s1600577523008159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
The Femtosecond X-ray Experiments (FXE) instrument at the European X-ray Free-Electron Laser (EuXFEL) provides an optimized platform for investigations of ultrafast physical, chemical and biological processes. It operates in the energy range 4.7-20 keV accommodating flexible and versatile environments for a wide range of samples using diverse ultrafast X-ray spectroscopic, scattering and diffraction techniques. FXE is particularly suitable for experiments taking advantage of the sub-MHz repetition rates provided by the EuXFEL. In this paper a dedicated setup for studies on ultrafast biological and chemical dynamics in solution phase at sub-MHz rates at FXE is presented. Particular emphasis on the different liquid jet sample delivery options and their performance is given. Our portfolio of high-speed jets compatible with sub-MHz experiments includes cylindrical jets, gas dynamic virtual nozzles and flat jets. The capability to perform multi-color X-ray emission spectroscopy (XES) experiments is illustrated by a set of measurements using the dispersive X-ray spectrometer in von Hamos geometry. Static XES data collected using a multi-crystal scanning Johann-type spectrometer are also presented. A few examples of experimental results on ultrafast time-resolved X-ray emission spectroscopy and wide-angle X-ray scattering at sub-MHz pulse repetition rates are given.
Collapse
Affiliation(s)
- F. A. Lima
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - F. Otte
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Fakultät für Physik, Technical University Dortmund, Dortmund, Germany
| | - M. Vakili
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - M. Biednov
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - W. Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - L. Gelisio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - X. Huang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T. Kluyver
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Knoll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Kubicek
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | | | - J. Schulz
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - O. Turkot
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Uemura
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Wang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - H. Yousef
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - P. Zalden
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D. Khakhulin
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
- Institut für Experimentalphysik, Universität Hamburg, 22607 Hamburg, Germany
| | - C. Milne
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
18
|
Guest TW, Bean R, Kammering R, van Riessen G, Mancuso AP, Abbey B. A phenomenological model of the X-ray pulse statistics of a high-repetition-rate X-ray free-electron laser. IUCRJ 2023; 10:708-719. [PMID: 37782462 PMCID: PMC10619450 DOI: 10.1107/s2052252523008242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Many coherent imaging applications that utilize ultrafast X-ray free-electron laser (XFEL) radiation pulses are highly sensitive to fluctuations in the shot-to-shot statistical properties of the source. Understanding and modelling these fluctuations are key to successful experiment planning and necessary to maximize the potential of XFEL facilities. Current models of XFEL radiation and their shot-to-shot statistics are based on theoretical descriptions of the source and are limited in their ability to capture the shot-to-shot intensity fluctuations observed experimentally. The lack of accurate temporal statistics in simulations that utilize these models is a significant barrier to optimizing and interpreting data from XFEL coherent diffraction experiments. Presented here is a phenomenological model of XFEL radiation that is capable of capturing the shot-to-shot statistics observed experimentally using a simple time-dependent approximation of the pulse wavefront. The model is applied to reproduce non-stationary shot-to-shot intensity fluctuations observed at the European XFEL, whilst accurately representing the single-shot properties predicted by FEL theory. Compared with previous models, this approach provides a simple, robust and computationally inexpensive method of generating statistical representations of XFEL radiation.
Collapse
Affiliation(s)
- Trey W. Guest
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Raimund Kammering
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | - Grant van Riessen
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Adrian P. Mancuso
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Brian Abbey
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
19
|
Birnsteinova S, Ferreira de Lima DE, Sobolev E, Kirkwood HJ, Bellucci V, Bean RJ, Kim C, Koliyadu JCP, Sato T, Dall’Antonia F, Asimakopoulou EM, Yao Z, Buakor K, Zhang Y, Meents A, Chapman HN, Mancuso AP, Villanueva-Perez P, Vagovič P. Online dynamic flat-field correction for MHz microscopy data at European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1030-1037. [PMID: 37729072 PMCID: PMC10624028 DOI: 10.1107/s1600577523007336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
The high pulse intensity and repetition rate of the European X-ray Free-Electron Laser (EuXFEL) provide superior temporal resolution compared with other X-ray sources. In combination with MHz X-ray microscopy techniques, it offers a unique opportunity to achieve superior contrast and spatial resolution in applications demanding high temporal resolution. In both live visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as phase retrieval and modal decomposition. In addition, access to normalized projections during data acquisition can play an important role in decision-making and improve the quality of the data. However, the stochastic nature of X-ray free-electron laser sources hinders the use of standard flat-field normalization methods during MHz X-ray microscopy experiments. Here, an online (i.e. near real-time) dynamic flat-field correction method based on principal component analysis of dynamically evolving flat-field images is presented. The method is used for the normalization of individual X-ray projections and has been implemented as a near real-time analysis tool at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of EuXFEL.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chan Kim
- European XFEL GmbH, Schenefeld, Germany
| | | | | | | | | | - Zisheng Yao
- Synchrotron Radiation Research and NanoLund, Lund University, Lund, Sweden
| | - Khachiwan Buakor
- European XFEL GmbH, Schenefeld, Germany
- Synchrotron Radiation Research and NanoLund, Lund University, Lund, Sweden
| | - Yuhe Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Lund, Sweden
| | - Alke Meents
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, Schenefeld, Germany
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Patrik Vagovič
- European XFEL GmbH, Schenefeld, Germany
- Center for Free-Electron Laser Science (CFEL), DESY, Hamburg, Germany
| |
Collapse
|
20
|
Konold PE, You T, Bielecki J, Valerio J, Kloos M, Westphal D, Bellisario A, Varma Yenupuri T, Wollter A, Koliyadu JCP, Koua FH, Letrun R, Round A, Sato T, Mészáros P, Monrroy L, Mutisya J, Bódizs S, Larkiala T, Nimmrich A, Alvarez R, Adams P, Bean R, Ekeberg T, Kirian RA, Martin AV, Westenhoff S, Maia FRNC. 3D-printed sheet jet for stable megahertz liquid sample delivery at X-ray free-electron lasers. IUCRJ 2023; 10:662-670. [PMID: 37721770 PMCID: PMC10619454 DOI: 10.1107/s2052252523007972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.
Collapse
Affiliation(s)
- Patrick E. Konold
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Tong You
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | | | - Joana Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Alfredo Bellisario
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - August Wollter
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | | | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Petra Mészáros
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Leonardo Monrroy
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Jennifer Mutisya
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Szabolcs Bódizs
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Taru Larkiala
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, University of Washington, Bagley Hall, Seattle, WA 98195, USA
| | - Roberto Alvarez
- Department of Physics, Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Patrick Adams
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
| | - Richard A. Kirian
- Department of Physics, Arizona State University, 550 E. Tyler Drive, Tempe, AZ 85287, USA
| | - Andrew V. Martin
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sebastian Westenhoff
- Department of Chemistry – BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Institute for Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Blanchet CE, Round A, Mertens HDT, Ayyer K, Graewert M, Awel S, Franke D, Dörner K, Bajt S, Bean R, Custódio TF, de Wijn R, Juncheng E, Henkel A, Gruzinov A, Jeffries CM, Kim Y, Kirkwood H, Kloos M, Knoška J, Koliyadu J, Letrun R, Löw C, Makroczyova J, Mall A, Meijers R, Pena Murillo GE, Oberthür D, Round E, Seuring C, Sikorski M, Vagovic P, Valerio J, Wollweber T, Zhuang Y, Schulz J, Haas H, Chapman HN, Mancuso AP, Svergun D. Form factor determination of biological molecules with X-ray free electron laser small-angle scattering (XFEL-SAS). Commun Biol 2023; 6:1057. [PMID: 37853181 PMCID: PMC10585004 DOI: 10.1038/s42003-023-05416-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.
Collapse
Affiliation(s)
- Clement E Blanchet
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany.
| | - Adam Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Kartik Ayyer
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Daniel Franke
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- BIOSAXS GmbH, Notkestr. 85, 22607, Hamburg, Germany
| | - Katerina Dörner
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Saša Bajt
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tânia F Custódio
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - E Juncheng
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Andrey Gruzinov
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
| | - Yoonhee Kim
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marco Kloos
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Juraj Knoška
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | | | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Christian Löw
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
| | | | - Abhishek Mall
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Rob Meijers
- Institute for Protein Innovation (IPI), 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Gisel Esperanza Pena Murillo
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Ekaterina Round
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Patrik Vagovic
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Joana Valerio
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tamme Wollweber
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Yulong Zhuang
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Henry N Chapman
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Dmitri Svergun
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY Notkestrasse 85, 22603, Hamburg, Germany.
- BIOSAXS GmbH, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
22
|
E J, Stransky M, Shen Z, Jurek Z, Fortmann-Grote C, Bean R, Santra R, Ziaja B, Mancuso AP. Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser. Sci Rep 2023; 13:16359. [PMID: 37773512 PMCID: PMC10541445 DOI: 10.1038/s41598-023-43298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The noise caused by sample heterogeneity (including sample solvent) has been identified as one of the determinant factors for a successful X-ray single-particle imaging experiment. It influences both the radiation damage process that occurs during illumination as well as the scattering patterns captured by the detector. Here, we investigate the impact of water layer thickness and radiation damage on orientation recovery from diffraction patterns of the nitrogenase iron protein. Orientation recovery is a critical step for single-particle imaging. It enables to sort a set of diffraction patterns scattered by identical particles placed at unknown orientations and assemble them into a 3D reciprocal space volume. The recovery quality is characterized by a "disconcurrence" metric. Our results show that while a water layer mitigates protein damage, the noise generated by the scattering from it can introduce challenges for orientation recovery and is anticipated to cause problems in the phase retrieval process to extract the desired protein structure. Compared to these disadvantageous effects due to the thick water layer, the effects of radiation damage on the orientation recovery are relatively small. Therefore, minimizing the amount of residual sample solvent should be considered a crucial step in improving the fidelity and resolution of X-ray single-particle imaging experiments.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Zhou Shen
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
23
|
Hadian-Jazi M, Sadri A. A Python package based on robust statistical analysis for serial crystallography data processing. Acta Crystallogr D Struct Biol 2023; 79:820-829. [PMID: 37584428 PMCID: PMC10478633 DOI: 10.1107/s2059798323005855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/03/2023] [Indexed: 08/17/2023] Open
Abstract
The term robustness in statistics refers to methods that are generally insensitive to deviations from model assumptions. In other words, robust methods are able to preserve their accuracy even when the data do not perfectly fit the statistical models. Robust statistical analyses are particularly effective when analysing mixtures of probability distributions. Therefore, these methods enable the discretization of X-ray serial crystallography data into two probability distributions: a group comprising true data points (for example the background intensities) and another group comprising outliers (for example Bragg peaks or bad pixels on an X-ray detector). These characteristics of robust statistical analysis are beneficial for the ever-increasing volume of serial crystallography (SX) data sets produced at synchrotron and X-ray free-electron laser (XFEL) sources. The key advantage of the use of robust statistics for some applications in SX data analysis is that it requires minimal parameter tuning because of its insensitivity to the input parameters. In this paper, a software package called Robust Gaussian Fitting library (RGFlib) is introduced that is based on the concept of robust statistics. Two methods are presented based on the concept of robust statistics and RGFlib for two SX data-analysis tasks: (i) a robust peak-finding algorithm and (ii) an automated robust method to detect bad pixels on X-ray pixel detectors.
Collapse
Affiliation(s)
- Marjan Hadian-Jazi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Sadri
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Cardoch S, Trost F, Scott HA, Chapman HN, Caleman C, Timneanu N. Decreasing ultrafast x-ray pulse durations with saturable absorption and resonant transitions. Phys Rev E 2023; 107:015205. [PMID: 36797944 DOI: 10.1103/physreve.107.015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Saturable absorption is a nonlinear effect where a material's ability to absorb light is frustrated due to a high influx of photons and the creation of electron vacancies. Experimentally induced saturable absorption in copper revealed a reduction in the temporal duration of transmitted x-ray laser pulses, but a detailed account of changes in opacity and emergence of resonances is still missing. In this computational work, we employ nonlocal thermodynamic equilibrium plasma simulations to study the interaction of femtosecond x rays and copper. Following the onset of frustrated absorption, we find that a K-M resonant transition occurring at highly charged states turns copper opaque again. The changes in absorption generate a transient transparent window responsible for the shortened transmission signal. We also propose using fluorescence induced by the incident beam as an alternative source to achieve shorter x-ray pulses. Intense femtosecond x rays are valuable to probe the structure and dynamics of biological samples or to reach extreme states of matter. Shortened pulses could be relevant for emerging imaging techniques.
Collapse
Affiliation(s)
- Sebastian Cardoch
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Fabian Trost
- Center for Free-Electron Laser Science CFEL, Deutsches-Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Howard A Scott
- Lawrence Livermore National Laboratory, L-18, P.O. Box 808, Livermore, California 94550, USA
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches-Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.,Center for Free-Electron Laser Science CFEL, Deutsches-Elektronen Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
25
|
Assalauova D, Vartanyants IA. The structure of tick-borne encephalitis virus determined at X-ray free-electron lasers. Simulations. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:24-34. [PMID: 36601923 PMCID: PMC9814066 DOI: 10.1107/s1600577522011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The study of virus structures by X-ray free-electron lasers (XFELs) has attracted increased attention in recent decades. Such experiments are based on the collection of 2D diffraction patterns measured at the detector following the application of femtosecond X-ray pulses to biological samples. To prepare an experiment at the European XFEL, the diffraction data for the tick-borne encephalitis virus (TBEV) was simulated with different parameters and the optimal values were identified. Following the necessary steps of a well established data-processing pipeline, the structure of TBEV was obtained. In the structure determination presented, a priori knowledge of the simulated virus orientations was used. The efficiency of the proposed pipeline was demonstrated.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
26
|
Sadri A, Hadian-Jazi M, Yefanov O, Galchenkova M, Kirkwood H, Mills G, Sikorski M, Letrun R, de Wijn R, Vakili M, Oberthuer D, Komadina D, Brehm W, Mancuso AP, Carnis J, Gelisio L, Chapman HN. Automatic bad-pixel mask maker for X-ray pixel detectors with application to serial crystallography. J Appl Crystallogr 2022; 55:1549-1561. [PMID: 36570663 PMCID: PMC9721322 DOI: 10.1107/s1600576722009815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
X-ray crystallography has witnessed a massive development over the past decade, driven by large increases in the intensity and brightness of X-ray sources and enabled by employing high-frame-rate X-ray detectors. The analysis of large data sets is done via automatic algorithms that are vulnerable to imperfections in the detector and noise inherent with the detection process. By improving the model of the behaviour of the detector, data can be analysed more reliably and data storage costs can be significantly reduced. One major requirement is a software mask that identifies defective pixels in diffraction frames. This paper introduces a methodology and program based upon concepts of machine learning, called robust mask maker (RMM), for the generation of bad-pixel masks for large-area X-ray pixel detectors based on modern robust statistics. It is proposed to discriminate normally behaving pixels from abnormal pixels by analysing routine measurements made with and without X-ray illumination. Analysis software typically uses a Bragg peak finder to detect Bragg peaks and an indexing method to detect crystal lattices among those peaks. Without proper masking of the bad pixels, peak finding methods often confuse the abnormal values of bad pixels in a pattern with true Bragg peaks and flag such patterns as useful regardless, leading to storage of enormous uninformative data sets. Also, it is computationally very expensive for indexing methods to search for crystal lattices among false peaks and the solution may be biased. This paper shows how RMM vastly improves peak finders and prevents them from labelling bad pixels as Bragg peaks, by demonstrating its effectiveness on several serial crystallography data sets.
Collapse
Affiliation(s)
- Alireza Sadri
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marjan Hadian-Jazi
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Australia
- Australian Nuclear Science and Technology Organisation (ANSTO), Australia
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Grant Mills
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marcin Sikorski
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Mohammad Vakili
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Dana Komadina
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jerome Carnis
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Luca Gelisio
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
27
|
Xu Y, Sikorski M, Fan J, Jiang H, Liu Z. Thermal effects of beam profiles on X-ray photon correlation spectroscopy at megahertz X-ray free-electron lasers. OPTICS EXPRESS 2022; 30:42639-42648. [PMID: 36366714 DOI: 10.1364/oe.464852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
X-ray free-electron lasers (XFELs) with megahertz repetition rates enable X-ray photon correlation spectroscopy (XPCS) studies of fast dynamics on microsecond and sub-microsecond time scales. Beam-induced sample heating is one of the central concerns in these studies, as the interval time is often insufficient for heat dissipation. Despite the great efforts devoted to this issue, few have evaluated the thermal effects of X-ray beam profiles. This work compares the effective dynamics of three common beam profiles using numerical methods. Results show that under the same fluence, the effective temperatures increase with the nonuniformity of the beam, such that the Gaussian beam profile yields a higher effective temperature than the donut-like and uniform profiles. Moreover, decreasing the beam sizes is found to reduce beam-induced thermal effects, in particular the effects of beam profiles.
Collapse
|
28
|
E J, Kim Y, Bielecki J, Sikorski M, de Wijn R, Fortmann-Grote C, Sztuk-Dambietz J, Koliyadu JCP, Letrun R, Kirkwood HJ, Sato T, Bean R, Mancuso AP, Kim C. Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064101. [PMID: 36411869 PMCID: PMC9675053 DOI: 10.1063/4.0000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Sikorski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. de Wijn
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - R. Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - T. Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - C. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| |
Collapse
|
29
|
|
30
|
Koliyadu JCP, Letrun R, Kirkwood HJ, Liu J, Jiang M, Emons M, Bean R, Bellucci V, Bielecki J, Birnsteinova S, de Wijn R, Dietze T, E J, Grünert J, Kane D, Kim C, Kim Y, Lederer M, Manning B, Mills G, Morillo LL, Reimers N, Rompotis D, Round A, Sikorski M, Takem CMS, Vagovič P, Venkatesan S, Wang J, Wegner U, Mancuso AP, Sato T. Pump-probe capabilities at the SPB/SFX instrument of the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1273-1283. [PMID: 36073887 PMCID: PMC9455201 DOI: 10.1107/s1600577522006701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pump-probe experiments at X-ray free-electron laser (XFEL) facilities are a powerful tool for studying dynamics at ultrafast and longer timescales. Observing the dynamics in diverse scientific cases requires optical laser systems with a wide range of wavelength, flexible pulse sequences and different pulse durations, especially in the pump source. Here, the pump-probe instrumentation available for measurements at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL is reported. The temporal and spatial stability of this instrumentation is also presented.
Collapse
Affiliation(s)
| | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Jia Liu
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Man Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Moritz Emons
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | | | - Thomas Dietze
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Juncheng E
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jan Grünert
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Daniel Kane
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Chan Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Max Lederer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Nadja Reimers
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire ST5 5AZ, United Kingdom
| | | | | | - Patrik Vagovič
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | | | - Jinxiong Wang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ulrike Wegner
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
31
|
Patel J, Round A, Bielecki J, Doerner K, Kirkwood H, Letrun R, Schulz J, Sikorski M, Vakili M, de Wijn R, Peele A, Mancuso AP, Abbey B. Towards real-time analysis of liquid jet alignment in serial femtosecond crystallography. J Appl Crystallogr 2022; 55:944-952. [PMID: 35974719 PMCID: PMC9348884 DOI: 10.1107/s1600576722005891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Liquid sample delivery systems are used extensively for serial femtosecond crystallography at X-ray free-electron lasers (XFELs). However, misalignment of the liquid jet and the XFEL beam leads to the X-rays either partially or completely missing the sample, resulting in sample wastage and a loss of experiment time. Implemented here is an algorithm to analyse optical images using machine vision to determine whether there is overlap of the X-ray beam and liquid jet. The long-term goal is to use the output from this algorithm to implement an automated feedback mechanism to maintain constant alignment of the X-ray beam and liquid jet. The key elements of this jet alignment algorithm are discussed and its performance is characterized by comparing the results with a manual analysis of the optical image data. The success rate of the algorithm for correctly identifying hits is quantified via a similarity metric, the Dice coefficient. In total four different nozzle designs were used in this study, yielding an overall Dice coefficient of 0.98.
Collapse
Affiliation(s)
- Jaydeep Patel
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, Victoria, Australia
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | - Andrew Peele
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, Victoria, Australia
| | - Adrian P. Mancuso
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, Victoria, Australia
- European XFEL, Schenefeld, Germany
| | - Brian Abbey
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Melbourne, Victoria, Australia
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Guest TW, Bean R, Bielecki J, Birnsteinova S, Geloni G, Guetg M, Kammering R, Kirkwood HJ, Koch A, Paganin DM, van Riessen G, Vagovič P, de Wijn R, Mancuso AP, Abbey B. Shot-to-shot two-dimensional photon intensity diagnostics within megahertz pulse-trains at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:939-946. [PMID: 35787559 PMCID: PMC9255581 DOI: 10.1107/s1600577522005720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Characterizing the properties of X-ray free-electron laser (XFEL) sources is a critical step for optimization of performance and experiment planning. The recent availability of MHz XFELs has opened up a range of new opportunities for novel experiments but also highlighted the need for systematic measurements of the source properties. Here, MHz-enabled beam imaging diagnostics developed for the SPB/SFX instrument at the European XFEL are exploited to measure the shot-to-shot intensity statistics of X-ray pulses. The ability to record pulse-integrated two-dimensional transverse intensity measurements at multiple planes along an XFEL beamline at MHz rates yields an improved understanding of the shot-to-shot photon beam intensity variations. These variations can play a critical role, for example, in determining the outcome of single-particle imaging experiments and other experiments that are sensitive to the transverse profile of the incident beam. It is observed that shot-to-shot variations in the statistical properties of a recorded ensemble of radiant intensity distributions are sensitive to changes in electron beam current density. These changes typically occur during pulse-distribution to the instrument and are currently not accounted for by the existing suite of imaging diagnostics. Modulations of the electron beam orbit in the accelerator are observed to induce a time-dependence in the statistics of individual pulses - this is demonstrated by applying radio-frequency trajectory tilts to electron bunch-trains delivered to the instrument. We discuss how these modifications of the beam trajectory might be used to modify the statistical properties of the source and potential future applications.
Collapse
Affiliation(s)
- Trey W. Guest
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, Bundoora, VIC 3086, Australia
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - Marc Guetg
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Raimund Kammering
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Andreas Koch
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - David M. Paganin
- School of Physics and Astronomy, Monash University, VIC 3800, Australia
| | - Grant van Riessen
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Patrik Vagovič
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Adrian P. Mancuso
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Brian Abbey
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Department of Mathematical and Physical Sciences, School of Engineering, Computing and Mathematical Sciences, Bundoora, VIC 3086, Australia
| |
Collapse
|
33
|
Kirkwood HJ, de Wijn R, Mills G, Letrun R, Kloos M, Vakili M, Karnevskiy M, Ahmed K, Bean RJ, Bielecki J, Dall'Antonia F, Kim Y, Kim C, Koliyadu J, Round A, Sato T, Sikorski M, Vagovič P, Sztuk-Dambietz J, Mancuso AP. A multi-million image Serial Femtosecond Crystallography dataset collected at the European XFEL. Sci Data 2022; 9:161. [PMID: 35414146 PMCID: PMC9005607 DOI: 10.1038/s41597-022-01266-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
Serial femtosecond crystallography is a rapidly developing method for determining the structure of biomolecules for samples which have proven challenging with conventional X-ray crystallography, such as for membrane proteins and microcrystals, or for time-resolved studies. The European XFEL, the first high repetition rate hard X-ray free electron laser, provides the ability to record diffraction data at more than an order of magnitude faster than previously achievable, putting increased demand on sample delivery and data processing. This work describes a publicly available serial femtosecond crystallography dataset collected at the SPB/SFX instrument at the European XFEL. This dataset contains information suitable for algorithmic development for detector calibration, image classification and structure determination, as well as testing and training for future users of the European XFEL and other XFELs.
Collapse
Affiliation(s)
| | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | | | - Karim Ahmed
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | | | | | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Chan Kim
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Adam Round
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5AZ, United Kingdom
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | | | | | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| |
Collapse
|
34
|
Buakor K, Zhang Y, Birnšteinová Š, Bellucci V, Sato T, Kirkwood H, Mancuso AP, Vagovic P, Villanueva-Perez P. Shot-to-shot flat-field correction at X-ray free-electron lasers. OPTICS EXPRESS 2022; 30:10633-10644. [PMID: 35473025 DOI: 10.1364/oe.451914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
X-ray free-electron lasers (XFELs) provide high-brilliance pulses, which offer unique opportunities for coherent X-ray imaging techniques, such as in-line holography. One of the fundamental steps to process in-line holographic data is flat-field correction, which mitigates imaging artifacts and, in turn, enables phase reconstructions. However, conventional flat-field correction approaches cannot correct single XFEL pulses due to the stochastic nature of the self-amplified spontaneous emission (SASE), the mechanism responsible for the high brilliance of XFELs. Here, we demonstrate on simulated and megahertz imaging data, measured at the European XFEL, the possibility of overcoming such a limitation by using two different methods based on principal component analysis and deep learning. These methods retrieve flat-field corrected images from individual frames by separating the sample and flat-field signal contributions; thus, enabling advanced phase-retrieval reconstructions. We anticipate that the proposed methods can be implemented in a real-time processing pipeline, which will enable online data analysis and phase reconstructions of coherent full-field imaging techniques such as in-line holography at XFELs.
Collapse
|
35
|
Zhuang Y, Awel S, Barty A, Bean R, Bielecki J, Bergemann M, Daurer BJ, Ekeberg T, Estillore AD, Fangohr H, Giewekemeyer K, Hunter MS, Karnevskiy M, Kirian RA, Kirkwood H, Kim Y, Koliyadu J, Lange H, Letrun R, Lübke J, Mall A, Michelat T, Morgan AJ, Roth N, Samanta AK, Sato T, Shen Z, Sikorski M, Schulz F, Spence JCH, Vagovic P, Wollweber T, Worbs L, Xavier PL, Yefanov O, Maia FRNC, Horke DA, Küpper J, Loh ND, Mancuso AP, Chapman HN, Ayyer K. Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging. IUCRJ 2022; 9:204-214. [PMID: 35371510 PMCID: PMC8895023 DOI: 10.1107/s2052252521012707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 06/12/2023]
Abstract
One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.
Collapse
Affiliation(s)
- Yulong Zhuang
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | | | - Benedikt J. Daurer
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
| | - Tomas Ekeberg
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Armando D. Estillore
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Hans Fangohr
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
- University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | - Holger Lange
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute of Physical Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | | | - Jannik Lübke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Abhishek Mall
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Andrew J. Morgan
- Department of Physics, University of Melbourne, Victoria 3010, Australia
| | - Nils Roth
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Amit K. Samanta
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Zhou Shen
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
| | - Marcin Sikorski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Florian Schulz
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Patrik Vagovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Tamme Wollweber
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Lena Worbs
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - P. Lourdu Xavier
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Filipe R. N. C. Maia
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel A. Horke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - N. Duane Loh
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
- Department of Physics, National University of Singapore, 117551, Singapore
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Kartik Ayyer
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
36
|
Vakili M, Bielecki J, Knoška J, Otte F, Han H, Kloos M, Schubert R, Delmas E, Mills G, de Wijn R, Letrun R, Dold S, Bean R, Round A, Kim Y, Lima FA, Dörner K, Valerio J, Heymann M, Mancuso AP, Schulz J. 3D printed devices and infrastructure for liquid sample delivery at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:331-346. [PMID: 35254295 PMCID: PMC8900844 DOI: 10.1107/s1600577521013370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The Sample Environment and Characterization (SEC) group of the European X-ray Free-Electron Laser (EuXFEL) develops sample delivery systems for the various scientific instruments, including systems for the injection of liquid samples that enable serial femtosecond X-ray crystallography (SFX) and single-particle imaging (SPI) experiments, among others. For rapid prototyping of various device types and materials, sub-micrometre precision 3D printers are used to address the specific experimental conditions of SFX and SPI by providing a large number of devices with reliable performance. This work presents the current pool of 3D printed liquid sample delivery devices, based on the two-photon polymerization (2PP) technique. These devices encompass gas dynamic virtual nozzles (GDVNs), mixing-GDVNs, high-viscosity extruders (HVEs) and electrospray conical capillary tips (CCTs) with highly reproducible geometric features that are suitable for time-resolved SFX and SPI experiments at XFEL facilities. Liquid sample injection setups and infrastructure on the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument are described, this being the instrument which is designated for biological structure determination at the EuXFEL.
Collapse
Affiliation(s)
| | | | - Juraj Knoška
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Florian Otte
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Physics, TU Dortmund, Otto-Hahn-Straße 4, 44221 Dortmund, Germany
| | - Huijong Han
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Elisa Delmas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Simon Dold
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire ST5 5AZ, United Kingdom
| | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | - Joana Valerio
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Heymann
- Institute for Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne 3086, Australia
| | | |
Collapse
|
37
|
Potential of Time-Resolved Serial Femtosecond Crystallography Using High Repetition Rate XFEL Sources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This perspective review describes emerging techniques and future opportunities for time-resolved serial femtosecond crystallography (TR-SFX) experiments using high repetition rate XFEL sources. High repetition rate sources are becoming more available with the European XFEL in operation and the recently upgraded LCLS-II will be available in the near future. One efficient use of these facilities for TR-SFX relies on pump–probe experiments using a laser to trigger a reaction of light-responsive proteins or mix-and-inject experiments for light-unresponsive proteins. With the view to widen the application of TR-SFX, the promising field of photocaged compounds is under development, which allows the very fast laser triggering of reactions that is no longer limited to naturally light-responsive samples. In addition to reaction triggering, a key concern when performing an SFX experiment is efficient sample usage, which is a main focus of new high repetition rate-compatible sample delivery methods.
Collapse
|
38
|
Doppler D, Rabbani MT, Letrun R, Cruz Villarreal J, Kim DH, Gandhi S, Egatz-Gomez A, Sonker M, Chen J, Koua FHM, Yang J, Youssef M, Mazalova V, Bajt S, Shelby ML, Coleman MA, Wiedorn MO, Knoska J, Schön S, Sato T, Hunter MS, Hosseinizadeh A, Kuptiz C, Nazari R, Alvarez RC, Karpos K, Zaare S, Dobson Z, Discianno E, Zhang S, Zook JD, Bielecki J, de Wijn R, Round AR, Vagovic P, Kloos M, Vakili M, Ketawala GK, Stander NE, Olson TL, Morin K, Mondal J, Nguyen J, Meza-Aguilar JD, Kodis G, Vaiana S, Martin-Garcia JM, Mariani V, Schwander P, Schmidt M, Messerschmidt M, Ourmazd A, Zatsepin N, Weierstall U, Bruce BD, Mancuso AP, Grant T, Barty A, Chapman HN, Frank M, Fromme R, Spence JCH, Botha S, Fromme P, Kirian RA, Ros A. Co-flow injection for serial crystallography at X-ray free-electron lasers. J Appl Crystallogr 2022; 55:1-13. [PMID: 35153640 PMCID: PMC8805165 DOI: 10.1107/s1600576721011079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023] Open
Abstract
Serial femtosecond crystallography (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macro-molecules at room temperature. Despite the impressive exposition of structural details with this novel crystallographic approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to additional sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials experimentally. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX.
Collapse
Affiliation(s)
- Diandra Doppler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mohammad T. Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | - Jorvani Cruz Villarreal
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Dai Hyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sahir Gandhi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Joe Chen
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Faisal H. M. Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Jayhow Yang
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mohamed Youssef
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Victoria Mazalova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Saša Bajt
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Megan L. Shelby
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Matt A. Coleman
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Max O. Wiedorn
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Juraj Knoska
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Silvan Schön
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Ahmad Hosseinizadeh
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christopher Kuptiz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Reza Nazari
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Roberto C. Alvarez
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Konstantinos Karpos
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sahba Zaare
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Zachary Dobson
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erin Discianno
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Shangji Zhang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James D. Zook
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | | | - Adam R. Round
- European XFEL, Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire, UK
| | - Patrik Vagovic
- European XFEL, Schenefeld, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | | | | | - Gihan K. Ketawala
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Natasha E. Stander
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Tien L. Olson
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Katherine Morin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Jyotirmory Mondal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - José Domingo Meza-Aguilar
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- European XFEL, Schenefeld, Germany
| | - Gerdenis Kodis
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sara Vaiana
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Jose M. Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry ‘Rocasolano’, CSIC, Madrid, Spain
| | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marc Messerschmidt
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nadia Zatsepin
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Uwe Weierstall
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Barry D. Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Adrian P. Mancuso
- European XFEL, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Thomas Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York, USA
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Center for Data and Computing in Natural Science CDCS, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Matthias Frank
- Lawrence Livermore National Laboratory (LLNL), Livermore, California, USA
| | - Raimund Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - John C. H. Spence
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Sabine Botha
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Richard A. Kirian
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Physics, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
39
|
Eliah Dawod I, Tîmneanu N, Mancuso AP, Caleman C, Grånäs O. Imaging of femtosecond bond breaking and charge dynamics in ultracharged peptides. Phys Chem Chem Phys 2021; 24:1532-1543. [PMID: 34939631 DOI: 10.1039/d1cp03419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray free-electrons lasers have revolutionized the method of imaging biological macromolecules such as proteins, viruses and cells by opening the door to structural determination of both single particles and crystals at room temperature. By utilizing high intensity X-ray pulses on femtosecond timescales, the effects of radiation damage can be reduced. Achieving high resolution structures will likely require knowledge of how radiation damage affects the structure on an atomic scale, since the experimentally obtained electron densities will be reconstructed in the presence of radiation damage. Detailed understanding of the expected damage scenarios provides further information, in addition to guiding possible corrections that may need to be made to obtain a damage free reconstruction. In this work, we have quantified the effects of ionizing photon-matter interactions using first principles molecular dynamics. We utilize density functional theory to calculate bond breaking and charge dynamics in three ultracharged molecules and two different structural conformations that are important to the structural integrity of biological macromolecules, comparing to our previous studies on amino acids. The effects of the ultracharged states and subsequent bond breaking in real space are studied in reciprocal space using coherent diffractive imaging of an ensemble of aligned biomolecules in the gas phase.
Collapse
Affiliation(s)
- Ibrahim Eliah Dawod
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
| | - Nicusor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| |
Collapse
|
40
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
41
|
Pandey S, Calvey G, Katz AM, Malla TN, Koua FHM, Martin-Garcia JM, Poudyal I, Yang JH, Vakili M, Yefanov O, Zielinski KA, Bajt S, Awel S, Doerner K, Frank M, Gelisio L, Jernigan R, Kirkwood H, Kloos M, Koliyadu J, Mariani V, Miller MD, Mills G, Nelson G, Olmos JL, Sadri A, Sato T, Tolstikova A, Xu W, Ourmazd A, Spence JCH, Schwander P, Barty A, Chapman HN, Fromme P, Mancuso AP, Phillips GN, Bean R, Pollack L, Schmidt M. Observation of substrate diffusion and ligand binding in enzyme crystals using high-repetition-rate mix-and-inject serial crystallography. IUCRJ 2021; 8:878-895. [PMID: 34804542 PMCID: PMC8562667 DOI: 10.1107/s2052252521008125] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 05/22/2023]
Abstract
Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the Mycobacterium tuberculosis β-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research.
Collapse
Affiliation(s)
- Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - George Calvey
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Andrea M. Katz
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Faisal H. M. Koua
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jose M. Martin-Garcia
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, Calle de Serrano 119, 28006 Madrid, Spain
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Jay-How Yang
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Sasa Bajt
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Matthias Frank
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Luca Gelisio
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rebecca Jernigan
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Valerio Mariani
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA
| | - Mitchell D. Miller
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Jose L. Olmos
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alireza Sadri
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Weijun Xu
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Abbas Ourmazd
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Schwander
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Anton Barty
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - George N. Phillips
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 254 Clark Hall, Ithaca, NY 14853, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| |
Collapse
|
42
|
Hadian-Jazi M, Sadri A, Barty A, Yefanov O, Galchenkova M, Oberthuer D, Komadina D, Brehm W, Kirkwood H, Mills G, de Wijn R, Letrun R, Kloos M, Vakili M, Gelisio L, Darmanin C, Mancuso AP, Chapman HN, Abbey B. Data reduction for serial crystallography using a robust peak finder. J Appl Crystallogr 2021; 54:1360-1378. [PMID: 34667447 PMCID: PMC8493619 DOI: 10.1107/s1600576721007317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of 'robust statistics' has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers (i.e. the background noise) and another group comprising outliers (i.e. Bragg peaks). Our robust statistics algorithm has two key advantages, which are demonstrated through testing using multiple SX data sets. First, it is relatively insensitive to the exact value of the input parameters and hence requires minimal optimization. This is critical for the algorithm to be able to run unsupervised, allowing for automated selection or 'vetoing' of SX diffraction data. Secondly, the processing of individual diffraction patterns can be easily parallelized. This means that it can analyse data from multiple detector modules simultaneously, making it ideally suited to real-time data processing. These characteristics mean that the robust peak finder (RPF) algorithm will be particularly beneficial for the new class of MHz X-ray free-electron laser sources, which generate large amounts of data in a short period of time.
Collapse
Affiliation(s)
- Marjan Hadian-Jazi
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Australia
- Australian Nuclear Science and Technology Organisation (ANSTO), Australia
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alireza Sadri
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dana Komadina
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Wolfgang Brehm
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Marco Kloos
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Luca Gelisio
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Connie Darmanin
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Australia
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Brian Abbey
- ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Australia
| |
Collapse
|
43
|
Dallari F, Jain A, Sikorski M, Möller J, Bean R, Boesenberg U, Frenzel L, Goy C, Hallmann J, Kim Y, Lokteva I, Markmann V, Mills G, Rodriguez-Fernandez A, Roseker W, Scholz M, Shayduk R, Vagovic P, Walther M, Westermeier F, Madsen A, Mancuso AP, Grübel G, Lehmkühler F. Microsecond hydrodynamic interactions in dense colloidal dispersions probed at the European XFEL. IUCRJ 2021; 8:775-783. [PMID: 34584738 PMCID: PMC8420773 DOI: 10.1107/s2052252521006333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.
Collapse
Affiliation(s)
- Francesco Dallari
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Avni Jain
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marcin Sikorski
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Johannes Möller
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Richard Bean
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | | | - Lara Frenzel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Claudia Goy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jörg Hallmann
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Yoonhee Kim
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Verena Markmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Grant Mills
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | | | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Scholz
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Roman Shayduk
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Patrik Vagovic
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Michael Walther
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Anders Madsen
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
| | - Adrian P. Mancuso
- European X-ray Free-Electron Laser, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VC 3086, Australia
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| |
Collapse
|
44
|
From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.
Collapse
|
45
|
Han H, Round E, Schubert R, Gül Y, Makroczyová J, Meza D, Heuser P, Aepfelbacher M, Barák I, Betzel C, Fromme P, Kursula I, Nissen P, Tereschenko E, Schulz J, Uetrecht C, Ulicný J, Wilmanns M, Hajdu J, Lamzin VS, Lorenzen K. The XBI BioLab for life science experiments at the European XFEL. J Appl Crystallogr 2021; 54:7-21. [PMID: 33833637 PMCID: PMC7941304 DOI: 10.1107/s1600576720013989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.
Collapse
Affiliation(s)
- Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Ekaterina Round
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Yasmin Gül
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jana Makroczyová
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Domingo Meza
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Philipp Heuser
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK – 8000 Aarhus C, Denmark
| | - Elena Tereschenko
- Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky prospekt, Moscow, 117333, Russian Federation
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Charlotte Uetrecht
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jozef Ulicný
- Department of Biophysics, Institute of Physics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Janos Hajdu
- The European Extreme Light Infrastructure, Institute of Physics, Academy of Sciences of the Czech Republic, Za Radnici 835, 25241 Dolní Břežany, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
46
|
Shock Damage Analysis in Serial Femtosecond Crystallography Data Collected at MHz X-ray Free-Electron Lasers. CRYSTALS 2020. [DOI: 10.3390/cryst10121145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Serial femtosecond crystallography (SFX) data were recorded at the European X-ray free-electron laser facility (EuXFEL) with protein microcrystals delivered via a microscopic liquid jet. An XFEL beam striking such a jet may launch supersonic shock waves up the jet, compromising the oncoming sample. To investigate this efficiently, we employed a novel XFEL pulse pattern to nominally expose the sample to between zero and four shock waves before being probed. Analyzing hit rate, indexing rate, and resolution for diffraction data recorded at MHz pulse rates, we found no evidence of damage. Notably, however, this conclusion could only be drawn after careful identification and assimilation of numerous interrelated experimental factors, which we describe in detail. Failure to do so would have led to an erroneous conclusion. Femtosecond photography of the sample-carrying jet revealed critically different jet behavior from that of all homogeneous liquid jets studied to date in this manner.
Collapse
|
47
|
Kilohertz Macromolecular Crystallography Using an EIGER Detector at Low X-ray Fluxes. CRYSTALS 2020. [DOI: 10.3390/cryst10121146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Time-resolved in-house macromolecular crystallography is primarily limited by the capabilities of the in-house X-ray sources. These sources can only provide a time-averaged structure of the macromolecules. A significant effort has been made in the development of in-house laser-driven ultrafast X-ray sources, with one of the goals as realizing the visualization of the structural dynamics of macromolecules at a very short timescale within the laboratory-scale infrastructure. Most of such in-house ultrafast X-ray sources are operated at high repetition rates and usually deliver very low flux. Therefore, the necessity of a detector that can operate at the repetition rate of the laser and perform extremely well under low flux conditions is essential. Here, we present experimental results demonstrating the usability of the hybrid-pixel detectors, such as Eiger X 1M, and provide experimental proof that they can be successfully operated to collect macromolecular crystallographic data up to a detector frame rate of 3 kHz from synchrotron sources. Our results also show that the data reduction and structural analysis are successful at such high frame rates and fluxes as low as 108 photons/s, which is comparable to the values expected from a typical laser-driven X-ray source.
Collapse
|
48
|
Assalauova D, Kim YY, Bobkov S, Khubbutdinov R, Rose M, Alvarez R, Andreasson J, Balaur E, Contreras A, DeMirci H, Gelisio L, Hajdu J, Hunter MS, Kurta RP, Li H, McFadden M, Nazari R, Schwander P, Teslyuk A, Walter P, Xavier PL, Yoon CH, Zaare S, Ilyin VA, Kirian RA, Hogue BG, Aquila A, Vartanyants IA. An advanced workflow for single-particle imaging with the limited data at an X-ray free-electron laser. IUCRJ 2020; 7:1102-1113. [PMID: 33209321 PMCID: PMC7642788 DOI: 10.1107/s2052252520012798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/21/2020] [Indexed: 05/06/2023]
Abstract
An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Young Yong Kim
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Sergey Bobkov
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
| | - Ruslan Khubbutdinov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| | - Max Rose
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Roberto Alvarez
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School of Mathematics and Statistical Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
| | - Eugeniu Balaur
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alice Contreras
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Hasan DeMirci
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Department of Molecular Biology and Genetics, Koc University, Istanbul, 34450, Turkey
| | - Luca Gelisio
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
| | - Janos Hajdu
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, CZ-18221, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Uppsala, SE-75124, Sweden
| | - Mark S. Hunter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | | | - Haoyuan Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Physics Department, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305-2004, USA
| | - Matthew McFadden
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Reza Nazari
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| | | | - Anton Teslyuk
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - P. Lourdu Xavier
- Center for Free Electron Laser Science (CFEL), DESY, Notkestraße 85, Hamburg, D-22607, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg, D-22761, Germany
| | - Chun Hong Yoon
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sahba Zaare
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Viacheslav A. Ilyin
- National Research Center ‘Kurchatov Institute’, Akademika Kurchatova pl. 1, Moscow, 123182 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141700, Russian Federation
| | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, Arizona AZ 85287, USA
| | - Brenda G. Hogue
- School of Life Sciences, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona AZ 85287, USA
- Biodesign Institute, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Aquila
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg, D-22607, Germany
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, Moscow, 115409, Russian Federation
| |
Collapse
|
49
|
Gureyev TE, Kozlov A, Morgan AJ, Martin AV, Quiney HM. Effect of radiation damage and illumination variability on signal-to-noise ratio in X-ray free-electron laser single-particle imaging. Acta Crystallogr A Found Adv 2020; 76:664-676. [DOI: 10.1107/s2053273320012188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022] Open
Abstract
The deterioration of both the signal-to-noise ratio and the spatial resolution in the electron-density distribution reconstructed from diffraction intensities collected at different orientations of a sample is analysed theoretically with respect to the radiation damage to the sample and the variations in the X-ray intensities illuminating different copies of the sample. The simple analytical expressions and numerical estimates obtained for models of radiation damage and incident X-ray pulses may be helpful in planning X-ray free-electron laser (XFEL) imaging experiments and in analysis of experimental data. This approach to the analysis of partially coherent X-ray imaging configurations can potentially be used for analysis of other forms of imaging where the temporal behaviour of the sample and the incident intensity during exposure may affect the inverse problem of sample reconstruction.
Collapse
|
50
|
Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc Natl Acad Sci U S A 2020; 117:24110-24116. [PMID: 32934145 DOI: 10.1073/pnas.2003337117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 μs at high fluences. At short times up to 20 μs we observe that the dynamics do not obey the Stokes-Einstein predictions.
Collapse
|