1
|
Chushkin Y, Zontone F. Prospects for coherent X-ray diffraction imaging at fourth-generation synchrotron sources. IUCRJ 2025; 12:280-287. [PMID: 40080160 PMCID: PMC12044861 DOI: 10.1107/s2052252525001526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
Coherent X-ray diffraction imaging is a lens-less microscopy technique that emerged with the advent of third-generation synchrotrons, modern detectors and computers. It can image isolated micrometre-sized objects with a spatial resolution of a few nanometres. The method is based on the inversion of the speckle pattern in the far field produced by the scattering from the object under coherent illumination. The retrieval of the missing phase is performed using an iterative algorithm that numerically phases the amplitudes from the intensities of speckles measured with sufficient oversampling. Two- and three-dimensional imaging is obtained by simple inverse Fourier transform. This lens-less imaging technique has been applied to various specimens for their structural characterization on the nanoscale. Here, we review the theoretical and experimental elements of the technique, its achievements, and its limitations at third-generation synchrotrons. We also discuss the new opportunities offered by modern fourth-generation synchrotrons and outline the developments necessary to maximize the potential of the technique.
Collapse
Affiliation(s)
- Yuriy Chushkin
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000Grenoble, France
| | - Federico Zontone
- ESRF – The European Synchrotron, 71 avenue des Martyrs, 38000Grenoble, France
| |
Collapse
|
2
|
Lexelius R, Kahnt M, Maia FRNC. Ptychographic reconstructions performed in real time and offline have equivalent quality. Sci Rep 2025; 15:14674. [PMID: 40287546 PMCID: PMC12033293 DOI: 10.1038/s41598-025-99740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Ptychography is a burgeoning imaging technique that enables high-resolution, lensless reconstruction of complex samples by analysing overlapping diffraction patterns, making it invaluable in fields like materials science, biology, and nanotechnology. Real-time ptychographic reconstructions are gaining interest in the scientific community as they provide immediate feedback. Yet their potential to replace offline reconstructions remains uncertain, in part due to questions about the quality of the resulting images. This study quantitatively compares real-time and offline reconstructions at different overlap conditions. Offline reconstructions, using all diffraction patterns at once, and real-time reconstructions, where new frames are added to the reconstructions in small chunks as the diffraction patterns are recorded, were indistinguishable and identical in reconstruction quality. These results hold consistently across all tested overlap ratios. This study represents the first quantitative analysis of real-time ptychographic reconstruction using a growing dataset, demonstrating the potential for real-time reconstructions to replace or at least complement offline reconstructions.
Collapse
Affiliation(s)
- Rebecka Lexelius
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124, Uppsala, Sweden
| | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100, Lund, Sweden.
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124, Uppsala, Sweden.
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Åstrand M, Vogt U, Yang R, Villanueva Perez P, Li T, Lyubomirskiy M, Kahnt M. Multi-beam multi-slice X-ray ptychography. Sci Rep 2025; 15:9273. [PMID: 40102622 PMCID: PMC11920106 DOI: 10.1038/s41598-025-93757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
X-ray ptychography provides the highest resolution non-destructive imaging at synchrotron radiation facilities, and the efficiency of this method is crucial for coping with limited experimental time. Recent advancements in multi-beam ptychography have enabled larger fields of view, but spatial resolution for large 3D samples remains constrained by their thickness, requiring consideration of multiple scattering events. Although this challenge has been addressed using multi-slicing in conventional ptychography, the integration of multi-slicing with multi-beam ptychography has not yet been explored. Here we present the first successful combination of these two methods, enabling high-resolution imaging of nanofeatures at depths comparable to the lateral dimensions that can be addressed by state-of-the-art multi-beam ptychography. Our approach is robust, reproducible across different beamlines, and ready for broader application. It marks a significant advancement in the field, establishing a new foundation for high-resolution 3D imaging of larger, thicker samples.
Collapse
Affiliation(s)
- Mattias Åstrand
- KTH Royal Institute of Technology, Department of Applied Physics, Bio-Opto-Nano Physics, Albanova University Center, 106 91, Stockholm, Sweden.
| | - Ulrich Vogt
- KTH Royal Institute of Technology, Department of Applied Physics, Bio-Opto-Nano Physics, Albanova University Center, 106 91, Stockholm, Sweden
| | - Runqing Yang
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden
- Department of Physics, Synchrotron Radiation Research, Lund University, Box 118, 221 00, Lund, Sweden
| | - Pablo Villanueva Perez
- Department of Physics, Synchrotron Radiation Research, Lund University, Box 118, 221 00, Lund, Sweden
| | - Tang Li
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | | | - Maik Kahnt
- MAX IV Laboratory, Lund University, Box 118, 221 00, Lund, Sweden
| |
Collapse
|
4
|
Falcones B, Kahnt M, Johansson U, Svobodová B, von Wachenfelt KA, Brunmark C, Dellgren G, Elowsson L, Thånell K, Westergren-Thorsson G. Nano-XRF of lung fibrotic tissue reveals unexplored Ca, Zn, S and Fe metabolism: a novel approach to chronic lung diseases. Cell Commun Signal 2025; 23:67. [PMID: 39920750 PMCID: PMC11806689 DOI: 10.1186/s12964-025-02076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Synchrotron-radiation nano-X-Ray Fluorescence (XRF) is a cutting-edge technique offering high-resolution insights into the elemental composition of biological tissues, shedding light on metabolic processes and element localization within cellular structures. In the context of Idiopathic Pulmonary Fibrosis (IPF), a debilitating lung condition associated with respiratory complications and reduced life expectancy, nano-XRF presents a promising avenue for understanding the disease's intricate pathology. Our developed workflow enables the assessment of elemental composition in both human and rodent fibrotic tissues, providing insights on the interplay between cellular compartments in chronic lung diseases. Our findings demonstrate trace element accumulations associated with anthracosis, a feature observed in IPF. Notably, Zn and Ca clusters approximately 750 nm in size were identified exclusively in IPF samples. While their specific role remains unclear, their presence may be associated with disease-specific processes. Additionally, we observed Fe and S signal colocalization in 650-nm structures within some IPF cells. Fe-S complexes in mitochondria are known to be associated with increased ROS production, suggesting a potential connection to the disease pathology. In contrast, a bleomycin-induced fibrosis rodent model exhibits a different elemental phenotype with low Fe and increased S, Zn, and Ca. Overall, our workflow highlights the effectiveness of synchrotron-based nano-XRF mapping in analyzing the spatial distribution of trace elements within diseased tissue, offering valuable insights into the elemental aspects of IPF and related chronic lung diseases.
Collapse
Affiliation(s)
- Bryan Falcones
- MAX IV Laboratory, Lund University, Lund, Sweden.
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Maik Kahnt
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | - Barbora Svobodová
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Göran Dellgren
- Transplant Institute, Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
5
|
Jiang Z, Jiang H, He Y, He Y, Liang D, Yu H, Li A, Signorato R. Development and testing of a dual-frequency real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:100-108. [PMID: 39642103 PMCID: PMC11708843 DOI: 10.1107/s1600577524010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/18/2024] [Indexed: 12/08/2024]
Abstract
A novel dual-frequency real-time feedback system has been developed to simultaneously optimize and stabilize beam position and energy at the hard X-ray nanoprobe beamline of the Shanghai Synchrotron Radiation Facility. A user-selected cut-off frequency is used to separate the beam position signal obtained from an X-ray beam position monitor into two parts, i.e. high-frequency and low-frequency components. They can be real-time corrected and optimized by two different optical components, one chromatic and the other achromatic, of very different inertial mass, such as Bragg monochromator dispersive elements and a pre-focusing total external reflection mirror. The experimental results shown in this article demonstrate a significant improvement in position and energy stabilities. The long-term beam angular stability clearly improved from 2.21 to 0.92 µrad RMS in the horizontal direction and from 0.72 to 0.10 µrad RMS in the vertical direction.
Collapse
Affiliation(s)
- Zhisen Jiang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Hui Jiang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jialuo Road, Jiading DistrictShanghai201800People’s Republic of China
| | - Yinghua He
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Yan He
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Dongxu Liang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Huaina Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
| | - Aiguo Li
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research Institute, Chinese Academy of Sciences239 Zhangheng Road, Pudong DistrictShanghai201204People’s Republic of China
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences2019 Jialuo Road, Jiading DistrictShanghai201800People’s Republic of China
| | | |
Collapse
|
6
|
Zhang P, Jiang Z, He Y, Li A. A distributed software system for integrating data-intensive imaging methods in a hard X-ray nanoprobe beamline at the SSRF. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1234-1240. [PMID: 39172093 PMCID: PMC11371055 DOI: 10.1107/s1600577524006994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
The development of hard X-ray nanoprobe techniques has given rise to a number of experimental methods, like nano-XAS, nano-XRD, nano-XRF, ptychography and tomography. Each method has its own unique data processing algorithms. With the increase in data acquisition rate, the large amount of generated data is now a big challenge to these algorithms. In this work, an intuitive, user-friendly software system is introduced to integrate and manage these algorithms; by taking advantage of the loosely coupled, component-based design approach of the system, the data processing speed of the imaging algorithm is enhanced through optimization of the parallelism efficiency. This study provides meaningful solutions to tackle complexity challenges faced in synchrotron data processing.
Collapse
Affiliation(s)
- Peicheng Zhang
- Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201210People’s Republic of China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210People’s Republic of China
| | - Zhisen Jiang
- Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201210People’s Republic of China
| | - Yan He
- Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201210People’s Republic of China
| | - Aiguo Li
- Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghai201210People’s Republic of China
| |
Collapse
|
7
|
Sharma K, Silva Barreto I, Dejea H, Hammerman M, Appel C, Geraki K, Eliasson P, Pierantoni M, Isaksson H. Elemental and Structural Characterization of Heterotopic Ossification during Achilles Tendon Healing Provides New Insights on the Formation Process. ACS Biomater Sci Eng 2024; 10:4938-4946. [PMID: 39042709 PMCID: PMC11322912 DOI: 10.1021/acsbiomaterials.4c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Heterotopic ossification (HO) in tendons can lead to increased pain and poor tendon function. Although it is believed to share some characteristics with bone, the structural and elemental compositions of HO deposits have not been fully elucidated. This study utilizes a multimodal and multiscale approach for structural and elemental characterization of HO deposits in healing rat Achilles tendons at 3, 6, 12, 16, and 20 weeks post transection. The microscale tomography and scanning electron microscopy results indicate increased mineral density and Ca/P ratio in the maturing HO deposits (12 and 20 weeks), when compared to the early time points (3 weeks). Visually, the mature HO deposits present microstructures similar to calcaneal bone. Through synchrotron-based X-ray scattering and fluorescence, the hydroxyapatite (HA) crystallites are shorter along the c-axis and become larger in the ab-plane with increasing healing time, while the HA crystal thickness remains within the reference values for bone. At the mineralization boundary, the overlap between high levels of calcium and prominent crystallite formation was outlined by the presence of zinc and iron. In the mature HO deposits, the calcium content was highest, and zinc was more present internally, which could be indicative of HO deposit remodeling. This study emphasizes the structural and elemental similarities between the calcaneal bone and HO deposits.
Collapse
Affiliation(s)
- Kunal Sharma
- Department
of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | | | - Hector Dejea
- Department
of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
- MAX
IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Malin Hammerman
- Department
of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
- Department
of Biomedical and Clinical Sciences, Linköping
University, 581 83 Linköping, Sweden
| | - Christian Appel
- Swiss
Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | | | - Pernilla Eliasson
- Department
of Biomedical and Clinical Sciences, Linköping
University, 581 83 Linköping, Sweden
- Department
of Orthopaedics, Sahlgrenska University
Hospital, 431 80 Mölndal, Sweden
| | - Maria Pierantoni
- Department
of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Hanna Isaksson
- Department
of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
8
|
Banerjee S, Gürsoy D, Deng J, Kahnt M, Kramer M, Lynn M, Haskel D, Strempfer J. 3D imaging of magnetic domains in Nd 2Fe 14B using scanning hard X-ray nanotomography. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:877-887. [PMID: 38771778 PMCID: PMC11226165 DOI: 10.1107/s1600577524003217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale.
Collapse
Affiliation(s)
| | - Doğa Gürsoy
- X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Junjing Deng
- X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Maik Kahnt
- MAX IV LaboratoryLund University22100LundSweden
| | | | | | - Daniel Haskel
- X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Jörg Strempfer
- X-ray Science DivisionArgonne National LaboratoryLemontIL60439USA
| |
Collapse
|
9
|
Johansson S, Scattarella F, Kalbfleisch S, Johansson U, Ward C, Hetherington C, Sixta H, Hall S, Giannini C, Olsson U. Scanning WAXS microscopy of regenerated cellulose fibers at mesoscopic resolution. IUCRJ 2024; 11:570-577. [PMID: 38860956 PMCID: PMC11220875 DOI: 10.1107/s205225252400383x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
In this work, regenerated cellulose textile fibers, Ioncell-F, dry-wet spun with different draw ratios, have been investigated by scanning wide-angle X-ray scattering (WAXS) using a mesoscopic X-ray beam. The fibers were found to be homogeneous on the 500 nm length scale. Analysis of the azimuthal angular dependence of a crystalline Bragg spot intensity revealed a radial dependence of the degree of orientation of crystallites that was found to increase with the distance from the center of the fiber. We attribute this to radial velocity gradients during the extrusion of the spin dope and the early stage of drawing. On the other hand, the fiber crystallinity was found to be essentially homogeneous over the fiber cross section.
Collapse
Affiliation(s)
- Sara Johansson
- Division of Solid MechanicsLund UniversityBox 118LundSE-22100Sweden
| | - Francesco Scattarella
- Institute of CrystallographyNational Research CouncilVia Amendola 122/OBari70126Italy
| | | | - Ulf Johansson
- MAX IV LaboratoryLund UniversityPO Box 118LundSE-22100Sweden
| | - Christopher Ward
- MAX IV LaboratoryLund UniversityPO Box 118LundSE-22100Sweden
- Physical ChemistryLund UniversityBox 124LundSE-22100Sweden
| | - Crispin Hetherington
- National Center for High Resolution Electron Microscopy, Centre for Analysis and SynthesisLund UniversityBox 124LundSE-22100Sweden
| | - Herbert Sixta
- Department of Bioproducts and BiosystemsAalto UniversityPO Box 16300Helsinki00076Finland
| | - Stephen Hall
- Division of Solid MechanicsLund UniversityBox 118LundSE-22100Sweden
| | - Cinzia Giannini
- Institute of CrystallographyNational Research CouncilVia Amendola 122/OBari70126Italy
| | - Ulf Olsson
- Physical ChemistryLund UniversityBox 124LundSE-22100Sweden
| |
Collapse
|
10
|
Åstrand M, Kahnt M, Johansson U, Vogt U. Adaptive multi-beam X-ray ptychography. OPTICS EXPRESS 2024; 32:22771-22780. [PMID: 39538756 DOI: 10.1364/oe.509813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/23/2024] [Indexed: 11/16/2024]
Abstract
Ptychography has evolved as an important method for nanoscale X-ray imaging with synchrotron radiation. Recently, it has been proposed to work with multiple beams in parallel. The main advantage of so-called multi-beam ptychography is that larger areas can be imaged much faster than with a conventional single beam scan. We introduce adaptive multi-beam ptychography performed with two Fresnel zone plates, placed one behind the other. In contrast to previous demonstrations of multi-beam ptychography, our optical scheme allows for adapting the spatial beam separation to the needs of the sample under investigation, relaxes thickness requirements on zone plates and is straightforward to implement. Moreover, it is simple to switch between single and multi-beam illumination during the same experiment. This opens the possibility of combining large and fast overview scans with detailed imaging of certain regions of interests.
Collapse
|
11
|
Marçal LAB, Lamers N, Hammarberg S, Zhang Z, Chen H, Dzhigaev D, Gomez-Gonzalez MA, Parker JE, Björling A, Mikkelsen A, Wallentin J. Structural and chemical properties of anion exchanged CsPb(Br (1-x)Cl x) 3heterostructured perovskite nanowires imaged by nanofocused x-rays. NANOTECHNOLOGY 2024; 35:265710. [PMID: 38502953 DOI: 10.1088/1361-6528/ad355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Over the last years metal halide perovskites have demonstrated remarkable potential for integration in light emitting devices. Heterostructures allow for tunable bandgap depending on the local anion composition, crucial for optoelectronic devices, but local structural effects of anion exchange in single crystals is not fully understood. Here, we investigate how the anion exchange of CsPbBr3nanowires fully and locally exposed to HCl vapor affects the local crystal structure, using nanofocused x-rays. We study the nanoscale composition and crystal structure as function of HCl exposure time and demonstrate the correlation of anion exchange with changes in the lattice parameter. The local composition was measured by x-ray fluorescence and x-ray diffraction, with general agreement of both methods but with much less variation using latter. The heterostructured nanowires exhibit unintentional gradients in composition, both axially and radially. Ferroelastic domains are observed for all HCl exposure times, and the magnitude of the lattice tilt at the domain walls scales with the Cl concentration.
Collapse
Affiliation(s)
- L A B Marçal
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - N Lamers
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - S Hammarberg
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - Z Zhang
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - H Chen
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - D Dzhigaev
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - M A Gomez-Gonzalez
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - J E Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - A Björling
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - A Mikkelsen
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - J Wallentin
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| |
Collapse
|
12
|
Nygård K, McDonald SA, González JB, Haghighat V, Appel C, Larsson E, Ghanbari R, Viljanen M, Silva J, Malki S, Li Y, Silva V, Weninger C, Engelmann F, Jeppsson T, Felcsuti G, Rosén T, Gordeyeva K, Söderberg L, Dierks H, Zhang Y, Yao Z, Yang R, Asimakopoulou EM, Rogalinski J, Wallentin J, Villanueva-Perez P, Krüger R, Dreier T, Bech M, Liebi M, Bek M, Kádár R, Terry AE, Tarawneh H, Ilinski P, Malmqvist J, Cerenius Y. ForMAX - a beamline for multiscale and multimodal structural characterization of hierarchical materials. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:363-377. [PMID: 38386565 PMCID: PMC10914163 DOI: 10.1107/s1600577524001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.
Collapse
Affiliation(s)
- K. Nygård
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | - V. Haghighat
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - C. Appel
- MAX IV Laboratory, Lund University, Lund, Sweden
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - E. Larsson
- MAX IV Laboratory, Lund University, Lund, Sweden
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - R. Ghanbari
- MAX IV Laboratory, Lund University, Lund, Sweden
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
| | - M. Viljanen
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - J. Silva
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - S. Malki
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Y. Li
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - V. Silva
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - C. Weninger
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - F. Engelmann
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - T. Jeppsson
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - G. Felcsuti
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - T. Rosén
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Center (WWSC), Royal Institute of Technology, Stockholm, Sweden
| | - K. Gordeyeva
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
| | - L. D. Söderberg
- Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden
- Wallenberg Wood Science Center (WWSC), Royal Institute of Technology, Stockholm, Sweden
| | - H. Dierks
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | - Y. Zhang
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | - Z. Yao
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | - R. Yang
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | | | | | - J. Wallentin
- Synchrotron Radiation Research, Lund University, Lund, Sweden
| | | | - R. Krüger
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - T. Dreier
- Medical Radiation Physics, Lund University, Lund, Sweden
- Excillum AB, Kista, Sweden
| | - M. Bech
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - M. Liebi
- Paul Scherrer Institut, Villigen PSI, Switzerland
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - M. Bek
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
- FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - R. Kádár
- MAX IV Laboratory, Lund University, Lund, Sweden
- Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden
- FibRe-Centre for Lignocellulose-based Thermoplastics, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Wallenberg Wood Science Center (WWSC), Chalmers University of Technology, Gothenburg, Sweden
| | - A. E. Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - H. Tarawneh
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - P. Ilinski
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - J. Malmqvist
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Y. Cerenius
- MAX IV Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Huang TC, Ke SW, Wu YH, Wang ER, Wei WL, Lee CY, Chen BY, Yin GC, Chang HW, Tang MT, Lin BH. Combination of XEOL, TR-XEOL and HB-T interferometer at the TPS 23A X-ray nanoprobe for exploring quantum materials. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:252-259. [PMID: 38241123 PMCID: PMC10914160 DOI: 10.1107/s1600577523010469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
In this study, a combination of X-ray excited optical luminescence (XEOL), time-resolved XEOL (TR-XEOL) and the Hanbury-Brown and Twiss (HB-T) interferometer at the Taiwan Photon Source (TPS) 23A X-ray nanoprobe beamline for exploring quantum materials is demonstrated. On the basis of the excellent spatial resolution rendered using a nano-focused beam, emission distributions of artificial micro-diamonds can be obtained by XEOL maps, and featured emission peaks of a selected local area can be obtained by XEOL spectra. The hybrid bunch mode of the TPS not only provides a sufficiently high peak power density for experiments at each beamline but also permits high-quality temporal domain (∼200 ns) measurements for investigating luminescence dynamics. From TR-XEOL measurements, the decay lifetime of micro-diamonds is determined to be approximately 16 ns. Furthermore, the XEOL spectra of artificial micro-diamonds can be investigated by the HB-T interferometer to identify properties of single-photon sources. The unprecedented strategy of combining XEOL, TR-XEOL and the HB-T interferometer at the X-ray nanoprobe beamline will open new avenues with significant characterization abilities for unraveling the emission mechanisms of single-photon sources for quantum materials.
Collapse
Affiliation(s)
- Tzu-Chi Huang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Shang-Wei Ke
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yu-Hao Wu
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - En-Rui Wang
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Wei-Lon Wei
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Chien-Yu Lee
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Bo-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
| | - Mau-Tsu Tang
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| |
Collapse
|
14
|
Lotze G, Iyer AHS, Bäcke O, Kalbfleisch S, Colliander MH. In situ characterization of stresses, deformation and fracture of thin films using transmission X-ray nanodiffraction microscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:42-54. [PMID: 38095669 PMCID: PMC10833435 DOI: 10.1107/s1600577523010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
The use of hard X-ray transmission nano- and microdiffraction to perform in situ stress and strain measurements during deformation has recently been demonstrated and used to investigate many thin film systems. Here a newly commissioned sample environment based on a commercially available nanoindenter is presented, which is available at the NanoMAX beamline at the MAX IV synchrotron. Using X-ray nanoprobes of around 60-70 nm at 14-16 keV and a scanning step size of 100 nm, we map the strains, stresses, plastic deformation and fracture during nanoindentation of industrial coatings with thicknesses in the range of several micrometres, relatively strong texture and large grains. The successful measurements of such challenging samples illustrate broad applicability. The sample environment is openly accessible for NanoMAX beamline users through the MAX IV sample environment pool, and its capability can be further extended for specific purposes through additional available modules.
Collapse
Affiliation(s)
- Gudrun Lotze
- MAX IV Laboratory, Lund, Sweden
- LINXS Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| | - Anand H. S. Iyer
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Olof Bäcke
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | | | | |
Collapse
|
15
|
Hammarberg S, Marçal LAB, Lamers N, Zhang Z, Chen H, Björling A, Wallentin J. Nanoscale X-ray Imaging of Composition and Ferroelastic Domains in Heterostructured Perovskite Nanowires: Implications for Optoelectronic Devices. ACS APPLIED NANO MATERIALS 2023; 6:17698-17705. [PMID: 37854855 PMCID: PMC10580236 DOI: 10.1021/acsanm.3c02978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Metal halide perovskites (MHPs) have garnered significant interest as promising candidates for nanoscale optoelectronic applications due to their excellent optical properties. Axially heterostructured CsPbBr3-CsPb(Br(1-x)Clx)3 nanowires can be produced by localized anion exchange of pregrown CsPbBr3 nanowires. However, characterizing such heterostructures with sufficient strain and real space resolution is challenging. Here, we use nanofocused scanning X-ray diffraction (XRD) and X-ray fluorescence (XRF) with a 60 nm beam to investigate a heterostructured MHP nanowire as well as a reference CsPbBr3 nanowire. The nano-XRD approach gives spatially resolved maps of composition, lattice spacing, and lattice tilt. Both the reference and exchanged nanowire show signs of diverse types of ferroelastic domains, as revealed by the tilt maps. The chlorinated segment shows an average Cl composition of x = 66 and x = 70% as measured by XRD and XRF, respectively. The XRD measurements give a much more consistent result than the XRF ones. These findings are consistent with photoluminescence measurements, showing x = 73%. The nominally unexchanged segment also has a small concentration of Cl, as observed with all three methods, which we attribute to diffusion after processing. These results highlight the need to prevent such unwanted processes in order to fabricate optoelectronic devices based on MHP heterostructures.
Collapse
Affiliation(s)
- Susanna Hammarberg
- Synchrotron
Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - Lucas Atila Bernardes Marçal
- Synchrotron
Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
- MAX
IV Laboratory, Lund University, Lund 22100, Sweden
| | - Nils Lamers
- Synchrotron
Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - Zhaojun Zhang
- Synchrotron
Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | - Huaiyu Chen
- Synchrotron
Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| | | | - Jesper Wallentin
- Synchrotron
Radiation Research and NanoLund, Lund University, Box 118, Lund 22100, Sweden
| |
Collapse
|
16
|
Takahashi Y, Abe M, Uematsu H, Takazawa S, Sasaki Y, Ishiguro N, Ozaki K, Honjo Y, Nishino H, Kobayashi K, Hiraki TN, Joti Y, Hatsui T. High-resolution and high-sensitivity X-ray ptychographic coherent diffraction imaging using the CITIUS detector. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:989-994. [PMID: 37526992 PMCID: PMC10481278 DOI: 10.1107/s1600577523004897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 08/03/2023]
Abstract
Ptychographic coherent diffraction imaging (PCDI) is a synchrotron X-ray microscopy technique that provides high spatial resolution and a wide field of view. To improve the performance of PCDI, the performance of the synchrotron radiation source and imaging detector should be improved. In this study, ptychographic diffraction pattern measurements using the CITIUS high-speed X-ray image detector and the corresponding image reconstruction are reported. X-rays with an energy of 6.5 keV were focused by total reflection focusing mirrors, and a flux of ∼2.6 × 1010 photons s-1 was obtained at the sample plane. Diffraction intensity data were collected at up to ∼250 Mcounts s-1 pixel-1 without saturation of the detector. Measurements of tantalum test charts and silica particles and the reconstruction of phase images were performed. A resolution of ∼10 nm and a phase sensitivity of ∼0.01 rad were obtained. The CITIUS detector can be applied to the PCDI observation of various samples using low-emittance synchrotron radiation sources and to the stability evaluation of light sources.
Collapse
Affiliation(s)
- Yukio Takahashi
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Abe
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Hideshi Uematsu
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Shuntaro Takazawa
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Yuhei Sasaki
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department of Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-2 Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Nozomu Ishiguro
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kyosuke Ozaki
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiaki Honjo
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Haruki Nishino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kazuo Kobayashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
17
|
Dejea H, Raina DB, Silva Barreto I, Sharma K, Liu Y, Ferreira Sanchez D, Johansson U, Isaksson H. Multi-scale characterization of the spatio-temporal interplay between elemental composition, mineral deposition and remodelling in bone fracture healing. Acta Biomater 2023:S1742-7061(23)00356-2. [PMID: 37369267 DOI: 10.1016/j.actbio.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Bone mineralization involves a complex orchestration of physico-chemical responses from the organism. Despite extensive studies, the detailed mechanisms of mineralization remain to be elucidated. This study aims to characterize bone mineralization using an in-vivo long bone fracture healing model in the rat. The spatio-temporal distribution of relevant elements was correlated to the deposition and maturation of hydroxyapatite and the presence of matrix remodeling compounds (MMP-13). Multi-scale measurements indicated that (i) zinc is required for both the initial mineral deposition and resorption processes during mature mineral remodeling; (ii) Zinc and MMP-13 show similar spatio-temporal trends during early mineralization; (iii) Iron acts locally and in coordination with zinc during mineralization, thus indicating novel evidence of the time-events and inter-play between the elements. These findings improve the understanding of bone mineralization by explaining the link between the different constituents of this process throughout the healing time. STATEMENT OF SIGNIFICANCE: Bone mineralization involves a complex orchestration of physico-chemical responses from the organism, the detailed mechanisms of which remain to be elucidated. This study presents a highly novel multi-scale multi-modal investigation of bone mineralization using bone fracture healing as a model system. We present original characterization of tissue mineralization, where we relate the spatio-temporal distribution of important trace elements to a key matrix remodeling compound (MMP-13), the initial deposition and maturation of hydroxyapatite and further remodeling processes. This is the first time that mineralization has been probed down to the nanometric level, and where key mineralization components have been investigated to achieve a comprehensive and mechanistic understanding of the underlying mineralization processes during bone healing.
Collapse
Affiliation(s)
- Hector Dejea
- Department of Biomedical Engineering, Lund University, 223 62 Lund, Sweden, MAX IV Laboratory, Lund University, 224 84 Lund, Sweden.
| | - Deepak Bushan Raina
- Orthopedics, Department of Clinical Sciences, Lund University, 223 62 Lund, Sweden.
| | | | - Kunal Sharma
- Department of Biomedical Engineering, Lund University, 223 62 Lund, Sweden.
| | - Yang Liu
- Orthopedics, Department of Clinical Sciences, Lund University, 223 62 Lund, Sweden.
| | | | - Ulf Johansson
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden.
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, 223 62 Lund, Sweden.
| |
Collapse
|
18
|
Viljanen M, Muranen S, Kinnunen O, Kalbfleisch S, Svedström K. Structure of cellulose in birch phloem fibres in tension wood: an X-ray nanodiffraction study. PLANT METHODS 2023; 19:58. [PMID: 37328911 DOI: 10.1186/s13007-023-01036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND To gain a better understanding of bark layer structure and function, especially of the phloem fibres and their contribution to the posture control of trees, it is important to map the structural properties of these cells. The role of bark can also be linked to the reaction wood formation and properties which are essential when it comes to studying the questions related to tree growth. To offer new insights into the role of bark in the postural control of trees, we studied the micro- and nanoscale structures of the phloem and its nearest layers. This study is the first time, in which phloem fibres in trees have been extensively examined using X-ray diffraction (XRD). We determined the orientation of cellulose microfibrils in phloem fibres of Silver birch saplings by using scanning synchrotron nanodiffraction. The samples consisted of phloem fibres extracted from tension, opposite and normal wood (TW, OW, NW). RESULTS Using scanning XRD, we were able to obtain new information about the mean microfibril angle (MFA) in cellulose microfibrils in phloem fibres connected to reaction wood. A slight but consistent difference was detected in the average MFA values of phloem fibres between the TW and OW sides of the stem. Using scanning XRD, different contrast agents (intensity of the main cellulose reflection or calcium oxalate reflection, mean MFA value) were used to produce 2D images with 200 nm spatial resolution. CONCLUSIONS Based on our results, the tension wood formation in the stem might be related to the structure and properties of phloem fibres. Thus, our results suggest that the nanostructure of phloem fibres is involved in the postural control of trees containing tension and opposite wood.
Collapse
Affiliation(s)
- Mira Viljanen
- Department of Physics, University of Helsinki, (Gustaf Hällströmin Katu 2), P.O. Box 64, 00014, Helsinki, Finland.
| | - Sampo Muranen
- Viikki Plant Science Centre, Institute of Biotechnology, University of Helsinki, (Viikinkaari 1), P.O. Box 65, 00014, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Outi Kinnunen
- Department of Physics, University of Helsinki, (Gustaf Hällströmin Katu 2), P.O. Box 64, 00014, Helsinki, Finland
| | | | - Kirsi Svedström
- Department of Physics, University of Helsinki, (Gustaf Hällströmin Katu 2), P.O. Box 64, 00014, Helsinki, Finland
| |
Collapse
|
19
|
Robert A, Cerenius Y, Tavares PF, Hultin Stigenberg A, Karis O, Lloyd Whelan AC, Runéus C, Thunnissen M. MAX IV Laboratory. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:495. [PMID: 37304246 PMCID: PMC10240111 DOI: 10.1140/epjp/s13360-023-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023]
Abstract
MAX IV Laboratory is a Swedish national synchrotron radiation facility that comprises three accelerators with varying characteristics. One of the accelerators, the 3 GeV storage ring, is the world's first fourth-generation ring and pioneered the use of the multibend achromat lattice to provide access to ultrahigh brightness X-rays. MAX IV aims to stay at the forefront of the current and future research needs of its multidisciplinary user community, principally located in the Nordic and Baltic regions. Our 16 beamlines currently offer and continue to develop modern X-ray spectroscopy, scattering, diffraction, and imaging techniques to address scientific problems of importance to society.
Collapse
Affiliation(s)
- Aymeric Robert
- MAX IV Laboratory, Lund University, BOX 118, 211 00 Lund, Sweden
| | - Yngve Cerenius
- MAX IV Laboratory, Lund University, BOX 118, 211 00 Lund, Sweden
| | | | | | - Olof Karis
- MAX IV Laboratory, Lund University, BOX 118, 211 00 Lund, Sweden
| | | | - Caroline Runéus
- MAX IV Laboratory, Lund University, BOX 118, 211 00 Lund, Sweden
| | | |
Collapse
|
20
|
Kahnt M, Kalbfleisch S, Björling A, Malm E, Pickworth L, Johansson U. Complete alignment of a KB-mirror system guided by ptychography. OPTICS EXPRESS 2022; 30:42308-42322. [PMID: 36366687 DOI: 10.1364/oe.470591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate how the individual mirrors of a high-quality Kirkpatrick-Baez (KB) mirror system can be aligned to each other to create an optimally focused beam, through minimizing aberrations in the phase of the ptychographically reconstructed pupil function. Different sources of misalignment and the distinctive phase artifacts they create are presented via experimental results from the alignment of the KB mirrors at the NanoMAX diffraction endstation. The catalog of aberration artifacts can be used to easily identify which parameter requires further tuning in the alignment of any KB mirror system.
Collapse
|
21
|
Nazaretski E, Coburn DS, Xu W, Ma J, Xu H, Smith R, Huang X, Yang Y, Huang L, Idir M, Kiss A, Chu YS. A new Kirkpatrick-Baez-based scanning microscope for the Submicron Resolution X-ray Spectroscopy (SRX) beamline at NSLS-II. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1284-1291. [PMID: 36073888 PMCID: PMC9455213 DOI: 10.1107/s1600577522007056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The development, construction, and first commissioning results of a new scanning microscope installed at the 5-ID Submicron Resolution X-ray Spectroscopy (SRX) beamline at NSLS-II are reported. The developed system utilizes Kirkpatrick-Baez mirrors for X-ray focusing. The instrument is designed to enable spectromicroscopy measurements in 2D and 3D with sub-200 nm spatial resolution. The present paper focuses on the design aspects, optical considerations, and specifics of the sample scanning stage, summarizing some of the initial commissioning results.
Collapse
Affiliation(s)
- E. Nazaretski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - D. S. Coburn
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - W. Xu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J. Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - H. Xu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - R. Smith
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - X. Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Y. Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - L. Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M. Idir
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Kiss
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Y. S. Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
22
|
Reinhard C, Drakopoulos M, Charlesworth CM, James A, Patel H, Tutthill P, Crivelli D, Deyhle H, Ahmed SI. Flexible positioning of a large area detector using an industrial robot. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1004-1013. [PMID: 35787567 PMCID: PMC9255586 DOI: 10.1107/s1600577522006300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The DIAD beamline for Dual Imaging and Diffraction at Diamond Light Source has opted to use an industrial robot to position its Dectris Pilatus 2M CdTe diffraction detector. This setup was chosen to enable flexible positioning of the detector in a quarter-sphere around the sample position whilst reliably holding the large weight of 139 kg of detector, detector mount and cabling in a stable position. Metrology measurements showed that the detector can be positioned with a linear repeatability of <19.7 µm and a rotational repeatability of <16.3 µrad. The detector position stays stable for a 12 h period with <10.1 µm of movement for linear displacement and <3.8 µrad for rotational displacement. X-ray diffraction from calibration samples confirmed that the robot is sufficiently stable to resolve lattice d-spacings within the instrumental broadening given by detector position and beam divergence.
Collapse
Affiliation(s)
- Christina Reinhard
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | | | | | - Andrew James
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Hiten Patel
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Paul Tutthill
- YASKAWA, Walworth Road, Newton Aycliffe DL5 6XF, United Kingdom
| | - Davide Crivelli
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Hans Deyhle
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Sharif I. Ahmed
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
23
|
Beckhoff B. Traceable Characterization of Nanomaterials by X-ray Spectrometry Using Calibrated Instrumentation. NANOMATERIALS 2022; 12:nano12132255. [PMID: 35808090 PMCID: PMC9268651 DOI: 10.3390/nano12132255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022]
Abstract
Traceable characterization methods allow for the accurate correlation of the functionality or toxicity of nanomaterials with their underlaying chemical, structural or physical material properties. These correlations are required for the directed development of nanomaterials to reach target functionalities such as conversion efficiencies or selective sensitivities. The reliable characterization of nanomaterials requires techniques that often need to be adapted to the nano-scaled dimensions of the samples with respect to both the spatial dimensions of the probe and the instrumental or experimental discrimination capability. The traceability of analytical methods revealing information on chemical material properties relies on reference materials or qualified calibration samples, the spatial elemental distributions of which must be very similar to the nanomaterial of interest. At the nanoscale, however, only few well-known reference materials exist. An alternate route to establish the required traceability lays in the physical calibration of the analytical instrument’s response behavior and efficiency in conjunction with a good knowledge of the various interaction probabilities. For the elemental analysis, speciation, and coordination of nanomaterials, such a physical traceability can be achieved with X-ray spectrometry. This requires the radiometric calibration of energy- and wavelength-dispersive X-ray spectrometers, as well as the reliable determination of atomic X-ray fundamental parameters using such instrumentation. In different operational configurations, the information depths, discrimination capability, and sensitivity of X-ray spectrometry can be considerably modified while preserving its traceability, allowing for the characterization of surface contamination as well as interfacial thin layer and nanoparticle chemical compositions. Furthermore, time-resolved and hybrid approaches provide access to analytical information under operando conditions or reveal dimensional information, such as elemental or species depth profiles of nanomaterials. The aim of this review is to demonstrate the absolute quantification capabilities of SI-traceable X-ray spectrometry based upon calibrated instrumentation and knowledge about X-ray interaction probabilities.
Collapse
Affiliation(s)
- Burkhard Beckhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany
| |
Collapse
|
24
|
Carbone D, Kalbfleisch S, Johansson U, Björling A, Kahnt M, Sala S, Stankevic T, Rodriguez-Fernandez A, Bring B, Matej Z, Bell P, Erb D, Hardion V, Weninger C, Al-Sallami H, Lidon-Simon J, Carlson S, Jerrebo A, Norsk Jensen B, Bjermo A, Åhnberg K, Roslund L. Design and performance of a dedicated coherent X-ray scanning diffraction instrument at beamline NanoMAX of MAX IV. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:876-887. [PMID: 35511021 PMCID: PMC9070697 DOI: 10.1107/s1600577522001333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The diffraction endstation of the NanoMAX beamline is designed to provide high-flux coherent X-ray nano-beams for experiments requiring many degrees of freedom for sample and detector. The endstation is equipped with high-efficiency Kirkpatrick-Baez mirror focusing optics and a two-circle goniometer supporting a positioning and scanning device, designed to carry a compact sample environment. A robot is used as a detector arm. The endstation, in continued development, has been in user operation since summer 2017.
Collapse
Affiliation(s)
- Dina Carbone
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | | | - Ulf Johansson
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | | | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Simone Sala
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Tomas Stankevic
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Microsoft Danmark ApS, Tuborg Boulevard 12, 2900 Hellerup, Denmark
| | - Angel Rodriguez-Fernandez
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Björn Bring
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Axis Communications, Gränden 1, 22369 Lund, Sweden
| | - Zdenek Matej
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Paul Bell
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - David Erb
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | | | | | | | | | | | | | | | - Anders Bjermo
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Karl Åhnberg
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Linus Roslund
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| |
Collapse
|
25
|
Sala S, Zhang Y, De La Rosa N, Dreier T, Kahnt M, Langer M, Dahlin LB, Bech M, Villanueva-Perez P, Kalbfleisch S. Dose-efficient multimodal microscopy of human tissue at a hard X-ray nanoprobe beamline. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:807-815. [PMID: 35511013 PMCID: PMC9070709 DOI: 10.1107/s1600577522001874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
X-ray fluorescence microscopy performed at nanofocusing synchrotron beamlines produces quantitative elemental distribution maps at unprecedented resolution (down to a few tens of nanometres), at the expense of relatively long measuring times and high absorbed doses. In this work, a method was implemented in which fast low-dose in-line holography was used to produce quantitative electron density maps at the mesoscale prior to nanoscale X-ray fluorescence acquisition. These maps ensure more efficient fluorescence scans and the reduction of the total absorbed dose, often relevant for radiation-sensitive (e.g. biological) samples. This multimodal microscopy approach was demonstrated on human sural nerve tissue. The two imaging modes provide complementary information at a comparable resolution, ultimately limited by the focal spot size. The experimental setup presented allows the user to swap between them in a flexible and reproducible fashion, as well as to easily adapt the scanning parameters during an experiment to fine-tune resolution and field of view.
Collapse
Affiliation(s)
- Simone Sala
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Yuhe Zhang
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Nathaly De La Rosa
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Till Dreier
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
- Excillum AB, 16440 Kista, Sweden
| | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Max Langer
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Villeurbanne, France
| | - Lars B. Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Pablo Villanueva-Perez
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | | |
Collapse
|
26
|
Li Y, Zatterin E, Conroy M, Pylypets A, Borodavka F, Björling A, Groenendijk DJ, Lesne E, Clancy AJ, Hadjimichael M, Kepaptsoglou D, Ramasse QM, Caviglia AD, Hlinka J, Bangert U, Leake SJ, Zubko P. Electrostatically Driven Polarization Flop and Strain-Induced Curvature in Free-Standing Ferroelectric Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106826. [PMID: 35064954 DOI: 10.1002/adma.202106826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The combination of strain and electrostatic engineering in epitaxial heterostructures of ferroelectric oxides offers many possibilities for inducing new phases, complex polar topologies, and enhanced electrical properties. However, the dominant effect of substrate clamping can also limit the electromechanical response and often leaves electrostatics to play a secondary role. Releasing the mechanical constraint imposed by the substrate can not only dramatically alter the balance between elastic and electrostatic forces, enabling them to compete on par with each other, but also activates new mechanical degrees of freedom, such as the macroscopic curvature of the heterostructure. In this work, an electrostatically driven transition from a predominantly out-of-plane polarized to an in-plane polarized state is observed when a PbTiO3 /SrTiO3 superlattice with a SrRuO3 bottom electrode is released from its substrate. In turn, this polarization rotation modifies the lattice parameter mismatch between the superlattice and the thin SrRuO3 layer, causing the heterostructure to curl up into microtubes. Through a combination of synchrotron-based scanning X-ray diffraction imaging, Raman scattering, piezoresponse force microscopy, and scanning transmission electron microscopy, the crystalline structure and domain patterns of the curved superlattices are investigated, revealing a strong anisotropy in the domain structure and a complex mechanism for strain accommodation.
Collapse
Affiliation(s)
- Yaqi Li
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Edoardo Zatterin
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Michele Conroy
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0HA, UK
| | - Anastasiia Pylypets
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Praha 8, Czech Republic
| | - Fedir Borodavka
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Praha 8, Czech Republic
| | | | - Dirk J Groenendijk
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, Delft, GA 2600, The Netherlands
| | - Edouard Lesne
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, Delft, GA 2600, The Netherlands
| | - Adam J Clancy
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Marios Hadjimichael
- Department of Quantum Matter Physics, University of Geneva, Geneva, 1211, Switzerland
| | - Demie Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, WA4 4AD, UK
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Quentin M Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, WA4 4AD, UK
- Schools of Chemical and Process Engineering, & Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrea D Caviglia
- Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, Delft, GA 2600, The Netherlands
| | - Jiri Hlinka
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 18221 Praha 8, Czech Republic
| | - Ursel Bangert
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Steven J Leake
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Pavlo Zubko
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
- London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0HA, UK
| |
Collapse
|
27
|
Miniaturized Sulfite-Based Gold Bath for Controlled Electroplating of Zone Plate Nanostructures. MICROMACHINES 2022; 13:mi13030452. [PMID: 35334744 PMCID: PMC8955819 DOI: 10.3390/mi13030452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 01/05/2023]
Abstract
X-ray zone plates made from gold are common optical components used in X-ray imaging experiments. These nanostructures are normally fabricated using a combination of electron-beam lithography and gold electroplating with cyanide gold baths. In this study, we present a gold electroplating process in a miniaturized gold-suplphite bath. The miniaturization is enabled by on-chip reference plating areas with well defined sizes, offering a reliable way to control the height of the structures by carefully choosing the plating time at a given current density in accordance with a calibration curve. Fabricated gold zone plates were successfully used in X-ray imaging experiments with synchrotron radiation. Although gold electroplating of nanostructures is a well-established method, details about the actual process are often missing in the literature. Therefore, we think that our detailed descriptions and explanations will be helpful for other researchers that would like to fabricate similar structures.
Collapse
|
28
|
Reimers S, Kriegner D, Gomonay O, Carbone D, Krizek F, Novák V, Campion RP, Maccherozzi F, Björling A, Amin OJ, Barton LX, Poole SF, Omari KA, Michalička J, Man O, Sinova J, Jungwirth T, Wadley P, Dhesi SS, Edmonds KW. Defect-driven antiferromagnetic domain walls in CuMnAs films. Nat Commun 2022; 13:724. [PMID: 35132068 PMCID: PMC8821625 DOI: 10.1038/s41467-022-28311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
Efficient manipulation of antiferromagnetic (AF) domains and domain walls has opened up new avenues of research towards ultrafast, high-density spintronic devices. AF domain structures are known to be sensitive to magnetoelastic effects, but the microscopic interplay of crystalline defects, strain and magnetic ordering remains largely unknown. Here, we reveal, using photoemission electron microscopy combined with scanning X-ray diffraction imaging and micromagnetic simulations, that the AF domain structure in CuMnAs thin films is dominated by nanoscale structural twin defects. We demonstrate that microtwin defects, which develop across the entire thickness of the film and terminate on the surface as characteristic lines, determine the location and orientation of 180∘ and 90∘ domain walls. The results emphasize the crucial role of nanoscale crystalline defects in determining the AF domains and domain walls, and provide a route to optimizing device performance.
Collapse
Affiliation(s)
- Sonka Reimers
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
- Diamond Light Source, Chilton, OX11 0DE, UK.
| | - Dominik Kriegner
- Institut für Festkörper- und Materialphysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062, Dresden, Germany
- Institute of Physics, Czech Academy of Sciences, 162 00 Praha 6, Prague, Czech Republic
| | - Olena Gomonay
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099, Mainz, Germany
| | - Dina Carbone
- MAX IV Laboratory, Lund University, 22100, Lund, Sweden
| | - Filip Krizek
- Institute of Physics, Czech Academy of Sciences, 162 00 Praha 6, Prague, Czech Republic
| | - Vit Novák
- Institute of Physics, Czech Academy of Sciences, 162 00 Praha 6, Prague, Czech Republic
| | - Richard P Campion
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | - Oliver J Amin
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Luke X Barton
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stuart F Poole
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Khalid A Omari
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jan Michalička
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Ondřej Man
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Jairo Sinova
- Institut für Physik, Johannes Gutenberg Universität Mainz, 55099, Mainz, Germany
| | - Tomáš Jungwirth
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
- Institute of Physics, Czech Academy of Sciences, 162 00 Praha 6, Prague, Czech Republic
| | - Peter Wadley
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Kevin W Edmonds
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
29
|
Kalbfleisch S, Zhang Y, Kahnt M, Buakor K, Langer M, Dreier T, Dierks H, Stjärneblad P, Larsson E, Gordeyeva K, Chayanun L, Söderberg D, Wallentin J, Bech M, Villanueva-Perez P. X-ray in-line holography and holotomography at the NanoMAX beamline. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:224-229. [PMID: 34985439 PMCID: PMC8733976 DOI: 10.1107/s1600577521012200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/17/2021] [Indexed: 05/29/2023]
Abstract
Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffraction-limited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.
Collapse
Affiliation(s)
| | - Yuhe Zhang
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Maik Kahnt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - Khachiwan Buakor
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Max Langer
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Till Dreier
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden
- Excillum AB, Jan Stenbecks Torg 17, 16440 Kista, Sweden
| | - Hanna Dierks
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Philip Stjärneblad
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Emanuel Larsson
- Division of Solid Mechanics and LUNARC, Department of Construction Sciences, Lund University, 22100 Lund, Sweden
| | - Korneliya Gordeyeva
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lert Chayanun
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Daniel Söderberg
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jesper Wallentin
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| | - Martin Bech
- Department for Medical Radiation Physics, Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden
| | - Pablo Villanueva-Perez
- Division of Synchrotron Radiation Research and NanoLund, Department of Physics, Lund University, 22100 Lund, Sweden
| |
Collapse
|