1
|
Mansouri Z, Salimi Y, Wolf NB, Mainta I, Zaidi H. CT-free attenuation and Monte-Carlo based scatter correction-guided quantitative 90Y-SPECT imaging for improved dose calculation using deep learning. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07191-5. [PMID: 40080141 DOI: 10.1007/s00259-025-07191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND This work aimed to develop deep learning (DL) models for CT-free attenuation and Monte Carlo-based scatter correction (AC, SC) in quantitative 90Y SPECT imaging for improved dose calculation. METHODS Data of 190 patients who underwent 90Y selective internal radiation therapy (SIRT) with glass microspheres was studied. Voxel-level dosimetry was performed on uncorrected and corrected SPECT images using the local energy deposition method. Three deep learning models were trained individually for AC, SC, and joint ASC using a modified 3D shifted-window UNet Transformer (Swin UNETR) architecture. Corrected and unorrected dose maps served as reference and as inputs, respectively. The data was split into train set (~ 80%) and unseen test set (~ 20%). Training was conducted in a five-fold cross-validation scheme. The trained models were tested on the unseen test set. The model's performance was thoroughly evaluated by comparing organ- and voxel-level dosimetry results between the reference and DL-generated dose maps on the unseen test dataset. The voxel and organ-level evaluations also included Gamma analysis with three different distances to agreement (DTA (mm)) and dose difference (DD (%)) criteria to explore suitable criteria in SIRT dosimetry using SPECT. RESULTS The average ± SD of the voxel-level quantitative metrics for AC task, are mean error (ME (Gy)): -0.026 ± 0.06, structural similarity index (SSIM (%)): 99.5 ± 0.25, and peak signal to noise ratio (PSNR (dB)): 47.28 ± 3.31. These values for SC task are - 0.014 ± 0.05, 99.88 ± 0.099, 55.9 ± 4, respectively. For ASC task, these values are as follows: -0.04 ± 0.06, 99.57 ± 0.33, 47.97 ± 3.6, respectively. The results of voxel level gamma evaluations with three different criteria, namely "DTA: 4.79, DD: 1%", "DTA:10 mm, DD: 5%", and "DTA: 15 mm, DD:10%" were around 98%. The mean absolute error (MAE (Gy)) for tumor and whole normal liver across tasks are as follows: 7.22 ± 5.9 and 1.09 ± 0.86 for AC, 8 ± 9.3 and 0.9 ± 0.8 for SC, and 11.8 ± 12.02 and 1.3 ± 0.98 for ASC, respectively. CONCLUSION We developed multiple models for three different clinically scenarios, namely AC, SC, and ASC using the patient-specific Monte Carlo scatter corrected and CT-based attenuation corrected images. These task-specific models could be beneficial to perform the essential corrections where the CT images are either not available or not reliable due to misalignment, after training with a larger dataset.
Collapse
Affiliation(s)
- Zahra Mansouri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland
| | - Nicola Bianchetto Wolf
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland
| | - Ismini Mainta
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, CH-1211, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
2
|
Nosrati Z, Chen YA, Bergamo M, Rodríguez‐Rodríguez C, Chan J, Shojania K, Kherani RB, Chin C, Kelsall JT, Dehghan N, Colwill AM, Collins D, Saatchi K, Häfeli UO. Prodrug Nanomedicine for Synovium Targeted Therapy of Inflammatory Arthritis: Insights from Animal Model and Human Synovial Joint Fluid. Adv Healthc Mater 2024; 13:e2401936. [PMID: 39380387 PMCID: PMC11616258 DOI: 10.1002/adhm.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Many patients cannot tolerate low-dose weekly methotrexate (MTX) therapy for inflammatory arthritis treatment due to life-threatening toxicity. Although biologics offer a target-specific therapy, it raises the risk of serious infections and even cancer due to immune system suppression. We introduce an anti-inflammatory arthritis MTX ester prodrug using a long-circulating biocompatible polymeric macromolecule: folic acid (FA) functionalized hyperbranched polyglycerol (HPG). In vitro the drug MTX is incrementally released through pH and enzymatic degradation over 2 weeks. The role of matrix metalloproteinases (MMPs) in site-specific prodrug activation was verified using synovial fluid (SF) of 26 rheumatology patients and 4 healthy controls. Elevated levels of specific MMPs-markers of joint inflammation-positively correlated with enhanced prodrug release explained by acid-catalyzed hydrolysis of esters by proteases. Intravenously administered 111In-radiolabeled prodrug confirmed by SPECT/CT imaging that it accumulated preferentially in inflamed joints while reducing off-target side-effects in a mouse model of rheumatoid arthritis (RA). Added FA as a targeting vector prolonged prodrug action; prodrug with 4x less MTX applied every 2 weeks was as effective as weekly MTX therapy. The preclinical results suggest a prodrug-based strategy for the treatment of inflammatory joint diseases, with potential for other chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Yun An Chen
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | | | - Jonathan Chan
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Kam Shojania
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Raheem B. Kherani
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Carson Chin
- Burnaby Medical and Surgical SpecialistsBurnabyBCV3J 1M2Canada
| | - John T. Kelsall
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | | | | | - David Collins
- Department of Medicine – RheumatologyUniversity of British Columbia2775 Laurel StVancouverBCV5Z 1M9Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
| | - Urs O. Häfeli
- Faculty of Pharmaceutical SciencesUniversity of British Columbia2405 Wesbrook MallVancouverBCV5Z 3P2Canada
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2CopenhagenDenmark2100
| |
Collapse
|
3
|
Cosmi V, Kvassheim M, Ghosh S, Beekman FJ, Goorden MC. Twisted clustered pinhole collimation for improved high-energy preclinical SPECT/PET. Phys Med Biol 2024; 69:225016. [PMID: 39533753 DOI: 10.1088/1361-6560/ad8c97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Objective.Advanced pinhole collimation geometries optimized for preclinical high-energyɣimaging facilitate applications such asɑandßemitter imaging, simultaneous multi-isotope PET and PET/SPECT, and positron range-free PET. These geometries replace each pinhole with a group of clustered pinholes (CPs) featuring smaller individual pinhole opening angles (POAs), enabling sub-mm resolution imaging up to ∼1 MeV. Further narrowing POAs while retaining field-of-view (FOV) may enhance high-energy imaging but faces geometrical constraints. Here, we detail how the novel twisted CPs (TCPs) address this challenge.Approach.We compared TCP and CP collimator sensitivity at equal system resolution (SR) and SR at matched sensitivity by tuning pinhole diameters for18F (511 keV) and89Zr (909 keV). Additionally, simulated Derenzo phantoms at low activity (LA: 12 MBq ml-1) and high activity (HA: 190 MBq ml-1) levels, along with uniformity images, were compared to assess image resolution and uniformity.Main results.At equal SR, TCP increased average central FOV sensitivity by 15.6% for18F and 29.4% for89Zr compared to CP. Image resolution was comparable, except for89Zr at LA, where TCP resolved 0.80 mm diameter rods compared to 0.90 mm for CP. Image uniformity was equivalent for18F, while for89Zr TCP granted a 10.4% improvement. For collimators with matched sensitivity, TCP improved SR by 6.6% for18F and 17.7% for89Zr while also enhancing image resolution; for18F, rods distinguished were 0.65 mm (CP) and 0.60 mm (TCP) for HA, and 0.70 mm (CP and TCP) for LA. For89Zr, image resolutions were 0.75 mm (CP) and 0.65 mm (TCP) for HA, and 0.90 mm (CP) and 0.80 mm (TCP) for LA. Image uniformity with TCP decreased by 18.3% for18F but improved by 20.1% for89Zr.Significance.This study suggests that the TCP design has potential to improve high-energyɣimaging.
Collapse
Affiliation(s)
- Valerio Cosmi
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Satyajit Ghosh
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - Freek J Beekman
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
- Free Bee International, Gouda, The Netherlands
| | - Marlies C Goorden
- Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
4
|
Stenvall A, Ceric Andelius I, Nilsson E, Lindvall A, Larsson E, Gustafsson J. Bias and precision of SPECT-based 177Lu activity-concentration estimation using a ring-configured solid-state versus a dual-headed anger system. EJNMMI Phys 2024; 11:91. [PMID: 39489825 PMCID: PMC11532328 DOI: 10.1186/s40658-024-00693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The aim was to compare bias and precision for 177Lu-SPECT activity-concentration estimation using a dual-headed Anger SPECT system and a ring-configured CZT SPECT system. This was investigated for imaging at 208 keV and 113 keV, respectively. METHODS Phantom experiments were performed on a GE Discovery 670 system with 5/8'' NaI(Tl) crystal (dual-headed Anger system) and a GE StarGuide (ring-configured CZT system). Six spheres (1.2 mL to 113 mL) in a NEMA PET body phantom were filled with 99mTc and 177Lu, separately. Mean relative errors and coefficients of variation (CV) in estimated sphere activity concentration were studied over six timeframes of 10 min each for the two systems. For 177Lu, similar acquisitions were also performed for an anthropomorphic phantom with two spheres (10 mL and 25 mL) in a liver with non-radioactive background and a sphere-to-background ratio of 15:1. Tomographic reconstruction was performed using OS-EM with 10 subsets with compensation for attenuation, scatter, and distance-dependent spatial resolution. For the Anger system, up to 40 iterations were used and for the ring-configured CZT system up to 30 iterations were used. RESULTS The two systems showed similar mean relative errors and CVs for 177Lu when using an energy window around 208 keV, while the ring-configured system demonstrated a lower bias for a similar CV compared to the Anger system for 99mTc and for 177Lu when using an energy window around 113 keV. However, total activity in the phantom tended to be overestimated in both systems for these cases. CONCLUSIONS The ring-configured CZT system is a viable alternative to the dual-headed Anger system equipped with medium-energy collimators for 177Lu-SPECT and shows a potential advantage for activity-concentration estimation when operated at 113 keV. However, further consideration of the preservation of total activity is warranted.
Collapse
Affiliation(s)
- Anna Stenvall
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Irma Ceric Andelius
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Malmö, Sweden
| | - Elias Nilsson
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Albin Lindvall
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Larsson
- Radiation Physics, Department of Haematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | |
Collapse
|
5
|
Spink S, Gillett D, Heard S, Harper I, Casey R, Aloj L. Estimation of kidney doses from [ 177Lu]Lu-DOTA-TATE PRRT using single time point post-treatment SPECT/CT. EJNMMI Phys 2024; 11:68. [PMID: 39052172 PMCID: PMC11272758 DOI: 10.1186/s40658-024-00665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Dosimetry after [177Lu]Lu-DOTA-TATE therapy can be demanding for both patients and the clinical service due to the need for imaging at several time points. In this work we compare three methods of single time point (STP) kidney dosimetry after [177Lu]Lu-DOTA-TATE therapy with a multiple time point (MTP) dosimetry method. METHOD Method 1 (MTP): Kidney doses were calculated from 31 patients including 107 therapy cycles. Post-therapy SPECT images were acquired on day 0, 4 and 7 along with a CT scan on day 4. A mono-exponential fit was used to calculate kidney doses using cycle specific data. Method 2 (Consistent effective half-life): The effective half-life [Formula: see text] calculated in cycle 1 was assumed consistent for subsequent cycles of therapy and the activity scaled using a single day 3-5 SPECT/CT. Methods 3 and 4 (Hänscheid and Madsen approximations): The Hänscheid approximation and Madsen approximation were both evaluated using a single SPECT/CT acquired on day 0, 4 and 7. All STP methods were compared to the MTP method for accuracy. RESULTS Using the MTP method, mean right and left kidney doses were calculated to be 2.9 ± 1.1 Gy and 2.8 ± 0.9 Gy respectively and the population [Formula: see text] was 56 ± 13 h. For the consistent [Formula: see text], Hänscheid and Madsen methods, the percentage of results within ± 20% of MTP method were 96% (n = 70), 95% (n = 80) and 94% (n = 80) respectively. CONCLUSION All three single time point methods had > 94% of results within ± 20% of the MTP method, however the consistent [Formula: see text] method resulted in the highest alignment with the MTP method and is the only method which allows for calculation of the patient-specific [Formula: see text]. If only a single scan can be performed, day 4 is optimal for kidney dosimetry where the Hänscheid or Madsen approximation can be implemented with good accuracy.
Collapse
Affiliation(s)
- Safia Spink
- Department of Nuclear Medicine, Cambridge University Hospitals NHSFT, Cambridge, UK.
| | - Daniel Gillett
- Department of Nuclear Medicine, Cambridge University Hospitals NHSFT, Cambridge, UK
| | - Sarah Heard
- Department of Nuclear Medicine, Cambridge University Hospitals NHSFT, Cambridge, UK
| | - Ines Harper
- Department of Nuclear Medicine, Cambridge University Hospitals NHSFT, Cambridge, UK
| | - Ruth Casey
- Department of Endocrinology, Cambridge University Hospitals NHSFT, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Luigi Aloj
- Department of Nuclear Medicine, Cambridge University Hospitals NHSFT, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Gustafsson J, Larsson E, Ljungberg M, Sjögreen Gleisner K. Pareto optimization of SPECT acquisition and reconstruction settings for 177Lu activity quantification. EJNMMI Phys 2024; 11:62. [PMID: 39004644 PMCID: PMC11247071 DOI: 10.1186/s40658-024-00667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND The aim was to investigate the noise and bias properties of quantitative 177Lu-SPECT with respect to the number of projection angles, and the number of subsets and iterations in the OS-EM reconstruction, for different total acquisition times. METHODS Experimental SPECT acquisition of six spheres in a NEMA body phantom filled with 177Lu was performed, using medium-energy collimators and 120 projections with 180 s per projection. Bootstrapping was applied to generate data sets representing acquisitions with 20 to 120 projections for 10 min, 20 min, and 40 min, with 32 noise realizations per setting. Monte Carlo simulations were performed of 177Lu-DOTA-TATE in an anthropomorphic computer phantom with three tumours (2.8 mL to 40.0 mL). Projections representing 24 h and 168 h post administration were simulated, each with 32 noise realizations. Images were reconstructed using OS-EM with compensation for attenuation, scatter, and distance-dependent resolution. The number of subsets and iterations were varied within a constrained range of the product number of iterations × number of projections ≤ 2400 . Volumes-of-interest were defined following the physical size of the spheres and tumours, the mean activity-concentrations estimated, and the absolute mean relative error and coefficient of variation (CV) over noise realizations calculated. Pareto fronts were established by analysis of CV versus mean relative error. RESULTS Points at the Pareto fronts with low CV and high mean error resulted from using a low number of subsets, whilst points at the Pareto fronts associated with high CV but low mean error resulted from reconstructions with a high number of subsets. The number of projection angles had limited impact. CONCLUSIONS For accurate estimation of the 177Lu activity-concentration from SPECT images, the number of projection angles has limited importance, whilst the total acquisition time and the number of subsets and iterations are parameters of importance.
Collapse
Affiliation(s)
| | - Erik Larsson
- Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | | |
Collapse
|
7
|
Jin Y, Meng LJ. Exploration of Coincidence Detection of Cascade Photons to Enhance Preclinical Multi-Radionuclide SPECT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1766-1781. [PMID: 38163304 DOI: 10.1109/tmi.2023.3348756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We proposed a technique of coincidence detection of cascade photons (CDCP) to enhance preclinical SPECT imaging of therapeutic radionuclides emitting cascade photons, such as Lu-177, Ac-225, Ra-223, and In-111. We have carried out experimental studies to evaluate the proposed CDCP-SPECT imaging of low-activity radionuclides using a prototype coincidence detection system constructed with large-volume cadmium zinc telluride (CZT) imaging spectrometers and a pinhole collimator. With In-111 in experimental studies, the CDCP technique allows us to improve the signal-to-contamination in the projection (Projection-SCR) by ~53 times and reduce ~98% of the normalized contamination. Compared to traditional scatter correction, which achieves a Projection-SCR of 1.00, our CDCP method boosts it to 15.91, showing enhanced efficacy in reducing down-scattered contamination, especially at lower activities. The reconstructed images of a line source demonstrated the dramatic enhancement of the image quality with CDCP-SPECT compared to conventional and triple-energy-window-corrected SPECT data acquisition. We also introduced artificial energy blurring and Monte Carlo simulation to quantify the impact of detector performance, especially its energy resolution and timing resolution, on the enhancement through the CDCP technique. We have further demonstrated the benefits of the CDCP technique with simulation studies, which shows the potential of improving the signal-to-contamination ratio by 300 times with Ac-225, which emits cascade photons with a decay constant of ~0.1 ns. These results have demonstrated the potential of CDCP-enhanced SPECT for imaging a super-low level of therapeutic radionuclides in small animals.
Collapse
|
8
|
Collette B, Mannie-Corbisier M, Bucalau AM, Pauly N, Verset G, Moreno-Reyes R, Flamen P, Trotta N. Impact of scatter correction on personalized dosimetry in selective internal radiotherapy using 166Ho-PLLA: a single-center study including Monte-Carlo simulation, phantom and patient imaging. EJNMMI Phys 2024; 11:33. [PMID: 38564100 PMCID: PMC10987418 DOI: 10.1186/s40658-024-00639-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Developments in transarterial radioembolization led to the conception of new microspheres loaded with holmium-166 (166Ho). However, due to the complexity of the scatter components in 166Ho single photon emission computed tomography (SPECT), questions about image quality and dosimetry are emerging. The aims of this work are to investigate the scatter components and correction methods to propose a suitable solution, and to evaluate the impact on image quality and dosimetry including Monte-Carlo (MC) simulations, phantom, and patient data. METHODS Dual energy window (DEW) and triple energy window (TEW) methods were investigated for scatter correction purposes and compared using Contrast Recovery Coefficients (CRC) and Contrast to Noise Ratios (CNR). First, MC simulations were carried out to assess all the scatter components in the energy windows used, also to confirm the choice of the parameter needed for the DEW method. Then, MC simulations of acquisitions of a Jaszczak phantom were conducted with conditions mimicking an ideal scatter correction. These simulated projections can be reconstructed and compared with real acquisitions corrected by both methods and then reconstructed. Finally, both methods were applied on patient data and their impact on personalized dosimetry was evaluated. RESULTS MC simulations confirmed the use of k = 1 for the DEW method. These simulations also confirmed the complexity of scatter components in the main energy window used with a high energy gamma rays component of about half of the total counts detected, together with a negligible X rays component and a negligible presence of fluorescence. CRC and CNR analyses, realized on simulated scatter-free projections of the phantom and on scatter corrected acquisitions of the same phantom, suggested an increased efficiency of the TEW method, even at the price of higher level of noise. Finally, these methods, applied on patient data, showed significant differences in terms of non-tumoral liver absorbed dose, non-tumoral liver fraction under 50 Gy, tumor absorbed dose, and tumor fraction above 150 Gy. CONCLUSIONS This study demonstrated the impact of scatter correction on personalized dosimetry on patient data. The use of a TEW method is proposed for scatter correction in 166Ho SPECT imaging.
Collapse
Affiliation(s)
- Benoît Collette
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
- Laboratory of Image Synthesis and Analysis, Brussels School of Engineering, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Marie Mannie-Corbisier
- Department of Nuclear Metrology, Brussels School of Engineering, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana-Maria Bucalau
- Department of Gastroenterolgy, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Pauly
- Department of Nuclear Metrology, Brussels School of Engineering, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gontran Verset
- Department of Gastroenterolgy, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Moreno-Reyes
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Nicola Trotta
- Department of Nuclear Medicine, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
9
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
de Nijs R, Berg RMG, Lindskov Hansen S, Mortensen J. Ventilation perfusion functional difference images in lung SPECT: A linear and symmetrical scale as an alternative to the ventilation perfusion ratio. Phys Med 2024; 119:103306. [PMID: 38335743 DOI: 10.1016/j.ejmp.2024.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE Ventilation Perfusion SPECT is important in the diagnostics of e.g. pulmonary embolism and chronic obstructive pulmonary disease. Classical and reverse mismatched defects can be identified by utilizing the ventilation-perfusion ratio. Unfortunately, this ratio is only linear in the ventilation, the scale is not symmetrical regarding classical and reversed mismatches and small perfusion values give rise to artifacts. The ventilation-perfusion (VQ) difference is developed as an alternative. METHODS For both VQ-ratio and VQ-difference a scaling factor for the perfusion is computed, so that voxels with matched ventilation and perfusion (on average) yield zero signal. The relative VQ-difference is calculated by scaling with the summed VQ-signal in each voxel. The scaled VQ-difference is calculated by scaling with the global maximum of this sum. RESULTS The relative and scaled differences have a scale from -1 (perfusion only) to + 1 (ventilation only). Image quality of relative VQ-difference and VQ-ratio images is hampered by artifacts from areas with both low perfusion and low ventilation. Ratio and differences have been investigated in ten patients and are shown for three patients (one without defects). Clinical thresholds for the difference images are derived resulting in color maps of relevant (reversed) mismatches with a (reciprocal) ratio larger than two. CONCLUSIONS The relative ventilation-perfusion difference is a methodological improvement on the ventilation-perfusion ratio, because it has a symmetrical scale and is bound on a closed domain. A better diagnostic value is expected by utilizing the scaled difference, which represents functional difference instead of relative difference.
Collapse
Affiliation(s)
- Robin de Nijs
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| | - Ronan M G Berg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Center for Physical Activity Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sofie Lindskov Hansen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jann Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Medicine, The National Hospital, Torshavn, Faroe Islands
| |
Collapse
|
11
|
Shibutani T, Onoguchi M, Kanno T, Kinuya S. Influence of spill-over for 99mTc images and the effect of scatter correction for dual-isotope simultaneous acquisition with 99mTc and 18F using small-animal SPECT-PET/CT system. Phys Eng Sci Med 2024; 47:135-142. [PMID: 37902935 DOI: 10.1007/s13246-023-01348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
A dual-isotope simultaneous acquisition (DISA) of 99mTc and 18F affects the image quality of 99mTc by crosstalk and spill-over from 18F. We demonstrated the influence of spill-over and crosstalk on image quality and its correction effect for DISA SPECT with 99mTc and 18F. A fillable cylindrical chamber of 30 mm with NEMA-NU4 image quality phantom was filled with 99mTc only or a mixed 99mTc and 18F solution (C100). Two small-region chambers were filled with 99mTc only or a mixed 99mTc and 18F solution made at half the radioactivity concentration of C100 (C50) and non-radioactive water (C0). The 18F/99mTc ratio for DISA was set at approximately 0.4-12. Two types of 99mTc transverse images with and without scatter correction (SC and nonSC) were created. The 99mTc images of single-isotope acquisition (SIA) were created as a reference. The DISA/SIA ratio and contrast of 99mTc were compared between SIA and DISA. Although the DISA/SIA ratios with nonSC of C100, C50 and C0 gradually increased with increasing 18F/99mTc ratio, it was nearly constant by SC. The contrasts of C100 and C50 were similar to a reference value for both nonSC and SC. In conclusion, DISA images showed lower image quality as the 18F/99mTc ratio increased. The image quality in hot-spot regions such as C100 and C50 was improved by SC, whereas cold-spot regions such as C0 could not completely remove the influence of spill-over even with SC.
Collapse
Affiliation(s)
- Takayuki Shibutani
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| | - Takayuki Kanno
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
12
|
Shibutani T, Konishi T, Ichikawa H, Onoguchi M, Yoneyama H, Ito T, Okuda K, Nakajima K. Detectability of cold tumors by xSPECT bone technology compared with hot tumors: a supine phantom study. Phys Eng Sci Med 2024; 47:287-294. [PMID: 38117462 DOI: 10.1007/s13246-023-01364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Detecting cold as well as hot tumors is vital for interpreting bone tumors on single-photon emission computed tomography (SPECT) images. This study aimed to visually and quantitatively demonstrate the detectability of cold tumors using xSPECT technology compared with that of hot tumors in the phantom study. Five tumors of different sizes and normal bone contained a mixture of 99mTc and K2HPO4 in a spine phantom. We acquired SPECT data using an xSPECT protocol and transverse images were reconstructed using xSPECT Bone (xB) and xSPECT Quant (xQ). Mean standardized uptake values (SUVmean) in volumes of interest (VOI) were calculated. Recovery coefficients (RCs) for each tumor site were calculated with reference to radioactive concentrations. The SUVmeans of the whole vertebral body for hot tumor bone image in cortical bone phantom reconstructed by with xB and xQ were 5.77 and 4.86 respectively. The SUVmean of xB was similar to the true value. The SUVmeans for xB and xQ reconstructed images of cold tumors were both approximately 0.16. The RC of the cold tumor on xQ images increased as the tumor diameter decreased, whereas that of xB remained almost constant regardless of the tumor diameter. In conclusion, the quantitative accuracy of detecting hot and cold tumors was higher in the xB image than in the xQ image. Moreover, the visual detectability of cold tumors was also excellent in xB images.
Collapse
Affiliation(s)
- Takayuki Shibutani
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Takahiro Konishi
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hajime Ichikawa
- Department of Radiology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroto Yoneyama
- Department of Radiological Technology, Kanazawa University Hospital, Kanazawa, Japan
| | - Toshimune Ito
- Department of Radiological, Technology, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Okuda
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Japan
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
13
|
Gawel J, Rogulski Z. The Challenge of Single-Photon Emission Computed Tomography Image Segmentation in the Internal Dosimetry of 177Lu Molecular Therapies. J Imaging 2024; 10:27. [PMID: 38276319 PMCID: PMC10817423 DOI: 10.3390/jimaging10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The aim of this article is to review the single photon emission computed tomography (SPECT) segmentation methods used in patient-specific dosimetry of 177Lu molecular therapy. Notably, 177Lu-labelled radiopharmaceuticals are currently used in molecular therapy of metastatic neuroendocrine tumours (ligands for somatostatin receptors) and metastatic prostate adenocarcinomas (PSMA ligands). The proper segmentation of the organs at risk and tumours in targeted radionuclide therapy is an important part of the optimisation process of internal patient dosimetry in this kind of therapy. Because this is the first step in dosimetry assessments, on which further dose calculations are based, it is important to know the level of uncertainty that is associated with this part of the analysis. However, the robust quantification of SPECT images, which would ensure accurate dosimetry assessments, is very hard to achieve due to the intrinsic features of this device. In this article, papers on this topic were collected and reviewed to weigh up the advantages and disadvantages of the segmentation methods used in clinical practice. Degrading factors of SPECT images were also studied to assess their impact on the quantification of 177Lu therapy images. Our review of the recent literature gives an insight into this important topic. However, based on the PubMed and IEEE databases, only a few papers investigating segmentation methods in 177Lumolecular therapy were found. Although segmentation is an important step in internal dose calculations, this subject has been relatively lightly investigated for SPECT systems. This is mostly due to the inner features of SPECT. What is more, even when studies are conducted, they usually utilise the diagnostic radionuclide 99mTc and not a therapeutic one like 177Lu, which could be of concern regarding SPECT camera performance and its overall outcome on dosimetry.
Collapse
Affiliation(s)
- Joanna Gawel
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | | |
Collapse
|
14
|
Roth D, Larsson E, Strand J, Ljungberg M, Sjögreen Gleisner K. Feasibility of 177Lu activity quantification using a small portable CZT-based gamma-camera. EJNMMI Phys 2024; 11:2. [PMID: 38167976 PMCID: PMC10761658 DOI: 10.1186/s40658-023-00602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND In image processing for activity quantification, the end goal is to produce a metric that is independent of the measurement geometry. Photon attenuation needs to be accounted for and can be accomplished utilizing spectral information, avoiding the need of additional image acquisitions. The aim of this work is to investigate the feasibility of 177Lu activity quantification with a small CZT-based hand-held gamma-camera, using such an attenuation correction method. METHODS A previously presented dual photopeak method, based on the differential attenuation for two photon energies, is adapted for the three photopeaks at 55 keV, 113 keV, and 208 keV for 177Lu. The measurement model describes the count rates in each energy window as a function of source depth and activity, accounting for distance-dependent system sensitivity, attenuation, and build-up. Parameter values are estimated from characterizing measurements, and the source depth and activity are obtained by minimizing the difference between measured and modelled count rates. The method is applied and evaluated in phantom measurements, in a clinical setting for superficial lesions in two patients, and in a pre-clinical setting for one human tumour xenograft. Evaluation is made for a LEHR and an MEGP collimator. RESULTS For phantom measurements at clinically relevant depths, the average (and standard deviation) in activity errors are 17% ± 9.6% (LEHR) and 2.9% ± 3.6% (MEGP). For patient measurements, deviations from activity estimates from planar images from a full-sized gamma-camera are 0% ± 21% (LEHR) and 16% ± 18% (MEGP). For mouse measurements, average deviations of - 16% (LEHR) and - 6% (MEGP) are obtained when compared to a small-animal SPECT/CT system. The MEGP collimator appears to be better suited for activity quantification, yielding a smaller variability in activity estimates, whereas the LEHR results are more severely affected by septal penetration. CONCLUSIONS Activity quantification for 177Lu using the hand-held camera is found to be feasible. The readily available nature of the hand-held camera may enable more frequent activity quantification in e.g., superficial structures in patients or in the pre-clinical setting.
Collapse
Affiliation(s)
- Daniel Roth
- Medical Radiation Physics, Lund, Lund University, Lund, Sweden.
| | - Erik Larsson
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Joanna Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | | | | |
Collapse
|
15
|
Izawa D, Ito T, Sanada H, Oku T, Nakamoto A, Hiraki H. Verification of optimal conditions for the scattering correction of 123I-FP-CIT SPECT on a single-photon emission tomography system with a two-detector whole-body cadmium-zinc-telluride semiconductor detector. Radiol Phys Technol 2023; 16:569-577. [PMID: 37804463 DOI: 10.1007/s12194-023-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
To identify the optimal scattering correction for 123I-FP-CIT SPECT (DAT-SPECT) using a two-detector whole-body cadmium-zinc-telluride semiconductor detector (C-SPECT) system with a medium-energy high-resolution sensitivity (MEHRS) collimator. The C-SPECT system with the MEHRS collimator assessed image quality and quantification using a striated phantom. Different reconstruction methods and scattering correction settings were compared, including filtered back projection (FBP) and ordered subset expectation maximization (OSEM). Higher %contrast and %CV values were observed > 10% subwindow (SW) for all conditions, with no significant differences between images without scattering correction and those < 7% SW. The FBP images show a greater increase in %CV > 10% SW than the OSEM images. The specific binding ratio in the radioactivity ratio of 8:1 was higher than the true value under all conditions. The C-SPECT system with an MEHRS collimator provided accurate scattering suppression and enabled high-quality imaging for DAT-SPECT. Careful setting of the scattering correction is essential for total count accuracy.
Collapse
Affiliation(s)
- Daisuke Izawa
- Office of Radiation Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshimune Ito
- Department of Radiological, Technology, Faculty of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Hiroki Sanada
- Department of Central Radiology, Teikyo University Mizonokuchi Hospital, 5-1-1 Futago, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Takuma Oku
- Department of Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan
| | - Ayaka Nakamoto
- Department of Central Radiology, Juntendo University Hospital, 3-1-3 Hongou, Bunkyo-ku, Tokyo, 113-8431, Japan
| | - Hitoshi Hiraki
- Department of Central Radiology, Teikyo University Mizonokuchi Hospital, 5-1-1 Futago, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| |
Collapse
|
16
|
Tran-Gia J, Denis-Bacelar AM, Ferreira KM, Robinson AP, Bobin C, Bonney LM, Calvert N, Collins SM, Fenwick AJ, Finocchiaro D, Fioroni F, Giannopoulou K, Grassi E, Heetun W, Jewitt SJ, Kotzasarlidou M, Ljungberg M, Lourenço V, McGowan DR, Mewburn-Crook J, Sabot B, Scuffham J, Sjögreen Gleisner K, Solc J, Thiam C, Tipping J, Wevrett J, Lassmann M. On the use of solid 133Ba sources as surrogate for liquid 131I in SPECT/CT calibration: a European multi-centre evaluation. EJNMMI Phys 2023; 10:73. [PMID: 37993667 PMCID: PMC10665282 DOI: 10.1186/s40658-023-00582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/25/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. MATERIALS AND METHODS Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68-107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. RESULTS As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12-1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. CONCLUSION This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.
Collapse
Affiliation(s)
- Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany.
| | | | | | | | - Christophe Bobin
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), 91120, Palaiseau, France
| | - Lara M Bonney
- Department of Medical Physics and Clinical Engineering, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nicholas Calvert
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Manchester, UK
| | - Sean M Collins
- National Physical Laboratory, Hampton Road, Teddington, UK
- School of Mathematics and Physics, University of Surrey, Guildford, UK
| | | | - Domenico Finocchiaro
- Medical Physics Unit, Azienda Ospedaliero-Universitaria Policlinico di Modena, Modena, Italy
| | - Federica Fioroni
- Medical Physics Unit, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | | | - Elisa Grassi
- Medical Physics Unit, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Warda Heetun
- National Physical Laboratory, Hampton Road, Teddington, UK
| | - Stephanie J Jewitt
- Department of Medical Physics and Clinical Engineering, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maria Kotzasarlidou
- Nuclear Medicine Department, "THEAGENIO" Anticancer Hospital, Thessaloniki, Greece
| | | | - Valérie Lourenço
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), 91120, Palaiseau, France
| | - Daniel R McGowan
- Department of Medical Physics and Clinical Engineering, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Benoit Sabot
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), 91120, Palaiseau, France
| | - James Scuffham
- Royal Surrey County Hospital, Royal Surrey NHS Foundation Trust, Guildford, UK
| | | | - Jaroslav Solc
- Czech Metrology Institute, Okruzni 31, 638 00, Brno, Czech Republic
| | - Cheick Thiam
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), 91120, Palaiseau, France
| | - Jill Tipping
- Department of Medical Physics and Clinical Engineering, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Wevrett
- Royal Surrey County Hospital, Royal Surrey NHS Foundation Trust, Guildford, UK
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| |
Collapse
|
17
|
Henry EC, Lopez B, Mahvash A, Thomas MA, Kappadath SC. Predicting the net administered activity in 90 Y-radioembolization patients from post-procedure 90 Y-SPECT/CT. Med Phys 2023; 50:7003-7015. [PMID: 37272198 DOI: 10.1002/mp.16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The calculation of the net administered activity (Aadmin ) in patients undergoing 90 Y-radioembolization is essential for dosimetry and radiation safety, yet current methods for measuring residual 90 Y activity are often associated with high uncertainty. Therefore, an accurate, robust, and clinically viable method for the determination of Aadmin across approved 90 Y microsphere devices is desirable. PURPOSE We report on a novel method to determine Aadmin by leveraging the quantitative capabilities of SPECT/CT to measure 90 Y-emission in vivo from patients following 90 Y-radioembolization with glass or resin microspheres. METHODS 90 Y-SPECT/CT attenuation-corrected count data from 147 sequential 90 Y-radioembolization patients was used for this analysis. Aadmin was calculated as part of routine clinical practice via the exposure rate differences between the initial 90 Y-vial and the 90 Y-residual jar. This served as our gold standard measure of Aadmin . Patient data for each microsphere device were separated into training and testing cohorts to first develop regression models and then to independently assess model performance. The training cohorts were divided into four groups: first, based on the microsphere device (glass or resin), and second, based on the SPECT volume used to calculate counts (the full SPECT field of view (FOV) or liver only (VOIliver )). Univariate linear regression models were generated for each group to predict Aadmin based on 90 Y-SPECT data from the training cohorts. Leave-one-out cross validation was implemented to estimate variability in model parameters. To assess performance, linear models derived from the training cohort were applied to 90 Y-SPECT data from the testing cohort. A comparison of the models between microspheres devices was also performed. RESULTS Linear models derived from the glass and resin training cohorts demonstrated a strong, positive correlation between 90 Y-SPECT image counts and Aadmin for VOIliver and FOV with R2 > 0.98 in all cases. In the glass training cohort, model accuracy (100%-absolute mean prediction error) and precision (95% prediction intervals of mean prediction error) were 99.0% and 15.4% for the VOIliver and 99.7% and 17.5% for the FOV models, respectively. In the resin training cohort, the corresponding values were 98.6% and 16.7% for VOIliver and > 99.9% and 11.4% for the FOV models, respectively. The application of these linear models to 90 Y-SPECT data from the testing cohort showed Aadmin prediction errors to have high accuracy and precision for both microsphere devices. For the glass testing cohort, accuracy (precision) was 96.9% (19.6%) and 98.8% (21.1%) for the VOIliver and FOV models, respectively. The corresponding values for the resin training cohort were 97.3% (26.2%) and 98.5% (25.7%) for the VOIliver and FOV models, respectively. The slope of the linear models between the two microsphere devices was observed to be significantly different with resin microspheres generating 48%-49% more SPECT counts for equivalent 90 Y activity based on each device manufacturer's activity calibration process. CONCLUSION 90 Y-SPECT image counts can reliably predict (accuracy > 95% and precision < 18%) Aadmin after 90 Y-radioembolization, with performance characteristics essentially equivalent for both glass and resin microspheres. There is a clear indication that activity calibrations are fundamentally different between the two microsphere devices.
Collapse
Affiliation(s)
- Eric C Henry
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin Lopez
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Armeen Mahvash
- Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew A Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Srinivas C Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
18
|
Gustafsson J, Taprogge J. Future trends for patient-specific dosimetry methodology in molecular radiotherapy. Phys Med 2023; 115:103165. [PMID: 37880071 DOI: 10.1016/j.ejmp.2023.103165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Molecular radiotherapy is rapidly expanding, and new radiotherapeutics are emerging. The majority of treatments is still performed using empirical fixed activities and not tailored for individual patients. Molecular radiotherapy dosimetry is often seen as a promising candidate that would allow personalisation of treatments as outcome should ultimately depend on the absorbed doses delivered and not the activities administered. The field of molecular radiotherapy dosimetry has made considerable progress towards the feasibility of routine clinical dosimetry with reasonably accurate absorbed-dose estimates for a range of molecular radiotherapy dosimetry applications. A range of challenges remain with respect to the accurate quantification, assessment of time-integrated activity and absorbed dose estimation. In this review, we summarise a range of technological and methodological advancements, mainly focussed on beta-emitting molecular radiotherapeutics, that aim to improve molecular radiotherapy dosimetry to achieve accurate, reproducible, and streamlined dosimetry. We describe how these new technologies can potentially improve the often time-consuming considered process of dosimetry and provide suggestions as to what further developments might be required.
Collapse
Affiliation(s)
| | - Jan Taprogge
- National Radiotherapy Trials Quality Assurance (RTTQA) Group, Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom; The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| |
Collapse
|
19
|
Kim H, Li Z, Son J, Fessler JA, Dewaraja YK, Chun SY. Physics-Guided Deep Scatter Estimation by Weak Supervision for Quantitative SPECT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2961-2973. [PMID: 37104110 PMCID: PMC10593395 DOI: 10.1109/tmi.2023.3270868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Accurate scatter estimation is important in quantitative SPECT for improving image contrast and accuracy. With a large number of photon histories, Monte-Carlo (MC) simulation can yield accurate scatter estimation, but is computationally expensive. Recent deep learning-based approaches can yield accurate scatter estimates quickly, yet full MC simulation is still required to generate scatter estimates as ground truth labels for all training data. Here we propose a physics-guided weakly supervised training framework for fast and accurate scatter estimation in quantitative SPECT by using a 100× shorter MC simulation as weak labels and enhancing them with deep neural networks. Our weakly supervised approach also allows quick fine-tuning of the trained network to any new test data for further improved performance with an additional short MC simulation (weak label) for patient-specific scatter modelling. Our method was trained with 18 XCAT phantoms with diverse anatomies / activities and then was evaluated on 6 XCAT phantoms, 4 realistic virtual patient phantoms, 1 torso phantom and 3 clinical scans from 2 patients for 177Lu SPECT with single / dual photopeaks (113, 208 keV). Our proposed weakly supervised method yielded comparable performance to the supervised counterpart in phantom experiments, but with significantly reduced computation in labeling. Our proposed method with patient-specific fine-tuning achieved more accurate scatter estimates than the supervised method in clinical scans. Our method with physics-guided weak supervision enables accurate deep scatter estimation in quantitative SPECT, while requiring much lower computation in labeling, enabling patient-specific fine-tuning capability in testing.
Collapse
Affiliation(s)
- Hanvit Kim
- Digital Biomedical Research Division, Electronics and Telecommunications Research Institute, Daejeon, South Korea
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Zongyu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Jiye Son
- Interdisciplinary Program for Bioengineering, Seoul National University (SNU), Seoul, South Korea. This work was done when she was with the School of Electrical and Computer Engineering (ECE), UNIST
| | - Jeffrey A. Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yuni K. Dewaraja
- Dewaraja is with the Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Se Young Chun
- Department of ECE, INMC & IPAI, SNU, Seoul, South Korea
| |
Collapse
|
20
|
Pells S, Cullen DM, Deidda D, Denis-Bacelar AM, Fenwick A, Ferreira KM, Hamilton D, Heetun W, Julyan P, Needham G, Pietras B, Price E, Scuffham J, Tipping J, Robinson AP. Quantitative validation of Monte Carlo SPECT simulation: application to a Mediso AnyScan GATE simulation. EJNMMI Phys 2023; 10:60. [PMID: 37777689 PMCID: PMC10542438 DOI: 10.1186/s40658-023-00581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Monte Carlo (MC) simulations are used in nuclear medicine imaging as they provide unparalleled insight into processes that are not directly experimentally measurable, such as scatter and attenuation in an acquisition. Whilst MC is often used to provide a 'ground-truth', this is only the case if the simulation is fully validated against experimental data. This work presents a quantitative validation for a MC simulation of a single-photon emission computed tomography (SPECT) system. METHODS An MC simulation model of the Mediso AnyScan SCP SPECT system installed at the UK National Physical Laboratory was developed in the GATE (Geant4 Application for Tomographic Emission) toolkit. Components of the detector head and two collimator configurations were modelled according to technical specifications and physical measurements. Experimental detection efficiency measurements were collected for a range of energies, permitting an energy-dependent intrinsic camera efficiency correction function to be determined and applied to the simulation on an event-by-event basis. Experimental data were collected in a range of geometries with [Formula: see text]Tc for comparison to simulation. The procedure was then repeated with [Formula: see text]Lu to determine how the validation extended to another isotope and set of collimators. RESULTS The simulation's spatial resolution, sensitivity, energy spectra and the projection images were compared with experimental measurements. The simulation and experimental uncertainties were determined and propagated to all calculations, permitting the quantitative agreement between simulated and experimental SPECT acquisitions to be determined. Statistical agreement was seen in sinograms and projection images of both [Formula: see text]Tc and [Formula: see text]Lu data. Average simulated and experimental sensitivity ratios of ([Formula: see text]) were seen for emission and scatter windows of [Formula: see text]Tc, and ([Formula: see text]) and ([Formula: see text]) for the 113 and 208 keV emissions of [Formula: see text]Lu, respectively. CONCLUSIONS MC simulations will always be an approximation of a physical system and the level of agreement should be assessed. A validation method is presented to quantify the level of agreement between a simulation model and a physical SPECT system.
Collapse
Affiliation(s)
- Sophia Pells
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK.
- National Physical Laboratory, Teddington, UK.
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA.
| | - David M Cullen
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | - Peter Julyan
- The Christie NHS Foundation Trust, Manchester, UK
| | - George Needham
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Ben Pietras
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Emlyn Price
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - James Scuffham
- National Physical Laboratory, Teddington, UK
- Royal Surrey County Hospital, Guildford, UK
| | - Jill Tipping
- The Christie NHS Foundation Trust, Manchester, UK
| | - Andrew P Robinson
- Department of Physics and Astronomy, The University of Manchester, Manchester, UK
- National Physical Laboratory, Teddington, UK
- The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
21
|
Kovan B, Demir B, Işık EG, Has Şimşek D, Özkan ZG, Kuyumcu S, Türkmen C, Şanlı Y. An anthropomorphic body phantom for the determination of calibration factor in radionuclide treatment dosimetry. RADIATION PROTECTION DOSIMETRY 2023:ncad176. [PMID: 37334429 PMCID: PMC10372715 DOI: 10.1093/rpd/ncad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
The aim of this study is to create an inhomogeneous human-like phantom, whose attenuation and scattering effects are similar to the human body, as an alternative to the homogeneous phantoms traditionally used in calibration factor (CF) determination. The phantom was designed to include the thorax, abdomen and upper pelvis regions sized to represent a 75-kg male with a body mass index of 25. Measurements using Lu-177 with 50- and 100-mL lesion volumes were performed using inhomogeneous anthropomorphic body phantom (ABP) and homogeneous NEMA PET body phantom. There was a difference of 5.7% of Calibration Factor including attenuation and scatter effect between ABP and NEMA PET body phantom. Because it better reflects the attenuation and scatter effect, it is recommended to use a human-like inhomogeneous phantom for determination of CF instead of a homogeneous phantom.
Collapse
Affiliation(s)
- Bilal Kovan
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Bayram Demir
- Science Faculty, Department of Physics, Istanbul University, Fatih34080, Turkey
| | - Emine Göknur Işık
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Duygu Has Şimşek
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Zeynep Gözde Özkan
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Sekan Kuyumcu
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Cüneyt Türkmen
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| | - Yasemin Şanlı
- Istanbul Medical Faculty, Department of Nuclear Medicine, Istanbul University, Fatih 34080, Turkey
| |
Collapse
|
22
|
Af Bjerkén S, Axelsson J, Larsson A, Flygare C, Remes J, Strandberg S, Eriksson L, Bäckström D, Jakobson Mo S. Reliability and validity of visual analysis of [ 18 F]FE-PE2I PET/CT in early Parkinsonian disease. Nucl Med Commun 2023; 44:397-406. [PMID: 36862448 DOI: 10.1097/mnm.0000000000001679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
OBJECTIVE [ 18 F]FE-PE2I (FE-PE2I) is a new radiotracer for dopamine transporter (DAT) imaging with PET. The aim of this study was to evaluate the visual interpretation of FE-PE2I images for the diagnosis of idiopathic Parkinsonian syndrome (IPS). The inter-rater variability, sensitivity, specificity, and diagnostic accuracy for visual interpretation of striatal FE-PE2I compared to [ 123 I]FP-CIT (FP-CIT) single-photon emission computed tomography (SPECT) was evaluated. METHODS Thirty patients with newly onset parkinsonism and 32 healthy controls with both an FE-PE2I and FP-CIT were included in the study. Four patients had normal DAT imaging, of which three did not fulfil the IPS criteria at the clinical reassessment after 2 years. Six raters evaluated the DAT images blinded to the clinical diagnosis, interpreting the image as being 'normal' or 'pathological', and assessed the degree of DAT-reduction in the caudate and putamen. The inter-rater agreement was assessed with intra-class correlation and Cronbach's α . For calculation of sensitivity and specificity, DAT images were defined as correctly classified if categorized as normal or pathological by ≥4/6 raters. RESULTS The overall agreement in visual evaluation of the FE-PE2I- and FP-CIT images was high for the IPS patients ( α = 0.960 and 0.898, respectively), but lower in healthy controls (FE-PE2I: α = 0.693, FP-CIT: α = 0.657). Visual interpretation gave high sensitivity (both 0.96) but lower specificity (FE-PE2I: 0.86, FP-CIT: 0.63) with an accuracy of 90% for FE-PE2I and 77% for FP-CIT. CONCLUSION Visual evaluation of FE-PE2I PET imaging demonstrates high reliability and diagnostic accuracy for IPS.
Collapse
Affiliation(s)
- Sara Af Bjerkén
- Department of Integrative Medical Biology
- Department of Clinical Science, Neurosciences
| | - Jan Axelsson
- Department of Radiation Sciences, Radiation Physics
- Umeå Center for Functional Brain Imaging (UFBI)
| | - Anne Larsson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Carolina Flygare
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Jussi Remes
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Sara Strandberg
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | | | | | - Susanna Jakobson Mo
- Umeå Center for Functional Brain Imaging (UFBI)
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Robinson AP, Calvert N, Tipping J, Denis-Bacelar AM, Ferreira KM, Lassmann M, Tran-Gia J. Development of a validation imaging dataset for Molecular Radiotherapy dosimetry multicenter intercomparison exercises based on anthropomorphic phantoms. Phys Med 2023; 109:102583. [PMID: 37062101 PMCID: PMC10165308 DOI: 10.1016/j.ejmp.2023.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023] Open
Abstract
Validation of a Molecular Radiotherapy (MRT) dosimetry system requires imaging data for which an accompanying "ground truth" pharmacokinetic model and absorbed dose calculation are known. METHODS We present a methodology for production of a validation dataset for image based 177Lu dotatate dosimetry calculations. A pharmacokinetic model is presented with activity concentrations corresponding to common imaging timepoints. Anthropomorphic 3D printed phantoms, corresponding to the organs at risk, have been developed to provide SPECT/CT and Whole Body imaging with known organ activities corresponding to common clinical timepoints. RESULTS Results for the accuracy of phantom filling reproduce the activity concentrations from the pharmacokinetic model for all timepoints and organs within measurement uncertainties, with a mean deviation of 0.6(8)%. The imaging dataset, ancillary data and phantoms designs are provided as a source of well characterized input data for the validation of clinical MRT dosimetry systems. CONCLUSIONS The combination of pharmacokinetic modelling with the use of anthropomorphic 3D printed phantoms are a promising procedure to provide data for the validation of Molecular Radiotherapy Dosimetry systems, allowing multicentre comparisons.
Collapse
Affiliation(s)
- Andrew P Robinson
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom; Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom; Schuster Laboratory, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Nick Calvert
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | - Jill Tipping
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, United Kingdom
| | | | | | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| |
Collapse
|
24
|
Kita A, Okazawa H, Sugimoto K, Kosaka N, Kidoya E, Tsujikawa T. Specific Binding Ratio Estimation of [ 123I]-FP-CIT SPECT Using Frontal Projection Image and Machine Learning. Diagnostics (Basel) 2023; 13:diagnostics13081371. [PMID: 37189472 DOI: 10.3390/diagnostics13081371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to develop a new convolutional neural network (CNN) method for estimating the specific binding ratio (SBR) from only frontal projection images in single-photon emission-computed tomography using [123I]ioflupane. We created five datasets to train two CNNs, LeNet and AlexNet: (1) 128FOV used a 0° projection image without preprocessing, (2) 40FOV used 0° projection images cropped to 40 × 40 pixels centered on the striatum, (3) 40FOV training data doubled by data augmentation (40FOV_DA, left-right reversal only), (4) 40FOVhalf, and (5) 40FOV_DAhalf, split into left and right (20 × 40) images of 40FOV and 40FOV_DA to separately evaluate the left and right SBR. The accuracy of the SBR estimation was assessed using the mean absolute error, root mean squared error, correlation coefficient, and slope. The 128FOV dataset had significantly larger absolute errors compared to all other datasets (p < 0. 05). The best correlation coefficient between the SBRs using SPECT images and those estimated from frontal projection images alone was 0.87. Clinical use of the new CNN method in this study was feasible for estimating the SBR with a small error rate using only the frontal projection images collected in a short time.
Collapse
Affiliation(s)
- Akinobu Kita
- Radiological Center, University of Fukui Hospital, 23-3, Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Katsuya Sugimoto
- Radiological Center, University of Fukui Hospital, 23-3, Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Nobuyuki Kosaka
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Eiji Kidoya
- Radiological Center, University of Fukui Hospital, 23-3, Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| |
Collapse
|
25
|
Van der Heiden K, Barrett HE, Meester EJ, van Gaalen K, Krenning BJ, Beekman FJ, de Blois E, de Swart J, Verhagen HJM, van der Lugt A, Norenberg JP, de Jong M, Bernsen MR, Gijsen FJH. SPECT/CT imaging of inflammation and calcification in human carotid atherosclerosis to identify the plaque at risk of rupture. J Nucl Cardiol 2022; 29:2487-2496. [PMID: 34318395 PMCID: PMC9553768 DOI: 10.1007/s12350-021-02745-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Calcification and inflammation are atherosclerotic plaque compositional biomarkers that have both been linked to stroke risk. The aim of this study was to evaluate their co-existing prevalence in human carotid plaques with respect to plaque phenotype to determine the value of hybrid imaging for the detection of these biomarkers. METHODS Human carotid plaque segments, obtained from endarterectomy, were incubated in [111In]In-DOTA-butylamino-NorBIRT ([111In]In-Danbirt), targeting Leukocyte Function-associated Antigen-1 (LFA-1) on leukocytes. By performing SPECT/CT, both inflammation from DANBIRT uptake and calcification from CT imaging were assessed. Plaque phenotype was classified using histology. RESULTS On a total plaque level, comparable levels of calcification volume existed with different degrees of inflammation and vice versa. On a segment level, an inverse relationship between calcification volume and inflammation was evident in highly calcified segments, which classify as fibrocalcific, stable plaque segments. In contrast, segments with little or no calcification presented with a moderate to high degree of inflammation, often coinciding with the more dangerous fibrous cap atheroma phenotype. CONCLUSION Calcification imaging alone can only accurately identify highly calcified, stable, fibrocalcific plaques. To identify high-risk plaques, with little or no calcification, hybrid imaging of calcification and inflammation could provide diagnostic benefit.
Collapse
Affiliation(s)
- K Van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
| | - H E Barrett
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - E J Meester
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - K van Gaalen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - B J Krenning
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - F J Beekman
- MiLabs, B.V, Utrecht, The Netherlands
- Section Biomedical Imaging, Department Radiation Science & Technology, Delft University of Technology, Delft, The Netherlands
- Department of Translational Neuroscience, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - J de Swart
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - H J M Verhagen
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - A van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - J P Norenberg
- Radiopharmaceutical Sciences, University of New Mexico, Albuquerque, NM, USA
| | - M de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - M R Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Applied Molecular Imaging Erasmus Core Facility, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - F J H Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Liu J, Yang Y, Wernick MN, Pretorius PH, Slomka PJ, King MA. Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising. J Nucl Cardiol 2022; 29:2340-2349. [PMID: 34282538 PMCID: PMC9426651 DOI: 10.1007/s12350-021-02676-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND We previously developed a deep-learning (DL) network for image denoising in SPECT-myocardial perfusion imaging (MPI). Here we investigate whether this DL network can be utilized for improving detection of perfusion defects in standard-dose clinical acquisitions. METHODS To quantify perfusion-defect detection accuracy, we conducted a receiver-operating characteristic (ROC) analysis on reconstructed images with and without processing by the DL network using a set of clinical SPECT-MPI data from 190 subjects. For perfusion-defect detection hybrid studies were used as ground truth, which were created from clinically normal studies with simulated realistic lesions inserted. We considered ordered-subset expectation-maximization (OSEM) reconstruction with corrections for attenuation, resolution, and scatter and with 3D Gaussian post-filtering. Total perfusion deficit (TPD) scores, computed by Quantitative Perfusion SPECT (QPS) software, were used to evaluate the reconstructed images. RESULTS Compared to reconstruction with optimal Gaussian post-filtering (sigma = 1.2 voxels), further DL denoising increased the area under the ROC curve (AUC) from 0.80 to 0.88 (P-value < 10-4). For reconstruction with less Gaussian post-filtering (sigma = 0.8 voxels), thus better spatial resolution, DL denoising increased the AUC value from 0.78 to 0.86 (P-value < 10-4) and achieved better spatial resolution in reconstruction. CONCLUSIONS DL denoising can effectively improve the detection of abnormal defects in standard-dose SPECT-MPI images over conventional reconstruction.
Collapse
Affiliation(s)
- Junchi Liu
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Yongyi Yang
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| | - Miles N Wernick
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - P Hendrik Pretorius
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Piotr J Slomka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
27
|
Oglat AA, Sayah MA. The Effect of an Energy Window with an Ellipsoid Phantom on the Differential Defect Contrast on Myocardial SPECT Images. Bioengineering (Basel) 2022; 9:341. [PMID: 35892754 PMCID: PMC9331383 DOI: 10.3390/bioengineering9080341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Good quality single-photon emission computed tomography (SPECT) images are required to achieve a perfect diagnosis and determine the severity of defects within the myocardial wall. There are many techniques that can support the diagnosis of defect formations in acquired images and contribute to avoiding errors before image construction. The main aim of this study was to determine the effect of energy width (15%, 20%, and 25%) on defect contrast in myocardial SPECT images correlated with the decentralization of positioning of a phantom. A phantom of polyethylene plastic was used to mimic the myocardial wall of the left ventricle. The phantom consists of two chambers, inner and outer. Two rectangular pieces of plastic were placed in anterior and inferior locations in the mid-region of the myocardial phantom to simulate myocardial infarction (defects). The average defect contrast for all phantom positions using 15% to 20% energy was (1.2, 1.6) for the anterior region and (1.1, 2) for the inferior region, respectively. Additionally, the energy window width was >25% with a large displacement of the positioning off center, leading to loss of the defect contrast in myocardial SPECT images, particularly in the inferior region. The study showed decreasing defect contrast in both locations, anterior and inferior, with increasing energy window width correlated with eccentricity positioning of the phantom on an imaging table.
Collapse
Affiliation(s)
- Ammar A. Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Mohannad Adel Sayah
- Department of Radiography, Princess Aisha Bint Al-Hussein College of Nursing & Health Sciences, Al-Hussein Bin Talal University, P.O. Box 20, Ma’an 71111, Jordan;
| |
Collapse
|
28
|
Performance Evaluation of a Preclinical SPECT Scanner with a Collimator Designed for Medium-Sized Animals. Mol Imaging 2022; 2022:9810097. [PMID: 35903250 PMCID: PMC9328189 DOI: 10.1155/2022/9810097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Equipped with two stationary detectors, a large bore collimator for medium-sized animals has been recently introduced for dedicated preclinical single-photon emission computed tomography (SPECT) imaging. We aimed to evaluate the basic performance of the system using phantoms and healthy rabbits. Methods A general-purpose medium-sized animal (GP-MSA) collimator with 135 mm bore diameter and thirty-three holes of 2.5 mm diameter was installed on an ultrahigh-resolution scanner equipped with two large stationary detectors (U-SPECT5-E/CT). The sensitivity and uniformity were investigated using a point source and a cylinder phantom containing 99mTc-pertechnetate, respectively. Uniformity (in %) was derived using volumes of interest (VOIs) on images of the cylinder phantom and calculated as [(maximum count − minimum count)/(maximum count + minimum count) × 100], with lower values of % indicating superior performance. The spatial resolution and contrast-to-noise ratios (CNRs) were evaluated with images of a hot-rod Derenzo phantom using different activity concentrations. Feasibility of in vivo SPECT imaging was finally confirmed by rabbit imaging with the most commonly used clinical myocardial perfusion SPECT agent [99mTc]Tc-sestamibi (dynamic acquisition with a scan time of 5 min). Results In the performance evaluation, a sensitivity of 790 cps/MBq, a spatial resolution with the hot-rod phantom of 2.5 mm, and a uniformity of 39.2% were achieved. The CNRs of the rod size 2.5 mm were 1.37, 1.24, 1.20, and 0.85 for activity concentration of 29.2, 1.0, 0.5, and 0.1 MBq/mL, respectively. Dynamic SPECT imaging in rabbits allowed to visualize most of the thorax and to generate time-activity curves of the left myocardial wall and ventricular cavity. Conclusion Preclinical U-SPECT5-E/CT equipped with a large bore collimator demonstrated adequate sensitivity and resolution for in vivo rabbit imaging. Along with its unique features of SPECT molecular functional imaging is a superior collimator technology that is applicable to medium-sized animal models and thus may promote translational research for diagnostic purposes and development of novel therapeutics.
Collapse
|
29
|
Sugiura A, Onoguchi M, Shibutani T, Kouno Y. Influence of minimum counts in brain perfusion SPECT: phantom and clinical studies. J Nucl Med Technol 2022; 50:jnmt.122.264058. [PMID: 35772965 DOI: 10.2967/jnmt.122.264058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The counts per pixel of brain perfusion single photon emission computed tomography (SPECT) images depend on the administration dose, acquisition time or patient condition, and they sometimes become poor acquisition counts in daily clinical study. The aim of this study was to evaluate the effect of different acquisition counts on qualitative images and statistical imaging analysis and to determine the minimum acquisition counts necessary for accurate examinations. Methods: We performed a brain phantom experiment simulating normal accumulation of 99mTc -ethyl-cysteinate dimer (99mTc-ECD) as a brain uptake of 5.5 %. The SPECT data were acquired in a continuous repetitive rotation. Ten types of SPECT images with different acquisition counts were created by varying the addition of the number of rotations. We used the normalized mean squared error (NMSE) and visual analysis. For the clinical study, we used 25 patients acquired in a continuous repetitive rotation, and created six brain images with different acquisition counts by varying the number of rotations added from 1 to 6. The contrast-to-noise ratio (CNR) was calculated from the mean counts with ROIs in gray and white matter. In addition, the severity, extent and ratio of disease-specific regions were evaluated as indices of statistical imaging analysis. Results: For the phantom study, the curve of NMSE showed a tendency of convergence from approximately 23.6 counts/pixel. Furthermore, the visual score showed that images with 23.6 counts/pixel or more were barely diagnosable. For the clinical study, the CNR was significantly decreased at 11.5 counts/pixel or less. Severity and extent tended to increase with decreasing acquisition counts, and a significant increase was shown at 5.9 counts/pixel. On the other hand, there was no significant difference in ratio values among defferent acquisition counts. Conclusion: Based on comprehensive assessment of phantom and clinical studies, we suggested that 23.6 counts/pixel or more were necessary to keep image quality of qualitative images and to accurately calculate indices of statistical imaging analysis.
Collapse
|
30
|
EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands. Eur J Nucl Med Mol Imaging 2022; 49:1778-1809. [PMID: 35284969 PMCID: PMC9015994 DOI: 10.1007/s00259-022-05727-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Collapse
|
31
|
Assessment of mouse-specific pharmacokinetics in kidneys based on 131I activity measurements using micro-SPECT. EJNMMI Phys 2022; 9:13. [PMID: 35195790 PMCID: PMC8866625 DOI: 10.1186/s40658-022-00443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In order to acquire accurate drug pharmacokinetic information, which is required for tissue dosimetry, micro-SPECT must be quantitative to allow for an accurate assessment of radioligand activity in the relevant tissue. This study investigates the feasibility of deriving accurate mouse-specific time-integrated drug pharmacokinetic data in mouse kidneys from activity measurements using micro-SPECT. METHODS An animal experiment was carried out to evaluate the accuracy of 131I activity quantification in mouse kidneys (mean tissue volume of 0.140 mL) using a micro-SPECT system against conventional ex vivo gamma counting (GC) in a NaI(Tl) detector. The imaging setting investigated was that of the mouse biodistribution of a 131I-labelled single-domain antibody fragment (sdAb), currently being investigated for targeted radionuclide therapy of HER2-expressing cancer. SPECT imaging of 131I 365-keV photons was done with a VECTor/CT system (MILabs, Netherlands) using a high-energy mouse collimator with 1.6-mm-diameter pinholes. For both activity quantification techniques, the pharmacokinetic profile of the radioligand from approximately 1-73 h p.i. was derived and the time-integrated activity coefficient per gram of tissue (ã/M) was estimated. Additionally, SPECT activity recovery coefficients were determined in a phantom setting. RESULTS SPECT activities underestimate the reference activities by an amount that is dependent on the 131I activity concentration in the kidney, and thus on the time point of the pharmacokinetic profile. This underestimation is around - 12% at 1.5 h (2.89 MBq mL-1 mean reference activity concentration), - 13% at 6.6 h (149 kBq mL-1), - 40% at 24 h (17.6 kBq mL-1) and - 46% at 73 h (5.2 kBq mL-1) p.i. The ã/M value estimated from SPECT activities is, nevertheless, within - 14% from the reference (GC) ã/M value. Furthermore, better quantitative accuracy (within 2% from GC) in the SPECT ã/M value is achieved when SPECT activities are compensated for partial recovery with a phantom-based recovery coefficient of 0.85. CONCLUSION The SPECT imaging system used, together with a robust activity quantification methodology, allows an accurate estimation of time-integrated pharmacokinetic information of the 131I-labelled sdAb in mouse kidneys. This opens the possibility to perform mouse-specific kidney-tissue dosimetry based on pharmacokinetic data acquired in vivo on the same mice used in nephrotoxicity studies.
Collapse
|
32
|
Cassano B, Pizzoferro M, Valeri S, Polito C, Donatiello S, Altini C, Villani MF, Serra A, Castellano A, Garganese MC, Cannatà V. Personalized dosimetry for a deeper understanding of metastatic response to high activity 131I-mIBG therapy in high risk relapsed refractory neuroblastoma. Quant Imaging Med Surg 2022; 12:1299-1310. [PMID: 35111625 DOI: 10.21037/qims-21-548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
Background Dosimetry in molecular radiotherapy for personalized treatment is assuming a central role in clinical management of aggressive/relapsed tumors. Relapsed/refractory metastatic high-risk neuroblastoma (rrmHR-NBL) has a poor prognosis and high-activity 131I-mIBG therapy could represent a promising strategy. The primary aim of this case series study was to report the absorbed doses to whole-body (DWB ), red marrow (DRM ) and lesions (DLesion ). A secondary aim was to correlate DLesion values to clinical outcome. Methods Fourteen patients affected by rrmHR-NBL were treated with high-activity 131I-mIBG therapy (two administrations separated by 15 days). The first administration was weight-based whereas the second one was dosimetry-based (achieving DWB equals to 4 Gy). In all patients DWB and DRM was assessed; 9/14 patients were selected for DLesion evaluation using planar dosimetric approach (13 lesions evaluated). Treatment response was classified as progressive and stable disease (PD and SD), partial and complete response (PR and CR) according to the International Neuroblastoma Response Criteria. Patients were divided into two groups: Responder (CR, PR, SD) and Non-Responder (PD), correlating treatment response to DLesion value. Results The cumulative DWB , DRM and DLesion ranged from (1.5; 4.5), (1.0; 2.6) and (44.2; 585.8) Gy. A linear correlation between DWB and DRM and a power law correlation between the absorbed dose to WB normalized for administered activity and the mass of the patient were observed. After treatment 3, 2, 4 and 5 patients showed CR, PR, SD and PD respectively, showing a correlation between DLesion and the two response group. Conclusions Our experience demonstrated feasibility of high activity therapy of 131I-mIBG in rrmHR-NBL children as two administration intensive strategy. Dosimetric approach allowed a tailored high dose treatment maximizing the benefits of radionuclide therapy for pediatric patients while maintaining a safety profile. The assesment of DLesion contributed to have a deeper understaning of metabolic treatment effects.
Collapse
Affiliation(s)
- Bartolomeo Cassano
- Medical Physics Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Milena Pizzoferro
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvio Valeri
- Medical Physics Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Claudia Polito
- Medical Physics Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Claudio Altini
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Felicia Villani
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Annalisa Serra
- Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Aurora Castellano
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Department of Pediatric Hematology and Oncology, IRCCS Ospedale Pediatrico Bambino Gesu, Rome, Italy
| | - Maria Carmen Garganese
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Vittorio Cannatà
- Medical Physics Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
33
|
Frangos S, Michael K, Exadaktylou P, Giannoula E, Iakovou I. The Anger's camera. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Pretorius PH, King MA. Data-driven respiratory signal estimation from temporally finely sampled projection data in conventional cardiac perfusion SPECT imaging. Med Phys 2022; 49:282-294. [PMID: 34859456 PMCID: PMC9348806 DOI: 10.1002/mp.15391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/28/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE The aim of this work was to revisit the data-driven approach of axial center-of-mass (COM) measurements to recover a surrogate respiratory signal from finely sampled (100 ms) single photon emission computed tomography (SPECT) projection data derived from list-mode acquisitions. METHODS For our initial evaluation, we acquired list-mode projection data from an anthropomorphic cardiac phantom mounted on a Quasar respiratory motion platform simulating 15 mm amplitude respiratory motion. We also selected 302 consecutive patients (138 males, 164 females) with list-mode acquisitions, external respiratory motion tracking, and written consent to evaluate the clinical efficacy of our data-driven approach. Linear regression, Pearson's correlation coefficient (r), and standard error of the estimates (SEE) between the respiratory signals obtained with a visual tracking system (VTS) and COM measurements were calculated for individual projection data sets and for the patient group as a whole. Both the VTS- and COM-derived respiratory signals were used to estimate and correct respiratory motion. The reconstruction for six-degree of freedom rigid-body motion estimation was done in two ways: (1) using three iterations of ordered-subsets expectation-maximization (OSEM) with four subsets (16 projection angles per subset), or 12 iterations of maximum-likelihood expectation-maximization (MLEM). Respiratory motion compensation was done employing either OSEM with 16 subsets (four projection angles per subset) and five iterations or MLEM and 80 iterations, using the two respiratory estimates, respectively. Polar map quantification was also performed, calculating the percentage count difference (%Diff) between polar maps without and with respiratory motion included. Average % Diff was calculated in 17 segments (defined according to ASNC Guidelines). Paired t-tests were used to determine significance (p-values). RESULTS The r-value calculated when comparing the VTS and COM respiratory signals varied widely between -0.01 and 0.96 with an average of 0.70, while the SEE varied between 0.80 and 6.48 mm with an average of 2.05 mm for our patient set, while the same values for the one anthropomorphic phantom acquisition are 0.91 and 1.11 mm, respectively. A comparison between the respiratory motion estimates for VTS and COM in the S-I direction yielded an r = 0.90 (0.94), and an SEE of 1.56 mm (1.20 mm) for OSEM (MLEM), respectively. Bland-Altman plots and calculated intraclass correlation coefficients also showed excellent agreement between the VTS and COM respiratory motion estimates. Average S-I respiratory estimates for the VTS (COM) were 9.04 (9.2 mm) and 9.01 mm (9.14 mm) for the OSEM and MLEM, respectively. The paired t-test approached significance when comparing VTS and COM estimated respiratory signals with p-values of 0.069 and 0.051 for OSEM and MLEM. The respiratory estimates from the anthropomorphic cardiac phantom experiment using the VTS (COM) were 12.62 (14.10 mm) and 12.55 mm (14.29 mm) for OSEM and MLEM, respectively. Polar map quantification yielded average % Diff consistently better when employing VTS-derived respiratory estimates to correct for respiration compared to the COM-derived estimates. CONCLUSIONS The results indicate that our COM method has the potential to provide an automated data-driven correction of cardiac respiratory motion without the drawbacks of our VTS methodology. However, it is not generally equivalent to the VTS method in extent of correction.
Collapse
Affiliation(s)
- P Hendrik Pretorius
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Amato E, Gnesin S, Cicone F, Auditore L. Fundamentals of internal radiation dosimetry. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
36
|
Meester EJ, Krenning BJ, de Blois E, de Jong M, van der Steen AFW, Bernsen MR, van der Heiden K. Imaging inflammation in atherosclerotic plaques, targeting SST 2 with [ 111In]In-DOTA-JR11. J Nucl Cardiol 2021; 28:2506-2513. [PMID: 32026330 PMCID: PMC8709817 DOI: 10.1007/s12350-020-02046-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/24/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Imaging Somatostatin Subtype Receptor 2 (SST2) expressing macrophages by [DOTA,Tyr3]-octreotate (DOTATATE) has proven successful for plaque detection. DOTA-JR11 is a SST2 targeting ligand with a five times higher tumor uptake than DOTATATE, and holds promise to improve plaque imaging. The aim of this study was to evaluate the potential of DOTA-JR11 for plaque detection. METHODS AND RESULTS Atherosclerotic ApoE-/- mice (n = 22) fed an atherogenic diet were imaged by SPECT/CT two hours post injection of [111In]In-DOTA-JR11 (~ 200 pmol, ~ 50 MBq). In vivo plaque uptake of [111In]In-DOTA-JR11 was visible in all mice, with a target-to-background-ratio (TBR) of 2.23 ± 0.35. Post-mortem scans after thymectomy and ex vivo scans of the arteries after excision of the arteries confirmed plaque uptake of the radioligand with TBRs of 2.46 ± 0.52 and 3.43 ± 1.45 respectively. Oil red O lipid-staining and ex vivo autoradiography of excised arteries showed [111In]In-DOTA-JR11 uptake at plaque locations. Histological processing showed CD68 (macrophages) and SST2 expressing cells in plaques. SPECT/CT, in vitro autoradiography and immunohistochemistry performed on slices of a human carotid endarterectomy sample showed [111In]In-DOTA-JR11 uptake at plaque locations containing CD68 and SST2 expressing cells. CONCLUSIONS The results of this study indicate DOTA-JR11 as a promising ligand for visualization of atherosclerotic plaque inflammation.
Collapse
Affiliation(s)
- Eric J Meester
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Erik de Blois
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion de Jong
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Monique R Bernsen
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Kim van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Taprogge J, Carnegie-Peake L, Murray I, Gear JI, Flux GD. Adjustment of the iodine ICRP population pharmacokinetic model for the use in thyroid cancer patients after thyroidectomy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1034-1044. [PMID: 34261047 DOI: 10.1088/1361-6498/ac149a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Biokinetic models developed for healthy humans are not appropriate to describe biokinetics in thyroid cancer patients following thyroidectomy. The aim of this study was to adjust the population model for iodine proposed by the International Commission on Radiological Protection (ICRP) for the use in these patients. Rate constants of the ICRP publication 128 model for iodine were adjusted using the population modelling software package Monolix to describe activity retention in whole-body, thyroid, blood and protein-bound iodine observed in 23 patients. The new set of rate constants was compared to the four uptake scenarios proposed in ICRP publication 128. Flow from the inorganic iodide in blood compartment into the first thyroid compartment decreases to 0.15 d-1compared to a value of 7.27 d-1for the ICRP publication 128 model with a medium uptake. The transfer from first to second thyroid compartments and the outflow from the second thyroid compartment increases. An increased turnover rate of extrathyroidal organic iodine is observed. The rate constant from inorganic iodide in blood to kidney was also adjusted. Overall a good agreement was found between the adjusted model and the activity retention in thyroid cancer patients. The adjustment of population pharmacokinetic models to describe the biokinetic properties of specific patient populations for therapeutic radiopharmaceuticals is essential to capture the changes in biokinetics. The proposed set of rate constants for the established ICRP publication 128 model can be used to more accurately assess radiation protection requirements for the treatment of thyroid cancer patients using radioiodine.
Collapse
Affiliation(s)
- Jan Taprogge
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| | - Lily Carnegie-Peake
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| | - Iain Murray
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| | - Jonathan I Gear
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| | - Glenn D Flux
- Joint Department of Physics, Royal Marsden NHSFT, Downs Road, Sutton SM2 5PT, United Kingdom
- The Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, United Kingdom
| |
Collapse
|
38
|
Huang JY, Yen RF, Huang CK, Liu CJ, Cheng MF, Chien KL, Wu YW. Long-term prognostic value of computed tomography-based attenuation correction on thallium-201 myocardial perfusion imaging: A cohort study. PLoS One 2021; 16:e0258983. [PMID: 34699538 PMCID: PMC8547642 DOI: 10.1371/journal.pone.0258983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Myocardial perfusion imaging (MPI) is a well-established diagnostic tool to evaluate coronary artery disease (CAD) and also an effective prognostic tool for patients with CAD. However, few studies investigated the prognostic value of attenuation correction (AC) in MPI, and the results were controversial. OBJECTIVES To investigate the prognostic value of computed tomography (CT)-based AC thallium-201 (Tl-201) MPI. METHODS A total of 108 consecutive patients who underwent Tl-201 MPI and received coronary angiography within 90 days were included. Medical records were reviewed and missing information was completed after telephone contact. The prognostic value was evaluated by Kaplan-Meier analysis, univariable and multivariable Cox proportional hazards model. RESULTS After a mean follow-up of 7.72 ± 3.72 years, 27 patients had died, 41 had been readmitted for cardiovascular (CV)-related events and 44 had reached the composite of death plus CV-related re-admission. Kaplan-Meier curves for all-cause mortality for SSS with a cutoff value of 13 for AC and 16 for non-AC (NAC) images showed a significant difference between the two curves for both AC and NAC images (p = 0.011 for AC and p = 0.021 for NAC). In the multivariable model, SSS and SRS showed similar independent predictive values in predicting all-cause mortality and composite of all-cause mortality plus CV-related re-admission, in both AC and NAC images. Subgroup analysis implicated that AC MPI possibly provided better risk stratification in obese patients. CONCLUSION CT-based AC and NAC MPI showed similar value and were the only significant predictors for the composite of mortality and CV events.
Collapse
Affiliation(s)
- Jei-Yie Huang
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Kai Huang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Ju Liu
- Department of Nuclear Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin County, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (KLC); (YWW)
| | - Yen-Wen Wu
- Department of Nuclear Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- National Yang Ming Chao Tung University School of Medicine, Taipei, Taiwan
- * E-mail: (KLC); (YWW)
| |
Collapse
|
39
|
Stabin MG, Wendt RE, Flux GD. RADAR Guide: Standard Methods for Calculating Radiation Doses for Radiopharmaceuticals Part 1. Collection of Data for Radiopharmaceutical Dosimetry. J Nucl Med 2021; 63:316-322. [PMID: 34353875 DOI: 10.2967/jnumed.120.259200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
This paper presents standardized methods for collecting data to be used in performing dose calculations for radiopharmaceuticals. Various steps in the process are outlined, with some specific examples given. This document can be used as a template for designing and executing kinetic studies for calculating radiation dose estimates, from animal or human data.
Collapse
|
40
|
Kupitz D, Wissel H, Wuestemann J, Bluemel S, Pech M, Amthauer H, Kreissl MC, Grosser OS. Optimization of SPECT/CT imaging protocols for quantitative and qualitative 99mTc SPECT. EJNMMI Phys 2021; 8:57. [PMID: 34328565 PMCID: PMC8324619 DOI: 10.1186/s40658-021-00405-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background The introduction of hybrid SPECT/CT devices enables quantitative imaging in SPECT, providing a methodological setup for quantitation using SPECT tracers comparable to PET/CT. We evaluated a specific quantitative reconstruction algorithm for SPECT data using a 99mTc-filled NEMA phantom. Quantitative and qualitative image parameters were evaluated for different parametrizations of the acquisition and reconstruction protocol to identify an optimized quantitative protocol. Results The reconstructed activity concentration (ACrec) and the signal-to-noise ratio (SNR) of all examined protocols (n = 16) were significantly affected by the parametrization of the weighting factor k used in scatter correction, the total number of iterations and the sphere volume (all, p < 0.0001). The two examined SPECT acquisition protocols (with 60 or 120 projections) had a minor impact on the ACrec and no significant impact on the SNR. In comparison to the known AC, the use of default scatter correction (k = 0.47) or object-specific scatter correction (k = 0.18) resulted in an underestimation of ACrec in the largest sphere volume (26.5 ml) by − 13.9 kBq/ml (− 16.3%) and − 7.1 kBq/ml (− 8.4%), respectively. An increase in total iterations leads to an increase in estimated AC and a decrease in SNR. The mean difference between ACrec and known AC decreased with an increasing number of total iterations (e.g., for 20 iterations (2 iterations/10 subsets) = − 14.6 kBq/ml (− 17.1%), 240 iterations (24i/10s) = − 8.0 kBq/ml (− 9.4%), p < 0.0001). In parallel, the mean SNR decreased significantly from 2i/10s to 24i/10s by 76% (p < 0.0001). Conclusion Quantitative SPECT imaging is feasible with the used reconstruction algorithm and hybrid SPECT/CT, and its consistent implementation in diagnostics may provide perspectives for quantification in routine clinical practice (e.g., assessment of bone metabolism). When combining quantitative analysis and diagnostic imaging, we recommend using two different reconstruction protocols with task-specific optimized setups (quantitative vs. qualitative reconstruction). Furthermore, individual scatter correction significantly improves both quantitative and qualitative results. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00405-3.
Collapse
Affiliation(s)
- Dennis Kupitz
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany.
| | - Heiko Wissel
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Jan Wuestemann
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Stephanie Bluemel
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael C Kreissl
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - Oliver S Grosser
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
41
|
Nosrati Z, Esquinas PL, Rodríguez-Rodríguez C, Tran T, Maharaj A, Saatchi K, Häfeli UO. Simultaneous SPECT imaging with 123I and 125I - a practical approach to assessing a drug and its carrier at the same time with dual imaging. Int J Pharm 2021; 606:120884. [PMID: 34271154 DOI: 10.1016/j.ijpharm.2021.120884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
Radiolabeling of a drug with radioactive iodine is a good method to determine its pharmacokinetics and biodistribution in vivo that only minimally alters its physicochemical properties. With dual labeling, using the two radioactive iodine isotopes 123I and 125I, two different drugs can be evaluated at the same time, or one can follow both a drug and its drug delivery system using a single photon emission computed tomography (SPECT) imager. One difficulty is that the two radioisotopes have overlapping gamma spectra. Our aim was therefore to develop a technique that overcomes this problem and allows for quantitative analysis of the two radioisotopes present at varied isotope ratios. For this purpose, we developed a simple method that included scatter and attenuation corrections and fully compensated for 123I/125I crosstalk, and then tested it in phantom measurements. The method was applied to the study of an orally administered lipid formulation for the delivery of fenofibrate in rats. To directly compare a traditional study, where fenofibrate was determined in plasma samples to SPECT imaging with 123I-labeled fenofibrate and 125I-labeled triolein over 24 h, the drug concentrations were converted to standardized uptake values (SUVs), an unusual unit for pharmaceutical scientists, but the standard unit for radiologists. A generally good agreement between the traditional and the radioactive imaging method was found in the pharmacokinetics and biodistribution results. Small differences are discussed in detail. Overall, SPECT imaging is an excellent method to pilot a new formulation with just a few animals, replaces blood sampling, and can very quickly highlight potential administration problems, the excretion pathways and the kinetics. Furthermore, dual labeling with the two radioisotopes 123I and 125I clearly shows if a drug and its drug delivery system stay together when traveling through the body, if slow drug release takes place, and where degradation/excretion of the components occurs.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pedro L Esquinas
- IBM Watson Health Imaging, 6303 Airport Road, Mississauga, Ontario, L4V 1R8 Canada
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada
| | - Thuy Tran
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anil Maharaj
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Katayoon Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
42
|
Shibutani T, Onoguchi M, Yoneyama H, Konishi T, Nakajima K. Performance of SwiftScan planar and SPECT technology using low-energy high-resolution and sensitivity collimator compared with Siemens SPECT system. Nucl Med Commun 2021; 42:732-737. [PMID: 33741862 DOI: 10.1097/mnm.0000000000001400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE A new low-energy high-resolution-sensitivity (LEHRS) collimator was developed by General Electric (GE) Healthcare. SwiftScan planar and single photon emission computed tomography (SPECT) systems using LEHRS collimator were developed to achieve the low-dose and/or short-time acquisition. We demonstrated the performance of SwiftScan planar and SPECT system with LEHRS collimator using phantoms. METHODS Line source, cylindrical and flat plastic dish phantoms were used to evaluate the performance of planar and SPECT images for four patterns of Siemens LEHR, GE LEHR, GE LEHRS and SwiftScan using two SPECT-CT scanners. Each phantom was filled with 99mTc solution, and the spatial resolution, sensitivity and image uniformity were calculated from the planar and SPECT data. RESULTS The full-width at half maximum (FWHM) values as a system spatial resolution of Siemens LEHR, GE LEHR and GE LEHRS were approximately 7.4 mm. GE LEHRS showed a lower FWHM value by increasing the blend ratio in Clarity2D processing. The system sensitivity of GE LEHRS increased by approximately 30% compared with that of GE LEHR and was similar to that of Siemens LEHR. The FWHM values of SPECT with an filtered back projection (FBP) method were approximately 10.3 mm. The FWHM values of the ordered subset expectation maximization (OSEM) method were better with an increase in iteration values. The differential uniformities of Siemens LEHR, GE LEHR, GE LEHRS and GE SwiftScan using the FBP method were approximately 15.1%. The differential uniformity of OSEM method was higher with an increase in the iteration value. CONCLUSION The SwiftScan planar and SPECT have a high sensitivity while maintaining the spatial resolution compared with the conventional system.
Collapse
Affiliation(s)
- Takayuki Shibutani
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Hiroto Yoneyama
- Department of Radiological Technology, Kanazawa University Hospital
| | - Takahiro Konishi
- Department of Radiological Technology, Kanazawa University Hospital
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
43
|
Monserrat Fuertes T, González García F, Peinado Montes M, Domínguez Grande M, Martín Fernández N, Gómez de Iturriaga Piña A, Mínguez Gabiña P. Description of the methodology for dosimetric quantification in treatments with 177Lu-DOTATATE. Rev Esp Med Nucl Imagen Mol 2021. [DOI: 10.1016/j.remnie.2021.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Monserrat Fuertes T, González García FM, Peinado Montes MÁ, Domínguez Grande ML, Martín Fernández N, Gómez de Iturriaga Piña A, Mínguez Gabiña P. Description of the methodology for dosimetric quantification in treatments with 177Lu-DOTATATE. Rev Esp Med Nucl Imagen Mol 2021; 40:167-178. [PMID: 33811003 DOI: 10.1016/j.remn.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Implementation of dosimetry calculations in the daily practice of Nuclear Medicine Departments is, at this time, a controversial issue, partly due to the lack of a standardized methodology that is accepted by all interested parties (patients, nuclear medicine physicians and medical physicists). However, since the publication of RD 601/2019 there is a legal obligation to implement it, despite the fact that it is a complex and high resource consumption procedure. The aim of this article is to review the theoretical bases of in vivo dosimetry in treatments with 177Lu-DOTATATE. The exposed methodology is the one proposed by the MIRD Committee (Medical Internal Radiation Dose) of the SNMMI (Society of Nuclear Medicine & Molecular Imaging). According to this method, the absorbed dose is obtained as the product of 2factors: the time-integrated activity of the radiopharmaceutical present in a source region and a geometrical factor S. This approach, which a priori seems simple, in practice requires several SPECT/CT acquisitions, several measurements of the whole body activity and taking several blood samples, as well as hours of image processing and computation. The systematic implementation of these calculations, in all the patients we treat, will allow us to obtain homogeneous data to correlate the absorbed doses in the lesions with the biological effect of the treatment. The final purpose of the dosimetry calculations is to be able to maximize the therapeutic effect in the lesions, controlling the radiotoxicity in the organs at risk.
Collapse
Affiliation(s)
- T Monserrat Fuertes
- Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Central de Asturias, Oviedo, Asturias, España; Departamento de Cirugía, Radiología y Medicina Física, UPV/EHU, Leioa, Bizkaia, España.
| | - F M González García
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - M Á Peinado Montes
- Servicio de Radiofísica y Protección Radiológica, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - M L Domínguez Grande
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - N Martín Fernández
- Servicio de Medicina Nuclear, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | - A Gómez de Iturriaga Piña
- Departamento de Cirugía, Radiología y Medicina Física, UPV/EHU, Leioa, Bizkaia, España; Servicio de Oncología Radioterápica, Hospital Universitario Gurutzeta-Cruces/Instituto de Investigación Sanitaria BioCruces, Barakaldo, Bizkaia, España
| | - P Mínguez Gabiña
- Unidad de Protección Radiológica y Radiofísica, Hospital Universitario Gurutzeta-Cruces/Instituto de Investigación Sanitaria BioCruces, Barakaldo, Bizkaia, España
| |
Collapse
|
45
|
Beekman FJ, Kamphuis C, Koustoulidou S, Ramakers RM, Goorden MC. Positron range-free and multi-isotope tomography of positron emitters. Phys Med Biol 2021; 66:065011. [PMID: 33578400 DOI: 10.1088/1361-6560/abe5fc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite improvements in small animal PET instruments, many tracers cannot be imaged at sufficiently high resolutions due to positron range, while multi-tracer PET is hampered by the fact that all annihilation photons have equal energies. Here we realize multi-isotope and sub-mm resolution PET of isotopes with several mm positron range by utilizing prompt gamma photons that are commonly neglected. A PET-SPECT-CT scanner (VECTor/CT, MILabs, The Netherlands) equipped with a high-energy cluster-pinhole collimator was used to image 124I and a mix of 124I and 18F in phantoms and mice. In addition to positrons (mean range 3.4 mm) 124I emits large amounts of 603 keV prompt gammas that-aided by excellent energy discrimination of NaI-were selected to reconstruct 124I images that are unaffected by positron range. Photons detected in the 511 keV window were used to reconstruct 18F images. Images were reconstructed iteratively using an energy dependent matrix for each isotope. Correction of 18F images for contamination with 124I annihilation photons was performed by Monte Carlo based range modelling and scaling of the 124I prompt gamma image before subtracting it from the 18F image. Additionally, prompt gamma imaging was tested for 89Zr that emits very high-energy prompts (909 keV). In Derenzo resolution phantoms 0.75 mm rods were clearly discernable for 124I, 89Zr and for simultaneously acquired 124I and 18F imaging. Image quantification in phantoms with reservoirs filled with both 124I and 18F showed excellent separation of isotopes and high quantitative accuracy. Mouse imaging showed uptake of 124I in tiny thyroid parts and simultaneously injected 18F-NaF in bone structures. The ability to obtain PET images at sub-mm resolution both for isotopes with several mm positron range and for multi-isotope PET adds to many other unique capabilities of VECTor's clustered pinhole imaging, including simultaneous sub-mm PET-SPECT and theranostic high energy SPECT.
Collapse
Affiliation(s)
- F J Beekman
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands. MILabs B.V., Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands. Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Marquis H, Deidda D, Gillman A, Willowson KP, Gholami Y, Hioki T, Eslick E, Thielemans K, Bailey DL. Theranostic SPECT reconstruction for improved resolution: application to radionuclide therapy dosimetry. EJNMMI Phys 2021; 8:16. [PMID: 33598750 PMCID: PMC7889770 DOI: 10.1186/s40658-021-00362-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background SPECT-derived dose estimates in tissues of diameter less than 3× system resolution are subject to significant losses due to the limited spatial resolution of the gamma camera. Incorporating resolution modelling (RM) into the SPECT reconstruction has been proposed as a possible solution; however, the images produced are prone to noise amplification and Gibbs artefacts. We propose a novel approach to SPECT reconstruction in a theranostic setting, which we term SPECTRE (single photon emission computed theranostic reconstruction); using a diagnostic PET image, with its superior resolution, to guide the SPECT reconstruction of the therapeutic equivalent. This report demonstrates a proof in principle of this approach. Methods We have employed the hybrid kernelised expectation maximisation (HKEM) algorithm implemented in STIR, with the aim of producing SPECT images with PET-equivalent resolution. We demonstrate its application in both a dual 68Ga/177Lu IEC phantom study and a clinical example using 64Cu/67Cu. Results SPECTRE is shown to produce images comparable in accuracy and recovery to PET with minimal introduction of artefacts and amplification of noise. Conclusion The SPECTRE approach to image reconstruction shows improved quantitative accuracy with a reduction in noise amplification. SPECTRE shows great promise as a method of improving SPECT radioactivity concentrations, directly leading to more accurate dosimetry estimates in small structures and target lesions. Further investigation and optimisation of the algorithm parameters is needed before this reconstruction method can be utilised in a clinical setting.
Collapse
Affiliation(s)
- H Marquis
- Sydney Vital Translational Cancer Research Centre, Sydney, Australia.,Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - D Deidda
- National Physical Laboratory, Teddington, UK
| | - A Gillman
- Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - K P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Y Gholami
- Sydney Vital Translational Cancer Research Centre, Sydney, Australia.,Institute of Medical Physics, University of Sydney, Sydney, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - T Hioki
- Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - E Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - K Thielemans
- Institute of Nuclear Medicine, University College London, London, UK
| | - D L Bailey
- Sydney Vital Translational Cancer Research Centre, Sydney, Australia. .,Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia. .,Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
47
|
Nguyen MP, Goorden MC, Beekman FJ. EXIRAD-HE: multi-pinhole high-resolution ex vivo imaging of high-energy isotopes. ACTA ACUST UNITED AC 2020; 65:225029. [DOI: 10.1088/1361-6560/abbb77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Liu J, Yang Y, Wernick MN, Pretorius PH, King MA. Deep learning with noise-to-noise training for denoising in SPECT myocardial perfusion imaging. Med Phys 2020; 48:156-168. [PMID: 33145782 DOI: 10.1002/mp.14577] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Post-reconstruction filtering is often applied for noise suppression due to limited data counts in myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT). We study a deep learning (DL) approach for denoising in conventional SPECT-MPI acquisitions, and investigate whether it can be more effective for improving the detectability of perfusion defects compared to traditional postfiltering. METHODS Owing to the lack of ground truth in clinical studies, we adopt a noise-to-noise (N2N) training approach for denoising in SPECT-MPI images. We consider a coupled U-Net (CU-Net) structure which is designed to improve learning efficiency through feature map reuse. For network training we employ a bootstrap procedure to generate multiple noise realizations from list-mode clinical acquisitions. In the experiments we demonstrated the proposed approach on a set of 895 clinical studies, where the iterative OSEM algorithm with three-dimensional (3D) Gaussian postfiltering was used to reconstruct the images. We investigated the detection performance of perfusion defects in the reconstructed images using the non-prewhitening matched filter (NPWMF), evaluated the uniformity of left ventricular (LV) wall in terms of image intensity, and quantified the effect of smoothing on the spatial resolution of the reconstructed LV wall by using its full-width at half-maximum (FWHM). RESULTS Compared to OSEM with Gaussian postfiltering, the DL denoised images with CU-Net significantly improved the detection performance of perfusion defects at all contrast levels (65%, 50%, 35%, and 20%). The signal-to-noise ratio (SNRD ) in the NPWMF output was increased on average by 8% over optimal Gaussian smoothing (P < 10-4 , paired t-test), while the inter-subject variability was greatly reduced. The CU-Net also outperformed a 3D nonlocal means (NLM) filter and a convolutional autoencoder (CAE) denoising network in terms of SNRD . In addition, the FWHM of the LV wall in the reconstructed images was varied by less than 1%. Furthermore, CU-Net also improved the detection performance when the images were processed with less post-reconstruction smoothing (a trade-off of increased noise for better LV resolution), with SNRD improved on average by 23%. CONCLUSIONS The proposed DL with N2N training approach can yield additional noise suppression in SPECT-MPI images over conventional postfiltering. For perfusion defect detection, DL with CU-Net could outperform conventional 3D Gaussian filtering with optimal setting as well as NLM and CAE.
Collapse
Affiliation(s)
- Junchi Liu
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Yongyi Yang
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Miles N Wernick
- Medical Imaging Research Center and Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - P Hendrik Pretorius
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Michael A King
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
49
|
Chiang CC, Chuang CC, Ni YC, Jan ML, Chuang KS, Lin HH. Time of flight dual photon emission computed tomography. Sci Rep 2020; 10:19514. [PMID: 33177616 PMCID: PMC7659351 DOI: 10.1038/s41598-020-76526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
Time-of-flight dual photon emission computed tomography (TOF-DuPECT) is an imaging system that can obtain radionuclide distributions using time information recorded from two cascade-decay photons. The potential decay locations in the image space, a hyperbolic response curve, can be determined via time-difference-of-arrival (TDOA) estimations from two instantaneous coincidence photons. In this feasibility study, Monte Carlo simulations were performed to generate list-mode coincidence data. A full-ring positron emission tomography-like detection system geometry was built in the simulation environment. A contrast phantom and a Jaszczak-like phantom filled with Selenium-75 (Se-75) were used to evaluate the image quality. A TOF-DuPECT system with varying coincidence time resolution (CTR) was then evaluated. We used the stochastic origin ensemble (SOE) algorithm to reconstruct images from the recorded list-mode data. The results indicate that the SOE method can be successfully employed for the TOF-DuPECT system and can achieve acceptable image quality when the CTR is less than 100 ps. Therefore, the TOF-DuPECT imaging system is feasible. With the improvement of the detector with time, future implementations and applications of TOF-DuPECT are promising. Further quantitative imaging techniques such as attenuation and scatter corrections for the TOF-DuPECT system will be developed in future.
Collapse
Affiliation(s)
- Chih-Chieh Chiang
- Medical Physics Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chun-Chao Chuang
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ching Ni
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
- Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Meei-Ling Jan
- Medical Physics Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Keh-Shih Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Hsin-Hon Lin
- Medical Physics Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.
| |
Collapse
|
50
|
Hoffmann JV, Janssen JP, Kanno T, Shibutani T, Onoguchi M, Lapa C, Grunz JP, Buck AK, Higuchi T. Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging. EJNMMI Phys 2020; 7:64. [PMID: 33140263 PMCID: PMC7606439 DOI: 10.1186/s40658-020-00335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
Background Small-animal single-photon emission computed tomography (SPECT) systems with multi-pinhole collimation and large stationary detectors have advantages compared to systems with moving small detectors. These systems benefit from less labour-intensive maintenance and quality control as fewer prone parts are moving, higher accuracy for focused scans and maintaining high resolution with increased sensitivity due to focused pinholes on the field of view. This study aims to investigate the performance of a novel ultra-high-resolution scanner with two-detector configuration (U-SPECT5-E) and to compare its image quality to a conventional micro-SPECT system with three stationary detectors (U-SPECT+). Methods The new U-SPECT5-E with two stationary detectors was used for acquiring data with 99mTc-filled point source, hot-rod and uniformity phantoms to analyse sensitivity, spatial resolution, uniformity and contrast-to-noise ratio (CNR). Three dedicated multi-pinhole mouse collimators with 75 pinholes each and 0.25-, 0.60- and 1.00-mm pinholes for extra ultra-high resolution (XUHR-M), general-purpose (GP-M) and ultra-high sensitivity (UHS-M) imaging were examined. For CNR analysis, four different activity ranges representing low- and high-count settings were investigated for all three collimators. The experiments for the performance assessment were repeated with the same GP-M collimator in the three-detector U-SPECT+ for comparison. Results Peak sensitivity was 237 cps/MBq (XUHR-M), 847 cps/MBq (GP-M), 2054 cps/MBq (UHS-M) for U-SPECT5-E and 1710 cps/MBq (GP-M) for U-SPECT+. In the visually analysed sections of the reconstructed mini Derenzo phantoms, rods as small as 0.35 mm (XUHR-M), 0.50 mm (GP-M) for the two-detector as well as the three-detector SPECT and 0.75 mm (UHS-M) were resolved. Uniformity for maximum resolution recorded 40.7% (XUHR-M), 29.1% (GP-M, U-SPECT5-E), 16.3% (GP-M, U-SPECT+) and 23.0% (UHS-M), respectively. UHS-M reached highest CNR values for low-count images; for rods smaller than 0.45 mm, acceptable CNR was only achieved by XUHR-M. GP-M was superior for imaging rods sized from 0.60 to 1.50 mm for intermediate activity concentrations. U-SPECT5-E and U-SPECT+ both provided comparable CNR. Conclusions While uniformity and sensitivity are negatively affected by the absence of a third detector, the investigated U-SPECT5-E system with two stationary detectors delivers excellent spatial resolution and CNR comparable to the performance of an established three-detector-setup.
Collapse
Affiliation(s)
- Jan V Hoffmann
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Jan P Janssen
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Takayuki Kanno
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takayuki Shibutani
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahisa Onoguchi
- Department of Quantum Medical Technology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Constantin Lapa
- Nuclear Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany. .,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany. .,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|