1
|
Marchant DJ, Perkins DM, Jones JI, Kratina P. Physiological and behavioural responses of aquatic organisms to microplastics and experimental warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126182. [PMID: 40189086 DOI: 10.1016/j.envpol.2025.126182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Microplastics are an emerging contaminant of concern because of their potential to cause harm to aquatic biota, such as reproduction, growth, and survival, and there is a lack of knowledge about how microplastics can affect other sub-lethal responses, such as movement behaviour and respiration rates, which may have consequences for species interactions. Additionally, there is little evidence for the effects of microplastics under different climate warming scenarios. To address this knowledge gap, the effects of high-density polyethylene (HDPE) microplastics, in combination with different constant temperature regimes (10 °C, 15 °C, and 20 °C) and a fluctuating regime (10-20 °C over a 24h diel cycle) on the respiration rates, feeding rates, and movement speeds of Gammarus pulex and Asellus aquaticus were assessed. Respiration rates of G. pulex increased with temperature according to metabolic theory, but there was no evidence for increased respiration rates of A. aquaticus at higher temperatures. Overall, the respiration rates and movement speeds of G. pulex were higher than A. aquaticus but there was no evidence that microplastics independently, or in combination with experimental warming, influenced any of the responses tested. There is increasing evidence that some microplastic particles may not be harmful to aquatic biota, and the findings presented in this study indicated that further evidence about the effects of different microplastic types, in combination with other human-induced pressures, is required to better understand the hazards and risks associated with microplastic particles in the environment.
Collapse
Affiliation(s)
- Danielle J Marchant
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Daniel M Perkins
- School of Life and Health Sciences, Whitelands College, University of Roehampton, London, SW15 4JD, United Kingdom; Centre for Pollution Research and Policy, Brunel University London, Uxbridge, United Kingdom
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| |
Collapse
|
2
|
Baladia Y, Ben-Haddad M, Laadel N, Hermas J, Agnaou M, Abou Oualid J. Factors associated with fish mass mortality events in North African freshwater ecosystems, Morocco as a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8010-8024. [PMID: 40048060 DOI: 10.1007/s11356-025-36176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Freshwater biodiversity plays a pivotal role in maintaining ecological equilibrium and furnishing numerous ecosystem services to diverse organisms. However, these intricate ecosystems face imminent threats from various phenomena, including global warming and anthropogenic activities, leading to heightened occurrences of ecological disasters, notably mass mortality events among aquatic fauna. This study represents the first comprehensive investigation and high-frequency monitoring of the ecological disaster of fish mass mortalities in Africa. We focused on instances of fish mass mortality events (FMME) in North African freshwater ecosystems and estuaries in 2019, focusing on Morocco, as the country most endowed with aquatic ecosystems in North Africa. Seven aquatic ecosystems exhibited susceptibility, impacting a total of 10 species. Notably, 94.59% of the minimum estimated 171,064 deceased fish individuals belonged to non-native species. Lepomis macrochirus stood out as the species most profoundly impacted, representing a substantial 63.36% of the total mortalities, with Lepomis gibbosus following closely at 27.64%. Comprehensive measurements of water quality parameters, encompassing temperature, dissolved oxygen, pH, salinity, among others, were conducted, and their associations with the affected ecosystems were analyzed. Our findings suggest that the predominant cause of the majority of FMME was attributed to the critically low concentrations of dissolved oxygen, likely resulting from anthropogenic and climatic pressures. Overall, FMME can considered as a potential threat to Moroccan freshwater fish diversity and communities.
Collapse
Affiliation(s)
- Yassine Baladia
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, University Ibnou Zohr Faculty of Sciences, University Ibnou Zohr , Agadir, Morocco.
- National Center for Hydrobiology and Fish Farming, Ifrane, Morocco.
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, University Ibnou Zohr Faculty of Sciences, University Ibnou Zohr , Agadir, Morocco
| | - Nezha Laadel
- National Center for Hydrobiology and Fish Farming, Ifrane, Morocco
| | - Jamila Hermas
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, University Ibnou Zohr Faculty of Sciences, University Ibnou Zohr , Agadir, Morocco
| | - Mustapha Agnaou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, University Ibnou Zohr Faculty of Sciences, University Ibnou Zohr , Agadir, Morocco
| | - Jaouad Abou Oualid
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, University Ibnou Zohr Faculty of Sciences, University Ibnou Zohr , Agadir, Morocco
| |
Collapse
|
3
|
Shokri M, Marrocco V, Cozzoli F, Vignes F, Basset A. The relative importance of metabolic rate and body size to space use behavior in aquatic invertebrates. Ecol Evol 2024; 14:e11253. [PMID: 38770126 PMCID: PMC11103644 DOI: 10.1002/ece3.11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024] Open
Abstract
Elucidating the underlying mechanisms behind variations of animal space and resource use is crucial to pinpoint relevant ecological phenomena. Organism's traits related to its energy requirements might be central in explaining behavioral variation, as the ultimate goal of a forager is to fulfill its energy requirements. However, it has remained poorly understood how energy requirements and behavioral patterns are functionally connected. Here we aimed to assess how body mass and standard metabolic rate (SMR) influence behavioral patterns in terms of cumulative space use and time spent in an experimental patchy environment, both within species and among individuals irrespective of species identity. We measured the behavioral patterns and SMR of two invertebrate species, that is, amphipod Gammarus insensibilis, and isopod Lekanesphaera monodi, individually across a range of body masses. We found that species of G. insensibilis have higher SMR level, in addition to cumulatively exploring a larger space than L. monodi. Cumulative space use scaled allometrically with body mass, and it scaled isometrically with SMR in both species. While time spent similarly in both species was characterized by negative body mass and SMR dependence, it was observed that L. monodi individuals tended to stay longer in resource patches compared to G. insensibilis individuals. Our results further showed that within species, body mass and metabolic rate explained a similar amount of variation in behavior modes. However, among individuals, regardless of species identity, SMR had stronger predictive power for behavioral modes compared to body mass. This suggests that SMR might offer a more generalized and holistic description of behavioral patterns that extend beyond species identity. Our study on the metabolic and body mass scaling of space and resource use behavior sheds light on higher-order ecological processes such as species' competitive coexistence along the spatial and trophic dimensions.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
| | - Vanessa Marrocco
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- LifeWatch ERIC, Service Centre, Campus EcotekneLecceItaly
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
- Research Institute on Terrestrial Ecosystems (IRET) – National Research Council of Italy (CNR) via SalariaMonterotondo Scalo (Rome)Italy
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
- LifeWatch ERIC, Service Centre, Campus EcotekneLecceItaly
- Research Institute on Terrestrial Ecosystems (IRET) – National Research Council of Italy (CNR) via SalariaMonterotondo Scalo (Rome)Italy
| |
Collapse
|
4
|
Weaving H, Terblanche JS, English S. How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera. J Therm Biol 2023; 118:103745. [PMID: 37924664 DOI: 10.1016/j.jtherbio.2023.103745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Critical thermal maximum (CTmax) describes the upper thermal tolerance of an animal where biological functions start to fail. A period of acclimation can enhance CTmax through plasticity, potentially buffering animals from extreme temperatures caused by climate change. Basal and acclimated CTmax vary within and between species and may be explained by traits related to thermal physiology, such as body size and sex. Differences in CTmax have not been established among species of tsetse fly (Glossina spp.), vectors of animal and human African trypanosomiasis. Here, we investigated basal CTmax and its plasticity for five tsetse species following adult acclimation at constant 25 or 30 °C for five days. We then set our findings in context using a meta-analysis on 33 species of Diptera. We find that, of the five tsetse species considered, only Glossina palpalis gambiensis and Glossina brevipalpis exhibited plasticity of CTmax, with an increase of 0.12 °C and 0.10 °C per 1 °C acclimation respectively. Within some species, higher basal CTmax values were associated with larger body size and being female, while variation in plasticity (i.e., response to the acclimation temperature) could not be explained by sex or size. Our broader meta-analysis across Diptera revealed overall CTmax plasticity of 0.06 °C per 1 °C acclimation, versus a similar 0.05 °C mean increase in tsetse. In contrast, there was greater CTmax plasticity in males compared to females in Diptera. Our study highlights that CTmax and its plasticity varies even among closely related species. Broader patterns across groups are not always reflected at a finer resolution; we thus emphasise the need for detailed experimental studies across a wide range of insect species to capture their capacity to cope with rapidly warming temperatures.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa.
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Verberk WCEP, Hoefnagel KN, Peralta-Maraver I, Floury M, Rezende EL. Long-term forecast of thermal mortality with climate warming in riverine amphipods. GLOBAL CHANGE BIOLOGY 2023; 29:5033-5043. [PMID: 37401451 DOI: 10.1111/gcb.16834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.
Collapse
Affiliation(s)
- Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - K Natan Hoefnagel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Ignacio Peralta-Maraver
- Departamento de Ecología e Instituto del Agua, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Mathieu Floury
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Enrico L Rezende
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center for Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Pile B, Warren D, Hassall C, Brown LE, Dunn AM. Biological Invasions Affect Resource Processing in Aquatic Ecosystems: The Invasive Amphipod Dikerogammarus villosus Impacts Detritus Processing through High Abundance Rather than Differential Response to Temperature. BIOLOGY 2023; 12:830. [PMID: 37372115 DOI: 10.3390/biology12060830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Anthropogenic stressors such as climate warming and invasive species and natural stressors such as parasites exert pressures that can interact to impact the function of ecosystems. This study investigated how these stressors interact to impact the vital ecosystem process of shredding by keystone species in temperate freshwater ecosystems. We compared metabolic rates and rates of shredding at a range of temperatures up to extreme levels, from 5 °C to 30 °C, between invasive and native amphipods that were unparasitised or parasitised by a common acanthocephalan, Echinorhynchus truttae. Shredding results were compared using the relative impact potential (RIP) metric to investigate how they impacted the scale with a numerical response. Although per capita shredding was higher for the native amphipod at all temperatures, the higher abundance of the invader led to higher relative impact scores; hence, the replacement of the native by the invasive amphipod is predicted to drive an increase in shredding. This could be interpreted as a positive effect on the ecosystem function, leading to a faster accumulation of amphipod biomass and a greater rate of fine particulate organic matter (FPOM) provisioning for the ecosystem. However, the high density of invaders compared with natives may lead to the exhaustion of the resource in sites with relatively low leaf detritus levels.
Collapse
Affiliation(s)
- Benjamin Pile
- School of Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| | - Daniel Warren
- Animal and Plant Health Agency (APHA), Sand Hutton YO41 1LZ, York, UK
| | | | - Lee E Brown
- School of Geography and Water@Leeds, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| | - Alison M Dunn
- School of Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
8
|
Worischka S, Schöll F, Winkelmann C, Petzoldt T. Twenty-eight years of ecosystem recovery and destabilisation: Impacts of biological invasions and climate change on a temperate river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162678. [PMID: 36894073 DOI: 10.1016/j.scitotenv.2023.162678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Most river ecosystems are exposed to multiple anthropogenic stressors affecting the composition and functionality of benthic communities. Identifying main causes and detecting potentially alarming trends in time depends on the availability of long-term monitoring data sets. Our study aimed to improve the knowledge about community effects of multiple stressors that is needed for effective, sustainable management and conservation. We conducted a causal analysis to detect the dominant stressors and hypothesised that multiple stressors, such as climate change and multiple biological invasions, reduce biodiversity and thus endanger ecosystem stability. Using a data set from 1992 to 2019 for the benthic macroinvertebrate community of a 65-km stretch of the upper Elbe river in Germany, we evaluated the effects of alien species, temperature, discharge, phosphorus, pH and abiotic conditional variables on the taxonomic and functional composition of the benthic community and analysed the temporal behaviour of biodiversity metrics. We observed fundamental taxonomic and functional changes in the community, with a shift from collectors/gatherers to filter feeders and feeding opportunists preferring warm temperatures. A partial dbRDA revealed significant effects of temperature and alien species abundance and richness. The occurrence of distinct phases in the development of community metrics suggests a temporally varying impact of different stressors. Taxonomic and functional richness responded more sensitively than the diversity metrics whereas the functional redundancy metric remained unchanged. Especially the last 10-year phase, however, showed a decline in richness metrics and an unsaturated, linear relationship between taxonomic and functional richness, which rather indicates reduced functional redundancy. We conclude that the varying anthropogenic stressors over three decades, mainly biological invasions and climate change, affected the community severely enough to increase its vulnerability to future stressors. Our study highlights the importance of long-term monitoring data and emphasises a careful use of biodiversity metrics, preferably considering also community composition.
Collapse
Affiliation(s)
- Susanne Worischka
- University of Koblenz, Institute for Integrated Natural Sciences, Universitätsstr. 1, 56070 Koblenz, Germany; Federal Institute of Hydrology, Department U4 Animal Ecology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| | - Franz Schöll
- Federal Institute of Hydrology, Department U4 Animal Ecology, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Carola Winkelmann
- University of Koblenz, Institute for Integrated Natural Sciences, Universitätsstr. 1, 56070 Koblenz, Germany
| | - Thomas Petzoldt
- Dresden University of Technology, Institute of Hydrobiology, Zellescher Weg 40, 01062 Dresden, Germany
| |
Collapse
|
9
|
Booth JM, Giomi F, Daffonchio D, McQuaid CD, Fusi M. Disturbance of primary producer communities disrupts the thermal limits of the associated aquatic fauna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162135. [PMID: 36775146 DOI: 10.1016/j.scitotenv.2023.162135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Environmental fluctuation forms a framework of variability within which species have evolved. Environmental fluctuation includes predictability, such as diel cycles of aquatic oxygen fluctuation driven by primary producers. Oxygen availability and fluctuation shape the physiological responses of aquatic animals to warming, so that, in theory, oxygen fluctuation could influence their thermal ecology. We describe annual oxygen variability in agricultural drainage channels and show that disruption of oxygen fluctuation through dredging of plants reduces the thermal tolerance of freshwater animals. We compared the temperature responses of snails, amphipods, leeches and mussels exposed to either natural oxygen fluctuation or constant oxygen in situ under different acclimation periods. Oxygen saturation in channel water ranged from c. 0 % saturation at night to >300 % during the day. Temperature showed normal seasonal variation and was almost synchronous with daily oxygen fluctuation. A dredging event in 2020 dramatically reduced dissolved oxygen variability and the correlation between oxygen and temperature was lost. The tolerance of invertebrates to thermal stress was significantly lower when natural fluctuation in oxygen availability was reduced and decoupled from temperature. This highlights the importance of natural cycles of variability and the need to include finer scale effects, including indirect biological effects, in modelling the ecosystem-level consequences of climate change. Furthermore, restoration and management of primary producers in aquatic habitats could be important to improve the thermal protection of aquatic invertebrates and their resistance to environmental variation imposed by climate change.
Collapse
Affiliation(s)
- J M Booth
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa.
| | - F Giomi
- Via Maniciati, 6, Padova, Italy
| | - D Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - C D McQuaid
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - M Fusi
- Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK; Present address: Joint Nature Conservation Committee, Peterborough PE1 1JY, UK.
| |
Collapse
|
10
|
Salgado-García RL, Kraffe E, Tripp-Valdez MA, Ramírez-Arce JL, Artigaud S, Flye-Sainte-Marie J, Mathieu-Resuge M, Sicard MT, Arellano-Martínez M, Racotta IS. Energy metabolism of juvenile scallops Nodipecten subnodosus under acute increased temperature and low oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111373. [PMID: 36690296 DOI: 10.1016/j.cbpa.2023.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
High temperature increases energy demand in ectotherms, limiting their physiological capability to cope with hypoxic events. The present study aimed to assess the metabolic tolerance of juvenile Nodipecten subnodosus scallops to acute hyperthermia combined with moderate hypoxia. A previous study showed that juveniles exhibited a high upper temperature limit (32 °C), but the responses of juveniles to combined hyperthermia and low dissolved oxygen are unknown. Scallops were exposed to control conditions (treatment C: 22 °C, ∼7.1 mg O2 L-1 or PO2 156.9 mmHg), acute hyperthermia under normoxia (treatment T: 30 °C, ∼6.0 mg O2 L-1 or PO2 150.9 mmHg) or acute hyperthermia plus hypoxia (treatment TH: 30 °C, ∼2.5 mg O2 L-1 or PO2 62.5 mmHg) for 18 h. In T, juveniles exhibited an enhanced oxygen consumption, together with a decrease in adenylate energy charge (AEC) and arginine phosphate (ArgP), and with no changes in metabolic enzyme activity in the muscle. In TH, scallops maintained similar AEC and ArgP levels in muscle as those observed in T treatment. This response occurred along with the accumulation of inosine monophosphate and hypoxanthine. Besides, reduced citrate synthase and pyruvate kinase activities, enhanced hexokinase activity, and a higher octopine dehydrogenase/lactate dehydrogenase ratio in the mantle indicated the onset of anaerobiosis in TH. These responses indicate that juvenile scallops showed tissue-specific compensatory responses regarding their energy balance under moderate hypoxia at high temperatures. Our results give an insight into the tolerance limit of this species to combined hyperthermia and hypoxia in its northern limit of distribution.
Collapse
Affiliation(s)
- Rosa L Salgado-García
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional (IPN), La Paz, B.C.S, Mexico; Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Edouard Kraffe
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France.
| | - Miguel A Tripp-Valdez
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Jose L Ramírez-Arce
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Sebastien Artigaud
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France.
| | | | | | - M Teresa Sicard
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Marcial Arellano-Martínez
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional (IPN), La Paz, B.C.S, Mexico.
| | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| |
Collapse
|
11
|
Byers JE, Blaze JA, Dodd AC, Hall HL, Gribben PE. Exotic asphyxiation: interactions between invasive species and hypoxia. Biol Rev Camb Philos Soc 2023; 98:150-167. [PMID: 36097368 PMCID: PMC10087183 DOI: 10.1111/brv.12900] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/12/2023]
Abstract
Non-indigenous species (NIS) and hypoxia (<2 mg O2 l-1 ) can disturb and restructure aquatic communities. Both are heavily influenced by human activities and are intensifying with global change. As these disturbances increase, understanding how they interact to affect native species and systems is essential. To expose patterns, outcomes, and generalizations, we thoroughly reviewed the biological invasion literature and compiled 100 studies that examine the interaction of hypoxia and NIS. We found that 64% of studies showed that NIS are tolerant of hypoxia, and 62% showed that NIS perform better than native species under hypoxia. Only one-quarter of studies examined NIS as creators of hypoxia; thus, NIS are more often considered passengers associated with hypoxia, rather than drivers of it. Paradoxically, the NIS that most commonly create hypoxia are primary producers. Taxa like molluscs are typically more hypoxia tolerant than mobile taxa like fish and crustaceans. Most studies examine individual-level or localized responses to hypoxia; however, the most extensive impacts occur when hypoxia associated with NIS affects communities and ecosystems. We discuss how these influences of hypoxia at higher levels of organization better inform net outcomes of the biological invasion process, i.e. establishment, spread, and impact, and are thus most useful to management. Our review identifies wide variation in the way in which the interaction between hypoxia and NIS is studied in the literature, and suggests ways to address the number of variables that affect their interaction and refine insight gleaned from future studies. We also identify a clear need for resource management to consider the interactive effects of these two global stressors which are almost exclusively managed independently.
Collapse
Affiliation(s)
- James E. Byers
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Julie A. Blaze
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Alannah C. Dodd
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Hannah L. Hall
- Odum School of EcologyUniversity of Georgia140 E. Green St.AthensGA30602USA
| | - Paul E. Gribben
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental ScienceUniversity of New South WalesRm 4115, Building E26SydneyNew South Wales2052Australia
- Sydney Institute of Marine ScienceChowder Bay RdMosmanNew South Wales2088Australia
| |
Collapse
|
12
|
Deconinck A, Willett CS. Hypoxia tolerance, but not low pH tolerance, is associated with a latitudinal cline across populations of Tigriopus californicus. PLoS One 2022; 17:e0276635. [PMID: 36301968 PMCID: PMC9612455 DOI: 10.1371/journal.pone.0276635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Intertidal organisms must tolerate daily fluctuations in environmental parameters, and repeated exposure to co-occurring conditions may result in tolerance to multiple stressors correlating. The intertidal copepod Tigriopus californicus experiences diurnal variation in dissolved oxygen levels and pH as the opposing processes of photosynthesis and cellular respiration lead to coordinated highs during the day and lows at night. While environmental parameters with overlapping spatial gradients frequently result in correlated traits, less attention has been given to exploring temporally correlated stressors. We investigated whether hypoxia tolerance correlates with low pH tolerance by separately testing the hypoxia and low pH stress tolerance separately of 6 genetically differentiated populations of T. californicus. We independently checked for similarities in tolerance for each of the two stressors by latitude, sex, size, and time since collection as predictors. We found that although hypoxia tolerance correlated with latitude, low pH tolerance did not, and no predictor was significant for both stressors. We concluded that temporally coordinated exposure to low pH and low oxygen did not result in populations developing equivalent tolerance for both. Although climate change alters several environmental variables simultaneously, organisms' abilities to tolerate these changes may not be similarly coupled.
Collapse
Affiliation(s)
- Aimee Deconinck
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Christopher S. Willett
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
13
|
Woods HA, Moran AL, Atkinson D, Audzijonyte A, Berenbrink M, Borges FO, Burnett KG, Burnett LE, Coates CJ, Collin R, Costa-Paiva EM, Duncan MI, Ern R, Laetz EMJ, Levin LA, Lindmark M, Lucey NM, McCormick LR, Pierson JJ, Rosa R, Roman MR, Sampaio E, Schulte PM, Sperling EA, Walczyńska A, Verberk WCEP. Integrative Approaches to Understanding Organismal Responses to Aquatic Deoxygenation. THE BIOLOGICAL BULLETIN 2022; 243:85-103. [PMID: 36548975 DOI: 10.1086/722899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two-warming and acidification-that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume ("An Oxygen Perspective on Climate Change"), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.
Collapse
|
14
|
Abstract
Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.
Collapse
|
15
|
Berezina NA, Sharov AN, Chernova EN, Malysheva OA. Effects of Diclofenac on the Reproductive Health, Respiratory Rate, Cardiac Activity, and Heat Tolerance of Aquatic Animals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:677-686. [PMID: 34932842 DOI: 10.1002/etc.5278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Diclofenac is an important pharmaceutical present in the water cycle of wastewater treatment and one of the most distributed drugs in aquatic ecosystems. Despite the great interest in the fate of diclofenac in freshwaters, the effects of environmentally relevant concentrations on invertebrates are still unclear. Two species of freshwater invertebrates, the amphipod Gmelinoides fasciatus and the bivalve mollusk Unio pictorum, were exposed to diclofenac concentrations of 0.001-2 μg/L (environmentally relevant levels) for 96 h. A set of biological endpoints (survival, fecundity, embryo abnormalities, respiration and heart rates, heat tolerance, and cardiac stress tolerance) were estimated in exposed invertebrates. Effects of diclofenac on amphipod metabolic rate and reproduction (number and state of embryos) and adaptive capacity (cardiac stress tolerance) in both species were evident. The oxygen consumption of amphipods exposed to diclofenac of 0.1-2 μg/L was 1.5-2 times higher than in the control, indicating increased energy requirements for standard metabolism in the presence of diclofenac (>0.1 μg/L). The heart rate recovery time in mollusks after heating to critical temperature (30 °C) was 1.7 and 9 times greater in mollusks exposed to 0.1 and 0.9 μg/L, respectively, than in the control (24 min). A level of diclofenac >0.9 μg/L adversely affected amphipod embryos, leading to an increase in the number of embryos with impaired development, which subsequently died. Thus, the lowest effective concentration of diclofenac (0.1 μg/L) led to increased energy demands of animals while reducing cardiac stress tolerance, and at a level close to 1 μg/L reproductive disorders (elevated mortality of the embryos) occurred. Environ Toxicol Chem 2022;41:677-686. © 2021 SETAC.
Collapse
Affiliation(s)
- Nadezhda A Berezina
- Laboratory of Freshwater and Experimental Hydrobiology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey N Sharov
- Laboratory of Algologia, Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, Borok, Russia
- Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina N Chernova
- Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga A Malysheva
- Laboratory of Algologia, Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
16
|
Crespo D, Leston S, Rato LD, Martinho F, Novais SC, Pardal MA, Lemos MFL. Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum. BIOLOGY 2021; 10:biology10121284. [PMID: 34943199 PMCID: PMC8698865 DOI: 10.3390/biology10121284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary Global climate change is responsible for more frequent heat waves, which offers opportunities for invasive species to expand their range. Two congener bivalves, the native Ruditapes decussatus and the invasive R. philippinarum, were exposed to a heat wave aquaria simulation and analysed for ecological and subcellular biomarkers responses. Despite reduced responses on the ecological level (bioturbation and nutrient concentration), there were differential responses to the heat wave at the subcellular level, where the invasive species seems to be less impacted than the native by the heat wave. This reinforces the common notion that climate change events may provide opportunities for biological invasions. Abstract Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species’ population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 °C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 °C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation—which are significant proxies for benthic function and habitat quality—and subcellular biomarkers—oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour.
Collapse
Affiliation(s)
- Daniel Crespo
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence: (D.C.); (M.F.L.L.)
| | - Sara Leston
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Lénia D. Rato
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
| | - Filipe Martinho
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
| | - Miguel A. Pardal
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
- Correspondence: (D.C.); (M.F.L.L.)
| |
Collapse
|
17
|
Ros M, Guerra-García JM, Lignot JH, Rivera-Ingraham GA. Environmental stress responses in sympatric congeneric crustaceans: Explaining and predicting the context-dependencies of invader impacts. MARINE POLLUTION BULLETIN 2021; 170:112621. [PMID: 34147858 DOI: 10.1016/j.marpolbul.2021.112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
The role of ecophysiology in mediating marine biological pollution is poorly known. Here we explore how physiological plasticity to environmental stress can explain and predict the context-dependencies of invasive species impacts. We use the case of two sympatric skeleton shrimps, the invader Caprella scaura and its congener C. equilibra, which is currently replaced by the former on the South European coast. We compare their physiological responses to hyposalinity stress under suboptimal low and high temperature, while inferring on hypoxia tolerance. We use an energy-redox approach, analyzing mortality rate, the energetic balance and the consequent effects on the oxidative homeostasis. We found that decreased seawater salinity and/or oxygen levels can weaken biotic resistance, especially in females of C. equilibra, leading to periods of heightened vulnerability to invasion. Our approach provides mechanistic insights towards understanding the factors promoting invader impacts, highlighting the potential of ecophysiology for improving invasive species management.
Collapse
Affiliation(s)
- Macarena Ros
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José M Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6, 41012 Sevilla, Spain
| | - Jehan-Hervé Lignot
- UMR 9190 MARBEC, CNRS-Ifremer-IRD-Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Georgina A Rivera-Ingraham
- Laboratoire Environnement de Petit Saut, Hydreco-Guyane, BP 823, 97310 Kourou, French Guiana; Laboratorio de Fisiología y Genética Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
18
|
Tladi M, Wasserman RJ, Cuthbert RN, Dalu T, Nyamukondiwa C. Thermal limits and preferences of large branchiopods (Branchiopoda: Anostraca and Spinicaudata) from temporary wetland arid zone systems. J Therm Biol 2021; 99:102997. [PMID: 34420629 DOI: 10.1016/j.jtherbio.2021.102997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/06/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Large branchiopods are specialist crustaceans adapted for life in temporary, thermally dynamic wetland ecosystems. Certain large branchiopod species are, however, restricted to specific temporary wetland types, exemplified by their physico-chemical and hydroperiod characteristics. Here, we contrasted the thermal preference and critical thermal maxima (CTmax) and minima (CTmin) of southern African anostracans and spinicaudatans found exclusively in either temporary rock-pool or pan wetland types. We hypothesized that environment of origin would be a good predictor of thermal preference and critical thermal limits. To test this, Branchiopodopsis tridens (Anostraca) and Leptestheria brevirostris (Spinicaudata) were collected from rock-pool habitats, while Streptocephalus cafer (Anostraca) and a Gondwanalimnadia sp. (Spinicaudata) were collected from pan habitats. In contrast to our hypothesis, taxonomic relatedness was a better predictor of CTmax and temperature preference than environment of origin. Spinicaudatans were significantly more tolerant of high temperatures than anostracans, with L. brevirostris and Gondwanalimnadia sp. median CTmax values of 45.1 °C and 44.1 °C, respectively, followed by S. cafer (42.8 °C) and B. tridens (41.4 °C). Neither environment or taxonomic relatedness were good predictors of CTmin trends, with B. tridens (0.9 °C) and Gondwanalimnadia sp. (2.1 °C) having the lowest median CTmin values, followed by L. brevirostris (3.4 °C) and S. cafer (3.6 °C). On the contrary, temperature preferences differed according to taxa, with spinicaudatans significantly preferring higher temperatures than anostracans. Leptestheria brevirostris and Gondwanalimnadia sp. both spent most time at temperatures 30-32 °C, S. cafer at 18-20 °C and B. tridens at 21-23 °C. Constrained thermal traits reported here suggest that the studied anostracans might be more susceptible to projected climatic warming than the spinicaudatans, irrespective of habitat type, however, these taxa may also compensate through phenotypic plasticity.
Collapse
Affiliation(s)
- Murphy Tladi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa.
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105, Kiel, Germany
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
19
|
Auer SK, Agreda E, Chen AH, Irshad M, Solowey J. Late-stage pregnancy reduces upper thermal tolerance in a live-bearing fish. J Therm Biol 2021; 99:103022. [PMID: 34420649 DOI: 10.1016/j.jtherbio.2021.103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Upper thermal limits are considered a key determinant of a population's ability to persist in the face of extreme heat events. However, these limits differ considerably among individuals within a population, and the mechanisms underlying this differential sensitivity are not well understood. Upper thermal tolerance in aquatic ectotherms is thought to be determined by a mismatch between oxygen supply and the increased metabolic demands associated with warmer waters. As such, tolerance is expected to decline during reproduction given the heightened oxygen demand for gamete production and maintenance. Among live-bearing species, upper thermal tolerance of reproductive adults may decline even further after fertilization due to the cost of meeting the increasing oxygen demands of developing embryos. We examined the upper thermal tolerance of live-bearing female Trinidadian guppies at different stages of reproduction and found that critical thermal maximum was similar during the egg yolking and early embryos stage but then declined by almost 0.5 °C during late pregnancy when oxygen demands are the greatest. These results are consistent with the hypothesis that oxygen limitation sets thermal limits and show that reproduction is associated with a decline in upper thermal tolerance.
Collapse
|
20
|
Antoł A, Berg MP, Verberk WC. Effects of body size and lung type on desiccation resistance, hypoxia tolerance and thermal preference in two terrestrial isopods species. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104247. [PMID: 33940041 DOI: 10.1016/j.jinsphys.2021.104247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Terrestrial isopods have evolved adaptations to reduce water loss, which is necessary for life in low humidity environments. However, the evolution of a waterproofed cuticle to prevent loss of water to the environment could also impede oxygen uptake from the environment. We therefore postulate an evolutionary trade-off between water retention and gas exchange in this group of soil animals. The outcome of this trade-off is expected to be affected by both differences across species (different types of lung) and differences within species (body size and resulting surface area to volume ratios). To test these ideas, we compared two sympatric isopods: Porcellio scaber and Oniscus asellus. While P. scaber possesses covered lungs typical for drier habitats, O. asellus has simple open respiratory fields which are in direct contact with external air. For each species, we assessed how individuals across a broad range in body size differed in their hypoxia and desiccation tolerance. In addition, we assessed how hypoxia and low humidity affected their thermal preference. We found clear effects of species identity and body size on tolerance to hypoxia and low humidity. Desiccation resistance was tightly linked to water loss rates (R2 = 0.96) and strongly resembled the interspecific pattern across 20 isopod species. However, our results did not support the postulated trade-off. Tolerance to hypoxia and low humidity covaried, both increasing with body size and being higher in P. scaber. Thermal preference was affected by both hypoxia and low humidity, but not by body size. Our study increases understanding of the ecophysiology of both species, which can be useful in explaining the geographical distribution and use of microhabitats of isopod species in a climate change context.
Collapse
Affiliation(s)
- Andrzej Antoł
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Adama Mickiewicza 33, 31-120 Kraków, Poland; Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Matty P Berg
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Box 11103 9700 CC, Groningen, The Netherlands
| | - Wilco Cep Verberk
- Department of Animal Ecology and Ecophysiology, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
21
|
Peruzza L, Thatje S, Hauton C. Acclimation to cyclic hypoxia improves thermal tolerance and copper survival in the caridean shrimp Palaemon varians. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111010. [PMID: 34102295 DOI: 10.1016/j.cbpa.2021.111010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 01/03/2023]
Abstract
In response to the continuous variation of environmental parameters, species must be able to adjust their physiology to overcome stressful conditions, a process known as acclimatization. Numerous laboratory studies have been conducted to understand and describe the mechanisms of acclimation to one environmental stressor (e.g. cyclic hypoxia), but currently our understanding of how acclimation to one stressor can change tolerance to a subsequent stressor is limited. Here, in two different experiments, we used the shrimp Palaemon varians to test how, following 28-days acclimation to cyclic hypoxia (mimicking a cyclic hypoxic regime currently found in its natural habitat), critical thermal maximum (CTmax) and sensitivity to copper (Cu2+) exposure (30 mgL-1) changed in comparison to shrimp acclimated to normoxic conditions and then exposed to thermal stress or Cu2+. Acclimation to cyclic hypoxia improved both CTmax (~1 °C higher than controls) and survival to acute Cu2+ exposure (~30% higher than controls) and induced significant gene expression changes (i.e. up-regulation of heat shock protein 70 - HSP70, hypoxia inducible factor - HIF, phosphoenolpyruvate carboxykinase - PEPCK, glucose 6-P transporter - G6Pt, metallothionein - Mt, and down-regulation of hemocyanin - Hem) in animals acclimated to cyclic hypoxia. Our results demonstrate how acclimation to cyclic hypoxia improved tolerance to subsequent stressors, highlighting the complexity of predicting organismal performance in variable (i.e. where multiple parameters can simultaneously change during the day) environments.
Collapse
Affiliation(s)
- Luca Peruzza
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK.
| | - Sven Thatje
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| | - Chris Hauton
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO14 3ZH, UK
| |
Collapse
|
22
|
Hidalgo-Galiana A, Ribera I, Terblanche JS. Geographic variation in acclimation responses of thermal tolerance in South African diving beetles (Dytiscidae: Coleoptera). Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110955. [PMID: 33839295 DOI: 10.1016/j.cbpa.2021.110955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding sources of variation in animal thermal limits is critical to forecasting ecological responses to climate change. Here, we estimated upper and lower thermal limits, and their capacity to respond to thermal acclimation, in several species and populations of diving beetles (Dytiscidae) from diverse geographic regions representative of variable climate within South Africa. We also considered ecoregions and latitudinal ranges as potential predictors of thermal limits and the plasticity thereof. For upper thermal limits, species showed significant variation and limited acclimation-related plasticity. Lower thermal limits responded to acclimation in some cases and showed marked variation among species that could be explained by taxonomic affiliation and ecoregion. Limited acclimation ability in the species included in this study suggest plasticity of thermal limits will not be a likely buffer for coping with climate change. From the present results for the Dytiscidae of the region, it appears the group may be particularly susceptible to heat and/or drought and may thus serve as useful indicator species of ecosystem change. Understanding how these climate-related impacts play out at different spatial and temporal scales will have profound implications for conservation management and functional responses, especially important in a region already showing a trend for warming and drying.
Collapse
Affiliation(s)
- Amparo Hidalgo-Galiana
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain.
| | - Ignacio Ribera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Private Bag XI, Matieland 7602, South Africa
| |
Collapse
|
23
|
Collins M, Clark MS, Spicer JI, Truebano M. Transcriptional frontloading contributes to cross-tolerance between stressors. Evol Appl 2021; 14:577-587. [PMID: 33664796 PMCID: PMC7896706 DOI: 10.1111/eva.13142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/01/2022] Open
Abstract
The adaptive value of phenotypic plasticity for performance under single stressors is well documented. However, plasticity may only truly be adaptive in the natural multifactorial environment if it confers resilience to stressors of a different nature, a phenomenon known as cross-tolerance. An understanding of the mechanistic basis of cross-tolerance is essential to aid prediction of species resilience to future environmental change. Here, we identified mechanisms underpinning cross-tolerance between two stressors predicted to increasingly challenge aquatic ecosystems under climate change, chronic warming and hypoxia, in an ecologically-important aquatic invertebrate. Warm acclimation improved hypoxic performance through an adaptive hypometabolic strategy and changes in the expression of hundreds of genes that are important in the response to hypoxia. These 'frontloaded' genes showed a reduced reaction to hypoxia in the warm acclimated compared to the cold acclimated group. Frontloaded genes included stress indicators, immune response and protein synthesis genes that are protective at the cellular level. We conclude that increased constitutive gene expression as a result of warm acclimation reduced the requirement for inducible stress responses to hypoxia. We propose that transcriptional frontloading contributes to cross-tolerance between stressors and may promote fitness of organisms in environments increasingly challenged by multiple anthropogenic threats.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Melody S. Clark
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - John I. Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| |
Collapse
|
24
|
Linking multiple aspects of thermal performance to explore the potential for thermal resource partitioning between a native and an invasive crayfish. J Therm Biol 2021; 97:102864. [PMID: 33863428 DOI: 10.1016/j.jtherbio.2021.102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 01/12/2023]
Abstract
Ecologists require standardized, ecologically relevant information on the thermal ecology of aquatic ectotherms to address growing concerns related to changing climates, altered habitats, and introduced species. We measured multiple thermal endpoints to investigate potential for establishment of the invasive Ringed Crayfish (Faxonius neglectus) in thermally heterogeneous habitat of the narrowly distributed endemic Coldwater Crayfish (Faxonius eupunctus). For each species, we examined the relationships between thermal endpoints at the cellular and organismal levels. We then compared results between the two species to gain insight as to the generality of linkages between cellular and organismal-level endpoints, as well as the potential for thermal niche separation between the native and potential invader. At the cellular level, we found no differences in the temperature for maximum activity of electron transport system enzymes (ETSmax) between species. At the organismal level, F. neglectus preferred significantly warmer temperatures than F. eupunctus, but this difference was small (1.3 °C) and likely to have only limited biological significance. The critical thermal maximum (CTM) did not differ between species. For both species, the thermal performance curve for ETS enzyme activity served as a useful framework to link thermal endpoints and estimate the transition from optimal to stressful temperatures - organismal thermal preference and optimal temperature estimates consistently fell below ETSmax whereas CTM estimates fell above ETSmax. Taken together, the strong similarities in thermal endpoint patterns between the two species suggest habitats thermally suitable for the native F. eupunctus will also be thermally available to expanding populations of F. neglectus, thereby increasing the opportunity for negative interactions and population effects if F. neglectus invades one of the few remaining, uninvaded, critical habitats of F. eupunctus.
Collapse
|
25
|
Funk DH, Sweeney BW, Jackson JK. Oxygen limitation fails to explain upper chronic thermal limits and the temperature size rule in mayflies. J Exp Biol 2021; 224:jeb233338. [PMID: 33288530 DOI: 10.1242/jeb.233338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022]
Abstract
An inability to adequately meet tissue oxygen demands has been proposed as an important factor setting upper thermal limits in ectothermic invertebrates (especially aquatic species) as well as explaining the observed decline in adult size with increased rearing temperature during the immature stages (a phenomenon known as the temperature size rule, or TSR). We tested this by rearing three aquatic insects (the mayflies Neocloeon triangulifer and two species of the Cloeon dipterum complex) through their entire larval life under a range of temperature and oxygen concentrations. Hyperoxia did not extend upper thermal limits, nor did it prevent the loss of size or fertility experienced near upper chronic thermal limits. At moderate temperatures, the TSR pattern was observed under conditions of hyperoxia, normoxia and hypoxia, suggesting little or no influence of oxygen on this trend. However, for a given rearing temperature, adults were smaller and less fecund under hypoxia as a result of a lowering of growth rates. These mayflies greatly increased the size of their gills in response to lower dissolved oxygen concentrations but not under oxygen-saturated conditions over a temperature range yielding the classic TSR response. Using ommatidium diameter as a proxy for cell size, we found the classic TSR pattern observed under moderate temperature conditions was due primarily to a change in the number of cells rather than cell size. We conclude overall that a failure to meet tissue oxygen demands is not a viable hypothesis for explaining either the chronic thermal limit or TSR pattern in these species.
Collapse
Affiliation(s)
- David H Funk
- Stroud Water Research Center, Avondale, PA 19311, USA
| | | | | |
Collapse
|
26
|
Jermacz Ł, Kletkiewicz H, Krzyżyńska K, Klimiuk M, Kobak J. Does global warming intensify cost of antipredator reaction? A case study of freshwater amphipods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140474. [PMID: 32623164 DOI: 10.1016/j.scitotenv.2020.140474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Global warming is a worldwide phenomenon affecting the functioning of diverse ecosystems, including fresh waters. Temperature increase affects physiology and behaviour of ectotherms due to growing energetic demands necessary to sustain increased metabolic rate. Anti-predator responses may resemble temperature-induced changes in organisms, suggesting synergism between these factors. To check how temperature shapes physiological and behavioural responses of ectotherms to predation risk, we exposed amphipods: Dikerogammarus villosus and Gammarus jazdzewskii to fish kairomones at 10, 17 or 24 °C. Animals were placed in tanks where temperature was gradually adjusted to the desired test temperature and acclimated under such conditions for 3 subsequent days. Then they were exposed to the predator cue (the Eurasian perch kairomone) for 35 min to test their acute responses. We measured metabolic rate (as respiration), antioxidant defence (CAT: catalase activity, TAS: total antioxidant status), oxidative molecules (TOS: total oxidative status), oxidative damage (TBARS: thiobarbituric acid reactive substances) and behaviour (locomotor activity). Amphipods increased respiration with raising temperature and when exposed to predation risk (all temperatures). Only G. jazdzewskii exhibited increased TOS when exposed to 24 °C or to predation risk at all temperatures. Antioxidant defence increased with raising temperature (CAT, TAS) and decreased under predation risk (CAT). Cellular damage increased in G. jazdzewskii under predation risk at 10 and 24 °C, but raised temperature itself did not generate any damage. Amphipods reduced locomotor activity at 24 °C. Thus, at elevated temperatures, amphipods minimized their cellular damage at the cost of increased antioxidant defence and lower locomotor activity (potentially disadvantageous under higher energetic demands). Under predation risk, the performance of antioxidant systems was reduced, probably due to energy allocation into anti-predatory mechanisms, leading to increased cellular damage at suboptimum temperatures. Thus, negative consequences of elevated temperature for organisms may be amplified by changes in behaviour (compromising food acquisition) and non-consumptive predator effects.
Collapse
Affiliation(s)
- Łukasz Jermacz
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Ecology and Biogeography, Lwowska 1, 87-100 Toruń, Poland.
| | - Hanna Kletkiewicz
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Animal Physiology, Lwowska 1, 87-100 Toruń, Poland
| | - Katarzyna Krzyżyńska
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Ecology and Biogeography, Lwowska 1, 87-100 Toruń, Poland
| | - Maciej Klimiuk
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Animal Physiology, Lwowska 1, 87-100 Toruń, Poland
| | - Jarosław Kobak
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
27
|
Ern R, Chung D, Frieder CA, Madsen N, Speers-Roesch B. Oxygen-dependence of upper thermal limits in crustaceans from different thermal habitats. J Therm Biol 2020; 93:102732. [PMID: 33077143 DOI: 10.1016/j.jtherbio.2020.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The critical thermal maximum (CTMAX) is the temperature at which animals exhibit loss of motor response because of a temperature-induced collapse of vital physiological systems. A central mechanism hypothesised to underlie the CTMAX of water-breathing ectotherms is insufficient tissue oxygen supply for vital maintenance functions because of a temperature-induced collapse of the cardiorespiratory system. The CTMAX of species conforming to this hypothesis should decrease with declining water oxygen tension (PO2) because they have oxygen-dependent upper thermal limits. However, recent studies have identified a number of fishes and crustaceans with oxygen-independent upper thermal limits, their CTMAX unchanged in progressive aquatic hypoxia. The previous studies, which were performed separately on cold-water, temperate and tropical species, suggest the oxygen-dependence of upper thermal limits and the acute thermal sensitivity of the cardiorespiratory system increases with decreasing habitat temperature. Here we directly test this hypothesis by assessing the oxygen-dependence of CTMAX in the polar Antarctic krill (Euphausia superba), as well as the temperate Baltic prawn (Palaemon adspersus) and brown shrimp (Crangon crangon). We found that P. adspersus and C. crangon maintain CTMAX in progressive hypoxia down to 40 mmHg, and that only E. superba have oxygen-dependent upper thermal limits at normoxia. In E. superba, the observed decline in CTMAX with water PO2 is further supported by heart-rate measurements showing a plateauing, and subsequent decline and collapse of heart performance at CTMAX. Our results support the hypothesis that the oxygen-dependence of upper thermal limits in water-breathing ectotherms and the acute thermal sensitivity of their cardiorespiratory system increases with decreasing habitat temperature.
Collapse
Affiliation(s)
- Rasmus Ern
- Aalborg University, Department of Chemistry and Bioscience, Denmark.
| | - Dillon Chung
- National Heart Lung and Blood Institute, National Institutes of Health, United States
| | - Christina A Frieder
- University of Southern California, Department of Biological Sciences, United States
| | - Niels Madsen
- Aalborg University, Department of Chemistry and Bioscience, Denmark
| | - Ben Speers-Roesch
- University of New Brunswick, Saint John, Department of Biological Sciences, Canada
| |
Collapse
|
28
|
Berezina NA, Verbitsky VB, Sharov AN, Chernova EN, Meteleva NY, Malysheva OA. Biomarkers in bivalve mollusks and amphipods for assessment of effects linked to cyanobacteria and elodea: Mesocosm study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110994. [PMID: 32888603 DOI: 10.1016/j.ecoenv.2020.110994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The effects of cyanobacteria (Aphanizomenon flos-aquae (90%), Microcystis aeruginosa) and dense Elodea canadensis beds on the health endpoints of the amphipod Gmelinoides fasciatus and bivalve mollusc Unio pictorum were examined in mesocosms with simulated summer conditions (July-August 2018) in the environment of the Rybinsk Reservoir (Volga River Basin, Russia). Four treatments were conducted, including one control and three treatments with influencing factors, cyanobacteria and dense elodea beds (separately and combined). After 20 days of exposure, we evaluated the frequency of malformed and dead embryos in amphipods, heart rate (HR) and its recovery (HRR) after stress tests in molluscs as well as heat tolerance (critical thermal maximum or CTMax) in both amphipods and molluscs. The significant effect, such as elevated number of malformed embryos, was recorded after exposure with cyanobacteria (separately and combined with elodea) and presence of microcystins (MC) in water (0.17 μg/l, 40% of the most toxic MC-LR contribution). This study provided evidence that an elevated number (>5% of the total number per female) of malformed embryos in amphipods showed noticeable toxicity effects in the presence of cyanobacteria. The decreased oxygen under the influence of dense elodea beds led to a decrease in HR (and an increase in HRR) in molluscs. The notable effects on all studied biomarkers, embryo malformation frequency and heat tolerance in the amphipod G. fasciatus, as well as the heat tolerance and heart rate in the mollusc U. pictorum, were found when both factors (elodea and cyanobacteria) were combined. The applied endpoints could be further developed for environmental monitoring, but the obtained results support the importance of the combined use of several biomarkers and species, especially in the case of multi-factor environmental stress.
Collapse
Affiliation(s)
- Nadezhda A Berezina
- Zoological Institute, Russian Academy of Sciences (RAS), Universitetskaya Embankment 1, St. Petersburg, 199034, Russia.
| | | | - Andrey N Sharov
- Papanin Institute for Biology of Inland Waters, RAS, Borok, 152742, Russia; Saint Petersburg Research Center for Ecological Safety, RAS, Korpusnaya Street 18, St. Petersburg, 197110, Russia
| | - Ekaterina N Chernova
- Saint Petersburg Research Center for Ecological Safety, RAS, Korpusnaya Street 18, St. Petersburg, 197110, Russia
| | - Nina Yu Meteleva
- Papanin Institute for Biology of Inland Waters, RAS, Borok, 152742, Russia
| | - Olga A Malysheva
- Papanin Institute for Biology of Inland Waters, RAS, Borok, 152742, Russia
| |
Collapse
|
29
|
Deutsch C, Penn JL, Seibel B. Metabolic trait diversity shapes marine biogeography. Nature 2020; 585:557-562. [PMID: 32939093 DOI: 10.1038/s41586-020-2721-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/18/2020] [Indexed: 11/09/2022]
Abstract
Climate and physiology shape biogeography, yet the range limits of species can rarely be ascribed to the quantitative traits of organisms1-3. Here we evaluate whether the geographical range boundaries of species coincide with ecophysiological limits to acquisition of aerobic energy4 for a global cross-section of the biodiversity of marine animals. We observe a tight correlation between the metabolic rate and the efficacy of oxygen supply, and between the temperature sensitivities of these traits, which suggests that marine animals are under strong selection for the tolerance of low O2 (hypoxia)5. The breadth of the resulting physiological tolerances of marine animals predicts a variety of geographical niches-from the tropics to high latitudes and from shallow to deep water-which better align with species distributions than do models based on either temperature or oxygen alone. For all studied species, thermal and hypoxic limits are substantially reduced by the energetic demands of ecological activity, a trait that varies similarly among marine and terrestrial taxa. Active temperature-dependent hypoxia thus links the biogeography of diverse marine species to fundamental energetic requirements that are shared across the animal kingdom.
Collapse
Affiliation(s)
- Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA. .,Department of Biology, University of Washington, Seattle, WA, USA.
| | - Justin L Penn
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Brad Seibel
- College of Marine Science, University of South Florida, St Petersburg, FL, USA
| |
Collapse
|
30
|
Johnson DJ, Stahlschmidt ZR. City limits: Heat tolerance is influenced by body size and hydration state in an urban ant community. Ecol Evol 2020; 10:4944-4955. [PMID: 32551072 PMCID: PMC7297767 DOI: 10.1002/ece3.6247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/25/2022] Open
Abstract
Cities are rapidly expanding, and global warming is intensified in urban environments due to the urban heat island effect. Therefore, urban animals may be particularly susceptible to warming associated with ongoing climate change. We used a comparative and manipulative approach to test three related hypotheses about the determinants of heat tolerance or critical thermal maximum (CT max) in urban ants-specifically, that (a) body size, (b) hydration status, and (c) chosen microenvironments influence CT max. We further tested a fourth hypothesis that native species are particularly physiologically vulnerable in urban environments. We manipulated water access and determined CT max for 11 species common to cities in California's Central Valley that exhibit nearly 300-fold variation in body size. There was a moderate phylogenetic signal influencing CT max, and inter (but not intra) specific variation in body size influenced CT max where larger species had higher CT max. The sensitivity of ants' CT max to water availability exhibited species-specific thresholds where short-term water limitation (8 hr) reduced CT max and body water content in some species while longer-term water limitation (32 hr) was required to reduce these traits in other species. However, CT max was not related to the temperatures chosen by ants during activity. Further, we found support for our fourth hypothesis because CT max and estimates of thermal safety margin in native species were more sensitive to water availability relative to non-native species. In sum, we provide evidence of links between heat tolerance and water availability, which will become critically important in an increasingly warm, dry, and urbanized world that others have shown may be selecting for smaller (not larger) body size.
Collapse
Affiliation(s)
- Dustin J. Johnson
- Department of Biological SciencesUniversity of the PacificStocktonCalifornia
| | | |
Collapse
|
31
|
Semsar-Kazerouni M, Boerrigter JGJ, Verberk WCEP. Changes in heat stress tolerance in a freshwater amphipod following starvation: The role of oxygen availability, metabolic rate, heat shock proteins and energy reserves. Comp Biochem Physiol A Mol Integr Physiol 2020; 245:110697. [PMID: 32247008 DOI: 10.1016/j.cbpa.2020.110697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 01/21/2023]
Abstract
The ability of organisms to cope with environmental stressors depends on the duration and intensity of the stressor, as well as the type of stress. For aquatic organisms, oxygen limitation has been implicated in limiting heat tolerance. Here we examine how starvation affects heat tolerance in the amphipod Gammarus fossarum (Koch, 1836) and whether observed changes can be explained from alterations in oxidative metabolism, depletion of energy reserves, upregulation of heat shock proteins or susceptibility to oxygen limitation. Starved amphipods showed impaired survival compared to fed amphipods during prolonged exposure to mild heat. In contrast, under acute, high-intensity heat exposure they actually showed improved survival. We observed a lower demand for oxygen in starved amphipods which could make them less susceptible to oxygen limitation. Such a role for oxygen in limiting heat tolerance was verified as hypoxia impaired the heat tolerance of amphipods, especially starved ones. Fed amphipods likely rely more on anaerobic metabolism to maintain energy status during heat stress, whereas for starved amphipods aerobic metabolism appears to be more important. The depletion of their energy reserves constrains their ability to maintain energy status via anaerobic metabolism. We did not find evidence that alterations in heat tolerance following starvation were related to the upregulation of heat shock proteins. In conclusion, starvation can have opposite effects on heat tolerance, acting via pathways that are operating on different time scales.
Collapse
Affiliation(s)
- Maryam Semsar-Kazerouni
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, 6500 GL, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands.
| | - Jeroen G J Boerrigter
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, 6500 GL, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands.
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, PO Box 9010, 6500 GL, Heyendaalseweg 135, 6525, AJ, Nijmegen, the Netherlands.
| |
Collapse
|
32
|
Rubalcaba JG, Olalla-Tárraga MÁ. The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. J Anim Ecol 2020; 89:1277-1285. [PMID: 31990044 DOI: 10.1111/1365-2656.13181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Many organisms are shrinking in size in response to global warming. However, we still lack a comprehensive understanding of the mechanisms linking body size and temperature of organisms across their geographical ranges. Here we investigate the biophysical mechanisms determining the scaling of body temperature with size across latitudes in terrestrial ectotherms. Using biophysical models, we simulated operative temperatures experienced by lizard-like ectotherms as a function of microclimatic variables, body mass and latitude and used them to generate null predictions for the effect of size on temperature across geographical gradients. We then compared model predictions against empirical data on lizards' field body temperature (Tb ) and thermal tolerance limits (CTmax and CTmin ). Our biophysical models predict that the allometric scaling of operative temperatures with body size varies with latitude, with a positive relationship at low latitudes that vanishes with increasing latitude. The analyses of thermal traits of lizards show a significant interaction of body size and latitude on Tb and CTmax and no effect of body mass on CTmin , consistent with model's predictions. The estimated scaling coefficients are within the ranges predicted by the biophysical model. The effect of body mass, however, becomes non-significant after controlling for the phylogenetic relatedness between species. We propose that large-bodied terrestrial ectotherms exhibit higher risk of overheating at low latitudes, while size differences in thermal sensitivity vanish towards higher latitudes. Our work highlights the potential of combining mechanistic models with empirical data to investigate the mechanisms underpinning broad-scale patterns and ultimately provide a null model to develop baseline expectations for further empirical research.
Collapse
Affiliation(s)
- Juan G Rubalcaba
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Miguel Á Olalla-Tárraga
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| |
Collapse
|
33
|
Vimmerstedt JC, Padilla Pérez DJ, Angilletta MJ, VandenBrooks JM. Oxygen supply limits the heat tolerance of avian embryos. Biol Lett 2019; 15:20190566. [PMID: 31744411 DOI: 10.1098/rsbl.2019.0566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physiologists have primarily focused on two potential explanations for heat stress in animals-the classic model of molecular stability and an alternative model of oxygen limitation. Although the classic model has widespread support, the oxygen-supply model applies to many aquatic animals and some terrestrial ones. In particular, the embryonic stage of terrestrial animals seems most susceptible to oxygen limitation because embryos acquire oxygen from the atmosphere by diffusion rather than ventilation. We report experiments confirming the two conditions of the oxygen-supply model in Japanese quail embryos, Coturnix coturnix. Hypoxia (12% O2) greatly reduced the chance of survival at 47.5°C, and hyperoxia greatly improved the chance of survival at 48.5°C. This finding expands the scope of the oxygen-supply model to a terrestrial, endothermic species, suggesting that oxygen supply generally limits the heat tolerance of embryos.
Collapse
Affiliation(s)
- Jon C Vimmerstedt
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Dylan J Padilla Pérez
- Department of Ecology and Evolutionary Biology, Federal University of São Paulo (UNIFESP), Diadema Campus, Rua Dr. Artur Riedel, 275, CEP 09972-270 São Paulo, Brazil
| | | | - John M VandenBrooks
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
34
|
Sub-Daily Temperature Heterogeneity in a Side Channel and the Influence on Habitat Suitability of Freshwater Fish. REMOTE SENSING 2019. [DOI: 10.3390/rs11202367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rising surface water temperatures in fluvial systems increasingly affect biodiversity negatively in riverine ecosystems, and a more frequent exceedance of thermal tolerance levels of species is expected to impoverish local species assemblages. Reliable prediction of the effect of increasing water temperature on habitat suitability requires detailed temperature measurements over time. We assessed (1) the accuracy of high-resolution images of water temperature of a side channel in a river floodplain acquired using a consumer-grade thermal camera mounted on an unmanned airborne vehicle (UAV), and (2) the associated habitat suitability for native and alien fish assemblages. Water surface temperatures were mapped four times throughout a hot summer day and calibrated with 24 in-situ temperature loggers in the water at 0.1 m below the surface using linear regression. The calibrated thermal imagery was used to calculate the potentially occurring fraction (POF) of freshwater fish using species sensitivity distributions. We found high temperatures (25–30 °C) in the side channel during mid-day resulting in reduced habitat suitability. The accuracy of water temperature estimates based on the RMSE was 0.53 °C over all flights (R2 = 0.94). Average daily POF was 0.51 and 0.64 for native and alien fish species in the side channel. The error of the POF estimates is 76% lower when water temperature is estimated with thermal UAV imagery compared to temperatures measured at an upstream gauging station. Accurately quantifying water temperature and the heterogeneity thereof is a critical step in adaptation of riverine ecosystems to climate change. Our results show that measurements of surface water temperature can be made accurately and easily using thermal imagery from UAVs allowing for an improved habitat management, but coincident collection of long wave radiation is needed for a more physically-based prediction of water temperature. Because of climate change, management of riverine ecosystems should consider thermal pollution control and facilitate cold water refugia and connectivity between waterbodies in floodplains and the cooler main channel for fish migration during extremely hot summer periods.
Collapse
|
35
|
Giomi F, Barausse A, Duarte CM, Booth J, Agusti S, Saderne V, Anton A, Daffonchio D, Fusi M. Oxygen supersaturation protects coastal marine fauna from ocean warming. SCIENCE ADVANCES 2019; 5:eaax1814. [PMID: 31517051 PMCID: PMC6726443 DOI: 10.1126/sciadv.aax1814] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Ocean warming affects the life history and fitness of marine organisms by, among others, increasing animal metabolism and reducing oxygen availability. In coastal habitats, animals live in close association with photosynthetic organisms whose oxygen supply supports metabolic demands and may compensate for acute warming. Using a unique high-frequency monitoring dataset, we show that oxygen supersaturation resulting from photosynthesis closely parallels sea temperature rise during diel cycles in Red Sea coastal habitats. We experimentally demonstrate that oxygen supersaturation extends the survival to more extreme temperatures of six species from four phyla. We clarify the mechanistic basis of the extended thermal tolerance by showing that hyperoxia fulfills the increased metabolic demand at high temperatures. By modeling 1 year of water temperatures and oxygen concentrations, we predict that oxygen supersaturation from photosynthetic activity invariably fuels peak animal metabolic demand, representing an underestimated factor of resistance and resilience to ocean warming in ectotherms.
Collapse
Affiliation(s)
- Folco Giomi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
- Corresponding author. (F.G.); (M.F.)
| | - Alberto Barausse
- Department of Biology, University of Padova, via U. Bassi 58/b, 35131 Padova, Italy
| | - Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Jenny Booth
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Susana Agusti
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Vincent Saderne
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Andrea Anton
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
- Corresponding author. (F.G.); (M.F.)
| |
Collapse
|
36
|
Antoł A, Rojek W, Singh S, Piekarski D, Czarnoleski M. Hypoxia causes woodlice (Porcellio scaber) to select lower temperatures and impairs their thermal performance and heat tolerance. PLoS One 2019; 14:e0220647. [PMID: 31369635 PMCID: PMC6675064 DOI: 10.1371/journal.pone.0220647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022] Open
Abstract
Environmental temperatures and oxygen availability are important for the balance between oxygen supply and demand. Terrestrial organisms are generally perceived to be less limited by access to oxygen than their aquatic counterparts. Nevertheless, even terrestrial environments can be deficient in oxygen, especially for organisms occurring in soil, litter, wood, rotten fruit or at high elevations. While isopods are the best adapted to a terrestrial lifestyle among crustaceans, many species, including woodlice, occupy environmental gradients of temperature and oxygen. To investigate whether mismatches between oxygen supply and demand can result in a loss of performance in a terrestrial organism, we studied the effects of atmospheric oxygen concentration on the thermal performance of the common rough woodlouse (Porcellio scaber). We compared the thermal preference, thermal sensitivity of running speed, and tolerance to extreme temperatures of woodlice exposed to one of two oxygen concentrations (21% - normoxia, 7% - hypoxia). Under hypoxia, P. scaber preferred microhabitats with temperatures that were on average 3°C lower than those preferred under normoxia. The running speed tended to reach its maximum at a lower temperature under hypoxia than under normoxia (25.13°C vs 28.87°C, respectively, although p was equal to 0.09), and normoxic woodlice ran approximately 1.5-fold faster than hypoxic woodlice at the point of maximum speed. Heat tolerance was significantly lower under hypoxia (38.9°C) than under normoxia (40.7°C), but there was no difference in cold tolerance (5.81°C under normoxia and 5.44°C under hypoxia). Overall, our results indicate that environmental gradients of temperature and oxygen may shape the physiological performance of terrestrial ectotherms, likely via their effects on the balance between oxygen supply and demand, which may have fitness consequences for these organisms in nature.
Collapse
Affiliation(s)
- Andrzej Antoł
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
- * E-mail:
| | - Wiktoria Rojek
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| | - Sanjeev Singh
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| | - Damian Piekarski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| | - Marcin Czarnoleski
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa, Kraków, Poland
| |
Collapse
|
37
|
Spicer JI, Morley SA. Will giant polar amphipods be first to fare badly in an oxygen-poor ocean? Testing hypotheses linking oxygen to body size. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190034. [PMID: 31203754 DOI: 10.1098/rstb.2019.0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been suggested that giant Antarctic marine invertebrates will be particularly vulnerable to declining O2 levels as our ocean warms in line with current climate change predictions. Our study provides some support for this oxygen limitation hypothesis, with larger body sizes being generally more sensitive to O2 reductions than smaller body sizes. However, it also suggests that the overall picture is a little more complex. We tested predictions from three different, but overlapping, O2-related hypotheses accounting for gigantism, using four Antarctic amphipod species encompassing a wide range of body sizes. We found a significant effect of body size, but also of species, in their respiratory responses to acutely declining O2 tensions. The more active lifestyle of intermediate-sized Prostebbingia brevicornis was supported by a better respiratory performance than predicted by the oxygen limitation hypothesis alone, but consistent with the symmorphosis hypothesis. We suggest that giant polar amphipods are likely to be some of the first to fare badly in an O2-poor ocean. However, the products of past evolutionary innovation, such as respiratory pigments that enhance O2-transport and novel gas exchange structures, may in some species offset any respiratory disadvantages of either large or small body size. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.
Collapse
Affiliation(s)
- John I Spicer
- 1 Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth , Drake Circus, Plymouth PL4 8AA , UK
| | - Simon A Morley
- 2 British Antarctic Survey, Natural Environmental Research Council , High Cross, Madingley Road, Cambridge CB3 0ET , UK
| |
Collapse
|
38
|
Leiva FP, Calosi P, Verberk WCEP. Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190035. [PMID: 31203753 PMCID: PMC6606457 DOI: 10.1098/rstb.2019.0035] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Global warming appears to favour smaller-bodied organisms, but whether larger species are also more vulnerable to thermal extremes, as suggested for past mass-extinction events, is still an open question. Here, we tested whether interspecific differences in thermal tolerance (heat and cold) of ectotherm organisms are linked to differences in their body mass and genome size (as a proxy for cell size). Since the vulnerability of larger, aquatic taxa to warming has been attributed to the oxygen limitation hypothesis, we also assessed how body mass and genome size modulate thermal tolerance in species with contrasting breathing modes, habitats and life stages. A database with the upper (CTmax) and lower (CTmin) critical thermal limits and their methodological aspects was assembled comprising more than 500 species of ectotherms. Our results demonstrate that thermal tolerance in ectotherms is dependent on body mass and genome size and these relationships became especially evident in prolonged experimental trials where energy efficiency gains importance. During long-term trials, CTmax was impaired in larger-bodied water-breathers, consistent with a role for oxygen limitation. Variation in CTmin was mostly explained by the combined effects of body mass and genome size and it was enhanced in larger-celled, air-breathing species during long-term trials, consistent with a role for depolarization of cell membranes. Our results also highlight the importance of accounting for phylogeny and exposure duration. Especially when considering long-term trials, the observed effects on thermal limits are more in line with the warming-induced reduction in body mass observed during long-term rearing experiments. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Collapse
Affiliation(s)
- Félix P Leiva
- 1 Department of Animal Ecology and Physiology, Radboud University Nijmegen , 6500 Nijmegen , The Netherlands
| | - Piero Calosi
- 2 Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Quebec, Canada G5L 3A1
| | - Wilco C E P Verberk
- 1 Department of Animal Ecology and Physiology, Radboud University Nijmegen , 6500 Nijmegen , The Netherlands
| |
Collapse
|
39
|
Vaughan IP, Gotelli NJ. Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years. Nat Commun 2019; 10:1956. [PMID: 31028258 PMCID: PMC6486586 DOI: 10.1038/s41467-019-09736-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 03/29/2019] [Indexed: 11/28/2022] Open
Abstract
Many species are accumulating climatic debt as they fail to keep pace with increasing global temperatures. In theory, concomitant decreases in other stressors (e.g. pollution, fragmentation) could offset some warming effects, paying climatic debt with accrued environmental credit. This process may be occurring in many western European rivers. We fit a Markov chain model to ~20,000 macroinvertebrate samples from England and Wales, and demonstrate that despite large temperature increases 1991-2011, macroinvertebrate communities remained close to their predicted equilibrium with environmental conditions. Using a novel analysis of multiple stressors, an accumulated climatic debt of 0.64 (±0.13 standard error) °C of warming was paid by a water-quality credit equivalent to 0.89 (±0.04)°C of cooling. Although there is finite scope for mitigating additional climate warming in this way, water quality improvements appear to have offset recent temperature increases, and the concept of environmental credit may be a useful tool for communicating climate offsetting.
Collapse
Affiliation(s)
- Ian P Vaughan
- Cardiff School of Biosciences and Water Research Institute, Cardiff University, Cardiff, CF10 3AX, UK.
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA.
| | - Nicholas J Gotelli
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
40
|
Del Rio AM, Davis BE, Fangue NA, Todgham AE. Combined effects of warming and hypoxia on early life stage Chinook salmon physiology and development. CONSERVATION PHYSIOLOGY 2019; 7:coy078. [PMID: 30834124 PMCID: PMC6387995 DOI: 10.1093/conphys/coy078] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/30/2018] [Accepted: 12/31/2018] [Indexed: 05/21/2023]
Abstract
Early life stages of salmonids are particularly vulnerable to warming and hypoxia, which are common stressors in hyporheic, gravel bed, rearing habitat (i.e. a 'redd'). With the progression of global climate change, high temperatures and hypoxia may co-occur more frequently within redds, particularly for salmonid species at their southern range limit. Warming and hypoxia have competing effects on energy supply and demand, which can be detrimental to energy-limited early life stages. We examined how elevated temperature and hypoxia as individual and combined stressors affected the survival, physiological performance, growth, and development of Chinook salmon (Oncorhynchus tshawytscha). We reared late fall-run Chinook salmon from fertilization to the fry stage in a fully factorial design of two temperatures [10°C (ambient) and 14°C (warm)] and two oxygen levels [normoxia (100% air saturation, 10 mg O2/l) and hypoxia (50% saturation, 5.5 mg O2/l)]. Rearing in hypoxia significantly reduced hatching success, especially in combination with warming. Both warming and hypoxia improved acute thermal tolerance. While rearing in hypoxia improved tolerance to acute hypoxia stress, warming reduced hypoxia tolerance. Hypoxia-reared fish were smaller at hatch, but were able to reach similar sizes to the normoxia-reared fish by the fry stage. High temperature and normoxia resulted in the fastest rate of development while low temperature and hypoxia resulted in the slowest rate of development. Despite improved physiological tolerance to acute heat and hypoxia stress, hypoxia-reared embryos had reduced survival and growth, which could have larger population-level effects. These results suggest that both warming and hypoxia are important factors to address in conservation strategies for Chinook salmon.
Collapse
Affiliation(s)
- Annelise M Del Rio
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Brittany E Davis
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA, USA
- California Department of Water Resources, Division of Environmental Services, PO Box 942836, Sacramento, CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Corresponding author: Department of Animal Science, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
41
|
Hesselschwerdt J, Wantzen KM. Global warming may lower thermal barriers against invasive species in freshwater ecosystems - A study from Lake Constance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:44-50. [PMID: 30015117 DOI: 10.1016/j.scitotenv.2018.07.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
European freshwater ecosystems are increasingly invaded by exotic animal and plant species. Apart from increased connectivity between previously separated watersheds, the increasing temperature of the hydrosystems favors the spread of exotic species. The freshwater fauna of Central Europe is still shaped by the cold-adapted animal assemblages resulting from the last glaciation. It is less diverse, and the species are putatively less performant competitors, compared to the warm-adapted, species-rich fauna of the Ponto-Caspian realm, from which many current aquatic invaders are coming. Our study analyses potential mechanisms explaining the coexistence between one of the most impacting aquatic invaders of the past decades, the 'killer shrimp' Dikerogammarus villosus and the previously dominating amphipod Gammarus roeselii in Lake Constance, using laboratory predation experiments and field surveys. Our results indicate two key drivers for coexistence: low winter temperatures and the substrate structure of the alga Chara sp. At temperatures below 6 °C, the predation pressure on G. roeselii was strongly reduced; G. roeselii can therefore disperse throughout the littoral in winter, avoiding predation by D. villosus. Artificial heating of a section of the lake shore, however, resulted in local extinction of G. roeselii by D. villosus. The macroalga Chara sp. completely inhibited predation by D. villosus on G. roeselii. Climate change scenarios indicate that global warming might destroy this thermal refuge during winter until 2085. For the survival of G. roeselii it will then be crucial, which part of the Chara population will maintain epigeic plant parts during winter. The complex interplay between thermal and physical refuges for native species in the context of climate change and changing trophic status of freshwater systems, as disentangled by our study, shows that ecosystem management and restoration strategies need to better consider multiple stressors (and their rather complex mitigation strategies).
Collapse
Affiliation(s)
- John Hesselschwerdt
- RHEOS, Brandenburger Strasse 18, 78467 Konstanz, Germany; Limnological Institute of the University of Konstanz, Mainaustrasse 252, 78464 Konstanz, Germany.
| | - Karl M Wantzen
- Chair of Applied Aquatic Ecology, UNESCO Chair "River Culture-Fleuves et Patrimoine" CNRS UMR CITERES, University of Tours, 35 Allée Ferdinand de Lesseps, 37000 Tours, France; Limnological Institute of the University of Konstanz, Mainaustrasse 252, 78464 Konstanz, Germany.
| |
Collapse
|
42
|
It's about time: Linkages between heat tolerance, thermal acclimation and metabolic rate at different temporal scales in the freshwater amphipod Gammarus fossarum Koch, 1836. J Therm Biol 2018; 75:31-37. [DOI: 10.1016/j.jtherbio.2018.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 11/21/2022]
|
43
|
Gangloff EJ, Telemeco RS. High Temperature, Oxygen, and Performance: Insights from Reptiles and Amphibians. Integr Comp Biol 2018; 58:9-24. [DOI: 10.1093/icb/icy005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Rory S Telemeco
- Department of Biology, California State University Fresno, Fresno, CA 93740, USA
| |
Collapse
|