1
|
Roy S, Roy SC, Zehravi M, Sweilam SH, Das R, Palanisamy M, Dantinapalli VLS, Elumalai S, Gupta JK, Alshehri MA, Asiri M, Ahmad I, Nafady MH, Emran TB. Exploring the neuroprotective benefits of phytochemicals extracted from indigenous edible fruits in Bangladesh. Animal Model Exp Med 2025; 8:239-265. [PMID: 39808386 PMCID: PMC11871099 DOI: 10.1002/ame2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The increasing incidence of neurodegenerative diseases (NDs) and the constraints of existing treatment methods have spurred a keen interest in investigating alternative therapies. Medicinal plants, renowned for their long-standing use in traditional medicine, offer a hopeful avenue for discovering new neuroprotective agents. This study emphasizes the potential neuroprotective characteristics of edible fruit plants in Bangladesh, specifically focusing on their traditional folk medicine uses for neurological disorders. This study provides an in-depth overview of the different types of edible fruit trees in Bangladesh and their phytochemicals, including flavonoids, terpenoids, and phenolic acids. This work examines the scientific data supporting the neuroprotective properties of bioactive chemicals from plants. It further explores the mechanisms by which these compounds work to counteract oxidative stress, decrease inflammation, and stimulate neurogenesis. Moreover, the study investigates toxicological characteristics and bioactive components of some fruits, emphasizing the importance of further investigation to measure their safety profile comprehensively. This thorough study highlights the potential benefits of Bangladesh's edible fruit trees as a rich source of neuroprotective chemicals. It also shows that additional research might lead to novel approaches for improving brain functioning and preventing NDs.
Collapse
Affiliation(s)
- Sumon Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & PharmacyBuraydah Private CollegesBuraydahSaudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl‐KharjSaudi Arabia
- Department of Pharmacognosy, Faculty of PharmacyEgyptian Russian UniversityBadr CityCairoEgypt
| | - Rajib Das
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | | | | | | | | | | | - Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical ScienceKing Khalid UniversityAbhaSaudi Arabia
| | - Mohamed H. Nafady
- Department of Radiology and Medical Imaging Technology, Faculty of Applied Health Science TechnologyMisr University for Science and TechnologyGizaEgypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life SciencesDaffodil International UniversityDhaka 1207Bangladesh
| |
Collapse
|
2
|
Safavi-Naeini SM, Nasehi M, Zarrindast MR, Safavi-Naeini SA. Exploring the effects of naringenin on cell functioning and energy synthesis in the hippocampus of male Wistar rats with chronic tinnitus, by examining genetic indicators such as Bax, Bcl-2, Tfam, and Pgc-1α. Gene 2025; 933:148980. [PMID: 39368787 DOI: 10.1016/j.gene.2024.148980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND The pivotal factors, including neural plasticity, oxidative stress, neuronal inflammation, and apoptosis, play a significant role in the pathogenesis of tinnitus. The balance between Bax/Bcl-2 genes is an important factor in determining the rate of apoptosis. Pgc-1α and Tfam genes are fundamental regulators of mitochondrial biogenesis. Naringenin possesses significant antioxidant, neuroprotective, anti-inflammatory, anti-apoptotic, and antiviral properties, and its compounds are effective on cell signaling pathways. AIMS In light of the aforementioned information, we endeavored to evaluate the impact of naringenin on the expression levels of Bax, Bcl-2, Pgc-1α, and Tfam genes in the hippocampus of male Wistar rats with chronic tinnitus. MATERIAL AND METHODS To demonstrate the existence of tinnitus, all rats were instructed to complete an "active avoidance test" utilizing a conditioning box. The expression levels of genes mentioned above were assessed using real-time PCR. RESULTS The sodium salicylate at a dosage of 350 mg/kg showed an upregulation in the expression level of Bax and a downregulation in the expression level of the Bcl-2 gene (p < 0.001). Furthermore, the sodium salicylate displayed significantly higher expression levels of Tfam and Pgc-1α (p < 0.001) genes. The naringenin, at a dose of 100 mg/kg, led to a decrease in Bax gene expression (p < 0.05) and an increase in Bcl-2 gene expression (p < 0.05). On the other hand, naringenin restored the expression level of both Tfam (p < 0.001) and Pgc-1α (p < 0.01) genes. CONCLUSIONS Our research findings demonstrate that sodium salicylate-induced tinnitus leads to enhanced apoptosis and mitochondrial biogenesis within the hippocampus. Additionally, our evidence recommends that naringenin can reduce apoptosis effectively and maintain a balanced mitochondrial state.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Abbas Safavi-Naeini
- Department of ENT, Taleghani Hospital, Shaheed Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| |
Collapse
|
3
|
Du Y, Wang G, Liu B, Guo M, Yan X, Dou M, Yu F, Ba Y, Zhou G. Naringin alleviates fluoride-induced neurological impairment: A focus on the regulation of energy metabolism mediated by mitochondrial permeability transition pore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177073. [PMID: 39447898 DOI: 10.1016/j.scitotenv.2024.177073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The neurological impairment induced by fluoride is associated with mitochondrial dysfunction. Normal mitochondrial permeability transition pore (mPTP) opening plays a pivotal role in mitochondrial function. However, it remains unclear whether p53-dependent mPTP-related mitochondrial apoptosis is associated with fluoride-induced neurological impairment, and the alleviation of naringin on those. In vivo, NaF-treated rats had impaired learning and memory abilities, damaged hippocampal structure, and higher respiratory exchange rates (RER). In vitro, the increased apoptosis rates, excessive opening of mPTP, and decreased mitochondrial membrane potential (MMP) were observed in PC12 cells treated with NaF. The protein expressions of p53, CytoC, and cleaved caspase 3 were significantly increased in hippocampi of rats treated with 50 mg/L and 100 mg/L NaF and in 40 mg/L and 80 mg/L NaF-treated PC12 cells, while the protein expression of CypD remains stable. And the changes of p53 and CypD were also confirmed by the immunofluorescence staining in vivo. After inhibiting the expression of p53 with pifithrin-α and p53-siRNA, the decreased apoptosis rates and mPTP opening, increased MMP, and decreased protein expressions of p53, CytoC, and cleaved caspase 3 were observed in NaF-treated PC12 cells. Rats, treated with NaF and naringin, had alleviated impaired neurological function, and had lower RER than rats treated with NaF alone. And compared with those in the NaF group, the decreased apoptosis rates and mPTP opening, and increased MMP were also found in PC12 cells treated with NaF and naringin. Furthermore, hippocampi of rats and PC12 cells treated with NaF and naringin had decreased protein expressions of p53, CytoC, and cleaved caspase 3. Our results indicate that fluoride activates the p53-dependent mPTP-related mitochondrial apoptosis, which then affects energy metabolism, resulting in neurological impairment. Additionally, naringin can alleviate this damage, and further studies on the potential health benefits of naringin are needed.
Collapse
Affiliation(s)
- Yuhui Du
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Guoqing Wang
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Bin Liu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Meng Guo
- Wuhan Asia Heart Hospital, Wuhan, Hubei 430000, China
| | - Xi Yan
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450001, China
| | - Ming Dou
- School of Water Conservancy Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fangfang Yu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yue Ba
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450001, China.
| | - Guoyu Zhou
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Luo Y, Liu R, Yuan G, Pan Y. Polyphenols for stroke therapy: the role of oxidative stress regulation. Food Funct 2024; 15:11383-11399. [PMID: 39497601 DOI: 10.1039/d4fo01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Stroke is associated with a high incidence and disability rate, which seriously endangers human health. Oxidative stress (OS) plays a crucial role in the underlying pathologic progression of cerebral damage in stroke. Emerging experimental studies suggest that polyphenols have antioxidant potential and express protective effects after different types of strokes, but no breakthrough has been achieved in clinical studies. Nanomaterials, due to small characteristic sizes, can be used to deliver drugs, and have shown excellent performance in the treatment of various diseases. The drug delivery capability of nanomaterials has significant implications for the clinical translation and application of polyphenols. This comprehensive review introduces the mechanism of oxidative stress in stroke, and also summarizes the antioxidant effects of polyphenols on reactive oxygen species generation and oxidative stress after stroke. Also, the application characteristics and research progress of nanomaterials in the treatment of stroke with antioxidants are presented.
Collapse
Affiliation(s)
- Yusong Luo
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Ruolan Liu
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Guoqiang Yuan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| | - Yawen Pan
- Department of Neurosurgery, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China.
- Gansu Provincial Clinical Research Center for Neurological Diseases, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
- Academician Workstation, the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
5
|
Yang Y, Li L, Yu L, Xia Y, Fang Z, Wang S. Naringenin Protected Against Blood Brain Barrier Breakdown after Ischemic Stroke through GSK-3β/ β-Catenin Pathway. Neurochem Res 2024; 50:17. [PMID: 39556287 DOI: 10.1007/s11064-024-04259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
Protection against blood-brain barrier (BBB) dysfunction is key to reduce the cerebral ischemia injury as its breakdown causes edema formation and extravasation of blood components and immune cells. The maintenance of BBB integrity requires the GSK-3β/β-catenin pathway activity. Naringenin (NAR), an effective monomer from Chinese herbal medicine, had potent protective effect on brain inflammatory and oxidative injury. However, whether NAR could protect the integrity of BBB during cerebral ischemia injury and the involvement of GSK-3β/β-catenin pathway in the beneficial effect of NAR was unknown. Therefore, mouse middle cerebral artery occlusion/reperfusion (IR) model was employed to answer these questions. NAR was intraperitoneally administrated once daily for 6 days immediately after IR with the dose of 10 mg/kg. BBB damage was evaluated with Evans blue. Protein levels of GSK-3β and β-catenin in vascular endothelial cells at penumbra were assessed with western blotting and immunofluorescence. The experimental data suggested that NAR improved neurological deficits, decreased the percentage of infarct volumes and neuronal apoptosis at 7d after IR. NAR improved BBB damage as evidenced by a lower permeability of Evans blue dye and upregulation of tight junction proteins such as zonula occludens-1(ZO-1), Occludin and Claudin-5. Importantly, GSK-3β/β-catenin pathway activity was related to the improvement of BBB integrity rendered by NAR. Our findings demonstrated that NAR might become a potential therapeutic drug for IR.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Pharmacy, The First Affiliated Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Liang Li
- Department of Neurosurgery, The First Affiliated Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Liang Yu
- Department of Information, The First Affiliated Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ying Xia
- Department of Gastroenterology, The First Affiliated Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zongping Fang
- Department of Critical Case Medicine, Translational Research Institute of Brain and Brain-Like intelligence, Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital, The Fourth military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
6
|
He R, Xu Y, Liu J, Liu J, Chen J, Wang X, Qiu L, Huang J. Compound Shenma Jingfu granule alleviates cerebral ischemia via HIF-1α-mediated promotion of angiogenesis. Chin Med 2024; 19:62. [PMID: 38600597 PMCID: PMC11005288 DOI: 10.1186/s13020-024-00926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Shenma Jingfu Granule, a traditional Chinese medicine formula, has been used clinically for the treatment of cerebral circulation insufficiency. However, the mechanism involved in alleviating cerebral ischemia has not yet been fully elucidated. METHODS An integrated approach involving network pharmacology and transcriptomics was utilized to clarify the potential mechanisms of SMJF Granule. Molecular docking and surface plasmon resonance (SPR) were employed to identify potential targets and ingredients of SMJF Granule. The anti-CI effect of SMJF Granule was determined on the middle cerebral artery occlusion (MCAO) model by using hematoxylin-eosin (H&E) and Nissl's staining, as well as triphenyl tetrazolium chloride (TTC) staining, and the potential targets involved in the mechanisms were validated by RT-qPCR and western blotting. RESULTS Integrated analysis revealed the mechanism of SMJF Granule intervening in CI injury might be related to the HIF-1 signaling pathway and angiogenesis. Molecular docking and SPR assays demonstrated robust binding interactions between key compounds like salvianolic acid A and naringenin with the core target HIF-1α protein. The experiment confirmed that SMJF Granule lowered neurological scores, diminished infarct volume, and alleviated histopathological changes in vivo. The possible mechanism of SMJF Granule was due to regulating HIF-1 pathway, which contributed to up-regulating expression of VEGF and vWF in the penumbral region, showing a significant promotion of angiogenesis. CONCLUSION SMJF Granule promoted angiogenesis through HIF-1α pathway, thereby alleviating cerebral ischemia injury. In addition, our findings provide some evidence that SMJF Granule is a candidate compound for further investigation in treating CI in the clinical.
Collapse
Affiliation(s)
- Ruihua He
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China
| | - Yi Xu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China
| | - Jingxue Liu
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jing Liu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China
| | - Jing Chen
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China
| | - Xufang Wang
- College of Pharmacy, Navy Medical University, Shanghai, 200433, China
| | - Lei Qiu
- College of Pharmacy, Navy Medical University, Shanghai, 200433, China.
| | - Jin Huang
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200083, China.
| |
Collapse
|
7
|
Wang F, Ma Q, Dong X, Wang T, Ma C. circ-Gucy1a2 Protects Mice from Cerebral Ischemia-Reperfusion Injury by Attenuating Neuronal Apoptosis and Mitochondrial Membrane Potential Loss. J INVEST SURG 2023; 36:2152509. [PMID: 37277119 DOI: 10.1080/08941939.2022.2152509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/22/2022] [Indexed: 06/07/2023]
Abstract
Cerebral ischemia-reperfusion (I/R) injury (CI/RI) is a severe problem in patients with cerebral ischemia. The current study explored the influences of circular (circ)-Gucy1a2 on neuronal apoptosis and mitochondrial membrane potential (MMP) in the brain tissue of CI/RI mice. Forty-eight mice were randomized into the sham group, transient middle cerebral artery occlusion (tMCAO) group, lentivirus negative control (LV-NC) group, and LV-Gucy1a2 group. Mice were first injected with lentivirus loaded with LV-Gucy1a2 or LV-NC via lateral ventricle, followed by the establishment of CI/RI models 2 weeks later. Twenty-four hours after CI/RI, the neurological impairment of mice was assessed using a 6-point scoring system. The cerebral infarct volume and brain histopathological changes were determined in CI/RI mice through histological staining. In vitro, pcDNA3.1-NC and pcDNA3.1-Gucy1a2 were transfected into mouse primary cortical neurons for 48 hours, followed by the establishment of oxygen-glucose deprivation/reoxygenation (OGD/R) models. The levels of circ-Gucy1a2 in mouse brain tissues and neurons were examined using RT-qPCR. Neuronal proliferation and apoptosis, MMP loss, and oxidative stress (OS)-related indexes in neurons were detected using CCK-8 assay, flow cytometry, JC-1 staining, and H2DFFDA staining. CI/RI mouse models and OGD/R cell models were successfully established. After CI/RI, neurons in mice were impaired and the cerebral infarction volume was increased. circ-Gucy1a2 was poorly expressed in CI/RI mouse brain tissues. Overexpression of circ-Gucy1a2 increased OGD/R-induced neuronal proliferation and mitigated apoptosis, MMP loss, and OS. Overall, circ-Gucy1a2 was down-regulated in brain tissues of CI/RI mice, and overexpression of circ-Gucy1a2 can protect mice from CI/RI.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Qian Ma
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Xinglu Dong
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Tinghuan Wang
- Department of Neurology, The First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Chao Ma
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Uçar K, Göktaş Z. Biological activities of naringenin: A narrative review based on in vitro and in vivo studies. Nutr Res 2023; 119:43-55. [PMID: 37738874 DOI: 10.1016/j.nutres.2023.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Naringenin (4',5,7-trihydroxyflavonone) is a phytochemical mainly found in citrus fruits. It is a promising phytochemical for human health because of its beneficial effects. This review aims to present comprehensive information on naringenin biological activities along with its action mechanisms and explain the pharmacokinetic properties of naringenin. This study involves a comprehensive literature review of in vitro and in vivo studies examining the effects of naringenin. Naringenin has antidiabetic, anticancer, antimicrobial, antiobesity, gastroprotective, immunomodulator, cardioprotective, nephroprotective, and neuroprotective properties. These properties are primarily attributed to its antioxidant and anti-inflammatory activities. The most important antioxidant activities of naringenin including free radical scavenging and preventing lipid peroxidation. Naringenin can increase the concentration of antioxidant enzymes and inhibit metal chelation and various pro-oxidant enzymes. Anti-inflammatory activities of naringenin are associated with decreased mitogen-activated protein kinase activities and nuclear factor kappa B by modulating the expression and release of proinflammatory cytokine and enzymes. In vitro and in vivo studies show that naringenin has promising biological activities for a variety of diseases. More research must be conducted on the bioactivities of naringenin, and to determine its optimum dose. In addition, the efficiency of naringenin must be examined with enhanced bioavailability methods to be able to increase its therapeutic effect.
Collapse
Affiliation(s)
- Kübra Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
9
|
Pluta R, Miziak B, Czuczwar SJ. Apitherapy in Post-Ischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy: Focus on Honey and Its Flavonoids and Phenolic Acids. Molecules 2023; 28:5624. [PMID: 37570596 PMCID: PMC10420307 DOI: 10.3390/molecules28155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Neurodegeneration of the brain after ischemia is a major cause of severe, long-term disability, dementia, and mortality, which is a global problem. These phenomena are attributed to excitotoxicity, changes in the blood-brain barrier, neuroinflammation, oxidative stress, vasoconstriction, cerebral amyloid angiopathy, amyloid plaques, neurofibrillary tangles, and ultimately neuronal death. In addition, genetic factors such as post-ischemic changes in genetic programming in the expression of amyloid protein precursor, β-secretase, presenilin-1 and -2, and tau protein play an important role in the irreversible progression of post-ischemic neurodegeneration. Since current treatment is aimed at preventing symptoms such as dementia and disability, the search for causative therapy that would be helpful in preventing and treating post-ischemic neurodegeneration of Alzheimer's disease proteinopathy is ongoing. Numerous studies have shown that the high contents of flavonoids and phenolic acids in honey have antioxidant, anti-inflammatory, anti-apoptotic, anti-amyloid, anti-tau protein, anticholinesterase, serotonergic, and AMPAK activities, influencing signal transmission and neuroprotective effects. Notably, in many preclinical studies, flavonoids and phenolic acids, the main components of honey, were also effective when administered after ischemia, suggesting their possible use in promoting recovery in stroke patients. This review provides new insight into honey's potential to prevent brain ischemia as well as to ameliorate damage in advanced post-ischemic brain neurodegeneration.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (S.J.C.)
| | | | | |
Collapse
|
10
|
de Oliveira PV, Sanaiotto O, Kuhn KZ, Oltramari A, Bortoluzzi AJ, Lanza M, Aguiar GPS, Siebel AM, Müller LG, Oliveira JV. Micronization of naringenin in supercritical fluid medium: In vitro and in vivo assays. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Helmy WA, Ragab TIM, Salama BM, Basha M, Shamma R, Abd El-Rahman SS, Shawky H. Novel naringin tablet formulations of agro-resides based nano/micro crystalline cellulose with neuroprotective and Alzheimer ameliorative potentials. Int J Biol Macromol 2023; 231:123060. [PMID: 36632961 DOI: 10.1016/j.ijbiomac.2022.12.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/18/2022] [Accepted: 12/25/2022] [Indexed: 01/11/2023]
Abstract
This study aimed to prepare micro/nanocrystalline cellulose-loaded naringin (NAR) tablets and evaluate their neuro-protective/therapeutic potentials in Alzheimer's disease (AD) model. Micro/nanocellulose was prepared from different agro-wastes, and the different cellulose preparations were then used to formulate eight oral tablets of naringin micro/nanoparticles by direct compression. AD-like symptoms were induced in adult male Sprague Dawley rats by co-administration of 150 mg/kg AlCl3 and 300 mg/kg D-galactose (oral administration/one week), and NAR tablets were assessed for neuroprotective/therapeutic potentials in terms of behavioral changes, levels of neurodegenerative and inflammatory markers, brain redox status, neurotransmitter tones, and cortex/hippocampus histopathological alterations. NAR treatments have significantly reversed the neurotoxic effect of AlCl3 as demonstrated by improved spatial and cognitive memory functions and promoted antioxidant defense mechanisms in treated AD animals. Also, the neurodegeneration was markedly restrained as reflected by marked histopathological enhancement, and prevention/amelioration of neuropsychiatric disorders, besides the restorative effect on dysregulated neurotransmitters tone. Both NAR tablet forms showed an overall higher ameliorative effect compared to the DPZ reference drug. The formulated tablets represent promising neuroprotective/therapeutic agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Wafaa A Helmy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Bassem M Salama
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Rehab Shamma
- Faculty of Pharmacy, Cairo University, Kasr Eleni St., Cairo, Egypt
| | | | - Heba Shawky
- Therapeutic Chemistry Department, Pharmaceutical and Drug Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| |
Collapse
|
12
|
Hao DL, Li JM, Xie R, Huo HR, Xiong XJ, Sui F, Wang PQ. The role of traditional herbal medicine for ischemic stroke: from bench to clinic-A critical review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154609. [PMID: 36610141 DOI: 10.1016/j.phymed.2022.154609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is a leading cause of death and severe long-term disability worldwide. Over the past few decades, considerable progress has been made in anti-ischemic therapies. However, IS remains a tremendous challenge, with favourable clinical outcomes being generally difficult to achieve from candidate drugs in preclinical phase testing. Traditional herbal medicine (THM) has been used to treat stroke for over 2,000 years in China. In modern times, THM as an alternative and complementary therapy have been prescribed in other Asian countries and have gained increasing attention for their therapeutic effects. These millennia of clinical experience allow THM to be a promising avenue for improving clinical efficacy and accelerating drug discovery. PURPOSE To summarise the clinical evidence and potential mechanisms of THMs in IS. METHODS A comprehensive literature search was conducted in seven electronic databases, including PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database, from inception to 17 June 2022 to examine the efficacy and safety of THM for IS, and to investigate experimental studies regarding potential mechanisms. RESULTS THM is widely prescribed for IS alone or as adjuvant therapy. In clinical trials, THM is generally administered within 72 h of stroke onset and are continuously prescribed for over 3 months. Compared with Western medicine (WM), THM combined with routine WM can significantly improve neurological function defect scores, promote clinical total effective rate, and accelerate the recovery time of stroke with fewer adverse effects (AEs). These effects can be attributed to multiple mechanisms, mainly anti-inflammation, antioxidative stress, anti-apoptosis, brain blood barrier (BBB) modulation, inhibition of platelet activation and thrombus formation, and promotion of neurogenesis and angiogenesis. CONCLUSIONS THM may be a promising candidate for IS management to guide clinical applications and as a reference for drug development.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jia-Meng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing-Jiang Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
13
|
Soliman NA, Abdel Ghafar MT, AbuoHashish NA, Ibrahim MA, Eid AM, El-Gohary RM, Abo El Gheit RE, Elshamy AM. The Possible Role of Naringenin in the Prevention of Alcohol-Induced Neurochemical and Neurobehavioral Deficits. Neurochem Res 2023; 48:537-550. [PMID: 36242717 PMCID: PMC9892097 DOI: 10.1007/s11064-022-03775-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/05/2023]
Abstract
Chronic alcohol consumption is associated with progressive/irreversible neurodegeneration. However, there is not a clear understanding of its discrete pathophysiology or therapeutic intervention. The present study aimed to investigate the protective effect of the natural citrus flavonoid, naringenin (NAG), against alcohol-induced neurodegeneration in the brain cerebral cortex. Thirty-two male albino rats were randomly divided into four equal groups (eight rats each): control group (I); NAG-treated group (II); alcohol-intoxicated group (III) and alcohol + NAG co-treated group (IV). Brain nuclear factor erythroid 2-related factor 2 and receptor-interacting protein kinase 3 expression were assessed by real-time polymerase chain reaction. NAD(P)H quinone oxidoreductase 1 activity and malondialdehyde, reduced glutathione, mixed lineage kinase-like protein, phosphorylated glycogen synthase kinase 3 beta, and ciliary neurotrophic factor levels were all measured biochemically. B-cell lymphoma 2 expression was assessed by immunohistochemistry. A histopathological examination and neurobehavioral tests were performed. The alcohol-treated group showed a significant increase in oxidative stress and necroptosis biomarkers with a significant reduction in neuroprotective proteins. NAG co-administration effectively ameliorated cognitive dysfunction with an apparent neuroprotective effect by targeting various signaling pathways, including nuclear factor erythroid 2-related factor/NAD(P)H quinone oxidoreductase 1, anti-oxidant capacity, attenuated necroptosis, and upregulated neuroprotective ciliary neurotrophic factor. The study findings suggest NAG as a possible management strategy for alcohol-induced neurodegeneration.
Collapse
Affiliation(s)
- Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Muhammad T Abdel Ghafar
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Aljaysh St, Medical Campus, Tanta, 31511, Egypt.
| | | | - Marwa A Ibrahim
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa M Eid
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
14
|
Zheng L, Meng L, Liang H, Yang J. Sanhua decoction: Current understanding of a traditional herbal recipe for stroke. Front Neurosci 2023; 17:1149833. [PMID: 37123364 PMCID: PMC10133510 DOI: 10.3389/fnins.2023.1149833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Both thrombolytic and endovascular therapies are optimal treatment options for patients with acute ischemic stroke, but only less than half of these patients can benefit from these treatments. Traditional Chinese medicine has a long history of successfully managing ischemic stroke using both herbal and physical therapeutics. Among herbal recipes, Sanhua decoction (SHD) is one of the classical prescriptions for ischemic stroke. The present review aimed to summarize evidence from both clinical and basic research to demonstrate its efficacy in managing ischemic stroke and the potential mechanisms underlying its therapeutic effects, which will provide evidence on the therapeutic effect of this herbal recipe and guide future studies on this recipe. SHD is composed of four herbs, Rheum palmatum L. [Polygonaceae], Magnolia officinalis Rehder & E.H.Wilson [Magnoliaceae], Citrus × aurantium L. [Rutaceae], Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov [Apiaceae]. We found that the majority of clinical studies on SHD are case reports and they showed positive therapeutic effect of SHD on both acute and chronic ischemic stroke. There are over 40 bioactive compounds identified in SHD, but few experimental studies have examined their individual molecular mechanisms. As an extract of SHD, it improves neurological functions through suppressing inflammation, protecting the blood brain barrier from degradation, restoring the number of neural stem cells, inhibiting apoptosis and brain edema, scavenging oxygen free radicals, and regulating the brain-gut axis. These will lay the theoretical foundation for future studies on this prescription and its clinical application. Future research may need to confirm its clinical efficacy in large-scale clinical trials and to disentangle its bioactive compounds and their potential mechanisms.
Collapse
Affiliation(s)
- Lanlan Zheng
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai, China
| | - Linglei Meng
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai, China
| | - Huazheng Liang
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Monash Suzhou Research Institute, Suzhou Industrial Park, Suzhou, Jiangsu, China
- Huazheng Liang,
| | - Jiandao Yang
- Department of Neurology, Shanghai Jiangong Hospital, Shanghai, China
- *Correspondence: Jiandao Yang,
| |
Collapse
|
15
|
Collins AE, Saleh TM, Kalisch BE. VANL-100 Attenuates Beta-Amyloid-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2022; 24:ijms24010442. [PMID: 36613883 PMCID: PMC9820495 DOI: 10.3390/ijms24010442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Antioxidants are being explored as novel therapeutics for the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) through strategies such as chemically linking antioxidants to synthesize novel co-drugs. The main objective of this study was to assess the cytoprotective effects of the novel antioxidant compound VANL-100 in a cellular model of beta-amyloid (Aβ)-induced toxicity. The cytotoxic effects of Aβ in the presence and absence of all antioxidant compounds were measured using the 3-(4,5-dimethylthiazol-2-yl)2-5-diphenyl-2H-tetrazolium bromide (MTT) assay in SH-SY5Y cells in both pre-treatment and co-treatment experiments. In pre-treatment experiments, VANL-100, or one of its parent compounds, naringenin (NAR), alpha-lipoic acid (ALA), or naringenin + alpha-lipoic acid (NAR + ALA), was administrated 24 h prior to an additional 24-h incubation with 20 μM non-fibril or fibril Aβ25-35. Co-treatment experiments consisted of simultaneous treatment with Aβ and antioxidants. Pre-treatment and co-treatment with VANL-100 significantly attenuated Aβ-induced cell death. There were no significant differences between the protective effects of VANL-100, NAR, ALA, and NAR + ALA with either form of Aβ, or in the effect of VANL-100 between 24-h pre-treatment and co-treatment. These results demonstrate that the novel co-drug VANL-100 is capable of eliciting cytoprotective effects against Aβ-induced toxicity.
Collapse
|
16
|
Zhang W, Zhang L, Wang WJ, Ma S, Wang M, Yao M, Li R, Li WW, Zhao X, Hu D, Ding Y, Wang J. Network pharmacology and in vitro experimental verification to explore the mechanism of Sanhua decoction in the treatment of ischaemic stroke. PHARMACEUTICAL BIOLOGY 2022; 60:119-130. [PMID: 34985385 PMCID: PMC8741256 DOI: 10.1080/13880209.2021.2019281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Stroke is an illness with high morbidity, disability and mortality that presents a major clinical challenge. Sanhua decoction (SHD) has been widely used to treat ischaemic stroke in the clinic. However, the potential mechanism of SHD remains unknown. OBJECTIVE To elucidate the multitarget mechanism of SHD in ischaemic stroke through network pharmacology and bioinformatics analyses. MATERIALS AND METHODS Network pharmacology and experimental validation approach was used to investigate the bioactive ingredients, critical targets and potential mechanisms of SHD against ischaemic stroke. Four herbal names of SHD, 'ischemic stroke' or 'stroke' was used as a keyword to search the relevant databases. SH-SY5Y cells were treated with various concentrations of SHD (12.5, 25, 50 or 100 μg/mL) for 4 h, exposed to oxygen and glucose deprivation (OGD) for 1 h, then reoxygenation for 24 h. The cell viability was detected by MTT, the lactate dehydrogenase (LDH) was evaluated by ELISA, and protein expression was detected by western blots. RESULTS SHD treatment increased the survival rate from 65.9 ± 4.3 to 85.56 ± 5.7%. The median effective dose (ED50) was 47.1 μg/mL, the LDH decreased from 288.0 ± 12.0 to 122.8 ± 9.1 U/L and the cell apoptosis rate decreased from 33.6 ± 1.8 to 16.3 ± 1.2%. Western blot analysis revealed that SHD increased the levels of p-PI3k, p-Akt and p-CREB1, and decreased the expression of TNF-α and IL-6. DISCUSSION AND CONCLUSIONS This study suggests that SHD protects against cerebral ischaemic injury via regulation of the PI3K/Akt/CREB1 and TNF pathways.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wen jun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mingming Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei wei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xian Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dongmei Hu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Yi Ding Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an710032, Shaanxi Province, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- CONTACT Jingwen Wang
| |
Collapse
|
17
|
Neurological disorders of COVID-19: insights to applications of natural products from plants and microorganisms. Arch Pharm Res 2022; 45:909-937. [PMCID: PMC9702705 DOI: 10.1007/s12272-022-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
In addition to the typical respiratory manifestations, various disorders including involvement of the nerve system have been detected in COVID-19 ranging from 22 to 36%. Although growing records are focusing on neurological aspects of COVID-19, the pathophysiological mechanisms and related therapeutic methods remain obscure. Considering the increased concerns of SARS-CoV-2 potential for more serious neuroinvasion conditions, the present review attempts to focus on the neuroprotective effects of natural compounds as the principle source of therapeutics inhibiting multiple steps of the SARS-CoV-2 infection cycle. The great majority of the natural products with anti-SARS-CoV-2 activity mainly inhibit the attachment, entry and gene expression rather than the replication, assembly, or release. Although microbial-derived natural products comprise 38.5% of the known natural products with neuroprotective effects following viral infection, the neuroprotective potential of the majority of microorganisms is still undiscovered. Among natural products, chrysin, huperzine A, ginsenoside Rg1, pterostilbene, and terrein have shown potent in vitro neuroprotective activity and can be promising for new or repurpose drugs for neurological complications of SARS-CoV-2.
Collapse
|
18
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
19
|
Picos-Salas MA, Cabanillas-Bojórquez LÁ, Elizalde-Romero CA, Leyva-López N, Montoya-Inzunza LA, Heredia JB, Gutiérrez-Grijalva EP. Naringenin as a Natural Agent Against Oxidative Stress and Inflammation, and Its Bioavailability. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Manuel Adrian Picos-Salas
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | | | | | - Nayely Leyva-López
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | - Luis Aurelio Montoya-Inzunza
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | - J. Basilio Heredia
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
| | - Erick P. Gutiérrez-Grijalva
- Functional Foods and Nutraceuticals Laboratory, Centro de Investigación en Alimentación y Desarrollo A.C., Sinalora, México
- Functional Foods and Nutraceuticals Laboratory, Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Sinaloa, Mexico
| |
Collapse
|
20
|
Immunomodulatory Effects of Lepidium meyenii Walp. Polysaccharides on an Immunosuppression Model Induced by Cyclophosphamide. J Immunol Res 2022; 2022:1210890. [PMID: 35832646 PMCID: PMC9273403 DOI: 10.1155/2022/1210890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022] Open
Abstract
Background Lepidium meyenii Walp. (Maca) has emerged as a functional plant food and traditional herb owing to its biological activities; Maca polysaccharides as an important active component of Maca have good immunomodulatory effect; however, studies on the immunomodulatory effect of Maca polysaccharides are mainly focused on macrophages; little attention has been devoted to the mechanisms and other immune cells. This study is aimed at investigating the immunomodulatory effects and mechanisms of Maca polysaccharides. Methods Sixty mice were divided into five groups, and the mice were injected with cyclophosphamide to establish an immunosuppression model except for those in the common group. The body weights were measured, as well as immune-related indices, such as organ indices, haematological parameters, lymphocyte cycle, and proliferation, cytokine, and protein expression levels. Results The weight loss and immune organ index decline caused by cyclophosphamide could be reversed by MP. Furthermore, MP increased WBC and HGB counts and reduced the ratio of G0/G1 phase obviously, increased the proportion of S phase and G2/M phase in peripheral blood lymphocytes, increased the counts of CD4+ T cells and the ratio of CD4+/CD8+, and reduced the inhibition rate of splenic lymphocytes. MP affected the production of cytokines by increasing IFN-γ, TNF-α, and IL-2 levels and by decreasing IL-4 levels. MP increased the mRNA expression of T-bet and the protein expression of Bcl-2 in the spleen and decreased the protein expression of caspase-3 and Bax. Conclusions Maca polysaccharides might be the basic material for Maca's immunomodulatory effect. The mechanism was perhaps related to inhibiting lymphocyte apoptosis and promoting the balance of Th1/Th2 cell subsets.
Collapse
|
21
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
22
|
Study on the Mechanism of Üstikuddus Sherbiti in Ischemic Cerebrovascular Diseases: Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5581864. [PMID: 35432563 PMCID: PMC9012636 DOI: 10.1155/2022/5581864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
This paper aims to study the potential biological mechanism of Üstikuddus Sherbiti (ÜS) in the treatment of ischemic cerebrovascular diseases (ICVD) by the network pharmacology method. Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to obtain effective constituents of ÜS by screening eligible oral utilization, drug similarity, and blood-brain barrier permeability threshold. By drug target prediction and stroke treatment target mining, 2 target data sets were analyzed to find intersection targets and the corresponding constituents were used as active constituents. An active constituent target network and an effective constituent target network were constructed by using Cytoscape 3.7.2 software. Degree parameters of the effective constituent target network were analyzed to find important effective constituents and targets. Through protein-protein interaction (PPI) analysis/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, potential signaling pathways of ÜS in ischemic stroke were found out. AutoDock was used for molecular docking verification. A total of 90 active constituents of ÜS were screened out. There were 10 active constituents against ICVD, including quercetin, luteolin, kaempferol, and naringenin, and 10 important targets for anticerebral ischemia, namely, PIK3CA, APP, PIK3R1, MAPK1, MAPK3, AKT1, PRKCD, Fyn, RAC1, and NF-κB1. Based on the protein interaction network, the important targets of ÜS were significantly enriched in PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction pathway, Ras signaling pathway, etc. ÜS in ICVD has characteristics like multiple targets, multiple approaches, and multiple pathways. Results of molecular docking showed that the active components in ICVD had a good binding ability with the key targets. Its main biological mechanism may be related to the PI3K-Akt and Ras-MAPK centered signaling pathway. Our study demonstrated that ÜS exerted the effect of treating ICVD by regulating multiple targets and multiple channels with multiple components through the method of network pharmacology and molecular docking.
Collapse
|
23
|
The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells 2022; 11:cells11071239. [PMID: 35406804 PMCID: PMC8997586 DOI: 10.3390/cells11071239] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut–brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut–brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic–pituitary–adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.
Collapse
|
24
|
Xi Y, Miao Y, Zhou R, Wang M, Zhang F, Li Y, Zhang Y, Yang H, Guo F. Exploration of the Specific Pathology of HXMM Tablet Against Retinal Injury Based on Drug Attack Model to Network Robustness. Front Pharmacol 2022; 13:826535. [PMID: 35401181 PMCID: PMC8990835 DOI: 10.3389/fphar.2022.826535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal degenerative diseases are related to retinal injury because of the activation of the complement cascade, oxidative stress-induced cell death mechanisms, dysfunctional mitochondria, chronic neuroinflammation, and production of the vascular endothelial growth factor. Anti-VEGF therapy demonstrates remarkable clinical effects and benefits in retinal degenerative disease patients. Hence, new drug development is necessary to treat patients with severe visual loss. He xue ming mu (HXMM) tablet is a CFDA-approved traditional Chinese medicine (TCM) for retinal degenerative diseases, which can alleviate the symptoms of age-related macular degeneration (AMD) and diabetic retinopathy (DR) alone or in combination with anti-VEGF agents. To elucidate the mechanisms of HXMM, a quantitative evaluation algorithm for the prediction of the effect of multi-target drugs on the disturbance of the disease network has been used for exploring the specific pathology of HXMM and TCM precision positioning. Compared with anti-VEGF agents, the drug disturbance of HXMM on the functional subnetwork shows that HXMM reduces the network robustness on the oxidative stress subnetwork and inflammatory subnetwork to exhibit the anti-oxidation and anti-inflammation activity. HXMM provides better protection to ARPE-19 cells against retinal injury after H2O2 treatment. HXMM can elevate GSH and reduce LDH levels to exhibit antioxidant activity and suppress the expression of IL-6 and TNF-α for anti-inflammatory activity, which is different from the anti-VEGF agent with strong anti-VEGF activity. The experimental result confirmed the accuracy of the computational prediction. The combination of bioinformatics prediction based on the drug attack on network robustness and experimental validation provides a new strategy for precision application of TCM.
Collapse
Affiliation(s)
- Yujie Xi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Miao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Rui Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maolin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Chinese Medicine Research Institute, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Feifei Guo, ; Hongjun Yang,
| |
Collapse
|
25
|
Wang C, Zhao F, Bai Y, Li C, Xu X, Kristiansen K, Zhou G. Proteomic Analysis of the Protective Effect of Eriodictyol on Benzo(a)pyrene-Induced Caco-2 Cytotoxicity. Front Nutr 2022; 9:839364. [PMID: 35308267 PMCID: PMC8927910 DOI: 10.3389/fnut.2022.839364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
We evaluated the possible protective effects of six polyphenols on benzo(a)pyrene (BaP)-induced cytotoxicity in Caco-2 cells. We show that treatment with quinic acid, ferulic acid, homovanillic acid, trolox and BaP decreased cell viability, whereas naringenin and eriodictyol affected viability in a bi-phasic manner with low concentrations decreasing viability whereas higher concentrations increase viability. Co-treatment with 20 μM eriodictyol or naringenin reduced BaP-induced cytotoxicity, including cell apoptosis, cell cycle progression, and oxidative stress. Our results show that the protective effect of eriodictyol was superior to that of naringenin. The potential protective mechanisms of eriodictyol on BaP-induced toxicity were investigated by proteomics. We identified 80 differentially expressed proteins (DEPs) with proteins associated with genetic information processing pathway representing the highest proportion and number of proteins responding to eriodictyol treatment, including key proteins such as RPA2, SNRPA, RAD23B, NUP155 and AARS. Our results provide new knowledge on how polyphenols may prevent BaP-induced carcinogenesis.
Collapse
Affiliation(s)
- Chong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fan Zhao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yun Bai
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Chunbao Li
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
- Karsten Kristiansen
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing, China
- *Correspondence: Guanghong Zhou
| |
Collapse
|
26
|
Wang R, Li L, Wang B. Poncirin ameliorates oxygen glucose deprivation/reperfusion injury in cortical neurons via inhibiting NOX4-mediated NLRP3 inflammasome activation. Int Immunopharmacol 2022; 102:107210. [PMID: 34266770 DOI: 10.1016/j.intimp.2020.107210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Poncirin, a natural flavonoid present abundantly in citrus fruits, possesses anti-oxidant and anti-inflammatory activities that contribute to neuroprotection, but its roles and mechanisms in neuronal injury is still poorly understood. In this study, an oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in primary cortical neurons to induce neuronal injury in vitro. Poncirin effectively attenuated OGD/R-induced neuronal damage by enhancing cell viability, restraining lactate dehydrogenase release, and reducing apoptosis of neurons. Poncirin restrained mitochondrial dysfunction and oxidative stress by increasing mitochondrial membrane potential, declining reactive oxygen species production, lessening malondialdehyde generation, and increasing the activities of antioxidant enzymes in OGD/R-treated neurons. Poncirin also repressed inflammatory responses by reducing the secretion of pro-inflammatory factors, and inhibiting NLRP3 inflammasome activation. Importantly, poncirin administration notably abolished OGD/R-induced upregulation of NADPH oxidase 4 (NOX4), and overexpression of NOX4 neutralized poncirin-mediated neuroprotection. In conclusion, poncirin protects cortical neurons from OGD/R injury via inhibiting NOX4/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Ruili Wang
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou 466000, Henan, China.
| | - Lei Li
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| | - Baogong Wang
- Department of Cardiology, Zhoukou Central Hospital, Zhoukou 466000, Henan, China
| |
Collapse
|
27
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
28
|
Chen W, Jiang L, Hu Y, Fang G, Yang B, Li J, Liang N, Wu L, Hussain Z. Nanomedicines, an emerging therapeutic regimen for treatment of ischemic cerebral stroke: A review. J Control Release 2021; 340:342-360. [PMID: 34695522 DOI: 10.1016/j.jconrel.2021.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Owing to its intricate pathophysiology, cerebral stroke is a serious medical condition caused by interruption or obstruction of blood supply (blockage of vasculature) to the brain tissues which results in diminished supply of essential nutrients and oxygen (hypoxia) and ultimate necrosis of neuronal tissues. A prompt risks assessment and immediate rational therapeutic plan with proficient neuroprotection play critically important role in the effective management of this neuronal emergency. Various conventional medications are being used for treatment of acute ischemic cerebral stroke but fibrinolytic agents, alone or in combination with other agents are considered the mainstay. These clot-busting agents effectively restore blood supply (reperfusion) to ischemic regions of the brain; however, their clinical significance is hampered due to various factors such as short plasma half-life, limited distribution to brain tissues due to the presence of highly efficient physiological barrier, blood brain barrier (BBB), and lacking of target-specific delivery to the ischemic brain regions. To alleviate these issues, various types of nanomedicines such as polymeric nanoparticles (NPs), liposomes, nanoemulsion, micelles and dendrimers have been designed and evaluated. The implication of these newer therapies (nanomedicines) have revolutionized the therapeutic outcomes by improving the plasma half-life, permeation across BBB, efficient distribution to ischemic cerebral tissues and neuroprotection. Furthermore, the adaptation of some diverse techniques including PEGylation, tethering of targeting ligands on the surfaces of nanomedicines, and pH responsive features have also been pondered. The implication of these emerging adaptations have shown remarkable potential in maximizing the targeting efficiency of drugs to ischemic brain tissues, simultaneous delivery of drugs and imaging agents (for early prognosis as well as monitoring of therapy), and therapeutic outcomes such as long-term neuroprotection.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Lingfei Jiang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Yueqiang Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Gang Fang
- Guangxi Zhuang and Yao Medicine Engineering Technology Research Center, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Bilin Yang
- Graduate College, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Junhong Li
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Ni Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi, University of Chinese Medicine, Nanning, Guangxi 530023, China; Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China.
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
29
|
Lin H, Zhang X, Wang D, Liu J, Yuan L, Liu J, Wang C, Sun J, Chen J, Li H, Jing S. Anwulignan Ameliorates the Intestinal Ischemia/Reperfusion. J Pharmacol Exp Ther 2021; 378:222-234. [PMID: 34131018 DOI: 10.1124/jpet.121.000587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
Anwulignan is one of the monomer compounds in the lignans from Schisandra sphenanthera In this study, we observed the effect of anwulignan on intestinal ischemia/reperfusion (II/R) injury in male Sprague-Dawley rats and explored the underlying mechanisms. The results showed that pretreatment with oral anwulignan could significantly increase the mesenteric blood microcirculatory flow velocity; relieve the congestion and pathologic injury of jejunum; enhance the autonomic tension of jejunum smooth muscle and its reactivity to acetylcholine; increase the activities of superoxide dismutase, catalase, glutathione S-transferase, and choline acetyltransferase; increase the contents of acetylcholine and glutathione in the serum or jejunal tissue; decrease the activities of myeloperoxidase, protein kinase C, and nicotinamide adenine dinucleotide phosphate oxidase; reduce the contents of malondialdehyde, 8-hydroxy-2-deoxyguanosine, nicotinamide adenine, reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β; increase the expression levels of muscarinic receptor 3, PI3K, phosphorylation protein kinase B, p-GSK3β Ser9, Nrf2, p-Nrf2, heme oxygenase (decycling) 1, and b-cell lymphoma 2 in the jejunal tissue; and decrease the expression levels of p-GSK3β Tyr216, kelch-like ECH-associated protein 1, Bax, and cleaved caspase-3, suggesting that anwulignan can ameliorate II/R-induced jejunal tissue injury in rats and that the mechanism may be related to its activating the PI3K/protein kinase B pathway and then regulating the Nrf2/Anti-oxidative Response Element signaling pathway and the expression of apoptosis-related proteins to play antioxidant and antiapoptotic roles. SIGNIFICANCE STATEMENT: Anwulignan can significantly reduce jejunal tissue injury and the production of inflammatory factors in rats with intestinal ischemia-reperfusion injury, improve the antioxidant capacity, and reduce the apoptosis of jejunal tissue, and it has the effect of significantly improving intestinal ischemia-reperfusion injury in rats, suggesting that anwulignan may be used as a potential drug for the prevention and treatment of intestinal ischemia-reperfusion injury or a resource for the development of health food.
Collapse
Affiliation(s)
- Huijiao Lin
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Dan Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiawei Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Liwei Yuan
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiale Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - He Li
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Shu Jing
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| |
Collapse
|
30
|
Amin N, Du X, Chen S, Ren Q, Hussien AB, Botchway BOA, Hu Z, Fang M. Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway. Expert Opin Ther Targets 2021; 25:597-612. [PMID: 34236288 DOI: 10.1080/14728222.2021.1952986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Reactive oxygen species (ROS)-mediated inflammation plays a crucial role in ischemic brain injury. Therefore, the activation of the nuclear erythroid 2 related protein and heme-oxygenase-1 (Nrf2/HO-1) pathway by thymoquinone (TQ) could ameliorate ischemic brain damage.Areas covered: The photo-thrombotic method was employed to assess the impact of TQ in attenuating ischemic brain damage in C57BL/6 J mice and thy1-YFP-16 transgenic mice. In vitro study of TQ efficiency to attenuate the oxygen-glucose deprivation/reoxygenation (OGD/R) induced cell death by fluorescence-activated cell sorting (FACs) analysis was also analyzed. The protein expression levels of Nrf2/HO-1, inflammatory, and apoptotic were evaluated by immunofluorescence and western blot techniques. Besides, mRNA expression level of inducible nitric oxide synthase (iNOS), proto-oncogene (c-MYC), proto-oncogene (c-FOS), 5-hydroxytryptamine receptors (5-HT), and autophagy-related 5 (Atg5) were evaluated by RT-qPCR. The dendritic spine density of YFP slices was determined by confocal microscope.Results: Our in vivo and in vitro results indicated that TQ significantly mitigates brain damage and motor dysfunction after ischemic stroke. These observations coincided with curtailed cell death, inflammation, oxidative stress, apoptosis, and autophagy. Most importantly, Nrf2/HO-1 signaling pathway activation by TQ was vital in the modulation of the above processes. Lastly, we found TQ to have minimal toxicity in liver tissue.Conclusion: Our study gives credence to TQ as a promising intervention therapy for cerebral ischemia that decreases inflammation, oxidative stress, and neuronal cell death via the Nrf2/HO-1 pathway, along with modulation of apoptotic and autophagic processes.
Collapse
Affiliation(s)
- Nashwa Amin
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxue Du
- Translational Medicine Center, Affiliated Hangzhou First People's Hospital, Zhejiang, China
| | - Shijia Chen
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiannan Ren
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Azhar B Hussien
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China
| | - Marong Fang
- Gastroenterology department, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Role of Polyphenols as Antioxidant Supplementation in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5471347. [PMID: 34257802 PMCID: PMC8253632 DOI: 10.1155/2021/5471347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Stroke is the second most common cause of death globally and the leading cause of death in China. The pathogenesis of cerebral ischemia injury is complex, and oxidative stress plays an important role in the fundamental pathologic progression of cerebral damage in ischemic stroke. Previous studies have preliminarily confirmed that oxidative stress should be a potential therapeutic target and antioxidant as a treatment strategy for ischemic stroke. Emerging experimental studies have demonstrated that polyphenols exert the antioxidant potential to play the neuroprotection role after ischemic stroke. This comprehensive review summarizes antioxidant effects of some polyphenols, which have the most inhibition effects on reactive oxygen species generation and oxidative stress after ischemic stroke.
Collapse
|
32
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
33
|
Salman M, Sharma P, Alam MI, Tabassum H, Parvez S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington's disease like symptoms in rats. Nutr Neurosci 2021; 25:1898-1908. [PMID: 33856270 DOI: 10.1080/1028415x.2021.1913319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naringenin is a powerful antioxidant and anti-inflammatory flavonoid which has been widely used as a therapeutic agent in various toxic models. However, few studies have clearly discussed the neuromodulatory effects of naringenin against different neurodegenerative disorders. AIM We investigated the neuroprotective efficacy of naringenin against 3-nitropropionic acid (3-NP)-induced neurobehavioral, biochemical and histopathological alterations in rats. METHODS Albino Wistar rats were randomly divided into three experimental groups. Group 1, the vehicle administered group, received saline. Group 2 received 3-NP (20 mg/kg body weight, i.p.) for 4 consecutive days. Group 3 received naringenin (50 mg/kg body weight, p.o.) twice daily for a period of 4 days, 30 min before and 6 h after the 3-NP administration. On the 5th day, neurobehavioral experiments were performed to access the behavioral outcomes and the striatum tissue was used for analysis of the monoamine oxidase (MAO) activity and serotonin (5-HT) levels. In addition, astrocytes activation was observed by glial fibrillary acidic protein (GFAP) immunostaining. RESULTS Our results showed that naringenin co-treatment provides neuroprotection against 3-NP-induced neurological disorders. Naringenin also increased the MAO activity and 5-HT levels in the striatum. Moreover, co-treatment with naringenin reduced the expression of GFAP protein in the striatal part and significantly attenuated the neuronal cell death. The findings of the present study suggest that naringenin provides neuroprotection and mitigates neurobehavioral alterations in experimental rats. CONCLUSION The results show that co-treatment with naringenin ameliorates 3-NP-induced HD-like symptoms in rats.
Collapse
Affiliation(s)
- Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Pooja Sharma
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Md Iqbal Alam
- Department of Medical Physiology, HIMSR, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswamy Bhawan, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
34
|
Protective Effects of 6,7,4'-Trihydroxyflavanone on Hypoxia-Induced Neurotoxicity by Enhancement of HO-1 through Nrf2 Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10030341. [PMID: 33668397 PMCID: PMC7996229 DOI: 10.3390/antiox10030341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
Since hypoxia-induced neurotoxicity is one of the major causes of neurodegenerative disorders, including the Alzheimer’s disease, continuous efforts to find a novel antioxidant from natural products are required for public health. 6,7,4′-trihydroxyflavanone (THF), isolated from Dalbergia odorifera, has been shown to inhibit osteoclast formation and have an antibacterial activity. However, no evidence has reported whether THF has a protective role against hypoxia-induced neurotoxicity. In this study, we found that THF is not cytotoxic, but pre-treatment with THF has a cytoprotective effect on CoCl2-induced hypoxia by restoring the expression of anti-apoptotic proteins in SH-SY5y cells. In addition, pre-treatment with THF suppressed CoCl2-induced hypoxia-related genes including HIF1α, p53, VEGF, and GLUT1 at the mRNA and protein levels. Pre-treatment with THF also attenuated the oxidative stress occurred by CoCl2-induced hypoxia by preserving antioxidant proteins, including SOD and CAT. We revealed that treatment with THF promotes HO-1 expression through Nrf2 nuclear translocation. An inhibitor assay using tin protoporphyrin IX (SnPP) confirmed that the enhancement of HO-1 by pre-treatment with THF protects SH-SY5y cells from CoCl2-induced neurotoxicity under hypoxic conditions. Our results demonstrate the advantageous effects of THF against hypoxia-induced neurotoxicity through the HO-1/Nrf2 signaling pathway and provide a therapeutic insight for neurodegenerative disorders.
Collapse
|
35
|
Lin H, Zhang X, Liu J, Yuan L, Liu J, Wang C, Sun J, Chen J, Jing S, Li H. Schisantherin A improves learning and memory abilities partly through regulating the Nrf2/Keap1/ARE signaling pathway in chronic fatigue mice. Exp Ther Med 2021; 21:385. [PMID: 33680107 PMCID: PMC7918174 DOI: 10.3892/etm.2021.9816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic fatigue is frequently accompanied by decreased learning and memory capabilities. Schizantherin A (SCA) is one of the main active monomer components in Schisandra chinensis lignans. In the present study, a chronic fatigue mouse model was established using the exhausted swimming approach to investigate the effects of SCA on learning and memory and its associated mechanism of action. Learning and memory abilities were tested by step through tests and water maze methods. Levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in hippocampal tissue were measured by corresponding assays. The effect of SCA on the expression of kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Bcl2, Bax and cleaved caspase-3 were determined by western blot. The present results showed that SCA can improve the learning and memory capabilities of chronic fatigue mice. SCA was found to increase the activities of SOD and CAT in addition to increasing the levels of GSH but reduced the levels of MDA in hippocampus tissues. Furthermore, SCA treatment downregulated the protein expression levels of Keap1, Bax and cleaved caspase-3 and upregulated the protein expression levels of Nrf2, HO1 and Bcl2 in the hippocampus. These results suggested that modulations in the Nrf2-Keap1-antioxidant response element pathway, anti-oxidative and anti-apoptosis effects are the causes underlying the improvements from SCA treatment on the learning and memory abilities of chronic fatigue mice.
Collapse
Affiliation(s)
- Huijiao Lin
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Jiawei Liu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Liwei Yuan
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Jiale Liu
- Neurology Department, Jilin City Central Hospital, Jilin, Jilin 132011, P.R. China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Shu Jing
- General Surgery Department, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin 132013, P.R. China
| |
Collapse
|
36
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
37
|
Naringenin reduces early brain injury in subarachnoid hemorrhage (SAH) mice: The role of the AMPK/SIRT3 signaling pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
38
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
39
|
Gugliandolo A, Bramanti P, Mazzon E. Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke? Int J Mol Sci 2020; 21:ijms21144875. [PMID: 32664226 PMCID: PMC7402299 DOI: 10.3390/ijms21144875] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke represents one of the main causes of disability and death worldwide. The pathological subtypes of stroke are ischemic stroke, the most frequent, and hemorrhagic stroke. Nrf2 is a transcription factor that regulates redox homeostasis. In stress conditions, Nrf2 translocates inside the nucleus and induces the transcription of enzymes involved in counteracting oxidative stress, endobiotic and xenobiotic metabolism, regulators of inflammation, and others. Different natural compounds, including food and plant-derived components, were shown to be able to activate Nrf2, mediating an antioxidant response. Some of these compounds were tested in stroke experimental models showing several beneficial actions. In this review, we focused on the studies that evidenced the positive effects of natural bioactive compounds in stroke experimental models through the activation of Nrf2 pathway. Interestingly, different natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response associated with the beneficial effects against stroke. According to several studies, the combination of different bioactive compounds can lead to a better neuroprotection. In conclusion, natural bioactive compounds may represent new therapeutic strategies against stroke.
Collapse
|
40
|
Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020; 25:molecules25133060. [PMID: 32635481 PMCID: PMC7412508 DOI: 10.3390/molecules25133060] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Collapse
|
41
|
Regulation of the Mitochondrial BK Ca Channel by the Citrus Flavonoid Naringenin as a Potential Means of Preventing Cell Damage. Molecules 2020; 25:molecules25133010. [PMID: 32630135 PMCID: PMC7412269 DOI: 10.3390/molecules25133010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
Naringenin, a flavanone obtained from citrus fruits and present in many traditional Chinese herbal medicines, has been shown to have various beneficial effects on cells both in vitro and in vivo. Although the antioxidant activity of naringenin has long been believed to be crucial for its effects on cells, mitochondrial pathways (including mitochondrial ion channels) are emerging as potential targets for the specific pharmacological action of naringenin in cardioprotective strategies. In the present study, we describe interactions between the mitochondrial large-conductance calcium-regulated potassium channel (mitoBKCa channel) and naringenin. Using the patch-clamp method, we showed that 10 µM naringenin activated the mitoBKCa channel present in endothelial cells. In the presence of 30 µM Ca2+, the increase in the mitoBKCa channel probability of opening from approximately 0.25 to 0.50 at −40 mV was observed. In addition, regulation of the mitoBKCa channel by naringenin was dependent on the concentration of calcium ions. To confirm our data, physiological studies on the mitochondria were performed. An increase in oxygen consumption and a decrease in membrane potential was observed after naringenin treatment. In addition, contributions of the mitoBKCa channel to apoptosis and necrosis were investigated. Naringenin protected cells against damage induced by tumor necrosis factor α (TNF-α) in combination with cycloheximide. In this study, we demonstrated that the flavonoid naringenin can activate the mitoBKCa channel present in the inner mitochondrial membrane of endothelial cells. Our studies describing the regulation of the mitoBKCa channel by this natural, plant-derived substance may help to elucidate flavonoid-induced cytoprotective mechanisms.
Collapse
|
42
|
Short-term exposure to air pollution and occurrence of emergency stroke in Chongqing, China. Int Arch Occup Environ Health 2020; 94:69-76. [PMID: 32561974 DOI: 10.1007/s00420-020-01557-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study aimed to study the relationship between air pollution and stroke (especially emergency stroke) in different regions and determine which air pollutant is the most significantly associated with stroke. METHODS The number of patients with emergency stroke, air pollutant data and related meteorological indicators were collected from December 2013 to May 2018 for large comprehensive hospitals in Chongqing. The generalized additive model was used to analyse the relationship between air pollution and emergency stroke. RESULTS After analysis and adjusting for meteorological indicators and day-of-the-week effects, in the one-pollutant model, every 10 μg/m3 increase in ozone(O3) was associated with a 2.482% (95% CI 1.044%, 3.919%) change in emergency strokes within lag0. For males, every 10 μg/m3 increase of O3 contributed to a 0.77% percent greater change compared with females. For the group younger than 60 years, we observed a 1.14% increase in risk with every 10 μg/m3 increase in O3. The group with pre-existing hypertension had a 0.26% higher risk than the group with no pre-existing hypertension with every 10 μg/m3 increase in O3. In two-pollutant model, when O3 was combined with a 10 μg/m3 increase of NO2, it increased the most significant risk of emergency stroke by 0.22%. CONCLUSION These findings suggest that short-term exposure to O3 within 0 days is associated with emergency outpatient strokes, and younger people (age < 60 years) males and people with hypertension are more sensitive than older people, females and people without pre-existing hypertension.
Collapse
|
43
|
Liu C, Xu X, Huang C, Zhang L, Shang D, Cai W, Wang Y. Circ_002664/miR-182-5p/Herpud1 pathway importantly contributes to OGD/R-induced neuronal cell apoptosis. Mol Cell Probes 2020; 53:101585. [PMID: 32376213 DOI: 10.1016/j.mcp.2020.101585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Apoptosis is a prominent form of neuron death in cerebral ischemia-reperfusion-induced injury. Accompanied with the pathogenesis, Circ_002664 is upregulated. However, its role in the neuron apoptosis and the underlying mechanisms are unknown. METHODS In this study, HT22 cells were treated with oxygen glucose deprivation and reoxygenation (OGD/R). The cell viability, apoptosis, proliferation and mitochondrial potential were examined. The expressions of interested genes, Circ_002664, miR-182-5p and Herpud1, were measured. The roles of these genes in OGD/R-induced cell injury were investigated by knockdown, overexpression alone or in combination. Additionally, the interactions between Circ_002664, miR-182-5p and Herpud1 were validated by luciferase report assay. The levels of MAP2, CHOP, Cytochrome C (CYC) and cleaved caspase-3 were determined. RESULTS OGD/R treatment significantly increased cell apoptosis, decreased cell proliferation and mitochondrial potential, as well as increased Circ_002664 and Herpud1 expressions, and decreased miR-182-5p level. Circ_002664 knockdown markedly inhibited the effects by OGD/R on cell survival and altered expression of miR-182-5p and Herpud1. MiR-182-5p was observed sponged by Circ_002664 and negatively mediated its effect above mentioned, and this was by directly targeting Herpud1. Additionally, it was observed that CHOP expressions were regulated by Circ_002664/miR-182-5p/Herpud1 pathway, and in turn mediated its regulation in CYC and cleaved caspase-3. CONCLUSIONS In summary, our data showed that the Circ_002664 importantly contributed to neuronal cell apoptosis induced by OGD/R treatment, and this might be achieved by directly targeting miR-182-5p/Herpud1 pathway.
Collapse
Affiliation(s)
- Chao Liu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China.
| | - Xiaohui Xu
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China
| | - Chao Huang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China
| | - Li Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China
| | - Dandan Shang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China
| | - Weiwei Cai
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China
| | - Yupeng Wang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471000, China
| |
Collapse
|
44
|
Zhang X, Jing S, Lin H, Sun W, Jiang W, Yu C, Sun J, Wang C, Chen J, Li H. Anti-fatigue effect of anwulignan via the NRF2 and PGC-1α signaling pathway in mice. Food Funct 2020; 10:7755-7766. [PMID: 31696200 DOI: 10.1039/c9fo01182j] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To examine the anti-fatigue function of anwulignan from Schisandra and its underlying mechanism. METHODS After an excessive fatigue mouse model was created, anwulignan was administered to the mice, and its effect on exercise tolerance was studied by the weight-bearing swimming test, rotarod test, grip strength test, and tail suspension test. The biochemical indicators closely related to fatigue, including blood urea nitrogen (BUN), lactic acid (LD), lactate dehydrogenase (LDH), and creatine kinase (CK) in the serum; liver glycogen (LG) in the liver tissue; muscle glycogen (MG); inorganic phosphate (Pi) and Annexin V in the gastrocnemius; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities; malondialdehyde (MDA), catalase (CAT), and thiobarbituric acid reactive substances (TBARS); and the 8-hydroxy-2-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS) content in both serum and the gastrocnemius were detected. Morphological changes were also observed. The anti-fatigue-related proteins of the NRF2/ARE, Bcl2, and PGC-1α pathways in the gastrocnemius of the mice were detected by western blot. RESULTS Anwulignan significantly increased the exercise tolerance by decreasing BUN, LD, LDH, CK, Pi, MDA, TBARS, 8-OHdG, ROS, and Annexin V levels and increasing LG, MG, SOD, CAT, and GSH-Px levels, significantly upregulated the expression of NRF2 and Bcl2 proteins, which are anti-oxidation and anti-apoptosis regulators, and also activated the p38MAPK-PGC-1α pathway. CONCLUSION Anwulignan can increase exercise tolerance and relieve fatigue in an excessive fatigue mouse model. The underlying mechanism may be through its regulatory effect on the NRF2 and PGC-1α signaling pathway. This study will provide scientific data for anwulignan to be developed as a novel and efficient component in anti-oxidant or anti-fatigue health food.
Collapse
Affiliation(s)
- Xinyun Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li X, Gao J, Yu Z, Jiang W, Sun W, Yu C, Sun J, Wang C, Chen J, Jing S, Li H. Regulatory Effect of Anwulignan on the Immune Function Through Its Antioxidation and Anti-Apoptosis in D-Galactose-Induced Aging Mice. Clin Interv Aging 2020; 15:97-110. [PMID: 32099340 PMCID: PMC6996228 DOI: 10.2147/cia.s237601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aging is a spontaneous and inevitable phenomenon of biology, which can lead to the gradual deterioration of tissues and organs. One of the age-related deterioration processes is immunosenescence, which leads to changes in the function of immune systems, including immune cells and associated cytokines. A proper modulation of immune responses can improve the age-related immunosenescence process and then reach healthy aging. Schisandra sphenanthera, a traditional Chinese medicine, has been used as both a medicine and a nutritional supplement for thousands of years. Anwulignan, a monomer compound of Schisandra sphenanthera lignans, has been reported to possess an immunomodulatory effect. Therefore, this study was designed to further explore whether Anwulignan could also modulate the immune functions in aging model mice and the underlying mechanism. METHODS D-galactose (D-gal) is often used as an inducer of immunosenescence in animals. In this study, a mice model was created by subcutaneous D-gal (220 mg kg-1) for successive 42 days. Then, the blood and spleen tissue samples were taken for the analysis and observation of cytokine levels, immunoglobulin levels, leukocyte numbers, and the phagocytic activity of macrophages, as well as the histological changes, the proliferation ability of lymphocytes, and the biochemical parameters in the spleen tissue. RESULTS Anwulignan significantly increased the serum levels of IL-2, IL-4, IFN-γ, lgG, lgM, and lgA, decreased the content of TNF-α and IL-6 in the aging mice, and increased the blood leukocyte number, the phagocytic activity, the lymphocyte proliferation, and the spleen index in vitro. Anwulignan also significantly increased the activities of SOD and GSH-Px, decreased the contents of MDA and 8-OHdG in the spleen tissue, up-regulated the expressions of Nrf2, HO-1, and Bcl2, down-regulated the expressions of Keap1, Caspase-3, and Bax in the spleen cells, and reduced the apoptosis of spleen lymphocytes. CONCLUSION Anwulignan can restore the immune function that is declined in D-gal-induced aging mice partly related to its antioxidant capacity by activating the Nrf2/ARE pathway and downstream enzymes, as well as its anti-apoptotic effect by regulating Caspase-3 and the ratio of Bcl2 to Bax in the spleen.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jiaqi Gao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Zepeng Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Weihai Jiang
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - Wei Sun
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - Chunyan Yu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| | - Shu Jing
- Affiliated Hospital of Beihua University, Jilin, Jilin132011, People’s Republic of China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin132013, People’s Republic of China
| |
Collapse
|
46
|
Ahmad N, Ahmad R, Ahmad FJ, Ahmad W, Alam MA, Amir M, Ali A. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J Biol Sci 2020; 27:500-517. [PMID: 31889876 PMCID: PMC6933235 DOI: 10.1016/j.sjbs.2019.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, the aim is to improve the bioavailability of Naringenin (NRG) in brain and to establish the highest remedial benefit from a novel anti-ischemic medicine i.e. NRG. METHODS A novel Naringenin-loaded-nanoemulsion (NE)-(in situ)-gel (i.e. thermoresponsive), was formulated with the help of Poloxamer-407 (20.0% w/v). Chitosan (CS, 0.50% w/v) was used to introduce the mucoadhesive property of NE-(in situ)-gel and finally called as NRG-NE-gel + 0.50%CS. A novel UHPLC-ESI-Q-TOF-MS/MS-method was optimized and used for NRG-NE-gel + 0.50%CS to quantify the Pharmacokinetic-(PK)-parameters in plasma as well as brain and to evaluate the cerebral ischemic parameters after MCAO i.e. locomotor activity, grip strength, antioxidant activity, and quantity the infarction volume in neurons with the safety/toxicity of NRG-NE-gel + 0.50%CS after i.n. administration in the rats. RESULTS The mucoadhesive potency and gelling temperature of NRG-NE-gel + 0.50%CS were observed 6245.38 dynes/cm2 and 28.3 ± 1.0 °C, respectively. Poloxamer-407 based free micelles size was observed 98.31 ± 1.17 nm with PDI (0.386 ± 0.021). The pH and viscosity of NRG-NE-gel + 0.50%CS were found to be 6.0 ± 0.20 and 2447 ± 24cp (at 35.0 ± 1.0 °C temperature), respectively. An elution time and m/z NRG were observed 1.78 min and 270.97/150.96 with 1.22 min and m/z of 301.01/150.98 for Quercetin (IS) respectively. Inter and intra %precision and %accuracy was validated 1.01-3.37% and 95.10-99.30% with a linear dynamic range (1.00 to 2000.00 ng/ml). AUC0-24 of plasma & brain were observed 995.60 ± 24.59 and 5600.99 ± 144.92 (ng min/ml g) in the rats after the intranasal (i.n.) administration of NRG-NE-gel + 0.50%CS. No toxicological response were not found in terms of mortalities, any-change morphologically i.e. in the microstructure of brain as well as nasal mucosa tissues, and also not found any visual signs in terms of inflammatory or necrosis. CONCLUSION Intranasally administered NRG-NE-gel + 0.50%CS enhanced the bioavailability of Naringenin in the brain. In the cerebral ischemic rats, significantly improved the neurobehavioral activity (locomotor & grip strength) followed by antioxidant activity as well as infarction volume. Finally, the toxicity studies carried out and established the safe nature of optimized-NRG-NE-gel + 0.50%CS.
Collapse
Key Words
- ANOVA., analysis of variance
- AUC, area under curve
- BA, bioavailability
- CLSM, confocal laser scanning microscopy
- CS, chitosan
- Cerebral ischemia
- Cmax, maximum plasma concentration
- ESI, electrospray ionization
- HQC, high quality control
- Kel, elimination rate constant
- LLE, liquid–liquid extraction
- LLOQ QC, lower limit of quantification for quality control
- LLOQ, lower limit of quantification
- LOD, lower limit of detection
- LOQ, lower limit of quantitation
- LQC, low quality control
- MCAO, middle cerebral artery occlusion
- MCAO-oxidative stress
- MQC, middle quality control
- Mucoadhesive-chitosan-based-nanoemulsion-gel
- NE, nanoemulsion
- NRG, naringenin
- Naringenin
- PDI, polydispersity index
- PK, pharmacokinetic
- Q-TOF, quadrupole time of flight
- SEM, scanning electron microscope
- TBARS, thiobarbituric acid reactive substances
- TEM, transmission electron microscope
- Tmax, time to Cmax
- UHPLC-MS/MS, ultra high performance liquid chromatography mass spectroscopy and mass spectroscopy
- UHPLC-MS/MS-pharmacokinetic
- t½, half-life
Collapse
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Wasim Ahmad
- Department of Pharmacy, Mohammad Al-Mana College for Medical Sciences, Safaa, Dammam-34222, Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida 201310, India
| | - Mohd Amir
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abuzer Ali
- College of Pharmacy, Taif University, Taif 21974, Saudi Arabia
| |
Collapse
|
47
|
Wang J, Wan D, Wan G, Wang J, Zhang J, Zhu H. Catalpol induces cell activity to promote axonal regeneration via the PI3K/AKT/mTOR pathway in vivo and in vitro stroke model. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:756. [PMID: 32042772 DOI: 10.21037/atm.2019.11.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background To investigate the role and mechanism of catalpol on neuronal cell activity to promote axonal regeneration via PI3K/AKT/mTOR pathway after stroke. Methods In vivo the effect of catalpol (2.5, 5, 7.5 mg/kg; i.p) or vehicle administered 24 h after stroke and then daily for 7 days on behavior, Map-2+/p-S6+ and Map-2+/GAP-43+ immunofluorescence were assessed in a rat model of stroke. Then in vitro, an oxygen-glucose deprivation (OGD/R) model was established to observe the effect of catalpol (0.1, 1, 10 and 100 µg·mL-1) on cultural neurons survive rate, neuronal cell activity and axon growth. Moreover, rapamycin (Rapa) was used to inhibit the mTOR pathway to observe the catalpol mechanism on neuronal cell activity to promote axonal growth, and the proteins related with PI3K/AKT/mTOR pathway were detected by Western blot assay. Results Repeated treatments with catalpol improved neurological score and significantly enhanced neuronal cell activity, then promote axonal regeneration after stroke. While in vitro, catalpol also increased the survive rate and axonal growth of the neurons. Catalpol can reversed the Rapa inhibited effects on neurons' survive and axon extending. Catalpol can also reversed proteins reduced by Rapa related with PI3K/AKT/mTOR pathway. Conclusions These results suggested that catalpol might contribute to internal neuronal cell activity and axonal regeneration by regulating PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jinghuan Wang
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
| | - Dong Wan
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guoran Wan
- Department of Clinic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianghong Wang
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junhui Zhang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
48
|
The Nrf2/HO-1 Axis as Targets for Flavanones: Neuroprotection by Pinocembrin, Naringenin, and Eriodictyol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4724920. [PMID: 31814878 PMCID: PMC6878820 DOI: 10.1155/2019/4724920] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Flavanones are a group of flavonoids that derive from their immediate chalcone precursors through the action of chalcone isomerase enzymes. The Aromatic A and B rings, C4-keto group, and the 15-carbon flavonoid skeleton are all evident in flavanones, but a notable absence of C2-C3 double bond and a lack of oxygenation at C-3 position of the C-ring makes them distinctively different from other groups such as flavonols (e.g., quercetin). On the basis of oxygenation level in the B ring, flavanones can vary from each other as exemplified by pinocembrin (no oxygenation), naringenin (4′-hydroxyl), or eriodictyol (3′,4′-dihydroxyl substitution). These groups are generally weaker free radical scavengers as compared to quercetin and derivatives though eriodictyol has a better free radical scavenging profile within the group due to the presence of the catechol functional moiety. In this communication, their antioxidant potential through the induction of antioxidant defenses is scrutinized. These compounds as exemplified by pinocembrin could induce the nuclear factor erythroid 2-related factor 2- (Nrf2-) heme oxygenase-1 (HO-1) axis leading to amelioration of oxidative stress in cellular and animal models. Their neuroprotective effect through such mechanism is discussed.
Collapse
|
49
|
Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH, Chen JT. On the Neuroprotective Effects of Naringenin: Pharmacological Targets, Signaling Pathways, Molecular Mechanisms, and Clinical Perspective. Biomolecules 2019; 9:E690. [PMID: 31684142 PMCID: PMC6920995 DOI: 10.3390/biom9110690] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
As a group of progressive, chronic, and disabling disorders, neurodegenerative diseases (NDs) affect millions of people worldwide, and are on the rise. NDs are known as the gradual loss of neurons; however, their pathophysiological mechanisms have not been precisely revealed. Due to the complex pathophysiological mechanisms behind the neurodegeneration, investigating effective and multi-target treatments has remained a clinical challenge. Besides, appropriate neuroprotective agents are still lacking, which raises the need for new therapeutic agents. In recent years, several reports have introduced naturally-derived compounds as promising alternative treatments for NDs. Among natural entities, flavonoids are multi-target alternatives affecting different pathogenesis mechanisms in neurodegeneration. Naringenin is a natural flavonoid possessing neuroprotective activities. Increasing evidence has attained special attention on the variety of therapeutic targets along with complex signaling pathways for naringenin, which suggest its possible therapeutic applications in several NDs. Here, in this review, the neuroprotective effects of naringenin, as well as its related pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective, are described. Moreover, the need to develop novel naringenin delivery systems is also discussed to solve its widespread pharmacokinetic limitation.
Collapse
Affiliation(s)
- Zeinab Nouri
- Student's Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran.
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Fardous F El-Senduny
- Biochemistry division, Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol 7383198616, Iran.
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, Brazil.
| | - Ghada E Abd-ElGhani
- Department of Chemistry, Faculty of Science, University of Mansoura, 35516 Mansoura, Egypt.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan.
| |
Collapse
|
50
|
Ren L, Zheng X, Liu J, Li W, Fu W, Tang Q, Wang J, Du G. Network pharmacology study of traditional Chinese medicines for stroke treatment and effective constituents screening. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112044. [PMID: 31255722 DOI: 10.1016/j.jep.2019.112044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the most frequent causes of death and disability. So far there are no effective preventives or treatments. The therapeutic system of traditional Chinese medicines (TCMs) has been in use for several thousand years and still affords a valuable resource for today's clinicians in preserving health. MATERIALS AND METHODS We had collected the Chinese medicinal formulae and then commonly used single herbs or drug combinations were analyzed through data mining. The ingredients from the top 30 frequently used herbs which have good druggability and blood-brain barrier permeability were collected as a natural product library. Targets of the related ingredients were predicted using various databases and analyzed by GO and KEGG pathway mapping. The potential stroke targets were validated in the market or from clinical trials, and used to establish molecular docking, HipHop and SBP models to screen new compounds for multi-target activity. Lastly, in vitro experiments with models for oxygen and glucose deprivation and reperfusion (OGDR) were conducted to test the activities of compounds identified by screening. RESULTS A total of 1679 Chinese medicinal formulas were selected and their prescription rules were analyzed. 4277 compounds were from the top 30 herbs and 3560 molecules were filtered to build the natural product library. The ingredient-target network, target-disease network and target-target interaction network were established to explain the characteristics and mechanisms of the TCMs. Thirty-one molecules were selected to have multi-target activity on targets of stroke via virtual screening. Five of these had already been reported to have therapeutic effects on stroke. Three of the eight compounds which have been examined showed protective effects on OGDR model. CONCLUSIONS This paper details a novel strategy for exploring the characteristics and mechanisms of herbal medicines from a systematic standpoint in an attempt to identify those affecting specific target pathways related to stroke. Using this methodology on our natural products library, we found a number of lead candidates with multi-target activity.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Qin Tang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|