1
|
Tariq MH, Bhatti R, Ali NF, Ashfaq UA, Shahid F, Almatroudi A, Khurshid M. Rational design of chimeric Multiepitope Based Vaccine (MEBV) against human T-cell lymphotropic virus type 1: An integrated vaccine informatics and molecular docking based approach. PLoS One 2021; 16:e0258443. [PMID: 34705829 PMCID: PMC8550388 DOI: 10.1371/journal.pone.0258443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is an infectious virus that has been linked to adult T cell leukemia /lymphoma, aggressive CD4-T cell malignancy and many other immune-related medical illnesses. So far, no effective vaccine is known to combat HTLV-1, hence, the current research work was performed to design a potential multi-epitope-based subunit vaccine (MEBV) by adopting the latest methodology of reverse vaccinology. Briefly, three highly antigenic proteins (Glycoprotein, Accessory protein, and Tax protein) with no or minimal (<37%) similarity with human proteome were sorted out and potential B- and T-cell epitopes were forecasted from them. Highly antigenic, immunogenic, non-toxic, non-allergenic and overlapping epitopes were short-listed for vaccine development. The chosen T-cell epitopes displayed a strong binding affinity with their corresponding Human Leukocyte Antigen alleles and demonstrated 95.8% coverage of the world's population. Finally, nine Cytotoxic T Lymphocytes, six Helper T Lymphocytes and five Linear B Lymphocytes epitopes, joint through linkers and adjuvant, were exploited to design the final MEBV construct, comprising of 382 amino acids. The developed MEBV structure showed highly antigenic properties while being non-toxic, soluble, non-allergenic, and stable in nature. Moreover, disulphide engineering further enhanced the stability of the final vaccine protein. Additionally, Molecular docking analysis and Molecular Dynamics (MD) simulations confirmed the strong association between MEBV construct and human pathogenic immune receptor TLR-3. Repeated-exposure simulations and Immune simulations ensured the rapid antigen clearance and higher levels of cell-mediated immunity, respectively. Furthermore, MEBV codon optimization and in-silico cloning was carried out to confirm its augmented expression. Results of our experiments suggested that the proposed MEBV could be a potential immunogenic against HTLV-1; nevertheless, additional wet lab experiments are needed to elucidate our conclusion.
Collapse
Affiliation(s)
- Muhammad Hamza Tariq
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Rashid Bhatti
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nida Fatima Ali
- Atta ur Rehman School of Applied Bioscience, National University of Science and Technology, Islamabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
2
|
Aldakheel FM, Abrar A, Munir S, Aslam S, Allemailem KS, Khurshid M, Ashfaq UA. Proteome-Wide Mapping and Reverse Vaccinology Approaches to Design a Multi-Epitope Vaccine against Clostridium perfringens. Vaccines (Basel) 2021; 9:1079. [PMID: 34696187 PMCID: PMC8539331 DOI: 10.3390/vaccines9101079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
C. perfringens is a highly versatile bacteria of livestock and humans, causing enteritis (a common food-borne illness in humans), enterotoxaemia (in which toxins are formed in the intestine which damage and destroy organs, i.e., the brain), and gangrene (wound infection). There is no particular cure for the toxins of C. perfringens. Supportive care (medical control of pain, intravenous fluids) is the standard treatment. Therefore, a multiple-epitope vaccine (MEV) should be designed to battle against C. perfringens infection. Furthermore, the main objective of this in silico investigation is to design an MEV that targets C. perfringens. For this purpose, we selected the top three proteins that were highly antigenic using immuno-informatics approaches, including molecular docking. B-cells, IFN-gamma, and T cells for target proteins were predicted and the most conserved epitopes were selected for further investigation. For the development of the final MEV, epitopes of LBL5, CTL17, and HTL13 were linked to GPGPG, AAY, and KK linkers. The vaccine N-end was joined to an adjuvant through an EAAK linker to improve immunogenicity. After the attachment of linkers and adjuvants, the final construct was 415 amino acids. B-cell and IFN-gamma epitopes demonstrate that the model structure is enhanced for humoral and cellular immune responses. To validate the immunogenicity and safety of the final construct, various physicochemical properties, and other properties such as antigenicity and non-allergens, were evaluated. Furthermore, molecular docking was carried out for verification of vaccine compatibility with the receptor, evaluated in silico. Also, in silico cloning was employed for the verification of the proper expression and credibility of the construct.
Collapse
Affiliation(s)
- Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Amna Abrar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| | - Samman Munir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| | - Sehar Aslam
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| |
Collapse
|
3
|
Verdecia M, Kokai-Kun JF, Kibbey M, Acharya S, Venema J, Atouf F. COVID-19 vaccine platforms: Delivering on a promise? Hum Vaccin Immunother 2021; 17:2873-2893. [PMID: 34033528 PMCID: PMC8381795 DOI: 10.1080/21645515.2021.1911204] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The emergence of the novel SARS-CoV-2 and COVID-19 has brought into sharp focus the need for a vaccine to prevent this disease. Vaccines have saved millions of lives since their introduction to the public over 200 years ago. The potential for vaccination reached new heights in the mid-20th century with the development of technologies that expanded the ability to create novel vaccines. Since then, there has been continued technological advancement in vaccine development. The resulting platforms provide the promise for solutions for many infectious diseases, including those that have been with us for decades as well as those just now emerging. Each vaccine platform represents a different technology with a unique set of advantages and challenges, especially when considering manufacturing. Therefore, it is essential to understand each platform as a separate product and process with its specific quality considerations. This review outlines the relevant platforms for developing a vaccine for SARS-CoV-2 and discusses the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Mark Verdecia
- United States Pharmacopeial Convention, Rockville, MD, USA
| | | | - Maura Kibbey
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Sarita Acharya
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Jaap Venema
- United States Pharmacopeial Convention, Rockville, MD, USA
| | - Fouad Atouf
- United States Pharmacopeial Convention, Rockville, MD, USA
| |
Collapse
|
4
|
Immunoinformatics Approach to Design Multi-Epitope- Subunit Vaccine against Bovine Ephemeral Fever Disease. Vaccines (Basel) 2021; 9:vaccines9080925. [PMID: 34452050 PMCID: PMC8402647 DOI: 10.3390/vaccines9080925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Bovine ephemeral fever virus (BEFV) is an overlooked pathogen, recently gaining widespread attention owing to its associated enormous economic impacts affecting the global livestock industries. High endemicity with rapid spread and morbidity greatly impacts bovine species, demanding adequate attention towards BEFV prophylaxis. Currently, a few suboptimum vaccines are prevailing, but were confined to local strains with limited protection. Therefore, we designed a highly efficacious multi-epitope vaccine candidate targeted against the geographically distributed BEFV population. By utilizing immunoinformatics technology, all structural proteins were targeted for B- and T-cell epitope prediction against the entire allele population of BoLA molecules. Prioritized epitopes were adjoined by linkers and adjuvants to effectively induce both cellular and humoral immune responses in bovine. Subsequently, the in silico construct was characterized for its physicochemical parameters, high immunogenicity, least allergenicity, and non-toxicity. The 3D modeling, refinement, and validation of ligand (vaccine construct) and receptor (bovine TLR7) then followed molecular docking and molecular dynamic simulation to validate their stable interactions. Moreover, in silico cloning of codon-optimized vaccine construct in the prokaryotic expression vector (pET28a) was explored. This is the first time HTL epitopes have been predicted using bovine datasets. We anticipate that the designed construct could be an effective prophylactic remedy for the BEF disease that may pave the way for future laboratory experiments.
Collapse
|
5
|
Kim YG, Lee Y, Kim JH, Chang SY, Jung JW, Chung WJ, Jin HE. Self-Assembled Multi-Epitope Peptide Amphiphiles Enhance the Immune Response against Enterovirus 71. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2342. [PMID: 33255791 PMCID: PMC7760352 DOI: 10.3390/nano10122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Subunit vaccines consist of non-genetic material, such as peptides or proteins. They are considered safe because they have fewer side effects; however, they have low immunogenicity when used alone. We aimed to enhance the immune response of peptide-based vaccines by using self-assembled multimeric peptide amphiphiles (PAs). We designed two epitope PAs by conjugating epitope peptides from Enterovirus 71 (EV71) virus particle (VP) 1 and VP3 capsid proteins with different fatty acid chain lengths (VP1PA and VP3PA). These PAs self-assembled into supramolecular structures at a physiological pH, and the resulting structures were characterized using atomic force microscopy. Multi-epitope PAs (m-PAs) consisted of a 1:1 mixture of VP1PA and VP3PA solutions. To evaluate immunogenicity, m-PA constructs were injected with adjuvant subcutaneously into female Balb/c mice. Levels of antigen-specific immunoglobulin G (IgG) and IgG1 in m-PA-injected mice serum samples were analyzed using ELISA and Western blotting. Additionally, cytokine production stimulated by each antigen was measured in splenocytes cultured from immunized mice groups. We found that m-PA showed improved humoral and cellular immune responses compared to the control and peptide groups. The sera from m-PA immunized mice group could neutralize EV71 infection and protect host cells. Thus, self-assembled m-PAs can promote a protective immune response and can be developed as a potential platform technology to produce peptide vaccines against infectious viral diseases.
Collapse
Affiliation(s)
- Yu-Gyeong Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Yunsu Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Joo Hee Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
| | - Jong-Wha Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyo-Eon Jin
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.-G.K.); (Y.L.); (J.H.K.); (S.-Y.C.)
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Korea
| |
Collapse
|
6
|
Akhand MRN, Azim KF, Hoque SF, Moli MA, Joy BD, Akter H, Afif IK, Ahmed N, Hasan M. Genome based evolutionary lineage of SARS-CoV-2 towards the development of novel chimeric vaccine. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104517. [PMID: 32882432 PMCID: PMC7462568 DOI: 10.1016/j.meegid.2020.104517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
The present study aimed to predict a novel chimeric vaccine by simultaneously targeting four major structural proteins via the establishment of ancestral relationship among different strains of coronaviruses. Conserved regions from the homologous protein sets of spike glycoprotein, membrane protein, envelope protein and nucleocapsid protein were identified through multiple sequence alignment. The phylogeny analyses of whole genome stated that four proteins reflected the close ancestral relation of SARS-CoV-2 to SARS-COV-1 and bat coronavirus. Numerous immunogenic epitopes (both T cell and B cell) were generated from the common fragments which were further ranked on the basis of antigenicity, transmembrane topology, conservancy level, toxicity and allergenicity pattern and population coverage analysis. Top putative epitopes were combined with appropriate adjuvants and linkers to construct a novel multiepitope subunit vaccine against COVID-19. The designed constructs were characterized based on physicochemical properties, allergenicity, antigenicity and solubility which revealed the superiority of construct V3 in terms safety and efficacy. Essential molecular dynamics and normal mode analysis confirmed minimal deformability of the refined model at molecular level. In addition, disulfide engineering was investigated to accelerate the stability of the protein. Molecular docking study ensured high binding affinity between construct V3 and HLA cells, as well as with different host receptors. Microbial expression and translational efficacy of the constructs were checked using pET28a(+) vector of E. coli strain K12. However, the in vivo and in vitro validation of suggested vaccine molecule might be ensured with wet lab trials using model animals for the implementation of the presented data.
Collapse
Affiliation(s)
- Mst Rubaiat Nazneen Akhand
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh,Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Syeda Farjana Hoque
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahmuda Akther Moli
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Bijit Das Joy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh,Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Hafsa Akter
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ibrahim Khalil Afif
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| |
Collapse
|
7
|
Tahir Ul Qamar M, Shahid F, Aslam S, Ashfaq UA, Aslam S, Fatima I, Fareed MM, Zohaib A, Chen LL. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect Dis Poverty 2020; 9:132. [PMID: 32938504 PMCID: PMC7492789 DOI: 10.1186/s40249-020-00752-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) linked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause severe illness and life-threatening pneumonia in humans. The current COVID-19 pandemic demands an effective vaccine to acquire protection against the infection. Therefore, the present study was aimed to design a multiepitope-based subunit vaccine (MESV) against COVID-19. METHODS Structural proteins (Surface glycoprotein, Envelope protein, and Membrane glycoprotein) of SARS-CoV-2 are responsible for its prime functions. Sequences of proteins were downloaded from GenBank and several immunoinformatics coupled with computational approaches were employed to forecast B- and T- cell epitopes from the SARS-CoV-2 highly antigenic structural proteins to design an effective MESV. RESULTS Predicted epitopes suggested high antigenicity, conserveness, substantial interactions with the human leukocyte antigen (HLA) binding alleles, and collective global population coverage of 88.40%. Taken together, 276 amino acids long MESV was designed by connecting 3 cytotoxic T lymphocytes (CTL), 6 helper T lymphocyte (HTL) and 4 B-cell epitopes with suitable adjuvant and linkers. The MESV construct was non-allergenic, stable, and highly antigenic. Molecular docking showed a stable and high binding affinity of MESV with human pathogenic toll-like receptors-3 (TLR3). Furthermore, in silico immune simulation revealed significant immunogenic response of MESV. Finally, MEV codons were optimized for its in silico cloning into the Escherichia coli K-12 system, to ensure its increased expression. CONCLUSION The MESV developed in this study is capable of generating immune response against COVID-19. Therefore, if designed MESV further investigated experimentally, it would be an effective vaccine candidate against SARS-CoV-2 to control and prevent COVID-19.
Collapse
MESH Headings
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine/immunology
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- SARS-CoV-2
- Sequence Analysis, Protein
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Toll-Like Receptor 3/chemistry
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/immunology
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccinology/methods
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | | | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan.
| | - Sidra Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Mazhar Fareed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Ali Zohaib
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, P. R. China.
| |
Collapse
|
8
|
Bhuiyan MA, Quayum ST, Ahammad F, Alam R, Samad A, Nain Z. Discovery of potential immune epitopes and peptide vaccine design - a prophylactic strategy against Rift Valley fever virus. F1000Res 2020. [DOI: 10.12688/f1000research.24975.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Rift Valley fever virus (RVFV) is an emerging arbovirus infecting both animals and humans. Any form of direct contact with body fluids, blood or tissue of infected animals is the mode of transmission of this pathogen. Despite being an emerging virus, no proper vaccinations are yet available for the public. Our objective is to compose a multiepitope vaccine utilizing immuno-bioinformatics as a strategy against RVFV. Methods: To identify immunodominant epitopes and design a potent vaccine candidate, we applied a series of immunoinformatic approaches with molecular dynamics and immune response simulation frameworks. Results: A glycoprotein with the highest antigenicity was selected and employed for determining promising epitopes. We selected T cell epitopes based on their immunological potencies and cytokine inducing properties, while B cell epitopes were selected based on their antigenic features. Finally, we selected four cytotoxic T-lymphocyte, two helper T-lymphocyte, and three linear B-lymphocyte epitopes that were arranged into a vaccine construct with appropriate adjuvants and linkers. The chimera protein was modeled, refined, and validated prior to docking against toll-like receptor 4. Docking studies suggest strong binding interactions while dynamics simulation revealed the stable nature of the docked complex. Furthermore, the immune simulation showed robust and prolonged immune responses with rapid antigen clearance. Finally, codon optimization and cloning conducted with Escherichia coli K12 suggests high translation efficiency within the host system. Conclusion: We believe that our designed multiepitope vaccine is a promising prophylactic candidate against RVFV pathogenesis.
Collapse
|
9
|
Sayed SB, Nain Z, Khan MSA, Abdulla F, Tasmin R, Adhikari UK. Exploring Lassa Virus Proteome to Design a Multi-epitope Vaccine Through Immunoinformatics and Immune Simulation Analyses. Int J Pept Res Ther 2020; 26:2089-2107. [PMID: 32421065 PMCID: PMC7223894 DOI: 10.1007/s10989-019-10003-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Lassa virus (LASV) is responsible for a type of acute viral haemorrhagic fever referred to as Lassa fever. Lack of adequate treatment and preventive measures against LASV resulted in a high mortality rate in its endemic regions. In this study, a multi-epitope vaccine was designed using immunoinformatics as a prophylactic agent against the virus. Following a rigorous assessment, the vaccine was built using T-cell (NCTL = 8 and NHTL = 6) and B-cell (NLBL = 4) epitopes from each LASV-derived protein in addition with suitable linkers and adjuvant. The physicochemistry, immunogenic potency and safeness of the designed vaccine (~ 68 kDa) were assessed. In addition, chosen CTL and HTL epitopes of our vaccine showed 97.37% worldwide population coverage. Besides, disulphide engineering also improved the stability of the chimeric vaccine. Molecular docking of our vaccine protein with toll-like receptor 2 (TLR2) showed binding efficiency followed by dynamics simulation for stable interaction. Furthermore, higher levels of cell-mediated immunity and rapid antigen clearance were suggested by immune simulation and repeated-exposure simulation, respectively. Finally, the optimized codons were used in in silico cloning to ensure higher expression within E. coli K12 bacterium. With further assessment both in vitro and in vivo, we believe that our proposed peptide-vaccine would be potential immunogen against Lassa fever.
Collapse
Affiliation(s)
- Sifat Bin Sayed
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Zulkar Nain
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Md Shakil Ahmed Khan
- 1Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Faruq Abdulla
- 2Department of Statistics, Faculty of Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Rubaia Tasmin
- 3Department of Pharmacy, Faculty of Biological Sciences, Islamic University, Kushtia, 7003 Bangladesh
| | - Utpal Kumar Adhikari
- 4School of Medicine, Western Sydney University, Campbelltown, NSW 2560 Australia
| |
Collapse
|
10
|
Hasan M, Islam S, Chakraborty S, Mustafa AH, Azim KF, Joy ZF, Hossain MN, Foysal SH, Hasan MN. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): an exploratory immunoinformatic approach. J Biomol Struct Dyn 2019; 38:2898-2915. [PMID: 31328668 DOI: 10.1080/07391102.2019.1647286] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus. The selected proteins were retrieved from ViralZone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain K12 and the vaccine constructs had no similarity with entire human proteome. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sourav Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abu Hasnat Mustafa
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ziaul Faruque Joy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Md Nazmul Hossain
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shakhawat Hossain Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
11
|
Xiao L, Engen PA, Leusink-Muis T, van Ark I, Stahl B, Overbeek SA, Garssen J, Naqib A, Green SJ, Keshavarzian A, Folkerts G, van't Land B. The Combination of 2'-Fucosyllactose with Short-Chain Galacto-Oligosaccharides and Long-Chain Fructo-Oligosaccharides that Enhance Influenza Vaccine Responses Is Associated with Mucosal Immune Regulation in Mice. J Nutr 2019; 149:856-869. [PMID: 31050747 PMCID: PMC6499104 DOI: 10.1093/jn/nxz006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND A critical role for host-microbe interactions and establishment of vaccine responses has been postulated. Human milk oligosaccharides, of which 2'-fucosyllactose (2'FL) is the most prevalent, are known to alter host-associated microbial communities and play a critical role in the immunologic development of breastfed infants. OBJECTIVES Dietary supplementation with a combination of 2'FL and prebiotic short-chain (sc) galacto-oligosaccharides (GOS) and long-chain (lc) fructo-oligosaccharides (FOS) was employed to examine human milk oligosaccharide effects on immune responsiveness, within a murine influenza vaccination model. METHODS Female mice (6 wk old, C57Bl/6JOlaHsd) were fed either control diet (CON) or scGOS/lcFOS/2'FL-containing diet (GF2F) for 45 d. After starting dietary intervention (day 14), mice received a primary influenza vaccination (day 0) followed by a booster vaccination (day 21), after which ear challenges were conducted to measure vaccine-specific delayed type hypersensitivity (DTH). Serum immunoglobulin (Ig) levels, fecal and cecal microbial community structure, short-chain fatty acids, host intestinal gene expression and cellular responses in the mesenteric lymph nodes (MLNs) were also measured. RESULTS Relative to CON, mice fed the GF2F diet had increased influenza vaccine-specific DTH responses (79.3%; P < 0.01), higher levels of both IgG1 (3.2-fold; P < 0.05) and IgG2a (1.2-fold; P < 0.05) in serum, and greater percentages of activated B cells (0.3%; P < 0.05), regulatory T cells (1.64%; P < 0.05), and T-helper 1 cells (2.2%; P < 0.05) in their MLNs. GF2F-fed mice had elevated cecal butyric (P < 0.05) and propionic (P < 0.05) acid levels relative to CON, which correlated to DTH responses (R2 = 0.22; P = 0.05 and R2 = 0.39; P < 0.01, respectively). Specific fecal microbial taxa altered in GF2F diet fed mice relative to CON were significantly correlated with the DTH response and IgG2a level increases. CONCLUSIONS Dietary GF2F improved influenza vaccine-specific T-helper 1 responses and B cell activation in MLNs and enhanced systemic IgG1 and IgG2a concentrations in mice. These immunologic changes are correlated with microbial community structure and metabolites.
Collapse
Affiliation(s)
- Ling Xiao
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Phillip A Engen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL USA
| | - Thea Leusink-Muis
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Ingrid van Ark
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Departments of Immunology/Human Milk Research & Analytical Science, Utrecht, The Netherlands
| | - Saskia A Overbeek
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
- Danone Nutricia Research, Departments of Immunology/Human Milk Research & Analytical Science, Utrecht, The Netherlands
| | - Johan Garssen
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
- Danone Nutricia Research, Departments of Immunology/Human Milk Research & Analytical Science, Utrecht, The Netherlands
| | - Ankur Naqib
- Sequencing Core, Research Resources Center,University of Illinois at Chicago, Chicago, IL USA
| | - Stefan J Green
- Sequencing Core, Research Resources Center,University of Illinois at Chicago, Chicago, IL USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Ali Keshavarzian
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL USA
- Department of Pharmacology, Division of Physiology, Rush University Medical Center, Chicago, IL USA
| | - Gert Folkerts
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht, The Netherlands
| | - Belinda van't Land
- Danone Nutricia Research, Departments of Immunology/Human Milk Research & Analytical Science, Utrecht, The Netherlands
- University Medical Center Utrecht, The Wilhelmina Children's Hospital, Laboratory of Translational Immunology, Utrecht, The Netherlands
| |
Collapse
|
12
|
Faisal ARM, Imtiaz SH, Zerin T, Rahman T, Shekhar HU. Computer aided epitope design as a peptide vaccine component against Lassa virus. Bioinformation 2017; 13:417-429. [PMID: 29379262 PMCID: PMC5767920 DOI: 10.6026/97320630013417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Lassa virus (LASV) is an arena virus causing hemorrhagic fever and it is endemic in several regions of West Africa. The disease-causing virus records high mortality rate in endemic regions due to lack of appropriate treatment and prevention strategies. Therefore, it is of interest to design and develop viable vaccine components against the virus. We used the Lassa virus envelope glyco-proteins as a vaccine target to identify linear peptides as potential epitopes with immunogenic properties by computer aided epitope prediction tools. We report a T-cell epitope 'LLGTFTWTL' and a B-cell epitope 'AELKCFGNTAVAKCNE' with predicted potential immunogenicity for further in vivo and in vitro consideration.
Collapse
Affiliation(s)
- Ar-Rafi Md. Faisal
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Syed Hassan Imtiaz
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Tasnim Zerin
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Tania Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
13
|
Vitetta L, Saltzman ET, Thomsen M, Nikov T, Hall S. Adjuvant Probiotics and the Intestinal Microbiome: Enhancing Vaccines and Immunotherapy Outcomes. Vaccines (Basel) 2017; 5:vaccines5040050. [PMID: 29232932 PMCID: PMC5748616 DOI: 10.3390/vaccines5040050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Immune defence against pathogenic agents comprises the basic premise for the administration of vaccines. Vaccinations have hence prevented millions of infectious illnesses, hospitalizations and mortality. Acquired immunity comprises antibody and cell mediated responses and is characterized by its specificity and memory. Along a similar congruent yet diverse mode of disease prevention, the human host has negotiated from in utero and at birth with the intestinal commensal bacterial cohort to maintain local homeostasis in order to achieve immunological tolerance in the new born. The advent of the Human Microbiome Project has redefined an appreciation of the interactions between the host and bacteria in the intestines from one of a collection of toxic waste to one of a symbiotic existence. Probiotics comprise bacterial genera thought to provide a health benefit to the host. The intestinal microbiota has profound effects on local and extra-intestinal end organ physiology. As such, we further posit that the adjuvant administration of dedicated probiotic formulations can encourage the intestinal commensal cohort to beneficially participate in the intestinal microbiome-intestinal epithelia-innate-cell mediated immunity axes and cell mediated cellular immunity with vaccines aimed at preventing infectious diseases whilst conserving immunological tolerance. The strength of evidence for the positive effect of probiotic administration on acquired immune responses has come from various studies with viral and bacterial vaccines. We posit that the introduction early of probiotics may provide significant beneficial immune outcomes in neonates prior to commencing a vaccination schedule or in elderly adults prior to the administration of vaccinations against influenza viruses.
Collapse
Affiliation(s)
- Luis Vitetta
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Medlab Clinical Ltd., Sydney 2015, Australia.
| | - Emma Tali Saltzman
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
- Medlab Clinical Ltd., Sydney 2015, Australia.
| | - Michael Thomsen
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia.
| | - Tessa Nikov
- Medlab Clinical Ltd., Sydney 2015, Australia.
| | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015, Australia.
| |
Collapse
|
14
|
Korean Red Ginseng enhances pneumococcal Δ pep27 vaccine efficacy by inhibiting reactive oxygen species production. J Ginseng Res 2017; 43:218-225. [PMID: 30962736 PMCID: PMC6437420 DOI: 10.1016/j.jgr.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background Streptococcus pneumoniae, more than 90 serotypes of which exist, is recognized as an etiologic agent of pneumonia, meningitis, and sepsis associated with significant morbidity and mortality worldwide. Immunization with a pneumococcal pep27 mutant (Δpep27) has been shown to confer comprehensive, long-term protection against even nontypeable strains. However, Δpep27 is effective as a vaccine only after at least three rounds of immunization. Therefore, treatments capable of enhancing the efficiency of Δpep27 immunization should be identified without delay. Panax ginseng Mayer has already been shown to have pharmacological and antioxidant effects. Here, the ability of Korean Red Ginseng (KRG) to enhance the efficacy of Δpep27 immunization was investigated. Methods Mice were treated with KRG and immunized with Δpep27 before infection with the pathogenic S. pneumoniae strain D39. Total reactive oxygen species production was measured using lung homogenates, and inducible nitric oxide (NO) synthase and antiapoptotic protein expression was determined by immunoblotting. The phagocytic activity of peritoneal macrophages was also tested after KRG treatment. Results Compared with the other treatments, KRG significantly increased survival rate after lethal challenge and resulted in faster bacterial clearance via increased phagocytosis. Moreover, KRG enhanced Δpep27 vaccine efficacy by inhibiting reactive oxygen species production, reducing extracellular signal–regulated kinase apoptosis signaling and inflammation. Conclusion Taken together, our results suggest that KRG reduces the time required for immunization with the Δpep27 vaccine by enhancing its efficacy.
Collapse
|
15
|
Sakib MS, Islam MR, Hasan AKMM, Nabi AHMN. Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv Bioinformatics 2014; 2014:402492. [PMID: 25147564 PMCID: PMC4131549 DOI: 10.1155/2014/402492] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/05/2014] [Accepted: 05/11/2014] [Indexed: 01/25/2023] Open
Abstract
This study aims to design epitope-based peptides for the utility of vaccine development by targeting glycoprotein G and envelope protein F of Nipah virus (NiV) that, respectively, facilitate attachment and fusion of NiV with host cells. Using various databases and tools, immune parameters of conserved sequence(s) from G and F proteins of different isolates of NiV were tested to predict probable epitope(s). Binding analyses of the peptides with MHC class-I and class-II molecules, epitope conservancy, population coverage, and linear B cell epitope prediction were analyzed. Predicted peptides interacted with seven or more MHC alleles and illustrated population coverage of more than 99% and 95%, for G and F proteins, respectively. The predicted class-I nonamers, SLIDTSSTI and EWISIVPNF, superimposed on the putative decameric B cell epitopes, were also identified as core sequences of the most probable class-II 15-mer peptides GPKVSLIDTSSTITI and EWISIVPNFILVRNT. These peptides were further validated for their binding to specific HLA alleles using in silico docking technique. Our in silico analysis suggested that the predicted epitopes, either GPKVSLIDTSSTITI or EWISIVPNFILVRNT, could be a better choice as universal vaccine component against NiV irrespective of different isolates which may elicit both humoral and cell-mediated immunity.
Collapse
Affiliation(s)
- M. Sadman Sakib
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Rezaul Islam
- International Max Planck Research School for Neurosciences, University of Göttingen, 37077 Göttingen, Germany
| | - A. K. M. Mahbub Hasan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
16
|
Matsubara K, Fujino M, Takeuchi K, Iwata S, Nakayama T. A new method for the detection of neutralizing antibodies against mumps virus. PLoS One 2013; 8:e65281. [PMID: 23861738 PMCID: PMC3702533 DOI: 10.1371/journal.pone.0065281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/23/2013] [Indexed: 11/30/2022] Open
Abstract
Neutralization test is the most reliable method of evaluating immunity against viral diseases but there is no standard procedure for mumps virus, with tests differing in the infectivity of the challenge virus, 50% plaque reduction or complete inhibition of cytopathic effects (CPE), and usage of complement. A reliable, easy, and simple neutralization test for mumps virus was developed in this study. A recombinant mumps virus expressing GFP was generated as a challenge virus. Complement was added to the neutralizing mixture at 1∶200 when stocked serum samples were used. Neutralizing antibody titers were expressed as the reciprocal of the highest dilution that did not exceed two-fold of FU values (GFP expression) of the cell control wells. A total of 1,452 serum samples were assayed by inhibition of GFP expression in comparison with those examined by conventional 100% inhibition of CPE. 1,367 (94.1%) showed similar neutralizing antibody titers when examined by both methods. The GFP expression inhibition assay, using a recombinant mumps virus expressing GFP, is a simple and time- saving method.
Collapse
Affiliation(s)
- Keita Matsubara
- Department of Pediatrics, Hiroshima Prefectural Hospital, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Motoko Fujino
- Department of Pediatrics, Saiseikai Central Hospital, Minato-ku, Tokyo, Japan
| | - Kaoru Takeuchi
- Department of Infection Biology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoshi Iwata
- Center for Infectious Diseases and Infection Control, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tetsuo Nakayama
- Laboratory of Viral Infection, Kitasato Institute for Life Sciences, Minato-ku, Tokyo, Japan
| |
Collapse
|
17
|
|
18
|
Skattum L, van Deuren M, van der Poll T, Truedsson L. Complement deficiency states and associated infections. Mol Immunol 2011; 48:1643-55. [PMID: 21624663 DOI: 10.1016/j.molimm.2011.05.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
A major function of the immune system is to protect the host from microbial infections. The complement system plays important roles in both the innate and the adaptive immune defense and also acts as a bridge between these arms of immunity. This is obvious from complement deficiencies which in varying degree, depending on which factor is missing, are associated with increased infection susceptibility and also increased risk for other, mainly autoimmune diseases. Genetically determined deficiencies are described for almost all complement proteins but the consequences show a wide variation. Here the genetic defects and molecular abnormalities in complement deficient persons, related clinically relevant infections and the options for prevention and therapy are reviewed. The roles of complement in host defense against common infections are also discussed.
Collapse
Affiliation(s)
- Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
19
|
Fredette MJ, De Serres G, Malenfant M. Ophthalmological and Biological Features of the Oculorespiratory Syndrome after Influenza Vaccination. Clin Infect Dis 2003; 37:1136-8. [PMID: 14523781 DOI: 10.1086/378294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 06/30/2003] [Indexed: 11/03/2022] Open
Abstract
We report the ophthalmological and laboratory findings of 6 patients who, after influenza vaccination, were affected by oculorespiratory syndrome (ORS), complaining of red eyes, photophobia, blurred vision, palpebral edema, ocular pain and itching, and conjunctival secretions. The conjunctivae were mildly hyperemic with few follicles, but the ophthalmological examination findings were otherwise normal. Patients had lymphopenia and decreased levels of the total hemolytic complement and the third and fourth component of the complement. We conclude that ORS causes conjunctivitis and seems to involve the complement.
Collapse
Affiliation(s)
- Marie Josée Fredette
- Centre Hospitalier Universitaire de Laval Research Center, Laval University, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|
20
|
Scicluna LA, Bruckner L, McCullough KC. Qualitative assessment of the humoral immune status against FMDV in post-vaccination cattle. Vaccine 2001; 19:2975-86. [PMID: 11282209 DOI: 10.1016/s0264-410x(00)00538-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Analyses on diluted sera would not measure the complete activity of the natural in-vivo serum environment used by humoral immune responses. Since these humoral defences must react rapidly, serum reactions occurring during 10 and 60 s were analysed. Primo- and multiple-vaccinated, efficiently responsive, and protected animals were differentiated. A variation in the responses, particularly the quality of response, of individual animals was also now discernible. The critical importance of antibody-antigen contact time was demonstrated, wherein natural immunoglobulins and non-immunoglobulin opsonins would influence specific antibody reactivity, through an increased avidity of reaction with antigen. Although not measured directly, the influence of the non-specific serum components would be manifest through increased specific antibody binding. By considering serum as an entity, analysis of all constituent components permits increased qualitative assessment of post-vaccination sera.
Collapse
Affiliation(s)
- L A Scicluna
- Institute of Virology and Immunoprophylaxis, Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland
| | | | | |
Collapse
|
21
|
Kania SA, Reed SL, Thomford JW, BonDurant RH, Hirata K, Corbeil RR, North MJ, Corbeil LB. Degradation of bovine complement C3 by trichomonad extracellular proteinase. Vet Immunol Immunopathol 2001; 78:83-96. [PMID: 11182150 DOI: 10.1016/s0165-2427(00)00256-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bovine trichomoniasis is a local infection of the reproductive tract making interaction with mucosal host defenses crucial. Since the parasite is susceptible to killing by bovine complement, we investigated the role of the third component of complement (C3) in host parasite interactions. Bovine C3 was purified by anionic and cationic exchange chromatography. The purified protein was characterized by immunoreactivity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and peptide sequencing of the amino terminus of the beta chain. When purified bovine C3 was incubated for varying time periods with trichomonad extracellular proteinases, SDS-PAGE gels revealed digestion of the alpha chain to small fragments. Such degradation in vivo would prevent formation of C3b and completion of the complement cascade, resulting in evasion of killing. To evaluate the relevance of this data, we determined whether C3 was present in bovine genital secretions. With a quantitative ELISA assay, C3 could be demonstrated in both uterine and vaginal washes. To our knowledge, this is the first demonstration of bovine C3 in genital secretions. The C3 concentration increased significantly in vaginal secretions by 8 and 10 weeks in heifers infected with Tritrichomonas foetus. An increase was also seen in uterine secretions of infected heifers, but sample numbers were insufficient for statistical analysis. Transcription of the major extracellular cysteine proteinase (TFCP8) was demonstrated in T. foetus cells from uterine secretions of infected heifers by RT-PCR and Southern blotting. The results indicate that C3 may be important in genital defense and that trichomonad extracellular proteinases may play a role in evasion of complement-mediated killing.
Collapse
Affiliation(s)
- S A Kania
- Department of Comparative Medicine, University of Tennessee, Knoxville, TN 37901-1071, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zinkernagel RM, LaMarre A, Ciurea A, Hunziker L, Ochsenbein AF, McCoy KD, Fehr T, Bachmann MF, Kalinke U, Hengartner H. Neutralizing antiviral antibody responses. Adv Immunol 2001; 79:1-53. [PMID: 11680006 PMCID: PMC7130890 DOI: 10.1016/s0065-2776(01)79001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neutralizing antibodies are evolutionarily important effectors of immunity against viruses. Their evaluation has revealed a number of basic insights into specificity, rules of reactivity (tolerance), and memory—namely, (1) Specificity of neutralizing antibodies is defined by their capacity to distinguish between virus serotypes; (2) B cell reactivity is determined by antigen structure, concentration, and time of availability in secondary lymphoid organs; and (3) B cell memory is provided by elevated protective antibody titers in serum that are depending on antigen stimulation. These perhaps slightly overstated rules are simple, correlate with in vivo evidence as well as clinical observations, and appear to largely demystify many speculations about antibodies and B cell physiology. The chapter also considers successful vaccines and compares them with those infectious diseases where efficient protective vaccines are lacking, it is striking to note that all successful vaccines induce high levels of neutralizing antibodies (nAbs) that are both necessary and sufficient to protect the host from disease. Successful vaccination against infectious diseases such as tuberculosis, leprosy, or HIV would require induction of additional long-lasting T cell responses to control infection.
Collapse
Affiliation(s)
- R M Zinkernagel
- Institute of Experimental Immunology, Department of Pathology, University Hospital, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|