1
|
Cosio T, Costanza G, Coniglione F, Romeo A, Iacovelli F, Diluvio L, Dika E, Shumak RG, Rossi P, Bianchi L, Falconi M, Campione E. From In Silico Simulation between TGF- β Receptors and Quercetin to Clinical Insight of a Medical Device Containing Allium cepa: Its Efficacy and Tolerability on Post-Surgical Scars. Life (Basel) 2023; 13:1781. [PMID: 37629638 PMCID: PMC10455185 DOI: 10.3390/life13081781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Objective: Keloid and hypertrophic scars are a challenge in clinical management, causing functional and psychological discomfort. These pathological scars are caused by a proliferation of dermal tissue following skin injury. The TGF-β/Smad signal pathway in the fibroblasts and myofibroblasts is involved in the scarring process of skin fibrosis. Today, multiple therapeutic strategies that target the TGF-β/Smad signal pathway are evaluated to attenuate aberrant skin scars that are sometimes difficult to manage. We performed a head-to-head, randomized controlled trial evaluating the appearance of the post-surgical scars of 64 subjects after two times daily topical application to compare the effect of a class I pullulan-based medical device containing Allium cepa extract 5% and hyaluronic acid 5% gel versus a class I medical device silicone gel on new post-surgical wounds. (2) Methods: Objective scar assessment using the Vancouver Scar Scale (VSS), POSAS, and other scales were performed after 4, 8, and 12 weeks of treatment and statistical analyses were performed. The trial was registered in clinicalTrials.gov ( NCT05412745). In parallel, molecular docking simulations have been performed to investigate the role of Allium cepa in TGF-β/Smad signal pathway. (3) Results: We showed that VSS, POSAS scale, itching, and redness reduced significantly at week 4 and 8 in the subjects using devices containing Allium cepa and HA. No statistically significant differences in evaluated scores were noted at 12 weeks of treatment. Safety was also evaluated by gathering adverse events related to the application of the gel. Subject compliance and safety with the assigned gel were similar between the two study groups. Molecular docking simulations have shown how Allium cepa could inhibit fibroblasts proliferation and contraction via TGF-β/Smad signal pathway. (4) Conclusions: The topical application of a pullulan-based medical device containing Allium cepa and HA showed a clear reduction in the local inflammation, which might lead to a reduced probability of developing hypertrophic scars or keloids.
Collapse
Affiliation(s)
- Terenzio Cosio
- Post Graduate School of Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Gaetana Costanza
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
- Virology Unit, Tor Vergata Hospital, 00133 Rome, Italy
| | - Filadelfo Coniglione
- Department of Surgical Sciences, University Nostra Signora del Buon Consiglio, 1000 Tirana, Albania;
| | - Alice Romeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (F.I.); (M.F.)
| | - Federico Iacovelli
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (F.I.); (M.F.)
| | - Laura Diluvio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Emi Dika
- Dermatology, Department of Medical and Surgical Sciences Alma Mater Studiorum, University of Bologna, 40138 Bolog, Italy;
- Oncologic Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Ruslana Gaeta Shumak
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Piero Rossi
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
- Minimally Invasive Unit, Tor Vergata Hospital, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| | - Mattia Falconi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy; (A.R.); (F.I.); (M.F.)
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (L.D.); (R.G.S.); (L.B.)
| |
Collapse
|
2
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
3
|
Vetrova AA, Lebedeva TS, Saidova AA, Kupaeva DM, Kraus YA, Kremnyov SV. From apolar gastrula to polarized larva: Embryonic development of a marine hydroid, Dynamena pumila. Dev Dyn 2021; 251:795-825. [PMID: 34787911 DOI: 10.1002/dvdy.439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In almost all metazoans examined to this respect, the axial patterning system based on canonical Wnt (cWnt) signaling operates throughout the course of development. In most metazoans, gastrulation is polar, and embryos develop morphological landmarks of axial polarity, such as blastopore under control/regulation from cWnt signaling. However, in many cnidarian species, gastrulation is morphologically apolar. The question remains whether сWnt signaling providing the establishment of a body axis controls morphogenetic processes involved in apolar gastrulation. RESULTS In this study, we focused on the embryonic development of Dynamena pumila, a cnidarian species with apolar gastrulation. We thoroughly described cell behavior, proliferation, and ultrastructure and examined axial patterning in the embryos of this species. We revealed that the first signs of morphological polarity appear only after the end of gastrulation, while molecular prepatterning of the embryo does exist during gastrulation. We have shown experimentally that in D. pumila, the direction of the oral-aboral axis is highly robust against perturbations in cWnt activity. CONCLUSIONS Our results suggest that morphogenetic processes are uncoupled from molecular axial patterning during gastrulation in D. pumila. Investigation of D. pumila might significantly expand our understanding of the ways in which morphological polarization and axial molecular patterning are linked in Metazoa.
Collapse
Affiliation(s)
- Alexandra A Vetrova
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Tatiana S Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Aleena A Saidova
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria M Kupaeva
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| | - Yulia A Kraus
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav V Kremnyov
- Laboratory of Morphogenesis Evolution, Koltzov Institute of Developmental Biology RAS, Moscow, Russia.,Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
McCaughey J, Stevenson NL, Mantell JM, Neal CR, Paterson A, Heesom K, Stephens DJ. A general role for TANGO1, encoded by MIA3, in secretory pathway organization and function. J Cell Sci 2021; 134:jcs259075. [PMID: 34350936 PMCID: PMC8524724 DOI: 10.1242/jcs.259075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Complex machinery is required to drive secretory cargo export from the endoplasmic reticulum (ER), which is an essential process in eukaryotic cells. In vertebrates, the MIA3 gene encodes two major forms of transport and Golgi organization protein 1 (TANGO1S and TANGO1L), which have previously been implicated in selective trafficking of procollagen. Using genome engineering of human cells, light microscopy, secretion assays, genomics and proteomics, we show that disruption of the longer form, TANGO1L, results in relatively minor defects in secretory pathway organization and function, including having limited impacts on procollagen secretion. In contrast, loss of both long and short forms results in major defects in cell organization and secretion. These include a failure to maintain the localization of ERGIC53 (also known as LMAN1) and SURF4 to the ER-Golgi intermediate compartment and dramatic changes to the ultrastructure of the ER-Golgi interface. Disruption of TANGO1 causes significant changes in early secretory pathway gene and protein expression, and impairs secretion not only of large proteins, but of all types of secretory cargo, including small soluble proteins. Our data support a general role for MIA3/TANGO1 in maintaining secretory pathway structure and function in vertebrate cells.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| | - Nicola L. Stevenson
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| | - Judith M. Mantell
- Wolfson Bioimaging Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | - Chris R. Neal
- Wolfson Bioimaging Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | | | - Kate Heesom
- Proteomics Facility, Faculty of Life
Sciences, University Walk, University of
Bristol, Bristol, BS8 1TD,
UK
| | - David J. Stephens
- Cell Biology Laboratories,
School of Biochemistry, Faculty of Life Sciences, University Walk,
University of Bristol, Bristol, BS8 1TD,
UK
| |
Collapse
|
5
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Morrow CM, Mukherjee A, Traore MA, Leaman EJ, Kim A, Smith EM, Nain AS, Behkam B. Integrating nanofibers with biochemical gradients to investigate physiologically-relevant fibroblast chemotaxis. LAB ON A CHIP 2019; 19:3641-3651. [PMID: 31560021 DOI: 10.1039/c9lc00602h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Persistent cell migration can occur due to anisotropy in the extracellular matrix (ECM), the gradient of a chemo-effector, or a combination of both. Through a variety of in vitro platforms, the contributions of either stimulus have been extensively studied, while the combined effect of both cues remains poorly described. Here, we report an integrative microfluidic chemotaxis assay device that enables the study of single cell chemotaxis on ECM-mimicking, aligned, and suspended nanofibers. Using this assay, we evaluated the effect of fiber spacing on the morphology and chemotaxis response of embryonic murine NIH/3T3 fibroblasts in the presence of temporally invariant, linear gradients of platelet-derived growth factor-BB (PDGF-BB). We found that the strength of PDGF-mediated chemotaxis response depends on not only the gradient slope but also the cell morphology. Low aspect ratio (3.4 ± 0.2) cells on flat substrata exhibited a chemotaxis response only at a PDGF-BB gradient of 0-10 ng mL-1. However, high aspect ratio (19.1 ± 0.7) spindle-shaped cells attached to individual fibers exhibited maximal chemotaxis response at a ten-fold shallower gradient of 0-1 ng mL-1, which was robustly maintained up to 0-10 ng mL-1. Quadrilateral-shaped cells of intermediate aspect ratio (13.6 ± 0.8) attached to two fibers exhibited a weaker response compared to the spindle-shaped cells, but still stronger compared to cells attached to 2D featureless substrata. Through pharmacological inhibition, we show that the mesenchymal chemotaxis pathway is conserved in cells on fibers. Altogether, our findings show that chemotaxis on ECM-mimicking fibers is modulated by fiber spacing-driven cell shape and can be significantly different from the behavior observed on flat 2D substrata. We envisage that this microfluidic platform will have wide applicability in understanding the combined role of ECM architecture and chemotaxis in physiological and pathological processes.
Collapse
Affiliation(s)
- Carmen M Morrow
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Apratim Mukherjee
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Mahama A Traore
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eric J Leaman
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - AhRam Kim
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Evan M Smith
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA. and School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Kidwai F, Edwards J, Zou L, Kaufman DS. Fibrinogen Induces RUNX2 Activity and Osteogenic Development from Human Pluripotent Stem Cells. Stem Cells 2016; 34:2079-89. [PMID: 27331788 PMCID: PMC5097445 DOI: 10.1002/stem.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells, both human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC), provide an important resource to produce specialized cells such as osteogenic cells for therapeutic applications such as repair or replacement of injured, diseased or damaged bone. hESCs and iPSCs can also be used to better define basic cellular and genetic mechanisms that regulate the earliest stages of human bone development. However, current strategies to mediate osteogenic differentiation of hESC and iPSC are typically limited by the use of xenogeneic components such as fetal bovine serum (FBS) that make defining specific agents that mediate human osteogenesis difficult. Runt-related transcription factor 2 (RUNX2) is a key regulator required for osteogenic differentiation. Here, we used a RUNX2-YFP reporter system to characterize the novel ability of fibrinogen to mediate human osteogenic development from hESC and iPSC in defined (serum-free) conditions. These studies demonstrate that fibrinogen mediates significant osteo-induction potential. Specifically, fibrinogen binds to the surface integrin (α9β1) to mediate RUNX2 gene expression through the SMAD1/5/8 signaling pathway. Additional studies characterize the fibrinogen-induced hESC/iPSC-derived osteogenic cells to demonstrate these osteogenic cells retain the capacity to express typical mature osteoblastic markers. Together, these studies define a novel fibrinogen-α9β1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from hESCs and iPSCs. Stem Cells 2016;34:2079-2089.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, Minnesota 55455, USA
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Jessica Edwards
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dan S. Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicine, University of California - San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Role for the αV Integrin Subunit in Varicella-Zoster Virus-Mediated Fusion and Infection. J Virol 2016; 90:7567-78. [PMID: 27279620 DOI: 10.1128/jvi.00792-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella and herpes zoster. Membrane fusion is essential for VZV entry and the distinctive syncytium formation in VZV-infected skin and neuronal tissue. Herpesvirus fusion is mediated by a complex of glycoproteins gB and gH-gL, which are necessary and sufficient for VZV to induce membrane fusion. However, the cellular requirements of fusion are poorly understood. Integrins have been implicated to facilitate entry of several human herpesviruses, but their role in VZV entry has not yet been explored. To determine the involvement of integrins in VZV fusion, a quantitative cell-cell fusion assay was developed using a VZV-permissive melanoma cell line. The cells constitutively expressed a reporter protein and short hairpin RNAs (shRNAs) to knock down the expression of integrin subunits shown to be expressed in these cells by RNA sequencing. The αV integrin subunit was identified as mediating VZV gB/gH-gL fusion, as its knockdown by shRNAs reduced fusion levels to 60% of that of control cells. A comparable reduction in fusion levels was observed when an anti-αV antibody specific to its extracellular domain was tested in the fusion assay, confirming that the domain was important for VZV fusion. In addition, reduced spread was observed in αV knockdown cells infected with the VZV pOka strain relative to that of the control cells. This was demonstrated by reductions in plaque size, replication kinetics, and virion entry in the αV subunit knockdown cells. Thus, the αV integrin subunit is important for VZV gB/gH-gL fusion and infection. IMPORTANCE Varicella-zoster virus (VZV) is a highly infectious pathogen that causes chickenpox and shingles. A common complication of shingles is the excruciating condition called postherpetic neuralgia, which has proven difficult to treat. While a vaccine is now available, it is not recommended for immunocompromised individuals and its efficacy decreases with the recipient's age. These limitations highlight the need for new therapies. This study examines the role of integrins in membrane fusion mediated by VZV glycoproteins gB and gH-gL, a required process for VZV infection. This knowledge will further the understanding of VZV entry and provide insight into the development of better therapies.
Collapse
|
9
|
Li X, Qian H, Ono F, Tsuchisaka A, Krol RP, Ohara K, Hayakawa T, Matsueda S, Sasada T, Ohata C, Furumura M, Hamada T, Hashimoto T. Human dermal fibroblast migration induced by fibronectin in autocrine and paracrine manners. Exp Dermatol 2016; 23:682-4. [PMID: 24828603 DOI: 10.1111/exd.12447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2014] [Indexed: 11/27/2022]
Abstract
Although fibronectin (FN) is known as a chemoattractant for human dermal fibroblasts (HDFs), it is unclear whether HDF migration is stimulated by FN produced by HDFs (autocrine manner) or by keratinocytes (paracrine manner). In this study, we investigated HDF migration by Boyden chamber assay using conditioned media from HDFs and HaCaT cells (keratinocyte cell line). Immunoblotting and enzyme-linked immunosorbent assay revealed that FN existed in both conditioned media. Boyden chamber assay showed both conditioned media stimulated HDF migration, which was inhibited by anti-FN antibody. Antibodies to both integrin β1and β3 subunits inhibited HDF migration induced by HDF-conditioned medium almost completely and that by HaCaT cell-conditioned medium with 50-60%. These results suggested that HDF migration was stimulated by FN in both autocrine and paracrine manners. However, the mechanisms of HDF migration by FN, particularly the role of integrin β1 and β3 subunits, were slightly different between autocrine and paracrine manners.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sialylation of vitronectin regulates stress fiber formation and cell spreading of dermal fibroblasts via a heparin-binding site. Glycoconj J 2016; 33:227-36. [PMID: 26979432 DOI: 10.1007/s10719-016-9660-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Vitronectin (VN) plays an important role in tissue regeneration. We previously reported that VN from partial hepatectomized (PH) rats results in a decrease of sialylation of VN and de-sialylation of VN decreases the cell spreading of hepatic stellate cells. In this study, we analyzed the mechanism how sialylation of VN regulates the properties of mouse primary cultured dermal fibroblasts (MDF) and a dermal fibroblast cell line, Swiss 3T3 cells. At first, we confirmed that VN from PH rats or de-sialylated VN also decreased cell spreading in MDF and Swiss 3T3 cells. The de-sialylation suppressed stress fiber formation in Swiss 3T3 cells. Next, we analyzed the effect of the de-sialylation of VN on stress fiber formation in Swiss 3T3 cells. RGD peptide, an inhibitor for a cell binding site of VN, did not affect the cell attachment of Swiss 3T3 cells on untreated VN but significantly decreased it on de-sialylated VN, suggesting that the de-sialylation attenuates the binding activity of an RGD-independent binding site in VN. To analyze a candidate RGD-independent binding site, an inhibition experiment of stress fiber formation for a heparin binding site was performed. The addition of heparin and treatment of cells with heparinase decreased stress fiber formation in Swiss 3T3 cells. Furthermore, de-sialylation increased the binding activity of VN to heparin, as detected by surface plasmon resonance (SPR). These results demonstrate that sialylation of VN glycans regulates stress fiber formation and cell spreading of dermal fibroblast cells via a heparin binding site.
Collapse
|
11
|
Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell Tissue Res 2014; 360:571-82. [DOI: 10.1007/s00441-014-2064-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022]
|
12
|
Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing. Cell Death Dis 2014; 5:e1458. [PMID: 25299783 PMCID: PMC4237249 DOI: 10.1038/cddis.2014.423] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a major complication of diabetes and are characterized by chronic inflammation and excessive protease activity. Although once thought to function primarily as a pro-apoptotic serine protease, granzyme B (GzmB) can also accumulate in the extracellular matrix (ECM) during chronic inflammation and cleave ECM proteins that are essential for proper wound healing, including fibronectin. We hypothesized that GzmB contributes to the pathogenesis of impaired diabetic wound healing through excessive ECM degradation. In the present study, the murine serine protease inhibitor, serpina3n (SA3N), was administered to excisional wounds created on the dorsum of genetically induced type-II diabetic mice. Wound closure was monitored and skin wound samples were collected for analyses. Wound closure, including both re-epithelialization and contraction, were significantly increased in SA3N-treated wounds. Histological and immunohistochemical analyses of SA3N-treated wounds revealed a more mature, proliferative granulation tissue phenotype as indicated by increased cell proliferation, vascularization, fibroblast maturation and differentiation, and collagen deposition. Skin homogenates from SA3N-treated wounds also exhibited greater levels of full-length intact fibronectin compared with that of vehicle wounds. In addition, GzmB-induced detachment of mouse embryonic fibroblasts correlated with a rounded and clustered phenotype that was prevented by SA3N. In summary, topical administration of SA3N accelerated wound healing. Our findings suggest that GzmB contributes to the pathogenesis of diabetic wound healing through the proteolytic cleavage of fibronectin that is essential for normal wound closure, and that SA3N promotes granulation tissue maturation and collagen deposition.
Collapse
|
13
|
Pikuła M, Żebrowska ME, Pobłocka-Olech L, Krauze-Baranowska M, Sznitowska M, Trzonkowski P. Effect of enoxaparin and onion extract on human skin fibroblast cell line - therapeutic implications for the treatment of keloids. PHARMACEUTICAL BIOLOGY 2014; 52:262-267. [PMID: 24074438 DOI: 10.3109/13880209.2013.826246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Keloids and hypertrophic scars are hyperproliferative skin disorders resulting in abnormal wound healing. In the prevention and treatment of keloids and hypertrophic scars, ointments containing heparin and onion extract are very popular. Their therapeutic effects, however, are still controversial and the mechanism of action is not fully understood. OBJECTIVE The aim of this study was to assess the effect of enoxaparin and dry onion extract on proliferation, apoptosis and β1 integrin expression in human fibroblasts. MATERIALS AND METHODS Fibroblast human cell lines (46 BR.1 N) were treated for 48 h with various concentrations of enoxaparin sodium (20, 100, 500 µg/mL) and/or onion [Allium cepa L. (Alliaceae)] extract (50, 250, 1000 µg/mL). The cell proliferation was evaluated by [(3)H]-thymidine incorporation assay. Furthermore, the expression of β1 integrin and apoptosis was determined by flow cytometry. RESULTS AND DISCUSSION The results demonstrate that enoxaparin and onion extract inhibited the proliferation of human fibroblasts. Almost complete inhibition of cell proliferation was achieved by enoxaparin in 500 µg/mL concentration (91.5% reduction). The onion extract at a concentration of 250 µg/mL also strongly inhibited the proliferation of cells (50.8% reduction). Depending on concentration, enoxaparin and onion extract induced apoptosis (500 and 1000 µg/mL, respectively) and, depending on concentration, downregulated the expression of β1 integrin on human fibroblasts. CONCLUSION This work points at possible mechanism of action of enoxaparin and onion extract, when administered in the treatment of patients with keloids and hypertrophic scars.
Collapse
Affiliation(s)
- Michał Pikuła
- Department of Clinical Immunology and Transplantology
| | | | | | | | | | | |
Collapse
|
14
|
Widhe M, Johansson U, Hillerdahl CO, Hedhammar M. Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 2013; 34:8223-34. [PMID: 23916396 DOI: 10.1016/j.biomaterials.2013.07.058] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022]
Abstract
Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types.
Collapse
Affiliation(s)
- Mona Widhe
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, S-75123 Uppsala, Sweden
| | | | | | | |
Collapse
|
15
|
Liu CL, Tam JCW, Sanders AJ, Ko CH, Fung KP, Leung PC, Harding KG, Jiang WG, Lau CBS. Molecular angiogenic events of a two-herb wound healing formula involving MAPK and Akt signaling pathways in human vascular endothelial cells. Wound Repair Regen 2013; 21:579-87. [DOI: 10.1111/wrr.12055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 03/25/2013] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Andrew J. Sanders
- Metastasis and Angiogenesis Research Group; Cardiff University School of Medicine; Cardiff; United Kingdom
| | | | | | | | - Keith G. Harding
- Department of Dermatology and Wound Healing; Cardiff University School of Medicine; Cardiff; United Kingdom
| | - Wen G. Jiang
- Metastasis and Angiogenesis Research Group; Cardiff University School of Medicine; Cardiff; United Kingdom
| | | |
Collapse
|
16
|
Soendergaard C, Kvist PH, Seidelin JB, Nielsen OH. Tissue-regenerating functions of coagulation factor XIII. J Thromb Haemost 2013; 11:806-16. [PMID: 23406195 DOI: 10.1111/jth.12169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022]
Abstract
The protransglutaminase factor XIII (FXIII) has recently attracted attention within the field of tissue regeneration, as it has been found that FXIII significantly influences wound healing by exerting a multitude of functions. It supports hemostasis by enhancing platelet adhesion to damaged endothelium, and by its cross-linking activity it stabilizes the formed fibrin clot. Furthermore, FXIII limits bacterial dissemination from the wound and incorporates macromolecules of importance for cellular infiltration, supporting cell migration and survival. FXIII-mediated complex formation of the vascular endothelial growth factor receptor 2 and αV β3 integrin is important for angiogenesis, supporting the formation of granulation tissue. Chronic inflammatory conditions involving bleeding and activation of the coagulation cascade have been shown to lead to reduced FXIII levels in plasma. Of particular importance for this review is the fact that patients suffering from inflammatory bowel disease (IBD) have reduced FXIII antigen levels and activity. Furthermore, these patients show impaired mucosal healing, which supports the inflammatory state of the disease. This review summarizes the role of FXIII in the healing of wounds, and briefly summarizes the previous use of FXIII in clinical settings. Moreover, it addresses the potential role for FXIII as a therapeutic agent in the healing of persistent wounds during chronic conditions, with an emphasis on IBD.
Collapse
Affiliation(s)
- C Soendergaard
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
17
|
Obara M, Sakuma T, Fujikawa K. The third type III module of human fibronectin mediates cell adhesion and migration. J Biochem 2009; 147:327-35. [DOI: 10.1093/jb/mvp168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Machida-Sano I, Matsuda Y, Namiki H. In vitro
adhesion of human dermal fibroblasts on iron cross-linked alginate films. Biomed Mater 2009; 4:025008. [DOI: 10.1088/1748-6041/4/2/025008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Xie J, Qi S, Xu Y, Tang J, Li T, Liu X, Shu B, Liang H, Huang B. Effects of basic fibroblast growth factors on hypertrophic scarring in a rabbit ear model. J Cutan Med Surg 2008; 12:155-62. [PMID: 18627695 DOI: 10.2310/7750.2008.07041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) was clinically proven to accelerate acute and chronic wound healing. Accelerated wound healing may lead to improved scarring. These studies suggested a possible antiscarring effect of bFGF during wound healing. Little was known about the precise pathologic mechanisms of bFGF on scarring formation. AIMS The aim of this study was to investigate the effect of bFGF on hypertrophic scarring in a rabbit ear model and clarify the mechanism of bFGF on scar treatment. METHODS The rabbit model of hypertrophic scarring was created and received of a low- or high-dose topical treatment three times daily for 1, 2, or 3 months. Then we examined the changes in the macroscopic and histopathologic characteristics of the scars. The expression of collagen, alpha(1)beta(2) integrin, and matrix metalloproteinase 1 (MMP-1) was studied by applying reverse transcriptase-polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. RESULT High-dose bFGF remarkably alleviated the scar in the rabbit ear model and decreased collagen type I expression. Further study revealed that bFGF remarkably enhanced MMP-1 and decreased alpha(1)beta(2) integrin expression. CONCLUSION This study supports the hypothesis that bFGF exerted a net negative effect on collagen remodeling, therefore suggesting a potential antiscarring role.
Collapse
Affiliation(s)
- Julin Xie
- Department of Burns, The First Affiliated Hospital, and Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kaposi's sarcoma-associated herpesvirus forms a multimolecular complex of integrins (alphaVbeta5, alphaVbeta3, and alpha3beta1) and CD98-xCT during infection of human dermal microvascular endothelial cells, and CD98-xCT is essential for the postentry stage of infection. J Virol 2008; 82:12126-44. [PMID: 18829766 DOI: 10.1128/jvi.01146-08] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface heparan sulfate (HS) and alpha3beta1 integrin during the early stages of infection of human dermal microvascular endothelial cells (HMVEC-d) and human foreskin fibroblasts (HFF), and these interactions are followed by virus entry overlapping with the induction of preexisting host cell signal pathways. KSHV also utilizes the amino acid transporter protein xCT for infection of adherent cells, and the xCT molecule is part of the cell surface heterodimeric membrane glycoprotein CD98 (4F2 antigen) complex known to interact with alpha3beta1 and alphaVbeta3 integrins. KSHV gB mediates adhesion of HMVEC-d, CV-1, and HT-1080 cells and HFF via its RGD sequence. Anti-alphaV and -beta1 integrin antibodies inhibited the cell adhesion mediated by KSHV-gB. Variable levels of neutralization of HMVEC-d and HFF infection were observed with antibodies against alphaVbeta3 and alphaVbeta5 integrins. Similarly, variable levels of inhibition of virus entry into adherent HMVEC-d, 293 and Vero cells, and HFF was observed by preincubating virus with soluble alpha3beta1, alphaVbeta3, and alphaVbeta5 integrins, and cumulative inhibition was observed with a combination of integrins. We were unable to infect HT1080 cells. Virus binding and DNA internalization studies suggest that alphaVbeta3 and alphaVbeta5 integrins also play roles in KSHV entry. We observed time-dependent temporal KSHV interactions with HMVEC-d integrins and CD98/xCT with three different patterns of association and dissociation. Integrin alphaVbeta5 interaction with CD98/xCT predominantly occurred by 1 min postinfection (p.i.) and dissociated at 10 min p.i., whereas alpha3beta1-CD98/xCT interaction was maximal at 10 min p.i. and dissociated at 30 min p.i., and alphaVbeta3-CD98/xCT interaction was maximal at 10 min p.i. and remained at the observed 30 min p.i. Fluorescence microscopy also showed a similar time-dependent interaction of alphaVbeta5-CD98. Confocal-microscopy studies confirmed the association of CD98/xCT with alpha3beta1 and KSHV. Preincubation of KSHV with soluble heparin and alpha3beta1 significantly inhibited this association, suggesting that the first contact with HS and integrin is an essential element in subsequent CD98-xCT interactions. Anti-CD98 and xCT antibodies did not block virus binding and entry and nuclear delivery of viral DNA; however, viral-gene expression was significantly inhibited, suggesting that CD98-xCT play roles in the post-entry stage of infection, possibly in mediating signal cascades essential for viral-gene expression. Together, these studies suggest that KSHV interacts with functionally related integrins (alphaVbeta3, alpha3beta1, and alphaVbeta5) and CD98/xCT molecules in a temporal fashion to form a multimolecular complex during the early stages of endothelial cell infection, probably mediating multiple roles in entry, signal transduction, and viral-gene expression.
Collapse
|
21
|
Huang L, Xie L, Boyd JM, Li XF. Cell-electronic sensing of particle-induced cellular responses. Analyst 2008; 133:643-8. [DOI: 10.1039/b714384b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Agren MS, Werthén M. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. INT J LOW EXTR WOUND 2007; 6:82-97. [PMID: 17558006 DOI: 10.1177/1534734607301394] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disappointing results with the use of exogenous recombinant growth factors in chronic wounds have redirected the focus to the extracellular matrix (ECM). Newer research has clearly changed our view on the role of the ECM in tissue repair and dismissed the dogma that the sole function of ECM is a passive physical support for cells. It is now clear that intact or fragmented ECM molecules are capable of transducing signals pivotal for cell processes in wound healing primarily via integrin interactions in concert with growth factor activation. In addition, our knowledge about ECM molecules in minute concentrations with biological activity, but devoid of significant structural influence, is increasing. This article reviews the multifaceted molecular roles of ECM in the normal wound-healing process and some molecular abnormalities in chronic wounds, and touches on potential therapies based on the developments of tissue biology.
Collapse
Affiliation(s)
- Magnus S Agren
- Department of Surgery K, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| | | |
Collapse
|
23
|
Stoff A, Rivera AA, Banerjee NS, Mathis JM, Espinosa-de-los-Monteros A, Le LP, De la Torre JI, Vasconez LO, Broker TR, Richter DF, Stoff-Khalili MA, Curiel DT. Strategies to enhance transductional efficiency of adenoviral-based gene transfer to primary human fibroblasts and keratinocytes as a platform in dermal wounds. Wound Repair Regen 2007; 14:608-17. [PMID: 17014674 PMCID: PMC2203209 DOI: 10.1111/j.1743-6109.2006.00168.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Genetically modified keratinocytes and fibroblasts are suitable for delivery of therapeutic genes capable of modifying the wound healing process. However, efficient gene delivery is a prerequisite for successful gene therapy of wounds. Whereas adenoviral vectors (Ads) exhibit superior levels of in vivo gene transfer, their transductional efficiency to cells resident within wounds may nonetheless be suboptimal, due to deficiency of the primary adenovirus receptor, coxsackie-adenovirus receptor (CAR). We explored CAR-independent transduction to fibroblasts and keratinocytes using a panel of CAR-independent fiber-modified Ads to determine enhancement of infectivity. These fiber-modified adenoviral vectors included Ad 3 knob (Ad5/3), canine Ad serotype 2 knob (Ad5CAV-2), RGD (Ad5.RGD), polylysine (Ad5.pK7), or both RGD and polylysine (Ad5.RGD.pK7). To evaluate whether transduction efficiencies of the fiber-modified adenoviral vectors correlated with the expression of their putative receptors on keratinocytes and fibroblasts, we analyzed the mRNA levels of CAR, alpha upsilon integrin, syndecan-1, and glypican-1 using quantitative polymerase chain reaction. Analysis of luciferase and green fluorescent protein transgene expression showed superior transduction efficiency of Ad5.pK7 in keratinocytes and Ad5.RGD.pK7 in fibroblasts. mRNA expression of alpha upsilon integrin, syndecan-1 and glypican-1 was significantly higher in primary fibroblasts than CAR. In keratinocytes, syndecan-1 expression was significantly higher than all the other receptors tested. Significant infectivity enhancement was achieved in keratinocytes and fibroblasts using fiber-modified adenoviral vectors. These strategies to enhance infectivity may help to achieve higher clinical efficacy of wound gene therapy.
Collapse
Affiliation(s)
- Alexander Stoff
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Plastic and Reconstructive Surgery, Dreifaltigkeits-Hospital, Wesseling, Germany
- Department of Plastic and Reconstructive Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Angel A. Rivera
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - N. S. Banerjee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - J. Michael Mathis
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | | | - Long P. Le
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jorge I. De la Torre
- Department of Plastic and Reconstructive Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Luis O. Vasconez
- Department of Plastic and Reconstructive Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas R. Broker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dirk F. Richter
- Department of Plastic and Reconstructive Surgery, Dreifaltigkeits-Hospital, Wesseling, Germany
| | - Mariam A. Stoff-Khalili
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Gynecology and Obstetrics, University of Duesseldorf, Medical Center, Duesseldorf, Germany
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
24
|
Kubo M, Clark RAF, Katz AB, Taichman LB, Jin Z, Zhao Y, Moriguchi T. Transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin. Arch Dermatol Res 2006; 299:13-24. [PMID: 17146626 DOI: 10.1007/s00403-006-0718-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/28/2006] [Indexed: 10/23/2022]
Abstract
alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.
Collapse
Affiliation(s)
- Miyoko Kubo
- Department of Plastic and Reconstructive Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama, 701-0192, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Nakao H, Yamazaki M, Tsuboi R, Ogawa H. Mixture of sugar and povidone--iodine stimulates wound healing by activating keratinocytes and fibroblast functions. Arch Dermatol Res 2006; 298:175-82. [PMID: 16862430 DOI: 10.1007/s00403-006-0683-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/19/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
The topical application of a mixture of sugar and povidone--iodine (PI) has been reported to accelerate the healing of cutaneous wounds and ulcers by promoting re-epithelialization and granulation tissue formation as well as having an anti-microbial effect. To clarify the mechanisms accounting for the efficacy of a 70% sugar and 3% PI paste (U-PASTAtrade mark) (SP), various keratinocytes and fibroblasts functions, including proliferation, collagen synthesis, integrin expression, and cytokine and proteinase secretions in the presence of SP were investigated. Cultured human keratinocytes and fibroblasts were treated with various concentrations of SP, SU and PI. The secretion of urokinase-type plasminogen activator (u-PA), transforming growth factor (TGF)-alpha and interleukin-1alpha from keratinocytes, was detected by ELISA. Collagen synthesis of fibroblasts was examined by means of detecting proline uptake. Furthermore, integrin expressions of these cells were analyzed using a flow cytometer. SP and PI increased intra-cellular u-PA of keratinocytes and stimulated the secretion of u-PA and TGF-alpha. Sugar accelerated the extra-cellular u-PA level only. Both SP and sugar increased the collagen synthesis of fibroblasts. SP and PI also remarkably induced the expressions of extra-cellular matrix receptor integrins, alpha1, alpha2, alpha3, alpha4, alpha5 and beta1, on the surface of keratinocytes and fibroblasts. SP, the mixture of sugar and PI, is likely to act on wounds not only as an antibiotic agent, but also as a modulator for keratinocytes and fibroblasts.
Collapse
Affiliation(s)
- Hiroshi Nakao
- Pharmacology Group, Fuji Research Laboratories, Pharmaceutical Division, Kowa Company Ltd, 332-1 Ohno-shinden, Fuji, Shizuoka, Japan
| | | | | | | |
Collapse
|
26
|
Abstract
Fibrinogen and fibrin play an important role in blood clotting, fibrinolysis, cellular and matrix interactions, inflammation, wound healing, angiogenesis, and neoplasia. The contribution of fibrin(ogen) to these processes largely depends not only on the characteristics of the fibrin(ogen) itself, but also on interactions between specific-binding sites on fibrin(ogen), pro-enzymes, clotting factors, enzyme inhibitors, and cell receptors. In this review, the molecular and cellular biology of fibrin(ogen) is reviewed in the context of cutaneous wound repair. The outcome of wound healing depends largely on the fibrin structure, such as the thickness of the fibers, the number of branch points, the porosity, and the permeability. The binding of fibrin(ogen) to hemostasis proteins and platelets as well as to several different cells such as endothelial cells, smooth muscle cells, fibroblasts, leukocytes, and keratinocytes is indispensable during the process of wound repair. High-molecular-weight and low-molecular-weight fibrinogen, two naturally occurring variants of fibrin, are important determinants of angiogenesis and differ in their cell growth stimulation, clotting rate, and fibrin polymerization characteristics. Fibrin sealants have been investigated as matrices to promote wound healing. These sealants may also be an ideal delivery vehicle to deliver extra cells for the treatment of chronic wounds.
Collapse
Affiliation(s)
- N Laurens
- Department of Biomedical Research, TNO-Quality of Life, Gaubius Laboratory, Leiden, the Netherlands
| | | | | |
Collapse
|
27
|
Langenbach KJ, Elliott JT, Tona A, McDaniel D, Plant AL. Thin films of Type 1 collagen for cell by cell analysis of morphology and tenascin-C promoter activity. BMC Biotechnol 2006; 6:14. [PMID: 16519810 PMCID: PMC1523190 DOI: 10.1186/1472-6750-6-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 03/06/2006] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The use of highly reproducible and spatiallyhomogeneous thin film matrices permits automated microscopy and quantitative determination of the response of hundreds of cells in a population. Using thin films of extracellular matrix proteins, we have quantified, on a cell-by-cell basis, phenotypic parameters of cells on different extracellular matrices. We have quantitatively examined the relationship between fibroblast morphology and activation of the promoter for the extracellular matrix protein tenascin-C using a tenascin-C promoter-based GFP reporter construct. RESULTS We find that when considering the average response from the population of cells, cell area correlates with tenascin-C promoter activity as has been previously suggested; however cell-by-cell analysis suggests that cell area and promoter activity are not tightly correlated within individual cells. CONCLUSION This study demonstrates how quantitative cell-by-cell analysis, facilitated by the use of thin films of extracellular matrix proteins, can provide insight into the relationship between phenotypic parameters.
Collapse
Affiliation(s)
- Kurt J Langenbach
- Biotechnology Division/National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - John T Elliott
- Biotechnology Division/National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Alex Tona
- Geo-centers, Inc. Newton, MA 02459, USA
| | - Dennis McDaniel
- Biotechnology Division/National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Anne L Plant
- Biotechnology Division/National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
28
|
de Giorgio-Miller A, Bottoms S, Laurent G, Carmeliet P, Herrick S. Fibrin-induced skin fibrosis in mice deficient in tissue plasminogen activator. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:721-32. [PMID: 16127152 PMCID: PMC1698739 DOI: 10.1016/s0002-9440(10)62046-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The deposition of fibrin is an integral part of the tissue repair process, but its persistence is also associated with a number of fibrotic conditions. This study addressed the hypothesis that reduced fibrinolysis and fibrin persistence are associated with an enhanced accumulation of collagen and the development of skin fibrosis. Decreased fibrinolysis was confirmed in fibrin gel cultures that contained human dermal fibroblasts plus the specific plasmin inhibitor alpha(2)-antiplasmin or dermal fibroblasts isolated from plasminogen activator (PA)-deficient mice. Collagen accumulation was significantly increased in the presence of inhibitor and in tPA-deficient, but not uPA-deficient, fibroblasts compared with controls. These findings were also confirmed using a skin fibrosis model in which multiple injections of fibrin were given subcutaneously to PA-deficient mice. Injection sites from tPA-deficient mice displayed significantly increased collagen levels compared with uPA-deficient mice and wild-type controls. Up-regulation of fibroblast procollagen gene expression and reduced activation of pro-MMP-1 appeared to mediate the increase in collagen by human dermal fibroblasts in the presence of alpha2-antiplasmin. These findings suggest that persistent fibrin is associated with enhanced collagen accumulation that may result in the development of fibrotic skin disorders in which reduced fibrinolysis is a feature.
Collapse
|
29
|
Sutherland J, Denyer M, Britland S. Motogenic substrata and chemokinetic growth factors for human skin cells. J Anat 2005; 207:67-78. [PMID: 16011545 PMCID: PMC1571500 DOI: 10.1111/j.1469-7580.2005.00431.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2005] [Indexed: 11/29/2022] Open
Abstract
Extracellular matrix remodelling and accurate spatio-temporal coordination of growth factor expression are two factors that are believed to regulate mitoses and cell migration in developing and regenerating tissues. The present quantitative videomicroscopical study examined the influence of some of the principal components of extracellular matrix and several growth factors that are known to be expressed in dermal wounds on three important facets of human skin cell behaviour in culture. Keratinocytes, melanocytes and dermal fibroblasts (and myofibroblast controls) exhibited varying degrees of substrate adhesion, division and migration depending on the composition of the culture substrate. Substrates that are recognized components of transitional matrices generally accentuated cell adhesion and proliferation, and were motogenic, when compared with serum-treated control surfaces, whereas components of more stable structures such as basement membrane had less influence. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and alpha fibroblastic growth factor (alphaFGF) all promoted cell proliferation and were chemokinetic to dermal fibroblasts, but not keratinocyte growth factor (KGF) or transforming growth factor beta (TGFbeta). PDGF, EGF and KGF, but not TGFbeta or alphaFGF, all enhanced proliferation of dermal keratinocytes. The same growth factors, and in addition KGF, all stimulated motility in keratinocytes, but TGFbeta and alphaFGF again had no effect. Developing a better understanding of the interdependency of factors that control crucial cell behaviour may assist those who are interested in the regulation of histogenesis and also inform the development of rational therapeutic strategies for the management of chronic and poorly healed wounds.
Collapse
|
30
|
Anusaksathien O, Webb SA, Jin QM, Giannobile WV. Platelet-derived growth factor gene delivery stimulates ex vivo gingival repair. ACTA ACUST UNITED AC 2004; 9:745-56. [PMID: 13678451 PMCID: PMC2586961 DOI: 10.1089/107632703768247421] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Destruction of tooth support due to the chronic inflammatory disease periodontitis is a major cause of tooth loss. There are limitations with available treatment options to tissue engineer soft tissue periodontal defects. The exogenous application of growth factors (GFs) such as platelet-derived growth factor (PDGF) has shown promise to enhance oral and periodontal tissue regeneration. However, the topical administration of GFs has not led to clinically significant improvements in tissue regeneration because of problems in maintaining therapeutic protein levels at the defect site. The utilization of PDGF gene transfer may circumvent many of the limitations with protein delivery to soft tissue wounds. The objective of this study was to test the effect of PDGF-A and PDGF-B gene transfer to human gingival fibroblasts (HGFs) on ex vivo repair in three-dimensional collagen lattices. HGFs were transduced with adenovirus encoding PDGF-A and PDGF-B genes. Defect fill of bilayer collagen gels was measured by image analysis of cell repopulation into the gingival defects. The modulation of gene expression at the defect site and periphery was measured by RT-PCR during a 10-day time course after gene delivery. The results demonstrated that PDGF-B gene transfer stimulated potent (>4-fold) increases in cell repopulation and defect fill above that of PDGF-A and corresponding controls. PDGF-A and PDGF-B gene expression was maintained for at least 10 days. PDGF gene transfer upregulated the expression of phosphatidylinosital 3-kinase and integrin alpha5 subunit at 5 days after adenovirus transduction. These results suggest that PDGF gene transfer has potential for periodontal soft tissue-engineering applications.
Collapse
Affiliation(s)
- Orasa Anusaksathien
- Center for Craniofacial Regeneration and Department of Periodontics, Prevention, and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|
31
|
Clark RAF, Lin F, Greiling D, An J, Couchman JR. Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan. J Invest Dermatol 2004; 122:266-77. [PMID: 15009704 DOI: 10.1046/j.0022-202x.2004.22205.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
After tissue injury, fibroblast migration from the peri-wound collagenous stroma into the fibrin-laden wound is critical for granulation tissue formation and subsequent healing. Recently we found that fibroblast transmigration from a collagen matrix into a fibrin matrix required the presence of fibronectin. Several integrins-alpha 4 beta 1, alpha 5 beta 1, and alpha v beta 3-with known fibronectin binding affinity were necessary for this invasive migration. Here we examined another family of cell surface receptors: the proteoglycans. We found that dermatan sulfate was required for fibroblast migration into a fibronectin/fibrin gel. This conclusion was based on beta-xyloside inhibition of glycanation and specific glycosaminoglycan degradation. CD44, a cell surface receptor known to bind hyaluronan, not infrequently exists as a proteoglycan, decorated with various glycosaminoglycan chains including heparan sulfate and chondroitin sulfate, and as such can bind fibronectin. We found that CD44H, the non-spliced isoform of CD44, was necessary for fibroblast invasion into fibronectin/fibrin gels. Resting fibroblasts expressed mostly nonglycanated CD44H core protein, which became glycanated with chondroitin sulfate and dermatan sulfate, but not heparan sulfate, after a 24 h incubation with platelet-derived growth factor, the stimulus used in the migration assay. These results demonstrate that dermatan sulfate-CD44H proteoglycan is essential for fibroblast migration into fibrin clots and that platelet-derived growth factor, the stimulus for migration, induces the production of chondroitin-sulfate- and dermatan-sulfate-glycanated CD44H.
Collapse
Affiliation(s)
- Richard A F Clark
- Department of Dermatology, School of Medicine, SUNY at Stony Brook, New York, 11794-8165, USA.
| | | | | | | | | |
Collapse
|
32
|
Zoppi N, Gardella R, De Paepe A, Barlati S, Colombi M. Human fibroblasts with mutations in COL5A1 and COL3A1 genes do not organize collagens and fibronectin in the extracellular matrix, down-regulate alpha2beta1 integrin, and recruit alphavbeta3 Instead of alpha5beta1 integrin. J Biol Chem 2004; 279:18157-68. [PMID: 14970208 DOI: 10.1074/jbc.m312609200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dermal fibroblasts derived from types I and IV Ehlers-Danlos syndrome (EDS) patients, carrying mutations in COL5A1 and COL3A1 genes, respectively, synthesize aberrant types V and III collagen (COLL) and show defective organization of these proteins into the extracellular matrix (ECM) and high reduction of their functional receptor, the alpha(2)beta(1) integrin, compared with control fibroblasts. EDS cells also show reduced levels of fibronectin (FN) in the culture medium and lack an FN fibrillar network. Finally, EDS cells prevalently organize alpha(v)beta(3) integrin instead of alpha(5)beta(1) integrin. The alpha(v)beta(3) integrin, distributed on the whole EDS cell surface, shows FN binding and assembly properties when the cells are treated with purified FN. Treatment of EDS cells with purified COLLV or COLLIII, but not with FN, restores the control phenotype (COLL(+), FN(+), alpha(v)beta(3)(-), alpha(5)beta(1)(+), alpha(2)beta(1)(+)). Function-blocking antibodies to COLLV, COLLIII, or alpha(2)beta(1) integrin induce in control fibroblasts an EDS-like phenotype (COLL(-), FN(-), alpha(v)beta(3)(+), alpha(5)beta(1)(-), alpha(2)beta(1)(-)). These results show that in human fibroblasts alpha(2)beta(1) integrin organization and function are controlled by its ligand, and that the alpha(2)beta(1)-COLL interaction, in turn, regulates FN integrin receptor recruitment: high alpha(2)beta(1) integrin levels induce alpha(5)beta(1) integrin organization, while low alpha(2)beta(1) integrin levels lead to alpha(v)beta(3) integrin organization.
Collapse
Affiliation(s)
- Nicoletta Zoppi
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology, Medical Faculty, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
33
|
Martin TA, Hilton J, Jiang WG, Harding K. Effect of human fibroblast-derived dermis on expansion of tissue from venous leg ulcers. Wound Repair Regen 2003; 11:292-6. [PMID: 12846917 DOI: 10.1046/j.1524-475x.2003.11409.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Novel approaches to healing of chronic wounds, such as venous leg ulcers, include the use of tissue-engineered skin substitutes, e.g., human fibroblast-derived dermis. The exact mechanisms of action of these products and their effects on wound healing at a cellular level are yet to be fully defined. The aim of our study was to evaluate the potential effects of human fibroblast-derived dermis on the healing of chronic wounds using an experimental model. We used a tissue expansion model to examine the effect of human fibroblast-derived dermis on the growth of human tissue biopsied from venous leg ulcers. Further characterization of the cytokine profile produced by human fibroblast-derived dermis in culture was performed using enzyme-linked immunosorbent assay techniques. Addition of medium conditioned with human fibroblast-derived dermis significantly increased the outgrowth of cells from venous leg ulcer biopsies (p = 0.001). We detected bioactive levels of hepatocyte growth factor/scatter factor and interleukin-8 in media conditioned with human fibroblast-derived dermis. Therefore, conditioned media from human fibroblast-derived dermis enhances ex vivo expansion of tissue taken from chronic venous leg ulcers, and contains potent angiogenic factors. These experimental findings may explain the enhanced healing seen with clinical applications of human fibroblast-derived dermis on chronic wounds.
Collapse
Affiliation(s)
- Tracey Amanda Martin
- Metastasis Research Group, University Department of Surgery, University of Wales College of Medicine, Cardiff, Wales, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Ghebrehiwet B, Feng X, Kumar R, Peerschke EIB. Complement component C1q induces endothelial cell adhesion and spreading through a docking/signaling partnership of C1q receptors and integrins. Int Immunopharmacol 2003; 3:299-310. [PMID: 12639807 DOI: 10.1016/s1567-5769(02)00270-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of C1q with endothelial cells elicits a multiplicity of biologic responses. Although these specific responses are thought to be mediated by the interaction of C1q with proteins of the endothelial cell surface, the molecular identity of the participant(s) has not been clearly defined. In this study, we examined the role of two C1q-binding proteins, cC1q-R/CR and gC1q-R/p33, on C1q-mediated adhesion and spreading of human dermal microvascular endothelial cells (HDMVECs). A specific and dose-dependent adhesion and spreading was observed when HDMVECs were cultured in microtiter plate wells coated with concentrations of C1q ranging from 0 to 50 microg/ml. The extent of adhesion and spreading was similar to the adhesion seen on collagen-coated wells. Furthermore, the effect of C1q was mimicked by either polyclonal anti-cC1q-R or mAb 60.11, but not with isotype- and species-matched control IgG. More importantly, however, a 100% inhibition of spreading but not adhesion to C1q-coated wells was observed when HDMVECs were cultured in the presence of 30 mM of the peptide GRRGDSP but not GRRGESP. Furthermore, while anti-beta1 integrin antibody blocked adhesion and spreading, antialpha5 integrin only blocked spreading. Since earlier studies have shown that zinc induces the exposure of hydrophobic sites in the C-terminus of gC1q-R including the putative high-molecular weight kininogen (HK)-binding site corresponding to residues 204-218, we also examined the effect of zinc on antibody binding to cell surface gC1q-R. Flow cytometric data show that the binding of mAb 74.5.2, which recognizes residues 204-218, is greatly enhanced when endothelial cells were incubated in the presence of 50 microM zinc. In summary, our data show that: (a) C1q-mediated endothelial cell adhesion and spreading requires the cooperation of both C1q receptors and 1 integrins, and possibly other membrane-spanning molecules, and (b) zinc can induce the exposure of hydrophobic sites in the C-terminal domain of gC1q-R allowing a more efficient binding of mAb 74.5.2 and HK.
Collapse
Affiliation(s)
- Berhane Ghebrehiwet
- Department of Medicine, Health Sciences Center, Division of Rheumatology, State University of New York, Stony Brook, NY 11794, USA.
| | | | | | | |
Collapse
|
35
|
Sethi KK, Yannas IV, Mudera V, Eastwood M, McFarland C, Brown RA. Evidence for sequential utilization of fibronectin, vitronectin, and collagen during fibroblast-mediated collagen contraction. Wound Repair Regen 2002; 10:397-408. [PMID: 12453144 DOI: 10.1046/j.1524-475x.2002.10609.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Contraction plays a major role in wound healing and is inevitably mediated through the mechanical interaction of fibroblast cytoskeleton and integrins with their extracellular matrix ligands. Cell-matrix attachment is critical for such events. In human dermal fibroblasts most such interactions are mediated by the beta1-type integrins. This study investigated the role played by key components in this system, notably fibronectin, vitronectin, and integrin subcomponents alpha2 and alpha5, which recognize collagen and fibronectin. Inhibition of adhesion through these ligands was studied either by antibody blocking or with fibronectin and/or vitronectin depletion. Functional effects of inhibition were monitored as force generation in collagen-glycosaminoglycan (IntegraTM) sponges, over 20 hours using a culture force monitor. Dose and time-course inhibition studies indicated that initial attachment and force generation (approx. 0-5 hours postseeding) was through fibronectin receptors and this was followed by vitronectin ligand and receptor utilization (4 hours onward). Utilization of the collagen integrin subcomponent alpha2 appeared to be increasingly important between 6 and 16 hours and dominant thereafter. Additionally, there was evidence for functional interdependence between the three ligand systems fibronectin, vitronectin, and collagen. We propose that there is a short cascade of sequential integrin-ligand interactions as cells attach to, extend through, and eventually contract their matrix. (WOUND REP REG 2002;10:-408)
Collapse
Affiliation(s)
- Kamaljit K Sethi
- University College London, RFUCMS, Tissue Repair & Engineering Center, Institute of Orthopaedics, RNOH campus, Stanmore, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Sethi KK, Mudera V, Sutterlin R, Baschong W, Brown RA. Contraction-mediated pinocytosis of RGD-peptide by dermal fibroblasts: inhibition of matrix attachment blocks contraction and disrupts microfilament organisation. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:231-41. [PMID: 12112137 DOI: 10.1002/cm.10047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Force generation in collagen and matrix contraction are basic functions of fibroblasts and important elements of tissue repair. Cell-matrix attachment is critical to this contraction, involving RGD-binding integrins. We have investigated how this process operates, in terms of force generation (in the Culture Force Monitor) and cytoskeletal structure, using a synthetic RGD-decapeptide. The RGD-peptide blocked force generation over the first 6 h, followed by near complete recovery by 20 h. However, dose response was complex indicating multiple processes were operating. Analysis of cytoskeletal structure after treatment with RGD-peptide indicated major disruption with condensed aggregates of actin and microtubular fragmentation. Fluorescent labeling and tracking of the RGD-peptide demonstrated intracellular uptake into discrete cytoplasmic aggregates. Critically, these RGD-peptide pools co-localised with the condensed actin microfilament aggregates. It is concluded that RGD-peptide uptake was by a form of contraction-mediated pinocytosis, resulting from mechanical tension applied to the untethered RGD-peptide-integrin, as contractile microfilament were assembled. These findings emphasize the importance of sound mechanical attachment of ligand-occupied integrins (e.g., to extracellular matrix) for normal cytoskeletal function. Conversely, this aspect of unrestrained cytoskeletal contraction may have important pathogenic and therapeutic applications.
Collapse
Affiliation(s)
- K K Sethi
- University College London, Tissue Repair and Engineering Centre (TREC), Institute of Orthopaedics, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
Noszczyk BH, Klein E, Holtkoetter O, Krieg T, Majewski S. Integrin expression in the dermis during scar formation in humans. Exp Dermatol 2002; 11:311-8. [PMID: 12190939 DOI: 10.1034/j.1600-0625.2002.110404.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To evaluate changes leading to human wound reorganization we examined by immunohistochemistry the expression of several extracellular matrix (ECM) receptors (alpha2 chain of VLA-2, alpha3 chain of VLA-3, alpha6 chain of VLA-6, alphav, and beta1/beta3 chains of integrins) in a series of biopsies of human skin wounds healing by primary intention. The first time point investigated in this study was day 6 after injury, i.e. when a fibrin clot has been almost completely replaced by the granulation tissue. Gradual changes in integrin expression in granulation tissue and in the dermal scar were observed from the first time point investigated and were characterized by an up-regulation of alpha2beta1 complex, alphav integrin subunit, and beta1 integrin subunit. At day 27, the expression of the alpha2 chain of VLA-2 in the scar decreased. The expression of alphav and beta1 integrin subunits decreased but was still detectable by day 35. Vitronectin expression from day 7 onwards was also increased and colocalized to the area of the wounded dermis, and decreased by day 27. Our data suggests that, during the remodelling of the provisional matrix of the wound, dermal fibroblasts express transiently mainly alpha2 and alphav subunits of integrins associated with up-regulation of the beta1 subunit. It seems that up-regulation of some chains of integrins may be involved in the control of deposition of ECM components associated with wound healing.
Collapse
Affiliation(s)
- Bartlomiej H Noszczyk
- Department of Plastic Surgery, Medical Center for Postgraduate Education, Warsaw, Poland
| | | | | | | | | |
Collapse
|
38
|
Nejjari M, Hafdi Z, Gouysse G, Fiorentino M, Béatrix O, Dumortier J, Pourreyron C, Barozzi C, D'errico A, Grigioni WF, Scoazec JY. Expression, regulation, and function of alpha V integrins in hepatocellular carcinoma: an in vivo and in vitro study. Hepatology 2002; 36:418-26. [PMID: 12143051 DOI: 10.1053/jhep.2002.34611] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of alpha V integrins by neoplastic cells contributes to the promotion of local invasion and metastasis. The most characteristic extracellular ligands of alpha V integrins are vitronectin and fibronectin. Hepatocytes are the main source of vitronectin, and the capacity to synthesize and secrete vitronectin is usually retained in hepatocellular carcinoma. The aim of this study was to explore the expression, regulation, and functional role of alpha V integrins in hepatocellular carcinoma. We first analyzed the expression of alpha V integrins and their ligands fibronectin and vitronectin in 80 cases of hepatocellular carcinoma. alpha V integrin chain was detected in 44 cases and vitronectin in 50. Twenty-four of the 44 alpha V-positive tumors contained large amounts of vitronectin. These cases presented more frequently with adverse histoprognostic factors, including infiltrative growth pattern (62.5%), lack of capsule (71%), presence of capsular invasion (57%), and satellite nodules (50%). We then used HepG2 and Hep3B cell lines as in vitro models to study alpha V integrin regulation and function. HepG2 and Hep3B cells expressed alpha V integrin chain and used alpha V beta 1 and alpha V beta 5 for adhesion and migration on vitronectin. Tumor necrosis factor (TNF) alpha and transforming growth factor (TGF) beta significantly increased the expression levels of alpha V integrins and stimulated the adhesion and migration of both HepG2 and Hep3B cell lines on vitronectin. The effects of growth factors on cell adhesion and migration were reproduced by incubation with conditioned medium from rat liver myofibroblasts. In conclusion, our results support the existence of an alpha V integrin/vitronectin connection in hepatocellular carcinoma and suggest that this connection may be an adverse prognostic factor.
Collapse
|
39
|
Koistinen P, Heino J. The selective regulation of alpha Vbeta 1 integrin expression is based on the hierarchical formation of alpha V-containing heterodimers. J Biol Chem 2002; 277:24835-41. [PMID: 11997396 DOI: 10.1074/jbc.m203149200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The integrin beta1 subunit can form a heterodimer with 12 different alpha subunits. According to the present model, the expression level of any alphabeta complex is regulated by the availability of the specific alpha subunit, whereas beta1 subunit is constantly present in a large excess. The expression of several heterodimers containing the alphaV subunit seems to be regulated by an identical mechanism. The fact that many cells express alphaVbeta1 heterodimer, and that this fibronectin/vitronectin receptor may be selectively regulated, compromises the present model of the regulation of beta1 and alphaV integrins. We have tried to solve this problem by assuming that distinct alphabeta heterodimers are formed with different tendency. To test the hypothesis, we analyzed WM-266-4 melanoma cells transfected with a cDNA construct coding for an intracellular single-chain anti-alphaV integrin antibody. We could see 70-80% reduction in the cell surface expression of alphaV subunit. However, the only one of the alphaV integrins reduced on the cell surface was alphaVbeta1. This suggests that the cell surface expression level of alphaVbeta1 is dependent on the number of alphaV subunits available after the formation of other alphaV-containing heterodimers. Thus, there seems to be a hierarchy in the complex formation between alphaV and its different beta-partners. These observations explain how alphaVbeta1 can be specifically regulated without concomitant changes in the expression of other alphaV or beta1 integrins.
Collapse
Affiliation(s)
- Pekka Koistinen
- MediCity Research Laboratory and the Department of Medical Biochemistry, Turku Graduate School of Biomedical Sciences, University of Turku, FIN-20520 Turku, Finland
| | | |
Collapse
|
40
|
Abstract
The proliferative--or new-tissue formation--phase of wound healing is complex. This article examines the changes that occur to cells during this stage and the effect on the extracellular matrix environment.
Collapse
Affiliation(s)
- P Stephens
- Department of Oral Surgery, Medicine and Pathology, University of Wales College of Medicine, Dental School, Heath Park, Cardiff, UK.
| | | |
Collapse
|
41
|
Pilch J, Habermann R, Felding-Habermann B. Unique ability of integrin alpha(v)beta 3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem 2002; 277:21930-8. [PMID: 11934894 DOI: 10.1074/jbc.m201630200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shear-resistant arrest of circulating tumor cells is required for metastasis from the blood stream. Arrest during blood flow can be supported by tumor cell interaction with attached, activated platelets. This is mediated by tumor cell integrin alpha(v)beta3 and cross-linking plasma protein ligands. To analyze the mechanism of tumor cell ligand interactions under dynamic flow conditions, we used real-time video microscopy and tested human melanoma cell binding to fibrinogen, von Willebrand Factor, or fibronectin matrices in a buffer perfusion system. When perfused at venous flow, melanoma cells arrested abruptly and began to spread immediately. This was uniquely mediated by integrin alpha(v)beta3 on all tested ligands, and required alpha(v)beta3 activation and actin polymerization. Under static conditions, alpha(v)beta3 cooperated with alpha(v)beta1 and alpha5beta1 in supporting melanoma cell adhesion to fibronectin. But even when activated, beta1 integrins did not contribute to melanoma cell arrest during flow. Soluble ligand served as a cross-linker between attached and circulating tumor cells and enhanced melanoma cell arrest. Cohesion of activated melanoma cells was restricted to the matrix surface and did not occur in suspension. We conclude that the presence of alpha(v)beta3 in a functionally activated state provides a unique advantage for circulating tumor cells by promoting tumor cell arrest in the presence of flow-dependent shear forces.
Collapse
Affiliation(s)
- Jan Pilch
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
42
|
Steffensen B, Häkkinen L, Larjava H. Proteolytic events of wound-healing--coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:373-98. [PMID: 12002821 DOI: 10.1177/10454411010120050201] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During wound-healing, cells are required to migrate rapidly into the wound site via a proteolytically generated pathway in the provisional matrix, to produce new extracellular matrix, and, subsequently, to remodel the newly formed tissue matrix during the maturation phase. Two classes of molecules cooperate closely to achieve this goal, namely, the matrix adhesion and signaling receptors, the integrins, and matrix-degrading and -processing enzymes, the matrix metalloproteinases (MMPs). There is now substantial experimental evidence that blocking key molecules of either group will prevent or seriously delay wound-healing. It has been known for some time now that cell adhesion by means of the integrins regulates the expression of MMPs. In addition, certain MMPs can bind to integrins or other receptors on the cell surface involved in enzyme activation, thereby providing a mechanism for localized matrix degradation. By proteolytically modifying the existing matrix molecules, the MMPs can then induce changes in cell behavior and function from a state of rest to migration. During wound repair, the expression of integrins and MMPs is simultaneously up-regulated. This review will focus on those aspects of the extensive knowledge of fibroblast and keratinocyte MMPs and integrins in biological processes that relate to wound-healing.
Collapse
Affiliation(s)
- B Steffensen
- Department of Periodontics, University of Texas Health Science Center at San Antonio, 78229-3900, USA.
| | | | | |
Collapse
|
43
|
Jung DR, Kapur R, Adams T, Giuliano KA, Mrksich M, Craighead HG, Taylor DL. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit Rev Biotechnol 2002; 21:111-54. [PMID: 11451046 DOI: 10.1080/20013891081700] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Precise control of the architecture of multiple cells in culture and in vivo via precise engineering of the material surface properties is described as cell patterning. Substrate patterning by control of the surface physicochemical and topographic features enables selective localization and phenotypic and genotypic control of living cells. In culture, control over spatial and temporal dynamics of cells and heterotypic interactions draws inspiration from in vivo embryogenesis and haptotaxis. Patterned arrays of single or multiple cell types in culture serve as model systems for exploration of cell-cell and cell-matrix interactions. More recently, the patterned arrays and assemblies of tissues have found practical applications in the fields of Biosensors and cell-based assays for Drug Discovery. Although the field of cell patterning has its origins early in this century, an improved understanding of cell-substrate interactions and the use of microfabrication techniques borrowed from the microelectronics industry have enabled significant recent progress. This review presents the important early discoveries and emphasizes results of recent state-of-the-art cell patterning methods. The review concludes by illustrating the growing impact of cell patterning in the areas of bioelectronic devices and cell-based assays for drug discovery.
Collapse
|
44
|
Lamireau T, Dubuisson L, Lepreux S, Bioulac-Sage P, Fabre M, Rosenbaum J, Desmoulière A. Abnormal hepatic expression of fibrillin-1 in children with cholestasis. Am J Surg Pathol 2002; 26:637-46. [PMID: 11979094 DOI: 10.1097/00000478-200205000-00010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrillin-1, one of the main constituents of microfibrils, is present in normal adult liver and overexpressed in fibrotic area around cirrhotic nodules and hepatocellular carcinoma. In this work fibrillin-1 expression was studied by immunohistochemistry in liver samples from children with various cholestatic diseases corresponding to paucity of intrahepatic bile ducts, biliary atresia, congenital hepatic fibrosis, Byler's disease, mitochondrial cytopathy, sclerosing cholangitis, or choledochal cyst. As controls, histologically normal liver samples were used. In control liver, as in adult, fibrillin-1 was expressed in vessel walls, sinusoids, and portal connective tissue, particularly at the interface with the limiting hepatocytic plate and close to the basement membrane of bile ducts. In paucity of intrahepatic bile ducts without fibrosis, the fibrillin-1 distribution was similar to controls. In cholestatic diseases associated with severe fibrosis, such as biliary atresia, congenital hepatic fibrosis, Byler's disease, mitochondrial cytopathy, or sclerosing cholangitis, an enhanced deposition of fibrillin-1 was observed in portal connective tissue and fibrous septa. The strong fibrillin-1 expression close to the basement membrane of biliary structures was lost in cholestatic diseases, except biliary atresia. Finally, in normal and pathologic tissues, fibrillin-1 was co-localized with its putative receptor alphaVbeta3 in sinusoids but not around biliary structures.
Collapse
Affiliation(s)
- Thierry Lamireau
- Groupe de Recherches pour l'Etude du Foie, Université Victor Segalen, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Gath HJ, Hell B, Zarrinbal R, Bier J, Raguse JD. Regeneration of intraoral defects after tumor resection with a bioengineered human dermal replacement (Dermagraft). Plast Reconstr Surg 2002; 109:889-93; discussion 894-5. [PMID: 11884802 DOI: 10.1097/00006534-200203000-00009] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The experiences of seven patients with squamous cell carcinomas of the oral cavity who underwent reconstruction with a bioengineered human dermal replacement (Dermagraft) are examined. The human dermal replacement consists of fibroblasts seeded onto a three-dimensional polymer scaffold to create a living dermal structure. In this setting, the fibroblasts secrete a mixture of growth factors and matrix proteins in physiological concentration that is essential for wound healing and epithelization. The fibroblast tissue remains metabolically active after cryopreservation and can be used as an off-the-shelf tissue to cover medium-sized defects and avoid donor-site morbidity. In the first series of patients treated with this tissue, defect closure was achieved without functional problems, allowing optimal postoperative monitoring for tumor recurrence.
Collapse
Affiliation(s)
- Hans Joachim Gath
- Charité, Campus Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin, Klinik für Mund-, Kiefer-, und Gesichtschirurgie, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
46
|
Feng X, Tonnesen MG, Peerschke EIB, Ghebrehiwet B. Cooperation of C1q receptors and integrins in C1q-mediated endothelial cell adhesion and spreading. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2441-8. [PMID: 11859136 DOI: 10.4049/jimmunol.168.5.2441] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The interaction of C1q with endothelial cells elicits a multiplicity of biologic responses. Although these responses are presumed to be mediated by the interaction of C1q with endothelial cell surface proteins, the identity of the participants is not known. In this study we examined the roles of two C1q binding proteins, cC1q-R/calreticulin and gC1q-R/p33, in C1q-mediated adhesion and spreading of human dermal microvascular endothelial cells (HDMVEC). When HDMVEC were cultured in microtiter plate wells coated with concentrations of C1q ranging from 0 to 50 microg/ml, a specific and dose-dependent adhesion and spreading was observed. The extent of adhesion and spreading was similar to the adhesion seen on collagen-coated wells. Spreading (68 +/- 12%) and to a moderate extent adhesion (47 +/- 9%) were inhibited by anti-gC1q-R mAb 60.11. Similar effects were noted with polyclonal anti-cC1q-R but not with control nonimmune IgG. The two Abs had a slight additive effect (75 +/- 13% inhibition) when mixed together in the proportion of 100 microg/ml anti-gC1q-R and 30 microg/ml anti-cC1q-R. More importantly, a 100% inhibition of spreading, but not adhesion, to C1q-coated wells was observed when HDMVEC were cultured in the presence of 30 microM of the peptide GRRGDSP but not GRRGESP. Furthermore, while anti-beta(1) integrin Ab blocked both adhesion and spreading, anti-alpha(5) integrin blocked only spreading and not adhesion. Ag capture ELISA of endothelial cell membrane proteins using polyclonal anti-gC1q-R showed the presence of not only beta(1) and alpha(5) integrins but also CD44. Taken together these results suggest that endothelial cell adhesion and spreading require the cooperation of both C1qRs and beta(1) integrins and possibly other membrane-spanning molecules.
Collapse
Affiliation(s)
- Xiaodong Feng
- Department of Dermatology, State University of New York, Health Sciences Center T-16-040, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
47
|
Kubo M, Van de Water L, Plantefaber LC, Mosesson MW, Simon M, Tonnesen MG, Taichman L, Clark RA. Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol 2001; 117:1369-81. [PMID: 11886497 DOI: 10.1046/j.0022-202x.2001.01551.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cutaneous wound repair the epidermis avoids the fibrin-rich clot; rather it migrates down the collagen-rich dermal wound margin and over fibronectin-rich granulation tissue. The mechanism(s) underlying keratinocyte movement in this precise pathway has not been previously addressed. Here we demonstrate that cultured human keratinocytes do not express functional fibrinogen/fibrin receptors, specifically alpha v beta 3. Biologic modifiers known to induce integrin expression or activation did not induce adhesion to fibrin, fibrinogen, or its fragments. Epidermal explant outgrowth and single epidermal cell migration failed to occur on either fibrin or fibrinogen. Surprisingly, fibrin and fibrinogen mixed at physiologic molar ratios with fibronectin abrogated keratinocyte attachment to fibronectin. Keratinocytes transduced with the beta 3 integrin subunit cDNA, expressed alpha v beta 3 on their surface and attached to and spread on fibrinogen and fibrin. beta-gal cDNA-transduced keratinocytes did not demonstrate this activity. Furthermore, beta 3 cDNA-transduced keratinocyte adhesion to fibrin was inhibited by LM609 monoclonal antibody to alpha v beta 3 in a concentration-dependent fashion. From these data, we conclude that normal human keratinocytes cannot interact with fibrinogen and its derivatives due to the lack of alpha v beta 3. Thus, fibrinogen and fibrin are authentic anti-adhesive for keratinocytes. This may be a fundamental reason why the migrating epidermis dissects the fibrin eschar from wounds.
Collapse
Affiliation(s)
- M Kubo
- Department of Dermatology, School of Medicine, SUNY at Stony Brook, Stony Brook, New York, New York 11794-8165, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bhati RS, Mukherjee DP, McCarthy KJ, Rogers SH, Smith DF, Shalaby SW. The growth of chondrocytes into a fibronectin-coated biodegradable scaffold. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 56:74-82. [PMID: 11309793 DOI: 10.1002/1097-4636(200107)56:1<74::aid-jbm1070>3.0.co;2-m] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Porous scaffolds made from a biodegradable copolymer of trimethylene carbonate and glycolide were evaluated for tissue-engineered medical products. We examined the scaffold coated with cell adhesion protein and fibronectin and cultured under a dynamic mixing condition to enhance the growth of chondrocytes. Our hypothesis was that the combination of coating and dynamic mixing would be beneficial to the viability of the chondrocytic cells. Fibronectin was selected as the model protein because of its availability and routine assaying methods. Sterile samples of scaffolds of about 1 mm in thickness were coated with fibronectin at 37 degrees C for 1.5 h. Four groups of scaffolds were used: uncoated static or dynamic, and coated static or dynamic. Scaffold samples were placed in either a Petri dish or a spinner flask (static vs. dynamic groups) after inoculation with rat chondrocytes of an initial cell density of 1.29 x 10(5) cell/mL. After 7, 14, 21, and 28 days, each sample was fixed, embedded, and sectioned at 5 micro thickness. The sections were double-label immunostained using antibodies against cellular fibronectin synthesized by adherent cells as a measure of cell viability. A Hoechst 33258 nuclear stain was used to measure the number of cells attached to the scaffold at each time interval. The slides were examined using a fluorescence microscope to determine the cell ingrowth. At least 25 fields/treatment group (except the 7 day group) were measured. The data showed that cell in-growths into the porous scaffolds were higher at all time periods for the coated dynamic group than those for the other three groups.
Collapse
Affiliation(s)
- R S Bhati
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | |
Collapse
|
49
|
Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, Nemerow GR. Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 2001; 75:5405-9. [PMID: 11333925 PMCID: PMC114949 DOI: 10.1128/jvi.75.11.5405-5409.2001] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human embryonic kidney (HEK293) cell line, commonly used for recombinant adenovirus (Ad) propagation, does not express the Ad coreceptor alpha(v)beta3 or alpha(v)beta5 integrins, yet these cells are efficiently infected by Ad vectors. Here we demonstrate that Ad binds to HEK293 cells via the fiber receptor CAR and is subsequently internalized via interaction with integrin alpha(v)beta1. Function-blocking antibodies directed against alpha(v) or beta1, but not beta3, beta5, or alpha5, integrin subunits block Ad infection and viral endocytosis. Therefore, alpha(v)beta1 serves as a coreceptor for Ad infection, and the lack of beta3 and/or beta5 but the relatively high expression of alpha(v)beta1 integrins on certain tumor cell types may explain why these cells are readily transduced by Ad vectors.
Collapse
Affiliation(s)
- E Li
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
50
|
Shreiber DI, Enever PA, Tranquillo RT. Effects of pdgf-bb on rat dermal fibroblast behavior in mechanically stressed and unstressed collagen and fibrin gels. Exp Cell Res 2001; 266:155-66. [PMID: 11339834 DOI: 10.1006/excr.2001.5208] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dose-response effects of platelet-derived growth factor BB (PDGF-BB) on rat dermal fibroblast (RDF) behavior in mechanically stressed and unstressed type I collagen and fibrin were investigated using quantitative assays developed in our laboratory. In chemotaxis experiments, RDFs responded optimally (P < 0.05) to a gradient of 10 ng/ml PDGF-BB in both collagen and fibrin. In separate experiments, the migration of RDFs and the traction exerted by RDFs in the presence of PDGF-BB (0, 0.1, 1, 10, or 100 ng/ml) were assessed simultaneously in the presence or absence of stress. RDF migration increased significantly (P < 0.05) at doses of 10 and 100 ng/ml PDGF-BB in collagen and fibrin in the presence and absence of stress. In contrast, the effects of PDGF-BB on RDF traction depended on the gel type and stress state. PDGF-BB decreased fibroblast traction in stressed collagen, but increased traction in unstressed collagen (P < 0.05). No statistical conclusion could be inferred for stressed fibrin, but increasing PDGF-BB decreased traction in unstressed fibrin (P < 0.05). These results demonstrate the complex response of fibroblasts to environmental cues and suggest that mechanical resistance to compaction may be a crucial element in dictating fibroblast behavior.
Collapse
Affiliation(s)
- D I Shreiber
- Departments of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455
| | | | | |
Collapse
|