1
|
Duncan JD, Setati ME, Divol B. The cellular symphony of redox cofactor management by yeasts in wine fermentation. Int J Food Microbiol 2025; 427:110966. [PMID: 39536648 DOI: 10.1016/j.ijfoodmicro.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Redox metabolism is pivotal in anaerobic fermentative processes such as winemaking where it results in the production of many metabolites that contribute to the aroma and flavour of wine. Key to this system are NAD+ and NADP+, which play essential roles as cofactors in maintaining cellular redox balance and regulating metabolism during fermentation. This review comprehensively explores redox metabolism under winemaking conditions, highlighting the influence of factors such as oxygen availability and vitamins including B3 and B1. Recent findings underscore the rapid assimilation and recycling dynamics of these vitamins during fermentation, reinforcing their critical role in yeast performance. Despite extensive research, the roles of diverse yeast species and specific vitamins remain insufficiently explored. By consolidating current knowledge, this review emphasises the implications of redox dynamics for metabolite synthesis and overall wine quality. Understanding these metabolic intricacies offers options to enhance fermentation efficiency and refine aroma profiles. The review also identifies gaps in studies for intracellular vitamin metabolism and underlines the need for deeper insights into non-Saccharomyces yeast metabolism. Future research directions should focus on elucidating specific metabolic responses, exploring environmental influences, and harnessing the potential of diverse yeasts to innovate and diversify wine production strategies.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
2
|
Sun Y, Wang B, Chen W, Wang Y, Zhou D, Zhang M, Zhang C, Li R, He J. The Role of Potato Glycoside Alkaloids Mediated Oxidative Stress in Inducing Apoptosis of Wolfberry Root Rot Pathogen Fungi. Antioxidants (Basel) 2024; 13:1537. [PMID: 39765865 PMCID: PMC11726719 DOI: 10.3390/antiox13121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Wolfberry (Lycium barbarum) is a vital economic tree species in northwest China, but root rot caused by Fusarium solani occurs frequently, which seriously endangers the quality and yield of wolfberry. In this study, potato glycoside alkaloids (PGAs), a plant-derived active substance, were used as materials to explore its inhibitory effect on F. solani. By analyzing the changes of reactive oxygen species (ROS) level, antioxidant capacity, and apoptosis, the role of PGAs-mediated oxidative stress in inducing apoptosis of F. solani was revealed. The findings suggest that PGAs treatment inhibited mycelium growth, reduced biomass and sporulation, and delayed spore germination in F. solani. The concentration for 50% of maximal effect (EC50) was 1.85 mg/mL. PGAs treatment induced an increase in caspase-3 activity, disrupting the cell membrane of fungi. In addition, PGAs treatment activated NADH oxidase (NOX) and superoxide dismutase (SOD), promoted hydrogen peroxide (H2O2) and superoxide anion (O2-) accumulation, and decreased ascorbate peroxidase (APX), glutathione reductase (GR), and dehydroascorbate reductase (DHAR) activities as well as oxidized glutathione (GSSG), reduced glutathione (GSH), and electron donor NADPH content. In summary, PGAs has a strong inhibitory effect on F. solani, and its inhibitory effect may be related to the promotion of ROS accumulation by PGAs, causing the disorder of intracellular redox balance of fungi, the decrease of total antioxidant capacity, and finally the induction of apoptosis. This study provides a new insight into the antifungal mechanism of PGAs against F. solani.
Collapse
Affiliation(s)
- Yuyan Sun
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Bin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Wei Chen
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Yanbo Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Dongdong Zhou
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Mengyang Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Chongqing Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Ruiyun Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (Y.S.); (B.W.); (W.C.); (Y.W.); (D.Z.); (M.Z.); (C.Z.); (R.L.)
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou 730070, China
| |
Collapse
|
3
|
Zou Z, Chen X, Weng X, Guo Y, Guan Y, Zhang L. Rho4 interacts with BbGDI and is essential for the biocontrol potential of Beauveria bassiana by maintaining intracellular redox homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106145. [PMID: 39477598 DOI: 10.1016/j.pestbp.2024.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 11/07/2024]
Abstract
Rho4 is a member of the Rho-family small GTPases. In this study, we revealed the function of Rho4 and explored its mechanism involved in intracellular redox homeostasis in Beauveria bassiana, one of the most widely utilized filamentous entomopathogenic fungi. The disruption of Rho4 in B. bassiana resulted in significant phenotypic changes, such as fungal virulence, growth rate on different media, thermotolerance, germination, and conidiation. Integrated analysis of proteomic and transcriptomic data unveiled differential expression patterns of various redox-related genes and proteins in Δrho4, including the down-regulation of GST shown in proteomic and transcriptomic data, and the down-regulated gene expression levels of NOX, SOD, CAT, and GR in the transcriptome. Based on the bi-omics analysis, we focused on the impact of Rho4 in maintaining intracellular redox homeostasis. A decreased ROS content observed in Δrho4 might be attributed to the reduced NOX activity, which subsequently affects the GSH-producing/consuming metabolisms, with the attenuated activities of GR and GST. The imbalanced redox homeostasis also resulted in the reduced enzyme activities of SOD and CAT. Exogenous oxides could partially complement the ROS level and rescue the growth defect in Δrho4 to a certain extent. Besides, BbGDI was initially identified as an interacting protein of Rho4 in entomopathogenic fungi. Our results provide a comprehensive understanding of the function and regulating mechanism of Rho4 in B. bassiana.
Collapse
Affiliation(s)
- Zhenyu Zou
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaonuo Chen
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Xiaojun Weng
- Fuzhou Longxiang Shengke Technologies Limited, Fuzhou 350001, China.
| | - Yuhan Guo
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; National University of Singapore, Singapore 117544, Singapore.
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
4
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Arnoczki C, Moteshareie H, Said KB, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1. FEBS J 2024; 291:4602-4618. [PMID: 39102301 DOI: 10.1111/febs.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | | | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
5
|
Yue L, Li Y, Luo Y, Alarfaj AA, Shi Y. Pelargonidin inhibits cell growth and promotes oxidative stress-mediated apoptosis in lung cancer A549 cells. Biotechnol Appl Biochem 2024; 71:1195-1203. [PMID: 38853344 DOI: 10.1002/bab.2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer has the worst prognosis with an average 5-year survival rate of only 10%-20%. Lung cancer has the highest prevalence rate and a second most common cause of cancer-associated mortalities worldwide. The present study was planned to explore the anticancer effects of pelargonidin against the lung cancer A549 cells via analyzing oxidative stress-mediated apoptosis. The viability of both control and pelargonidin-treated A549 cells was analyzed using the MTT cytotoxicity assay at different time periods. The levels of endogenous ROS generation, mitochondrial membrane potential (Δψm), and apoptosis were assessed using corresponding fluorescent staining assays. The levels of oxidative stress biomarkers, including TBARS, SOD, CAT, and GSH, in the cell lysates of control and pelargonidin-treated A549 cells were examined using the assay kits. The pelargonidin treatment substantially suppressed the A549 cell growth. Further, pelargonidin promoted the ROS production and depleted the Δψm levels in the A549 cells. The fluorescent staining assays witnessed the occurrence of increased apoptosis in the pelargonidin-treated A549 cells. The pelargonidin also boosted the TBARS and reduced the antioxidant levels thereby promoted the oxidative stress-regulated apoptosis in the A549 cells. In summary, the findings' results of the current study demonstrated an anticancer activity of pelargonidin on A549 cells. The pelargonidin treatment substantially decreased the growth and encouraged the oxidative stress-regulated apoptosis in A549 cells. Therefore, it was evident that the pelargonidin could be employed as an effective anticancer candidate to treat the lung cancer.
Collapse
Affiliation(s)
- Liwei Yue
- Department of Pneumology, Shandong Provincial Third Hospital, Jinan, China
| | - Ying Li
- Department of Pneumology, Shandong Provincial Third Hospital, Jinan, China
| | - Yuting Luo
- Department of Pneumology, Jinan Third People's Hospital, Jinan, China
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yubo Shi
- Department of Cardiothoracic Surgery, Yantaishan Hospital, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| |
Collapse
|
6
|
Hou S, Gao C, Liu J, Chen X, Wei W, Song W, Hu G, Li X, Wu J, Liu L. Med3-mediated NADPH generation to help Saccharomyces cerevisiae tolerate hyperosmotic stress. Appl Environ Microbiol 2024; 90:e0096824. [PMID: 39082808 PMCID: PMC11337799 DOI: 10.1128/aem.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperosmotic stress tolerance is crucial for Saccharomyces cerevisiae in producing value-added products from renewable feedstock. The limited understanding of its tolerance mechanism has impeded the application of these microbial cell factories. Previous studies have shown that Med3 plays a role in hyperosmotic stress in S. cerevisiae. However, the specific function of Med3 in hyperosmotic stress tolerance remains unclear. In this study, we showed that the deletion of the mediator Med3 impairs S. cerevisiae growth under hyperosmotic stress. Phenotypic analyses and yeast two-hybrid assays revealed that Med3 interacts with the transcription factor Stb5 to regulate the expression of the genes gnd1 and ald6, which are involved in NADPH production under hyperosmotic stress conditions. The deletion of med3 resulted in a decrease in intracellular NADPH content, leading to increased oxidative stress and elevated levels of intracellular reactive oxygen species under hyperosmotic stress, thereby impacting bud formation. These findings highlight the significant role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.IMPORTANCEHyperosmotic stress tolerance in the host strain is a significant challenge for fermentation performance in industrial production. In this study, we showed that the S. cerevisiae mediator Med3 is essential for yeast growth under hyperosmotic conditions. Med3 interacts with the transcription factor Stb5 to regulate the expression of genes involved in the NADPH-generation system during hyperosmotic stress. Adequate NADPH ensures the timely removal of excess reactive oxygen species and supports bud formation under these conditions. This work highlights the crucial role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.
Collapse
Affiliation(s)
- Shuo Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Panmanee W, Tran MTH, Seye SN, Strome ED. Altered S-AdenosylMethionine availability impacts dNTP pools in Saccharomyces cerevisiae. Yeast 2024; 41:513-524. [PMID: 38961653 PMCID: PMC12044341 DOI: 10.1002/yea.3973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 07/05/2024] Open
Abstract
Saccharomyces cerevisiae has long been used as a model organism to study genome instability. The SAM1 and SAM2 genes encode AdoMet synthetases, which generate S-AdenosylMethionine (AdoMet) from Methionine (Met) and ATP. Previous work from our group has shown that deletions of the SAM1 and SAM2 genes cause changes to AdoMet levels and impact genome instability in opposite manners. AdoMet is a key product of methionine metabolism and the major methyl donor for methylation events of proteins, RNAs, small molecules, and lipids. The methyl cycle is interrelated to the folate cycle which is involved in de novo synthesis of purine and pyrimidine deoxyribonucleotides (dATP, dTTP, dCTP, and dGTP). AdoMet also plays a role in polyamine production, essential for cell growth and used in detoxification of reactive oxygen species (ROS) and maintenance of the redox status in cells. This is also impacted by the methyl cycle's role in production of glutathione, another ROS scavenger and cellular protectant. We show here that sam2∆/sam2∆ cells, previously characterized with lower levels of AdoMet and higher genome instability, have a higher level of each dNTP (except dTTP), contributing to a higher overall dNTP pool level when compared to wildtype. Unchecked, these increased levels can lead to multiple types of DNA damage which could account for the genome instability increases in these cells.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Men T H Tran
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Serigne N Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| | - Erin D Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, Kentucky, USA
| |
Collapse
|
8
|
Spaggiari L, Ardizzoni A, Ricchi F, Pedretti N, Squartini Ramos CA, Squartini Ramos GB, Kenno S, De Seta F, Pericolini E. Fungal burden, dimorphic transition and candidalysin: Role in Candida albicans-induced vaginal cell damage and mitochondrial activation in vitro. PLoS One 2024; 19:e0303449. [PMID: 38768097 PMCID: PMC11104617 DOI: 10.1371/journal.pone.0303449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Candida albicans (C. albicans) can behave as a commensal yeast colonizing the vaginal mucosa, and in this condition is tolerated by the epithelium. When the epithelial tolerance breaks down, due to C. albicans overgrowth and hyphae formation, the generated inflammatory response and cell damage lead to vulvovaginal candidiasis (VVC) symptoms. Here, we focused on the induction of mitochondrial reactive oxygen species (mtROS) in vaginal epithelial cells after C. albicans infection and the involvement of fungal burden, morphogenesis and candidalysin (CL) production in such induction. Bioluminescent (BLI) C. albicans, C. albicans PCA-2 and C. albicans 529L strains were employed in an in vitro infection model including reconstituted vaginal epithelium cells (RVE), produced starting from A-431 cell line. The production of mtROS was kinetically measured by using MitoSOX™ Red probe. The potency of C. albicans to induced cell damage to RVE and C. albicans proliferation have also been evaluated. C. albicans induces a rapid mtROS release from vaginal epithelial cells, in parallel with an increase of the fungal load and hyphal formation. Under the same experimental conditions, the 529L C. albicans strain, known to be defective in CL production, induced a minor mtROS release showing the key role of CL in causing epithelial mithocondrial activation. C. albicans PCA-2, unable to form hyphae, induced comparable but slower mtROS production as compared to BLI C. albicans yeasts. By reducing mtROS through a ROS scavenger, an increased fungal burden was observed during RVE infection but not in fungal cultures grown on abiotic surface. Collectively, we conclude that CL, more than fungal load and hyphae formation, seems to play a key role in the rapid activation of mtROS by epithelial cells and in the induction of cell-damage and that mtROS are key elements in the vaginal epithelial cells response to C. albicans.
Collapse
Affiliation(s)
- Luca Spaggiari
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Ricchi
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Natalia Pedretti
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Caterina Alejandra Squartini Ramos
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianfranco Bruno Squartini Ramos
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Samyr Kenno
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Francesco De Seta
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS, Burlo Garofolo, Trieste, Italy
| | - Eva Pericolini
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
9
|
Goncalves D, Duy DL, Peffer S, Morano KA. Cytoplasmic redox imbalance in the thioredoxin system activates Hsf1 and results in hyperaccumulation of the sequestrase Hsp42 with misfolded proteins. Mol Biol Cell 2024; 35:ar53. [PMID: 38381577 PMCID: PMC11064659 DOI: 10.1091/mbc.e23-07-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cells employ multiple systems to maintain homeostasis when experiencing environmental stress. For example, the folding of nascent polypeptides is exquisitely sensitive to proteotoxic stressors including heat, pH, and oxidative stress, and is safeguarded by a network of protein chaperones that concentrate potentially toxic misfolded proteins into transient assemblies to promote folding or degradation. The redox environment itself is buffered by both cytosolic and organellar thioredoxin and glutathione pathways. How these systems are linked is poorly understood. Here, we determine that specific disruption of the cytosolic thioredoxin system resulted in constitutive activation of the heat shock response in Saccharomyces cerevisiae and accumulation of the sequestrase Hsp42 into an exaggerated and persistent juxtanuclear quality control (JUNQ) compartment. Terminally misfolded proteins also accumulated in this compartment in thioredoxin reductase (TRR1)-deficient cells, despite apparently normal formation and dissolution of transient cytoplasmic quality control (CytoQ) bodies during heat shock. Notably, cells lacking TRR1 and HSP42 exhibited severe synthetic slow growth exacerbated by oxidative stress, signifying a critical role for Hsp42 under redox-challenged conditions. Finally, we demonstrated that Hsp42 localization patterns in trr1∆ cells mimic those observed in chronically aging and glucose-starved cells, linking nutrient depletion and redox imbalance with management of misfolded proteins via a process of long-term sequestration.
Collapse
Affiliation(s)
- Davi Goncalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| | - Duong Long Duy
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| | - Sara Peffer
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
- Microbiology and Infectious Disease Program, MD Anderson UTHealth Graduate School at UTHealth Houston, Houston, TX 77030
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX 77030
| |
Collapse
|
10
|
Shi L, Lin W, Cai Y, Chen F, Zhang Q, Liang D, Xiu Y, Lin S, He B. Oxidative Stress-Mediated Repression of Virulence Gene Transcription and Biofilm Formation as Antibacterial Action of Cinnamomum burmannii Essential Oil on Staphylococcus aureus. Int J Mol Sci 2024; 25:3078. [PMID: 38474323 DOI: 10.3390/ijms25053078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration (1.0 μg/mL) and bactericidal concentration (2.0 μg/mL). To unravel the antibacterial action of CBLEO on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed to CBLEO at different doses (1/2-2×MIC) and times (0-24 h), indicating that CBLEO acts as an inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial action of CBLEO on S. aureus at the molecular level, we performed a comparative association of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU) transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action. Our findings provide valuable information for studying the antibacterial mechanism of essential oil against pathogens.
Collapse
Affiliation(s)
- Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Wei Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Dongcheng Liang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Boxiang He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| |
Collapse
|
11
|
Duncan JD, Setati ME, Divol B. Nicotinic acid availability impacts redox cofactor metabolism in Saccharomyces cerevisiae during alcoholic fermentation. FEMS Yeast Res 2024; 24:foae015. [PMID: 38637306 PMCID: PMC11055565 DOI: 10.1093/femsyr/foae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Anaerobic alcoholic fermentation, particularly in high-sugar environments, presents metabolic challenges for yeasts. Crabtree-positive yeasts, including Saccharomyces cerevisiae, prefer fermentation even in the presence of oxygen. These yeasts rely on internal NAD+ recycling and extracellular assimilation of its precursor, nicotinic acid (vitamin B3), rather than de novo NAD+ production. Surprisingly, nicotinic acid assimilation is poorly characterized, even in S. cerevisiae. This study elucidated the timing of nicotinic acid uptake during grape juice-like fermentation and its impact on NAD(H) levels, the NAD+/NADH ratio, and metabolites produced. Complete uptake of extracellular nicotinic acid occurred premid-exponential phase, thereafter small amounts of vitamin B3 were exported back into the medium. Suboptimal levels of nicotinic acid were correlated with slower fermentation and reduced biomass, disrupting redox balance and impeding NAD+ regeneration, thereby affecting metabolite production. Metabolic outcomes varied with nicotinic acid concentrations, linking NAD+ availability to fermentation efficiency. A model was proposed encompassing rapid nicotinic acid uptake, accumulation during cell proliferation, and recycling with limited vitamin B3 export. This research enhances the understanding of nicotinic acid uptake dynamics during grape juice-like fermentation. These insights contribute to advancing yeast metabolism research and have profound implications for the enhancement of biotechnological practices and the wine-making industry.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
12
|
Li Y, Xiao C, Pan Y, Qin L, Zheng L, Zhao M, Huang M. Optimization of Protein Folding for Improved Secretion of Human Serum Albumin Fusion Proteins in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18414-18423. [PMID: 37966975 DOI: 10.1021/acs.jafc.3c05330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The successful expression and secretion of recombinant proteins in cell factories significantly depend on the correct folding of nascent peptides, primarily achieved through disulfide bond formation. Thus, optimizing cellular protein folding is crucial, especially for proteins with complex spatial structures. In this study, protein disulfide isomerases (PDIs) from various species were introduced into Saccharomyces cerevisiae to facilitate proper disulfide bond formation and enhance recombinant protein secretion. The impacts of these PDIs on recombinant protein production and yeast growth metabolism were evaluated by substituting the endogenous PDI1. Heterologous PDIs cannot fully compensate the endogenous PDI. Furthermore, protein folding mediators, PDI and ER oxidoreductase 1 (Ero1), from different species were used to increase the production of complex human serum albumin (HSA) fusion proteins. The validated folding mediators were then introduced into unfolded protein response (UPR)-optimized strains, resulting in a 7.8-fold increase in amylase-HSA and an 18.2-fold increase in albiglutide compared with the control strain. These findings provide valuable insights for optimizing protein folding and expressing HSA-based drugs.
Collapse
Affiliation(s)
- Yanling Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Ling Qin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
13
|
Kashyap I, Deb R, Battineni A, Nagotu S. Acyl CoA oxidase: from its expression, structure, folding, and import to its role in human health and disease. Mol Genet Genomics 2023; 298:1247-1260. [PMID: 37555868 DOI: 10.1007/s00438-023-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
β-oxidation of fatty acids is an important metabolic pathway and is a shared function between mitochondria and peroxisomes in mammalian cells. On the other hand, peroxisomes are the sole site for the degradation of fatty acids in yeast. The first reaction of this pathway is catalyzed by the enzyme acyl CoA oxidase housed in the matrix of peroxisomes. Studies in various model organisms have reported the conserved function of the protein in fatty acid oxidation. The importance of this enzyme is highlighted by the lethal conditions caused in humans due to its altered function. In this review, we discuss various aspects ranging from gene expression, structure, folding, and import of the protein in both yeast and human cells. Further, we highlight recent findings on the role of the protein in human health and aging, and discuss the identified mutations in the protein associated with debilitating conditions in patients.
Collapse
Affiliation(s)
- Isha Kashyap
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhigna Battineni
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Lu P, Wang K, Wang J, Xia C, Yang S, Ma L, Shi H. A novel zinc finger transcription factor, BcMsn2, is involved in growth, development, and virulence in Botrytis cinerea. Front Microbiol 2023; 14:1247072. [PMID: 37915851 PMCID: PMC10616473 DOI: 10.3389/fmicb.2023.1247072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Reactive oxygen species (ROS) are important for plant defense against fungal attack. As a necrotrophic fungus, Botrytis cinerea can exploit ROS that originated from both sides of the host and pathogen during interaction to facilitate its infestation. Meanwhile, B. cinerea needs to exert an efficient oxidative stress responsive system to balance the intracellular redox state when encountering deleterious ROS levels. However, the machinery applied by B. cinerea to cope with ROS remains obscure. Herein, we investigated the role of the transcription factor BcMsn2 in regulating B. cinerea redox homeostasis. Disruption of the BcMsn2 gene severely impaired vegetative growth, sclerotium formation, conidial yield, and fungal virulence. The intracellular oxidative homeostasis of the ∆bcmsn2 mutant was disrupted, leading to significantly elevated levels of ROS and reduced activities of enzymes closely associated with oxygen stress, such as catalase (CAT) and superoxide dismutase (SOD). RNA-Seq and qRT-PCR analyses showed remarkable downregulation of the expression of several genes encoding ROS scavenging factors involved in maintaining the redox homeostasis in ∆bcmsn2, suggesting that BcMsn2 functions as a transcriptional regulator of these genes. Our findings indicated that BcMsn2 plays an indispensable role in maintaining the equilibrium of the redox state in B. cinerea, and intracellular ROS serve as signaling molecules that regulate the growth, asexual reproduction, and virulence of this pathogen.
Collapse
Affiliation(s)
- Ping Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Ke Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiaqi Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chunbo Xia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shu Yang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Liang Ma
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Haojie Shi
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
15
|
Huang J, Xue S, Buchmann P, Teixeira AP, Fussenegger M. An electrogenetic interface to program mammalian gene expression by direct current. Nat Metab 2023; 5:1395-1407. [PMID: 37524785 PMCID: PMC10447240 DOI: 10.1038/s42255-023-00850-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023]
Abstract
Wearable electronic devices are playing a rapidly expanding role in the acquisition of individuals' health data for personalized medical interventions; however, wearables cannot yet directly program gene-based therapies because of the lack of a direct electrogenetic interface. Here we provide the missing link by developing an electrogenetic interface that we call direct current (DC)-actuated regulation technology (DART), which enables electrode-mediated, time- and voltage-dependent transgene expression in human cells using DC from batteries. DART utilizes a DC supply to generate non-toxic levels of reactive oxygen species that act via a biosensor to reversibly fine-tune synthetic promoters. In a proof-of-concept study in a type 1 diabetic male mouse model, a once-daily transdermal stimulation of subcutaneously implanted microencapsulated engineered human cells by energized acupuncture needles (4.5 V DC for 10 s) stimulated insulin release and restored normoglycemia. We believe this technology will enable wearable electronic devices to directly program metabolic interventions.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
16
|
Trentin G, Bitencourt TA, Guedes A, Pessoni AM, Brauer VS, Pereira AK, Costa JH, Fill TP, Almeida F. Mass Spectrometry Analysis Reveals Lipids Induced by Oxidative Stress in Candida albicans Extracellular Vesicles. Microorganisms 2023; 11:1669. [PMID: 37512842 PMCID: PMC10383470 DOI: 10.3390/microorganisms11071669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
Candida albicans is a commensal fungus in healthy humans that causes infection in immunocompromised individuals through the secretion of several virulence factors. The successful establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is considered an alternative to the biomolecule secretory mechanism that favors fungal interactions with the host cells. During candidiasis establishment, the host environment becomes oxidative, and it impacts EV release and cargo. To simulate the host oxidative environment, we added menadione (an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by metabolomics analysis. This study characterized lipidic molecules transported to an extracellular milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant. The identified molecules are related to several biological processes, such as glycerophospholipid and sphingolipid pathways, which may act at different levels by tuning compound production in accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our results provide new insights into the role of EVs in fungal biology and host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tamires A Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Arthur Guedes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - André M Pessoni
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Veronica S Brauer
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Alana Kelyene Pereira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
17
|
Gonçalves D, Peffer S, Morano KA. Cytoplasmic redox imbalance in the thioredoxin system activates Hsf1 and results in hyperaccumulation of the sequestrase Hsp42 with misfolded proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546610. [PMID: 37425817 PMCID: PMC10327208 DOI: 10.1101/2023.06.26.546610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cells employ multiple systems to maintain homeostasis when experiencing environmental stress. For example, the folding of nascent polypeptides is exquisitely sensitive to proteotoxic stressors including heat, pH and oxidative stress, and is safeguarded by a network of protein chaperones that concentrate potentially toxic misfolded proteins into transient assemblies to promote folding or degradation. The redox environment itself is buffered by both cytosolic and organellar thioredoxin and glutathione pathways. How these systems are linked is poorly understood. Here, we determine that specific disruption of the cytosolic thioredoxin system resulted in constitutive activation of the heat shock response in Saccharomyces cerevisiae and accumulation of the sequestrase Hsp42 into an exaggerated and persistent juxtanuclear quality control (JUNQ) compartment. Terminally misfolded proteins also accumulated in this compartment in thioredoxin reductase (TRR1)-deficient cells, despite apparently normal formation and dissolution of transient cytoplasmic quality control (CytoQ) bodies during heat shock. Notably, cells lacking TRR1 and HSP42 exhibited severe synthetic slow growth exacerbated by oxidative stress, signifying a critical role for Hsp42 under redox-challenged conditions. Finally, we demonstrated that Hsp42 localization patterns in trr1∆ cells mimic those observed in chronically aging and glucose-starved cells, linking nutrient depletion and redox imbalance with management of misfolded proteins via a mechanism of long-term sequestration.
Collapse
Affiliation(s)
- Davi Gonçalves
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX USA
- Current address: Cemvita Factory, Houston, TX USA
| | - Sara Peffer
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX USA
- MD Anderson UTHealth Graduate School at UTHealth Houston, Houston, TX USA
- Current address: Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Kevin A. Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, TX USA
| |
Collapse
|
18
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
19
|
Ciamponi FE, Procópio DP, Murad NF, Franco TT, Basso TO, Brandão MM. Multi-omics network model reveals key genes associated with p-coumaric acid stress response in an industrial yeast strain. Sci Rep 2022; 12:22466. [PMID: 36577778 PMCID: PMC9797568 DOI: 10.1038/s41598-022-26843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The production of ethanol from lignocellulosic sources presents increasingly difficult issues for the global biofuel scenario, leading to increased production costs of current second-generation (2G) ethanol when compared to first-generation (1G) plants. Among the setbacks encountered in industrial processes, the presence of chemical inhibitors from pre-treatment processes severely hinders the potential of yeasts in producing ethanol at peak efficiency. However, some industrial yeast strains have, either naturally or artificially, higher tolerance levels to these compounds. Such is the case of S. cerevisiae SA-1, a Brazilian fuel ethanol industrial strain that has shown high resistance to inhibitors produced by the pre-treatment of cellulosic complexes. Our study focuses on the characterization of the transcriptomic and physiological impact of an inhibitor of this type, p-coumaric acid (pCA), on this strain under chemostat cultivation via RNAseq and quantitative physiological data. It was found that strain SA-1 tend to increase ethanol yield and production rate while decreasing biomass yield when exposed to pCA, in contrast to pCA-susceptible strains, which tend to decrease their ethanol yield and fermentation efficiency when exposed to this substance. This suggests increased metabolic activity linked to mitochondrial and peroxisomal processes. The transcriptomic analysis also revealed a plethora of differentially expressed genes located in co-expressed clusters that are associated with changes in biological pathways linked to biosynthetic and energetical processes. Furthermore, it was also identified 20 genes that act as interaction hubs for these clusters, while also having association with altered pathways and changes in metabolic outputs, potentially leading to the discovery of novel targets for metabolic engineering toward a more robust industrial yeast strain.
Collapse
Affiliation(s)
- F. E. Ciamponi
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - D. P. Procópio
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - N. F. Murad
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| | - T. T. Franco
- grid.411087.b0000 0001 0723 2494School of Chemical Engineering (FEQ), State University of Campinas (Unicamp), Av. Albert Einstein, 500, Campinas, SP 13083-852 Brazil
| | - T. O. Basso
- grid.11899.380000 0004 1937 0722Department of Chemical Engineering, University of São Paulo (USP), Av. Prof. Luciano Gualberto, 380, São Paulo, SP 05508-010 Brazil
| | - M. M. Brandão
- grid.411087.b0000 0001 0723 2494Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (Unicamp), Av. Cândido Rondon, 400, Campinas, SP 13083-875 Brazil
| |
Collapse
|
20
|
Increased Rate of Yeast Cultivation from Packaged Beer with Environmentally Relevant Anaerobic Handling. Microbiol Spectr 2022; 10:e0265622. [PMID: 36314915 PMCID: PMC9769982 DOI: 10.1128/spectrum.02656-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beer production necessitates oxygen exclusion for the proper packaging and aging of the beer. Standard operating procedures, including those for quality testing, involve culturing microbes from packaged beer exposed to atmospheric oxygen, despite the generalized fact that packaged beer is an anaerobic environment. Our research goal was to apply an environmentally relevant culturing approach to improve yeast cultivation from bottled beer by attempting to ameliorate transplant shock. This is applicable to uniquely scrutinous quality assurance/control objectives and/or to grand cultivation goals, such as ancient beer samples. Although yeasts have the genetic capacity of oxygen protection, their epigenetic/biochemical states within anaerobic packaging may not adequately protect all cells from reactive oxygen species (ROS) at the moment of opening. Soon after opening, beer yeasts were found to be catalase negative, indicating deficient protection from at least one ROS. The general reduction/inhibition of growth was observed when the beer yeast was exposed to ROS in media, and atmospheric bottle opening was found to expose beer yeast to significantly increased levels of ROS. Our primary finding is that different oxygen handling methodologies (aerobic/microaerophilic/anaerobic) significantly impact the viable Saccharomyces yeast recovery rates of Bamberger's Mahr's Bräu Unfiltered Lager. Immediate anaerobic handling improved cultivation success rates, with significantly higher colony forming units (CFU)/mL being cultured, and reduced the volume of beer required to recover viable yeast. Aerobic standard operating procedures have mainly been developed to harvest yeast on large volumetric samples and/or samples with high viable cell numbers, but these procedures may be suboptimal and may underrepresent potential viable cell numbers. IMPORTANCE Procedures of beer production and packaging exclude oxygen to create a shelf-stable anaerobic environment, within which any viable organisms are stored. However, standard methodologies to cultivate microbes from such environments generally include opening in an oxygenated atmosphere. This study applies environmentally relevant culturing methods and compares the yeast recovery rates of beers handled in various oxygen conditions. When beer bottles were opened in anoxic conditions, higher colony counts were obtained, so a smaller volume of beer was required to recover viable cells. The yeast in beer, stored anaerobically, may not be biochemically prepared to fully protect cells from oxygen at the moment of opening. Negative catalase activity showed beer yeasts' vulnerabilities to reactive oxygen. Atmospheric opening may reduce viability, causing the underreporting of viable cells. Anaerobic opening could increase the odds of successfully detecting/cultivating viable cell(s) that are present, which is pertinent to uniquely stringent quality screens and ambitious culturing attempts from rare samples.
Collapse
|
21
|
Chen F, Wang H, Lin Z, Hu J, Wu Y, Shi L, Wang J, Xiu Y, Lin S. Enzymatic and non-enzymatic bioactive compounds, and antioxidant and antimicrobial activities of the extract from one selected wild berry (Rubus coreanus) as novel natural agent for food preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Ren CY, Xu QJ, Mathieu J, Alvarez PJJ, Zhu L, Zhao HP. A Carotenoid- and Nuclease-Producing Bacterium Can Mitigate Enterococcus faecalis Transformation by Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15167-15178. [PMID: 35862635 DOI: 10.1021/acs.est.2c03919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) through natural transformation is facilitated by factors that stabilize extracellular DNA (eDNA) and that induce reactive oxygen species (ROS) that permeabilize receptor cells and upregulate transformation competence genes. In this study, we demonstrate that Deinococcus radiodurans can mitigate this ARG dissemination pathway by removing both eDNA and ROS that make recipient cells more vulnerable to transformation. We used plasmid RP4 as source of extracellular ARGs (tetA, aphA, and blaTEM-2) and the opportunistic pathogen Enterococcus faecalis as receptor. The presence of D. radiodurans significantly reduced the transformation frequency from 2.5 ± 0.7 × 10-6 to 7.4 ± 1.4 × 10-7 (p < 0.05). Based on quantification of intracellular ROS accumulation and superoxide dismutase (SOD) activity, and quantitative polymerase chain reaction (qPCR) and transcriptomic analyses, we propose two mechanisms by which D. radiodurans mitigates E. faecalis transformation by ARGs: (a) residual antibiotics induce D. radiodurans to synthesize liposoluble carotenoids that scavenge ROS and thus mitigate the susceptibility of E. faecalis for eDNA uptake, and (b) eDNA induces D. radiodurans to synthesize extracellular nucleases that degrade eARGs. This mechanistic insight informs biological strategies (including bioaugmentation) to curtail the spread of ARGs through transformation.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Qiu-Jin Xu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China, 310058
| |
Collapse
|
23
|
Matsumoto A, Terashima I, Uesono Y. A rapid and simple spectroscopic method for the determination of yeast cell viability using methylene blue. Yeast 2022; 39:607-616. [PMID: 36305512 DOI: 10.1002/yea.3819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/28/2023] Open
Abstract
Determination of cell viability is important in various microbiological studies. The microscopic method, counting dead cells stained by methylene blue (MB), has often been used for the determination of viability, although it is not efficient for the measurement of a large number of samples. Alternatively, some spectroscopic methods have been proposed to avoid tedious cell counting. One of these proposed methods detects the decrease in MB absorbance in the supernatant of cell suspension, because dead cells incorporate MB more efficiently than viable cells. However, at present, this spectroscopic method is rarely used due to its low throughput. Therefore, we devised a small-scale, rapid and simple method by improving several points as follows. (1) The peak wavelength of MB absorbance, 665 nm, was used to detect MB efficiently at the microtube scale. (2) The composition of the MB solution was improved by adding trisodium citrate. (3) The reaction time was shortened. And (4) the concentration ranges of both MB and cells, with which absorbance is linearly related to cell viability, were determined. The improved method enabled us to evaluate the dose-dependent toxicities of alcohols, antifungal/antimalarial quinacrine, and UV-C irradiation. The results were compatible with those of conventional microscopic counting and colony formation. The method would be applicable to automated determination and to various organisms such as bacteria and filamentous fungi which are difficult to be counted microscopically.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Schnitzer B, Österberg L, Skopa I, Cvijovic M. Multi-scale model suggests the trade-off between protein and ATP demand as a driver of metabolic changes during yeast replicative ageing. PLoS Comput Biol 2022; 18:e1010261. [PMID: 35797415 PMCID: PMC9295998 DOI: 10.1371/journal.pcbi.1010261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell's reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an inevitable by-product of the cell's metabolism. Cells are able to sense high levels of reactive oxygen and nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model organism. The model consists of three interconnected modules: a Boolean model of the signalling network, an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth and protein damage accumulation with discrete cell divisions. The model can explain known features of replicative ageing, like average lifespan and increase in generation time during successive division, in yeast wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance. We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Österberg
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Iro Skopa
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Genome-wide effect of non-optimal temperatures under anaerobic conditions on gene expression in Saccharomyces cerevisiae. Genomics 2022; 114:110386. [PMID: 35569731 DOI: 10.1016/j.ygeno.2022.110386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Understanding of thermal adaptation mechanisms in yeast is crucial to develop better-adapted strains to industrial processes, providing more economical and sustainable products. We have analyzed the transcriptomic responses of three Saccharomyces cerevisiae strains, a commercial wine strain, ADY5, a laboratory strain, CEN.PK113-7D and a commercial bioethanol strain, Ethanol Red, grown at non-optimal temperatures under anaerobic chemostat conditions. Transcriptomic analysis of the three strains revealed a huge complexity of cellular mechanisms and responses. Overall, cold exerted a stronger transcriptional response in the three strains comparing with heat conditions, with a higher number of down-regulating genes than of up-regulating genes regardless the strain analyzed. The comparison of the transcriptome at both sub- and supra-optimal temperatures showed the presence of common genes up- or down-regulated in both conditions, but also the presence of common genes up- or down-regulated in the three studied strains. More specifically, we have identified and validated three up-regulated genes at sub-optimal temperature in the three strains, OPI3, EFM6 and YOL014W. Finally, the comparison of the transcriptomic data with a previous proteomic study with the same strains revealed a good correlation between gene activity and protein abundance, mainly at low temperature. Our work provides a global insight into the specific mechanisms involved in temperature adaptation regarding both transcriptome and proteome, which can be a step forward in the comprehension and improvement of yeast thermotolerance.
Collapse
|
26
|
Increased peroxisome proliferation is associated with early yeast replicative ageing. Curr Genet 2022; 68:207-225. [DOI: 10.1007/s00294-022-01233-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022]
|
27
|
Kastberg LLB, Ard R, Jensen MK, Workman CT. Burden Imposed by Heterologous Protein Production in Two Major Industrial Yeast Cell Factories: Identifying Sources and Mitigation Strategies. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:827704. [PMID: 37746199 PMCID: PMC10512257 DOI: 10.3389/ffunb.2022.827704] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
Production of heterologous proteins, especially biopharmaceuticals and industrial enzymes, in living cell factories consumes cellular resources. Such resources are reallocated from normal cellular processes toward production of the heterologous protein that is often of no benefit to the host cell. This competition for resources is a burden to host cells, has a negative impact on cell fitness, and may consequently trigger stress responses. Importantly, this often causes a reduction in final protein titers. Engineering strategies to generate more burden resilient production strains offer sustainable opportunities to increase production and profitability for this growing billion-dollar global industry. We review recently reported impacts of burden derived from resource competition in two commonly used protein-producing yeast cell factories: Saccharomyces cerevisiae and Komagataella phaffii (syn. Pichia pastoris). We dissect possible sources of burden in these organisms, from aspects related to genetic engineering to protein translation and export of soluble protein. We also summarize advances as well as challenges for cell factory design to mitigate burden and increase overall heterologous protein production from metabolic engineering, systems biology, and synthetic biology perspectives. Lastly, future profiling and engineering strategies are highlighted that may lead to constructing robust burden-resistant cell factories. This includes incorporation of systems-level data into mathematical models for rational design and engineering dynamical regulation circuits in production strains.
Collapse
Affiliation(s)
| | - Ryan Ard
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
28
|
Topcu Y, Nambeesan SU, van der Knaap E. Blossom-end rot: a century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. MOLECULAR HORTICULTURE 2022; 2:1. [PMID: 37789437 PMCID: PMC10515260 DOI: 10.1186/s43897-021-00022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 10/05/2023]
Abstract
Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca2+) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca2+ concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.
Collapse
Affiliation(s)
- Yasin Topcu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | | | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
29
|
Batista D, Giling DP, Pradhan A, Pascoal C, Cássio F, Gessner MO. Importance of exposure route in determining nanosilver impacts on a stream detrital processing chain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118088. [PMID: 34523514 DOI: 10.1016/j.envpol.2021.118088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The commercial use and spread of silver nanoparticles (AgNPs) in freshwaters have greatly increased over the last decade. Both AgNPs and ionic silver (Ag+) released from nanoparticles are toxic to organisms and compromise ecosystem processes such as leaf litter decomposition. Yet little is known about how AgNPs affect multitrophic systems of interacting species. Furthermore, past work has focused on waterborne exposure with scarce attention given to effects mediated by the consumption of contaminated food. We assessed the importance of direct (via water) and indirect (via diet) AgNP exposure to a processing chain comprising leaf litter, fungi, a shredder (Gammarus pulex) and a collector (Habroleptoides confusa) in microcosms. Direct exposure to contaminated water for 15 days impaired microbial leaf decomposition by ∼50% and leaf-associated fungal biomass by ∼10%. Leaf consumption was reduced by ∼20% but only when G. pulex was exposed to silver via contaminated leaves. There was no effect on FPOM production. Ag + could impose oxidative stress on the shredders and collectors independent of exposure route, as indicated by increased catalase and glutathione S-transferase activities and decreased superoxide dismutase activity. The activity of a neuronal enzyme (cholinesterase) in collectors, but not shredders, also decreased by almost 50% when the animals were indirectly exposed to AgNP. Our results show that AgNPs and Ag+ may disrupt detrital processing chains through direct and indirect exposure routes, even at low concentrations. This highlights the importance of AgNP exposure pathways to interconnected stream biota and ecosystem processes for realistic assessments of risks to freshwater ecosystems.
Collapse
Affiliation(s)
- Daniela Batista
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Darren P Giling
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany; Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, ACT, Australia; CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Arunava Pradhan
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhütte 2, 16775, Stechlin, Germany; Department of Ecology, Berlin Institute of Ecology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| |
Collapse
|
30
|
Chen F, Miao X, Lin Z, Xiu Y, Shi L, Zhang Q, Liang D, Lin S, He B. Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against Shigella flexneri. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108282] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Guo Y, Xu Y, Bao Q, Shen C, Ni D, Hu P, Shi J. Endogenous Copper for Nanocatalytic Oxidative Damage and Self-Protection Pathway Breakage of Cancer. ACS NANO 2021; 15:16286-16297. [PMID: 34652919 DOI: 10.1021/acsnano.1c05451] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocatalytic medicine is one of the most recent advances in the development of nanomedicine, which catalyzes intratumoral chemical reactions to produce toxins such as reactive oxygen species in situ for cancer specific treatment by using exogenous-delivered catalysts such as Fenton agents. However, the overexpression of reductive glutathione and Cu-Zn superoxide dismutase in cancer cells will significantly counteract the therapeutic efficacy by reactive oxygen species-mediated oxidative damages. Additionally, the direct delivery of iron-based Fenton agents may arouse undesired detrimental effects such as anaphylactic reactions. In this study, instead of exogenously delivering Fenton agents, the endogenous copper ions from intracellular Cu-Zn superoxide dismutase have been employed as the source of Fenton-like agents by chelating the Cu ions from the superoxide dismutase using a common metal ion chelator, N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), followed by the TPEN-Cu(II) chelate reduction to TPEN-Cu(I) by reductive glutathione. Briefly, TPEN was loaded in a disulfide bond-containing link poly(acrylic acid) shell-coated hybrid mesoporous silica/organosilicate (MSN@MON) nanocomposite as a reductive glutathione-responsive nanoplatform, which features inter-related triple functions: intratumoral reductive glutathione-responsive link poly(acrylic acid) disruption and TPEN release; the accompanying reductive glutathione consumption and Cu-Zn superoxide dismutase deactivation by TPEN chelating Cu ions from this superoxide dismutase; and the Fenton reaction catalyzed by TPEN-Cu(I) chelate as a Fenton-like agent generated from TPEN-Cu(II) reduction by the remaining reductive glutathione in cancer cells, thereby cutting off the self-protection pathway of cancer cells under severe oxidation stress and ensuring cancer cell apoptosis by reactive oxygen species produced by the catalytic Fenton-like reactions. Such a nanocatalyst demonstrates excellent biosafety and augmented therapeutic efficacy by simultaneous nanocatalytic oxidative damage and intrinsic protection pathway breakage of cancer cells.
Collapse
Affiliation(s)
- Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingying Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qunqun Bao
- Shanghai Tenth People's Hospital, School of medicine, Tongji University, Shanghai 200072, P. R. China
| | - Chao Shen
- BD Bioscience, Shanghai 200050, P. R. China
| | - Dalong Ni
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People's Hospital, School of medicine, Tongji University, Shanghai 200072, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People's Hospital, School of medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
32
|
Zohar K, Lezmi E, Eliyahu T, Linial M. Ladostigil Attenuates Induced Oxidative Stress in Human Neuroblast-like SH-SY5Y Cells. Biomedicines 2021; 9:biomedicines9091251. [PMID: 34572436 PMCID: PMC8471141 DOI: 10.3390/biomedicines9091251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
A hallmark of the aging brain is the robust inflammation mediated by microglial activation. Pathophysiology of common neurodegenerative diseases involves oxidative stress and neuroinflammation. Chronic treatment of aging rats by ladostigil, a compound with antioxidant and anti-inflammatory function, prevented microglial activation and learning deficits. In this study, we further investigate the effect of ladostigil on undifferentiated SH-SY5Y cells. We show that SH-SY5Y cells exposed to acute (by H2O2) or chronic oxidative stress (by Sin1, 3-morpholinosydnonimine) induced apoptotic cell death. However, in the presence of ladostigil, the decline in cell viability and the increase of oxidative levels were partially reversed. RNA-seq analysis showed that prolonged oxidation by Sin1 resulted in a simultaneous reduction of the expression level of endoplasmic reticulum (ER) genes that participate in proteostasis. By comparing the differential gene expression profile of Sin1 treated cells to cells incubated with ladostigil before being exposed to Sin1, we observed an over-expression of Clk1 (Cdc2-like kinase 1) which was implicated in psychophysiological stress in mice and Alzheimer’s disease. Ladostigil also suppressed the expression of Ccpg1 (Cell cycle progression 1) and Synj1 (Synaptojanin 1) that are involved in ER-autophagy and endocytic pathways. We postulate that ladostigil alleviated cell damage induced by oxidation. Therefore, under conditions of chronic stress that are observed in the aging brain, ladostigil may block oxidative stress processes and consequently reduce neurotoxicity.
Collapse
Affiliation(s)
- Keren Zohar
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
| | - Elyad Lezmi
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Tsiona Eliyahu
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
| | - Michal Linial
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; (K.Z.); (T.E.)
- Correspondence:
| |
Collapse
|
33
|
Ahovègbé LY, Ogwang PE, Peter EL, Mtewa AG, Kasali FM, Tolo CU, Gbenoudon J, Weisheit A, Pakoyo KF. Therapeutic potentials of Vachellia nilotica (L.) extracts in Hepatitis C infection: A review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Ren T, Zhu H, Tian L, Yu Q, Li M. Candida albicans infection disturbs the redox homeostasis system and induces reactive oxygen species accumulation for epithelial cell death. FEMS Yeast Res 2021; 20:5643898. [PMID: 31769804 DOI: 10.1093/femsyr/foz081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is a common pathogenic fungus with high mortality in immunocompromised patients. However, the mechanism by which C. albicans invades host epithelial cells and causes serious tissue damage remains to be further investigated. In this study, we established the C. albicans-293T renal epithelial cell interaction model to investigate the mechanism of epithelial infection by this pathogen. It was found that C. albicans infection causes severe cell death and reactive oxygen species (ROS) accumulation in epithelial cells. Further investigations revealed that C. albicans infection might up-regulate expression of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX), inhibit the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and suppress the p38-Nrf2-heme oxygenase-1 (HO-1) pathway which plays an important role in the elimination of intracellular ROS. Furthermore, epithelial cell death caused by the fungal infection could be strikingly alleviated by addition of the antioxidant agent glutathione, indicating the critical role of ROS accumulation in cell death caused by the fungus. This study revealed that disturbance of the redox homeostasis system and ROS accumulation in epithelial cells is involved in cell death caused by C. albicans infection, which sheds light on the application of antioxidants in the suppression of tissue damage caused by fungal infection.
Collapse
Affiliation(s)
- Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Lei Tian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
35
|
Qiao Q, Chen L, Li X, Lu X, Xu Q. Roles of Dietary Bioactive Peptides in Redox Balance and Metabolic Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5582245. [PMID: 34234885 PMCID: PMC8219413 DOI: 10.1155/2021/5582245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Bioactive peptides (BPs) are fragments of 2-15 amino acid residues with biological properties. Dietary BPs derived from milk, egg, fish, soybean, corn, rice, quinoa, wheat, oat, potato, common bean, spirulina, and mussel are reported to possess beneficial effects on redox balance and metabolic disorders (obesity, diabetes, hypertension, and inflammatory bowel diseases (IBD)). Peptide length, sequence, and composition significantly affected the bioactive properties of dietary BPs. Numerous studies have demonstrated that various dietary protein-derived BPs exhibited biological activities through the modulation of various molecular mechanisms and signaling pathways, including Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element in oxidative stress; peroxisome proliferator-activated-γ, CCAAT/enhancer-binding protein-α, and sterol regulatory element binding protein 1 in obesity; insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B and AMP-activated protein kinase in diabetes; angiotensin-converting enzyme inhibition in hypertension; and mitogen-activated protein kinase and nuclear factor-kappa B in IBD. This review focuses on the action of molecular mechanisms of dietary BPs and provides novel insights in the maintenance of redox balance and metabolic diseases of human.
Collapse
Affiliation(s)
- Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
36
|
Alonso-Lavin AJ, Bajić D, Poyatos JF. Tolerance to NADH/NAD + imbalance anticipates aging and anti-aging interventions. iScience 2021; 24:102697. [PMID: 34195572 PMCID: PMC8239738 DOI: 10.1016/j.isci.2021.102697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/26/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Redox couples coordinate cellular function, but the consequences of their imbalances are unclear. This is somewhat associated with the limitations of their experimental quantification. Here we circumvent these difficulties by presenting an approach that characterizes fitness-based tolerance profiles to redox couple imbalances using an in silico representation of metabolism. Focusing on the NADH/NAD+ redox couple in yeast, we demonstrate that reductive disequilibria generate metabolic syndromes comparable to those observed in cancer cells. The tolerance of yeast mutants to redox disequilibrium can also explain 30% of the variability in their experimentally measured chronological lifespan. Moreover, by predicting the significance of some metabolites to help stand imbalances, we correctly identify nutrients underlying mechanisms of pathology, lifespan-protecting molecules, or caloric restriction mimetics. Tolerance to redox imbalances becomes, in this way, a sound framework to recognize properties of the aging phenotype while providing a consistent biological rationale to assess anti-aging interventions. We simulate how imbalances in NADH/NAD+ ratio modify cellular metabolic behavior This reveals a mechanism to understand metabolic alterations at low growth rates Tolerance to imbalance explains experimentally measured lifespan in yeast We predict lifespan-protecting metabolites in yeast, animal, and human models
Collapse
Affiliation(s)
- Alvar J. Alonso-Lavin
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Djordje Bajić
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Juan F. Poyatos
- Logic of Genomic Systems Laboratory (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
- Corresponding author
| |
Collapse
|
37
|
Pradhan A, Fernandes M, Martins PM, Pascoal C, Lanceros-Méndez S, Cássio F. Can photocatalytic and magnetic nanoparticles be a threat to aquatic detrital food webs? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144576. [PMID: 33482552 DOI: 10.1016/j.scitotenv.2020.144576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Freshwaters are likely to serve as reservoirs for engineered nanomaterials (ENMs) due to their accelerated unintentional release, increasing the relevance of assessing their impacts on aquatic biota and the ecosystem processes they drive. Stream-dwelling microbes, particularly fungi, and invertebrate shredders play an essential role in the decomposition of organic matter and transfer of energy to higher trophic levels. We assessed the impacts of two photocatalytic (nano-TiO2 and erbium doped nano-TiO2) and one magnetic (nano-CoFe2O4) ENMs on detrital-based food webs in freshwaters by exposing chestnut leaves, colonized by stream-dwelling microbes, to a series of concentrations (0.25-150 mg L-1) of these ENMs. Microbial decomposition and biomass of fungal communities, associated with leaves, were not affected by the ENMs. However, the activities of antioxidant enzymes of microbial decomposers were significantly (P < 0.05) stimulated by ENMs in a concentration-dependent way, suggesting oxidative stress in stream microbial communities. The stronger responses of these stress biomarkers against nano-TiO2 (increase upto 837.5% for catalase, 1546.8% for glutathione peroxidase and 1154.6% for glutathione S-transferase) suggest a higher toxicity of this ENM comparing to the others. To determine whether the effects could be transferred across trophic levels, the invertebrate shredder Sericostoma sp. was exposed to ENMs (1 and 50 mg L-1) for 5 days either via contaminated water or contaminated food (leaf litter). Leaf consumption rate by shredders decreased significantly (P < 0.05) with increasing concentrations of ENMs via food or water; the effects were more pronounced when exposure occurred via contaminated food (up to 99.3%, 90.7% and 90.3% inhibition by nano-Er:TiO2, nano-CoFe2O4 and nano-TiO2, respectively). Overall, the tested photocatalytic and magnetic ENMs can be harmful to microbial decomposers and invertebrate shredders further compromising detrital-based food webs in streams.
Collapse
Affiliation(s)
- Arunava Pradhan
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Marta Fernandes
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Pedro M Martins
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Centre of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Centre of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
38
|
Porras-Agüera JA, Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Impact of CO 2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Int J Food Microbiol 2021; 348:109226. [PMID: 33964807 DOI: 10.1016/j.ijfoodmicro.2021.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
The "prise de mousse" stage during sparkling wine elaboration by the traditional method (Champenoise) involves a second fermentation in a sealed bottle followed by a prolonged aging period, known to contribute significantly to the unique organoleptic properties of these wines. During this stage, CO2 overpressure, nutrient starvation and high ethanol concentrations are stress factors that affect yeast cells viability and metabolism. Since mitochondria are responsible for energy generation and are required for cell aging and response to numerous stresses, we hypothesized that these organelles may play an essential role during the prise de mousse. The objective of this study is to characterize the mitochondrial response of a Saccharomyces cerevisiae strain traditionally used in sparkling wine production along the "prise de mousse" and study the effect of CO2 overpressure through a proteomic analysis. We observed that pressure negatively affects the content of mitochondrion-related proteome, especially to those proteins involved in tricarboxylic acid cycle. However, proteins required for the branched-amino acid synthesis, implied in wine aromas, and respiratory chain, also previously reported by transcriptomic analyses, were found over-represented in the sealed bottles. Multivariate analysis of proteins required for tricarboxylic cycle, respiratory chain and amino acid metabolism revealed differences in concentrations, allowing the wine samples to group depending on the time and CO2 overpressure parameters. Ethanol content along the second fermentation could be the main reason for this changing behavior observed at proteomic level. Further research including genetic studies, determination of ROS, characterization of mitochondrial activity and targeted metabolomics analyses is required. The list of mitochondrial proteins provided in this work will lead to a better understanding of the yeast behavior under these conditions of special interest in the wine industry.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| |
Collapse
|
39
|
Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna. Sci Rep 2021; 11:9418. [PMID: 33941791 PMCID: PMC8093252 DOI: 10.1038/s41598-021-87784-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Morels are some of the most highly prized edible and medicinal mushrooms, with great economic and scientific value. Outdoor cultivation has been achieved and expanded on a large scale in China in recent years. Sclerotial formation is one of the most important phases during the morel life cycle, and previous reports indicated that reactive oxygen species (ROS) play an important role. However, ROS response mechanisms at sclerotial initiation (SI) stage are poorly understood. In this study, comparative transcriptome analyses were performed with sclerotial and hyphal cells at different areas in the same plate at SI stage. Gene expression was significantly different at SI stage between sclerotial formation and mycelia growth areas. GO and KEGG analyses indicated more vigorous metabolic characteristics in the hyphae area, while transcription process, DNA repair, and protein processing were enriched in sclerotial cells. Gene expression related to H2O2 production was high in the hyphae area, while expression of H2O2-scavenging genes was high in sclerotial cells, leading to a higher H2O2 concentration in the hyphal region than in the sclerotium. Minor differences were observed in gene expression of H2O2-induced signaling pathway in sclerotial and hyphal cells; however, expression levels of the target genes of transcription factor MSN2, important in the H2O2-induced signaling pathways, were significantly different. MSN2 enhanced stress response regulation in sclerotia by regulating these target genes. Small molecular HSPs were also found upregulated in sclerotial cells. This study indicated that sclerotial cells are more resistant to ROS stress than hyphal cells through transcriptional regulation of related genes.
Collapse
|
40
|
Cui YH, Shi QS, Zhang DD, Wang LL, Feng J, Chen YW, Xie XB. Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116725. [PMID: 33631691 DOI: 10.1016/j.envpol.2021.116725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.
Collapse
Affiliation(s)
- Yin Hua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing Shan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Dan Dan Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ling Ling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jin Feng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yi Wen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Xiao Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
41
|
Boulton C. Provocation: all yeast cells are born equal, but some grow to be more equal than others. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Carrà G, Ermondi G, Riganti C, Righi L, Caron G, Menga A, Capelletto E, Maffeo B, Lingua MF, Fusella F, Volante M, Taulli R, Guerrasio A, Novello S, Brancaccio M, Piazza R, Morotti A. IκBα targeting promotes oxidative stress-dependent cell death. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:136. [PMID: 33863364 PMCID: PMC8050912 DOI: 10.1186/s13046-021-01921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress is a hallmark of many cancers. The increment in reactive oxygen species (ROS), resulting from an increased mitochondrial respiration, is the major cause of oxidative stress. Cell fate is known to be intricately linked to the amount of ROS produced. The direct generation of ROS is also one of the mechanisms exploited by common anticancer therapies, such as chemotherapy. METHODS We assessed the role of NFKBIA with various approaches, including in silico analyses, RNA-silencing and xenotransplantation. Western blot analyses, immunohistochemistry and RT-qPCR were used to detect the expression of specific proteins and genes. Immunoprecipitation and pull-down experiments were used to evaluate protein-protein interactions. RESULTS Here, by using an in silico approach, following the identification of NFKBIA (the gene encoding IκBα) amplification in various cancers, we described an inverse correlation between IκBα, oxidative metabolism, and ROS production in lung cancer. Furthermore, we showed that novel IκBα targeting compounds combined with cisplatin treatment promote an increase in ROS beyond the tolerated threshold, thus causing death by oxytosis. CONCLUSIONS NFKBIA amplification and IκBα overexpression identify a unique cancer subtype associated with specific expression profile and metabolic signatures. Through p65-NFKB regulation, IκBα overexpression favors metabolic rewiring of cancer cells and distinct susceptibility to cisplatin. Lastly, we have developed a novel approach to disrupt IκBα/p65 interaction, restoring p65-mediated apoptotic responses to cisplatin due to mitochondria deregulation and ROS-production.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Giuseppe Ermondi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Giulia Caron
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Alessio Menga
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Enrica Capelletto
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | | | - Federica Fusella
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca and San Gerardo Hospital, 20900, Monza, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Italy.
| |
Collapse
|
43
|
Dawes IW, Perrone GG. Stress and ageing in yeast. FEMS Yeast Res 2021; 20:5670642. [PMID: 31816015 DOI: 10.1093/femsyr/foz085] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
There has long been speculation about the role of various stresses in ageing. Some stresses have beneficial effects on ageing-dependent on duration and severity of the stress, others have negative effects and the question arises whether these negative effects are causative of ageing or the result of the ageing process. Cellular responses to many stresses are highly coordinated in a concerted way and hence there is a great deal of cross-talk between different stresses. Here the relevant aspects of the coordination of stress responses and the roles of different stresses on yeast cell ageing are discussed, together with the various functions that are involved. The cellular processes that are involved in alleviating the effects of stress on ageing are considered, together with the possible role of early stress events on subsequent ageing of cells.
Collapse
Affiliation(s)
- Ian W Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel G Perrone
- School of Science and Health, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
44
|
Jeon S, Koh HG, Cho JM, Kang NK, Chang YK. Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Bhandari R, Kaur J, Kaur S, Kuhad A. The Nrf2 pathway in psychiatric disorders: pathophysiological role and potential targeting. Expert Opin Ther Targets 2021; 25:115-139. [PMID: 33557652 DOI: 10.1080/14728222.2021.1887141] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: All psychiatric disorders exhibit excitotoxicity, mitochondrial dysfunction, inflammation, oxidative stress, and neural damage as their common characteristic. The endogenous nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is implicated in the defense mechanism against oxidative stress and has a significant role in psychiatric disorders.Areas covered: We explore the role of Nrf2 pathway and its modulators in psychiatric disorders. The literature was searched utilizing various databases such as Embase, Medline, Web of Science, Pub-Med, and Google Scholar from 2010 to 2020. The search included research articles, clinical reports, systematic reviews, and meta-analyses.Expert opinion: Environmental factors and genetic predisposition can be a trigger for the development of psychiatric disorders. Nrf2 downregulates certain inflammatory pathways and upregulates various antioxidant enzymes to maintain a balance. However, its intricate balance with NF-Kβ (Nuclear factor kappa light chain enhancer of activated B cells) and its crosstalk with the transcription factor Nrf2 is critical in severe oxidative stress. Several Nrf2 modulators are now in clinical trials and can help reduce oxidative stress and neuroinflammation. There are immense potential opportunities for these modulators to become a novel therapeutic option.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Japneet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Simerpreet Kaur
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| |
Collapse
|
46
|
Perfetto M, Kirkham SG, Ayers MC, Wei S, Gallagher JEG. 4-Methylcyclohexane methanol (MCHM) affects viability, development, and movement of Xenopus embryos. Toxicol Rep 2021; 8:38-43. [PMID: 33391995 PMCID: PMC7772722 DOI: 10.1016/j.toxrep.2020.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/17/2020] [Accepted: 12/10/2020] [Indexed: 10/26/2022] Open
Abstract
Following chemical spill disasters, it is important to estimate the effects of spilled chemicals on humans and the environment. Here we analyzed the toxicological effects of the coal cleaning chemical, 4-methylcyclohexane methanol (MCHM), which was spilled into the Elk River water supply in 2014. The viability of HEK293 T human cell line cultures and Xenopus tropicalis embryos was negatively affected, and the addition of the antioxidants alleviated toxicity with MCHM exposure. Additionally, X. tropicalis embryos suffered developmental defects as well as reversible non-responsiveness and melanization defects. The impact MCHM has on HEK293 T cells and X. tropicalis points to the importance of continued follow-up studies of this chemical.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Scotia G Kirkham
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA
| | - Michael C Ayers
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA
| | - Shuo Wei
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jennifer E G Gallagher
- Department of Biology, 53 Campus Drive, University of West Virginia, Morgantown, WV, 26506, USA
| |
Collapse
|
47
|
Ayers MC, Sherman ZN, Gallagher JEG. Oxidative Stress Responses and Nutrient Starvation in MCHM Treated Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2020; 10:4665-4678. [PMID: 33109726 PMCID: PMC7718757 DOI: 10.1534/g3.120.401661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
In 2014, the coal cleaning chemical 4-methylcyclohexane methanol (MCHM) spilled into the water supply for 300,000 West Virginians. Initial toxicology tests showed relatively mild results, but the underlying effects on cellular biology were underexplored. Treated wildtype yeast cells grew poorly, but there was only a small decrease in cell viability. Cell cycle analysis revealed an absence of cells in S phase within thirty minutes of treatment. Cells accumulated in G1 over a six-hour time course, indicating arrest instead of death. A genetic screen of the haploid knockout collection revealed 329 high confidence genes required for optimal growth in MCHM. These genes encode three major cell processes: mitochondrial gene expression/translation, the vacuolar ATPase, and aromatic amino acid biosynthesis. The transcriptome showed an upregulation of pleiotropic drug response genes and amino acid biosynthetic genes and downregulation in ribosome biosynthesis. Analysis of these datasets pointed to environmental stress response activation upon treatment. Overlap in datasets included the aromatic amino acid genes ARO1, ARO3, and four of the five TRP genes. This implicated nutrient deprivation as the signal for stress response. Excess supplementation of nutrients and amino acids did not improve growth on MCHM, so the source of nutrient deprivation signal is still unclear. Reactive oxygen species and DNA damage were directly detected with MCHM treatment, but timepoints showed these accumulated slower than cells arrested. We propose that wildtype cells arrest from nutrient deprivation and survive, accumulating oxidative damage through the implementation of robust environmental stress responses.
Collapse
Affiliation(s)
- Michael C Ayers
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | - Zachary N Sherman
- Department of Biology, West Virginia University, Morgantown, WV 26506
| | | |
Collapse
|
48
|
Amiri-Dashatan N, Rezaei-Tavirani M, Zali H, Koushki M, Ahmadi N. Quantitative proteomic analysis reveals differentially expressed proteins in Leishmania major metacyclogenesis. Microb Pathog 2020; 149:104557. [DOI: 10.1016/j.micpath.2020.104557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022]
|
49
|
Oc S, Eraslan S, Kirdar B. Dynamic transcriptional response of Saccharomyces cerevisiae cells to copper. Sci Rep 2020; 10:18487. [PMID: 33116258 PMCID: PMC7595141 DOI: 10.1038/s41598-020-75511-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Copper is a crucial trace element for all living systems and any deficiency in copper homeostasis leads to the development of severe diseases in humans. The observation of extensive evolutionary conservation in copper homeostatic systems between human and Saccharomyces cerevisiae made this organism a suitable model organism for elucidating molecular mechanisms of copper transport and homeostasis. In this study, the dynamic transcriptional response of both the reference strain and homozygous deletion mutant strain of CCC2, which encodes a Cu2+-transporting P-type ATPase, were investigated following the introduction of copper impulse to reach a copper concentration which was shown to improve the respiration capacity of CCC2 deletion mutants. The analysis of data by using different clustering algorithms revealed significantly affected processes and pathways in response to a switch from copper deficient environment to elevated copper levels. Sulfur compound, methionine and cysteine biosynthetic processes were identified as significantly affected processes for the first time in this study. Stress response, cellular response to DNA damage, iron ion homeostasis, ubiquitin dependent proteolysis, autophagy and regulation of macroautophagy, DNA repair and replication, as well as organization of mitochondrial respiratory chain complex IV, mitochondrial organization and translation were identified as significantly affected processes in only CCC2 deleted strain. The integration of the transcriptomic data with regulome revealed the differences in the extensive re-wiring of dynamic transcriptional organization and regulation in these strains.
Collapse
Affiliation(s)
- Sebnem Oc
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey. .,Division of Cardiovascular Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Serpil Eraslan
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey.,Diagnosis Centre for Genetic Disorders, Koç University Hospital, Istanbul, 34010, Turkey
| | - Betul Kirdar
- Department of Chemical Engineering, Bogazici University, Istanbul, 34342, Turkey
| |
Collapse
|
50
|
Shoda S, Hyodo F, Tachibana Y, Kiniwa M, Naganuma T, Eto H, Koyasu N, Murata M, Matsuo M. Imaging of Hydroxyl-Radical Generation Using Dynamic Nuclear Polarization-Magnetic Resonance Imaging and a Spin-Trapping Agent. Anal Chem 2020; 92:14408-14414. [PMID: 33064938 DOI: 10.1021/acs.analchem.0c02331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) play an important role in cell metabolism, but they can cause oxidative damage to biomolecules. Among ROS, the hydroxyl radical (·OH) is one of the most reactive molecules in biological systems because of its high reaction rate constant. Therefore, imaging of ·OH could be useful for evaluation of the redox mechanism and diagnosis of oxidative diseases. In vivo dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) is a noninvasive imaging method to obtain spatiotemporal information about free radicals with MRI anatomical resolution. In this study, we investigated the visualization of hydroxyl radicals generated from the Fenton reaction by combining DNP-MRI with a spin-trapping agent (DMPO: 5,5-dimethyl-1-pyrroline N-oxide) for ·OH. Additionally, we demonstrated the radical-scavenging effect using four thiol-related reagents by DNP-MRI. We demonstrated that DNP enhancement could be induced by the DMPO-OH radical using the DNP-MRI/spin-trapping method and visualized ·OH generation for the first time. Maximum DNP enhancement was observed at an electron paramagnetic resonance irradiation frequency of 474.5 MHz. Furthermore, the radical-scavenging effect was simultaneously evaluated by the decrease in the DNP image value of DMPO-OH. An advantage of our methods is that they simultaneously investigate compound activity and the radical-scavenging effect.
Collapse
Affiliation(s)
- Shinichi Shoda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu 501-1194, Japan.,Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoko Tachibana
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mamoru Kiniwa
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tatsuya Naganuma
- Japan Redox Limited, Fukuoka, 4-29 Chiyo, Fukuoka 812-0044, Japan
| | - Hinako Eto
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Norikazu Koyasu
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Masaharu Murata
- Innovation Center for Medical Redox Navigation, Kyushu University,3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|