1
|
Fang Q, Xie J, Zong J, Zhou Y, Zhou Q, Yin S, Cao L, Yin H, Zhou D. Expression and diagnostic value of interleukin-22 in rheumatoid arthritis-associated interstitial lung disease. Int Immunopharmacol 2024; 134:112173. [PMID: 38728884 DOI: 10.1016/j.intimp.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by a high incidence and mortality rate, highlighting the need for biomarkers to detect ILD early in RA patients. Previous studies have shown the protective effects of Interleukin-22 (IL-22) in pulmonary fibrosis using mouse models. This study aims to assess IL-22 expression in RA-ILD to validate foundational experiments and explore its diagnostic value. The study included 66 newly diagnosed RA patients (33 with ILD, 33 without ILD) and 14 healthy controls (HC). ELISA was utilized to measure IL-22 levels and perform intergroup comparisons. The correlation between IL-22 levels and the severity of RA-ILD was examined. Logistic regression analysis was employed to screen potential predictive factors for RA-ILD risk and establish a predictive nomogram. The diagnostic value of IL-22 in RA-ILD was assessed using ROC. Subsequently, the data were subjected to 30-fold cross-validation. IL-22 levels in the RA-ILD group were lower than in the RA-No-ILD group and were inversely correlated with the severity of RA-ILD. Logistic regression analysis identified IL-22, age, smoking history, anti-mutated citrullinated vimentin antibody (MCV-Ab), and mean corpuscular hemoglobin concentration (MCHC) as independent factors for distinguishing between the groups. The diagnostic value of IL-22 in RA-ILD was moderate (AUC = 0.75) and improved when combined with age, smoking history, MCV-Ab and MCHC (AUC = 0.97). After 30-fold cross-validation, the average AUC was 0.886. IL-22 expression is dysregulated in the pathogenesis of RA-ILD. This study highlights the potential of IL-22, along with other factors, as a valuable biomarker for assessing RA-ILD occurrence and progression.
Collapse
Affiliation(s)
- Quanquan Fang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Jingzhi Xie
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Juan Zong
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Yu Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Qin Zhou
- School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Songlou Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Lina Cao
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China
| | - Hanqiu Yin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| | - Dongmei Zhou
- Department of Rheumatology and Immunology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221005, Jiangsu Province, China.
| |
Collapse
|
2
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
4
|
El Meligy OA, Elemam NM, Talaat IM. Ozone Therapy in Medicine and Dentistry: A Review of the Literature. Dent J (Basel) 2023; 11:187. [PMID: 37623283 PMCID: PMC10453584 DOI: 10.3390/dj11080187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Ozone has been successfully used in medicine for over 100 years due to its microbiological qualities. Its powerful oxidation impact, which results in the production of free radicals, and its ability to cause the direct death of nearly all microorganisms is the basis for its bactericide, virucide, and fungicide properties. Ozone also has a medicinal impact that speeds up blood flow and aids wound healing. Ozone may be applied as a gas or dissolved in water for medical purposes. Despite the benefits of using ozone therapeutically, concerns about its use in dentistry still exist. We aimed to provide a summary of the current uses of ozone in medicine and dentistry. An electronic search was performed for all English scientific papers published between 2012 and 2023 using PubMed, Cochrane, and Google Scholar search engines. Ozone, clinical applications, medicine, and dentistry were the search terms used. Seventy full-text articles describing the use of ozone therapy in medicine and dentistry were included in the present review. Ozone has shown several beneficial effects in the medical field. However, despite the encouraging in vitro evidence, the clinical use of ozone in dentistry has not yet been demonstrated as highly effective.
Collapse
Affiliation(s)
- Omar A. El Meligy
- Pediatric Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Alexandria University, Alexandria 21131, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| |
Collapse
|
5
|
Ahmad SF, Nadeem A, Ansari MA, Bakheet SA, Alomar HA, Al-Mazroua HA, Ibrahim KE, Alshamrani AA, Al-Hamamah MA, Alfardan AS, Attia SM. CXCR3 antagonist NBI-74330 mitigates joint inflammation in Collagen-Induced arthritis model in DBA/1J mice. Int Immunopharmacol 2023; 118:110099. [PMID: 37018975 DOI: 10.1016/j.intimp.2023.110099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. We used the CXCR3-specific antagonist NBI-74330 to block T-cell-mediated signaling in a DBA/1J mouse model of collagen-induced arthritis (CIA). After CIA induction, DBA/1J mice were treated with NBI-74330 (100 mg/kg) daily from day 21 until day 34 and evaluated for arthritic score and histopathological changes. Furthermore, using flow cytometry, we investigated the effects of NBI-74330 on Th1 (IFN-γ, TNF-α, T-bet, STAT4, Notch-3, and RANKL), Th17 (IL-21, IL-17A, STAT3, and RORγt), and Th22 (IL-22) cells in splenic CD4+ and CXCR3+T-cells. We also used RT-PCR to assess the effect of mRNA levels of IFN-γ, TNF-α, T-bet, RANKL, IL-17A, RORγt, and IL-22 in knee tissues. The IFN-γ, TNF-α, and IL-17A serum protein levels were measured using ELISA. Compared to vehicle-treated CIA mice, the severity of arthritic scores and histological severity of inflammation decreased significantly in NBI-74330-treated CIA mice. Moreover, compared to vehicle-treated CIA mice, the percentages of CD4+IFN-γ+, CD4+TNF-α+, CD4+T-bet+, CD4+STAT4+, CD4+Notch-3+, CXCR3+IFN-γ+, CXCR3+TNF-α+, CXCR3+T-bet+, CXCR3+STAT4+, CXCR3+Notch-3+, CD4+RANKL+, CD4+IL-21+, CD4+IL-17A+, CD4+STAT3+, CD4+RORγt+, and CD4+IL-22+ cells decreased in NBI-74330-treated CIA mice. Furthermore, NBI-74330-treatment downregulated IFN-γ, TNF-α, T-bet, RANKL, STAT3, IL-17A, RORγt, and IL-22 mRNA levels. Serum IFN-γ, TNF-α, and IL-17A levels were significantly lower in NBI-74330-treated CIA mice than in vehicle-treated CIA mice. This study demonstrates the antiarthritic effects of NBI-74330 in CIA mice. Therefore, these data suggest that NBI-74330 could be considered a potential RA treatment.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alfardan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Qiu C, Yang L, Liu S, Zhang C, Zhang Q, Jin Z. Interleukin-35 dampens T helper 22 phenotype shift in CD4 +CD25 +CD127 dim/- regulatory T cells in primary biliary cholangitis. Int Immunopharmacol 2023:109751. [PMID: 36697307 DOI: 10.1016/j.intimp.2023.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
The phenotype shift in regulatory T cells (Tregs) contributes to immunopathogenesis of autoimmune diseases. The current study was aimed to investigate the regulatory function of interleukin-35 (IL-35) to T helper 22 (Th22) cell phenotype shift in Tregs in primary biliary cholangitis (PBC). Fifty-five PBC patients and twenty-four controls were enrolled. CD4+CD25+CD127dim/- Tregs and Th22 cells were investigated by flow cytometry. Forkhead box P3 (FoxP3) and aryl hydrocarbon receptor (AhR) mRNA levels were assessed by real-time polymerase chain reaction. Plasma IL-10 and IL-22 levels were measured by ELISA. Purified Tregs were stimulated with exogenous IL-35, and were co-cultured with autologous CD4+CD25- T cells. Cellular proliferation and cytokine production was measured. Purified Tregs were also cultured into Th22 condition in the presence or absence of exogenous IL-35, and Th22 phenotype were assessed. PBC patients had lower levels of Treg percentage, FoxP3 mRNA, and plasma IL-10, while had higher levels of Th22 proportion, AhR mRNA, and plasma IL-22. Tregs from PBC patients showed reduced immunosuppressive activity, which presented as increased cellular proliferation, interferon-γ production and decreased IL-35/IL-10 secretion in co-culture system. Tregs shifted into Th22 phenotype in PBC patients with elevated CCR4, CCR6, and CCR10 expression as well as increased IL-22 production. IL-35 not only enhanced inhibitory function of Tregs but also suppressed phenotype shift of Tregs into Th22 phenotype in PBC patients. This process was accompanied by elevation of IL-10 and transforming growth factor-β1 secretion by Tregs from PBC patients. The present data suggested that reduced IL-35 might be insufficient to maintain Tregs function and phenotype shift from Tregs into Th22 phenotype in PBC patients.
Collapse
Affiliation(s)
- Chen Qiu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Lanlan Yang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Siqi Liu
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Chuanhui Zhang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Qian Zhang
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China
| | - Zhenjing Jin
- Digestive Disease Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, People's Republic of China.
| |
Collapse
|
7
|
Levels of Pathogenic Th17 and Th22 Cells in Patients with Rheumatoid Arthritis. J Immunol Res 2022; 2022:5398743. [PMID: 35996623 PMCID: PMC9392632 DOI: 10.1155/2022/5398743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized, among others, by tissue damage and activation/differentiation of proinflammatory lymphocytes. Accordingly, several studies have concluded that type 17 T helper (Th17) cells seem to have an important role in the pathogenesis of this condition. However, the strategy for the identification and analysis of proinflammatory Th17 cells in those studies has not been consistent and has usually been different from what was originally described. Therefore, we decided to evaluate the levels of Th17 cells in patients with RA employing an extended immune phenotype by using an eight-color multiparametric flow cytometry analysis. For this purpose, blood samples were obtained from 30 patients with RA and 16 healthy subjects, and the levels of Th17 and type 22 helper (Th22) lymphocytes were analyzed as well as the in vitro differentiation of peripheral blood mononuclear cells into Th17 lymphocytes induced by interleukin-23 (IL-23) and IL-1β. We found significant enhanced levels of total Th17 lymphocytes (defined as CD4+IL-17+) as well as enhanced numbers of their pathogenic (defined as CD4+CXCR3+IL-17+IL-22+CD243+CD161+IFN-γ+IL-10−) and nonpathogenic (CD4+CXCR3+IL-17+IL-22−CD243−CD161−IFN-γ−IL-10+) cell subsets in patients with RA. Likewise, the number of Th22 (CD4+CXCR3+/-IL-17−IL-22+) was also increased in these patients compared to healthy controls. However, the in vitro induction/differentiation of pathogenic Th17 cells showed similar results in controls and patients with RA. Likewise, no significant associations were detected in patients with RA between the levels of Th17 or Th22 cells and clinical or laboratory parameters. Our data indicate that patients with RA show enhanced blood levels of the different subsets of Th17 cells and Th22 lymphocytes tested in this study and suggest that these levels are not apparently associated with clinical or laboratory parameters.
Collapse
|
8
|
Zhao J, Guo S, Schrodi SJ, He D. Molecular and Cellular Heterogeneity in Rheumatoid Arthritis: Mechanisms and Clinical Implications. Front Immunol 2021; 12:790122. [PMID: 34899757 PMCID: PMC8660630 DOI: 10.3389/fimmu.2021.790122] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease that exhibits significant clinical heterogeneity. There are various treatments for rheumatoid arthritis, including disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), and inflammatory cytokine inhibitors (ICI), typically associated with differentiated clinical effects and characteristics. Personalized responsiveness is observed to the standard treatment due to the pathophysiological heterogeneity in rheumatoid arthritis, resulting in an overall poor prognosis. Understanding the role of individual variation in cellular and molecular mechanisms related to rheumatoid arthritis will considerably improve clinical care and patient outcomes. In this review, we discuss the source of pathophysiological heterogeneity derived from genetic, molecular, and cellular heterogeneity and their possible impact on precision medicine and personalized treatment of rheumatoid arthritis. We provide emphasized description of the heterogeneity derived from mast cells, monocyte cell, macrophage fibroblast-like synoviocytes and, interactions within immune cells and with inflammatory cytokines, as well as the potential as a new therapeutic target to develop a novel treatment approach. Finally, we summarize the latest clinical trials of treatment options for rheumatoid arthritis and provide a suggestive framework for implementing preclinical and clinical experimental results into clinical practice.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
9
|
Pahan S, Dasarathi S, Pahan K. Glyceryl tribenzoate: A food additive with unique properties to be a substitute for cinnamon. ACTA ACUST UNITED AC 2021; 6:367-372. [PMID: 34723288 DOI: 10.33140/jcei.06.05.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cinnamon is a regularly used natural seasoning and flavoring material throughout the world for eras. Recent laboratory studies have demonstrated that oral cinnamon may be beneficial for different neuroinflammatory and neurodegenerative disorders such as multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD), and Lewy body diseases (LBD). However, cinnamon's certain limitations (e.g. unavailability of true Ceylon cinnamon throughout the world, impurities in ground cinnamon, etc.) have initiated an interest among researchers to find an alternate of cinnamon that can potentially deliver the same efficacy in the diseases mentioned above. Glyceryl tribenzoate (GTB) is a U.S. Food and Drug Administration (FDA)-approved flavoring ingredient that is used in food and food packaging industries. It has been found that similar to cinnamon, oral GTB is capable of upregulating regulatory T cells and suppressing the autoimmune disease process of experimental autoimmune encephalomyelitis, an animal model of MS. Moreover, both GTB and cinnamon metabolite sodium benzoate (NaB) have the potency to attenuate neurodegenerative pathology in a mouse model of Huntington disease (HD). Here, we have also demonstrated anti-inflammatory property of GTB in astrocytes and macrophages, a property that is also seen with cinnamon and its metabolite sodium benzoate (NaB). Therefore, here, we have made a sincere attempt to discuss the similarities and dissimilarities between cinnamon and GTB with a focus whether GTB has the potential to be considered as a substitute of cinnamon for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Swarupa Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Sridevi Dasarathi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| |
Collapse
|
10
|
Chen Y, Li Y, Guo H, Zhang Z, Zhang J, Dong X, Liu Y, Zhuang Y, Zhao Y. The Effects of Adoptively Transferred IL-23/IL-18-Polarized Neutrophils on Tumor and Collagen-Induced Arthritis in Mice. J Inflamm Res 2021; 14:4669-4686. [PMID: 34557012 PMCID: PMC8453247 DOI: 10.2147/jir.s329528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Neutrophils present great diverse phenotypes in various microenvironments and play different immune regulatory functions. Neutrophils generally classified into inflammatory phenotype N1 and anti-informatory phenotype N2. Our recent studies showed that IL-23 alone stimulated neutrophils to express IL-17A, IL-17F and IL-22 and displayed a gene transcriptional profile similar to Th17 cells. In the present study, we tried to identify potential cytokines to promote IL-23-induced neutrophil polarization. Methods Mouse bone marrow-derived neutrophils and human peripheral blood neutrophils were treated with IL-23 (10 ng/mL) plus IL-18 (25 ng/mL) to induce Th17-like subset in vitro and detected by real-time PCR, flow cytometry, ELISA, immunofluorescence and RNA-seq assays. In vivo, collagen-induced arthritis (CIA) mouse model and EL4 tumor-bearing mouse model were used to characterize the potential roles of N(IL-23+IL-18) in inflammation and tumor. Results Real-time PCR, ELISA and flow cytometry assays showed that IL-18 could significantly enhance IL-23-induced IL-17A, IL-17F and IL-22 expressions in mouse and human neutrophils in a synergistic way, although IL-18 alone failed to induce these cytokines expression. RNA-seq and molecular studies showed that the polarization of N(IL-23+IL-18) is mainly mediated by the JNK/p38-STAT3-BATF signaling pathway. Adoptive transfer of the induced N(IL-23+IL-18) neutrophils significantly accelerated the tumor growth in EL4 tumor-bearing mice and enhanced disease progression in the CIA mouse model. IL-17A-deficient N(IL-23+IL-18) neutrophils failed to enhance the CIA pathogenesis in this model, suggesting that IL-17A may be involved in the N(IL-23+IL-18) neutrophils-promoted arthritis in mice. Conclusion The Th17-type subpopulation N(IL-23+IL-18) has pro-tumor and pro-inflammatory properties. Recognizing the different functional polarization of neutrophils would significantly help us to understand the distinctive protective/pathological roles of neutrophils in physiological and different pathological situations.
Collapse
Affiliation(s)
- Yifang Chen
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yang Li
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Han Guo
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhaoqi Zhang
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiayu Zhang
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xue Dong
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Liu
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yong Zhao
- Department of State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of State Key Laboratory of Membrane Biology, Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, People's Republic of China
| |
Collapse
|
11
|
Jiang Q, Yang G, Xiao F, Xie J, Wang S, Lu L, Cui D. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:688066. [PMID: 34295334 PMCID: PMC8290841 DOI: 10.3389/fimmu.2021.688066] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Upon antigenic stimulation, naïve CD4+T cells differentiate into different subsets and secrete various cytokines to exert biological effects. Th22 cells, a newly identified CD4+T cell subset,are distinct from the Th1, Th2 and Th17 subsets. Th22 cells secrete certain cytokines such as IL-22, IL-13 and TNF-α, but not others, such as IL-17, IL-4, or interferon-γ (IFN-γ), and they express chemokine receptors CCR4, CCR6 and CCR10. Th22 cells were initially found to play a role in skin inflammatory diseases, but recent studies have demonstrated their involvement in the development of various autoimmune diseases. Here, we review research advances in the origin, characteristics and effector mechanisms of Th22 cells, with an emphasis on the role of Th22 cells and their main effector cytokine IL-22 in the pathogenesis of autoimmune diseases. The findings presented here may facilitate the development of new therapeutic strategies for targeting these diseases.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Woś I, Tabarkiewicz J. Effect of interleukin-6, -17, -21, -22, and -23 and STAT3 on signal transduction pathways and their inhibition in autoimmune arthritis. Immunol Res 2021; 69:26-42. [PMID: 33515210 PMCID: PMC7921069 DOI: 10.1007/s12026-021-09173-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
Rheumatic diseases are complex autoimmune diseases which include among others rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), and psoriatic arthritis (PsA). These diseases are characterized by prolonged and increased secretion of inflammatory factors, eventually leading to inflammation. This is often accompanied by persistent pain and stiffness in the joint and finally bone destruction and osteoporosis. These diseases can occur at any age, regardless of gender or origin. Autoimmune arthritis is admittedly associated with long-term treatment, and discontinuation of medication is associated with unavoidable relapse. Therefore, it is important to detect the disease at an early stage and apply appropriate preventative measures. During inflammation, pro-inflammatory factors such as interleukins (IL)-6, -17, -21, -22, and -23 are secreted, while anti-inflammatory factors including IL-10 are downregulated. Research conducted over the past several years has focused on inhibiting inflammatory pathways and activating anti-inflammatory factors to improve the quality of life of people with rheumatic diseases. The aim of this paper is to review current knowledge on stimulatory and inhibitory pathways involving the signal transducer and activator of transcription 3 (STAT3). STAT3 has been shown to be one of the crucial factors involved in inflammation and is directly linked with other pro-inflammatory factors and thus is a target of current research on rheumatoid diseases.
Collapse
Affiliation(s)
- Izabela Woś
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| | - Jacek Tabarkiewicz
- Laboratory for Translational Research in Medicine, Centre for Innovative Research in Medical and Natural Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
- Department of Human Immunology, Institute of Medical Sciences, College for Medical Sciences of University of Rzeszow, ul. Warzywna 1a, 35-310 Rzeszow, Poland
| |
Collapse
|
13
|
Abstract
Autoimmune diseases are one of the dreadful group of human diseases that have always been of keen interest to researchers. Due to complex and broad-spectrum nature, scientists are not yet able to pinpoint the pathogenesis of and delineate effective therapy against this group of diseases. However, it is becoming clear that a decrease in number and function of T regulatory cells (Treg), an increase in autoreactive Th1/Th17 cells and associated immunomodulation and inflammation participate in the pathogenesis of many autoimmune diseases. Cinnamon (Cinnamonum verum or Cinnamonum cassia) is a widely used natural spice and flavoring ingredient and its metabolite sodium benzoate (NaB) is a food-additive and FDA-approved drug against nonketotic hyperglycinemia (NKH) and urea cycle disorders (UCD). Recent studies indicate that cinnamon either in powder or extract form and NaB are capable of modulating different autoimmune pathways as well as protecting animals from different autoimmune disorders. Here, we have made an honest attempt to delineate such pieces of evidence with available anti-autoimmune mechanisms and analyze whether cinnamon supplements could be used to control the fury of autoimmune disorders.
Collapse
Affiliation(s)
- Swarupa Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| |
Collapse
|
14
|
Min HK, Won JY, Kim BM, Lee KA, Lee SJ, Lee SH, Kim HR, Kim KW. Interleukin (IL)-25 suppresses IL-22-induced osteoclastogenesis in rheumatoid arthritis via STAT3 and p38 MAPK/IκBα pathway. Arthritis Res Ther 2020; 22:222. [PMID: 32972460 PMCID: PMC7517649 DOI: 10.1186/s13075-020-02315-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The present study aimed to evaluate the suppressive role of interleukin (IL)-25 in IL-22-induced osteoclastogenesis and receptor activator of nuclear factor κB ligand (RANKL) expression in rheumatoid arthritis (RA). METHODS Serum from patients with RA and osteoarthritis (OA), and healthy controls, and synovial fluid from patients with RA and OA were collected, and the levels of IL-22 and IL-25 were measured. RA and OA synovial tissues were stained against IL-25. Fibroblast-like synoviocytes (FLSs) of patients with RA were cultured with IL-22, in the presence or absence of IL-25, and RANKL expression was measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA). Human peripheral blood monocytes were cultured under IL-22/RANKL + M-CSF, with or without IL-25, and tartrate-resistant acid phosphatase (TRAP)-positive cells and osteoclast-related markers were investigated to determine osteoclastogenesis. RESULTS Serum and synovial IL-25 levels in RA were upregulated compared to those in OA and healthy control, and elevated expression of IL-25 in RA synovial tissue was re-confirmed. IL-25 and IL-22 levels showed significant correlation in serum and synovial fluid. Pre-treatment of FLS with IL-25 reduced IL-22-induced RANKL expression at the RNA level. The suppressive effects of IL-25 were confirmed to occur through the STAT3 and p38 MAPK/IκBα pathways. IL-25 reduced osteoclast differentiation and suppressed the expression of osteoclast-related markers. CONCLUSION In the current study, we demonstrated the regulatory effect of IL-25 on IL-22-induced osteoclastogenesis. Therapeutic approach involving augmentation of IL-25 regulatory response may serve as a novel treatment option for RA, especially by suppressing osteoclastogenesis.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, 05030, Republic of Korea
| | - Ji-Yeon Won
- R&D Center, OncoInsight, 1022, Gangnam AceTower, 174-10, Jagok-ro, Gangnam-gu, Seoul, 06373, Republic of Korea
| | - Bo-Mi Kim
- Laboratory of Stem Cell, NEXEL, Seoul, Republic of Korea
| | - Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Hospital, Seoul, 04401, Republic of Korea
| | - Seoung-Joon Lee
- Department of Orthopedic Surgery, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, 05030, Republic of Korea
| | - Kyoung-Woon Kim
- R&D Center, OncoInsight, 1022, Gangnam AceTower, 174-10, Jagok-ro, Gangnam-gu, Seoul, 06373, Republic of Korea.
| |
Collapse
|
15
|
Niu X, Xu X, Luo Z, Wu D, Tang J. The expression of Th9 and Th22 cells in rats with cerebral palsy after hUC-MSC transplantation. J Chin Med Assoc 2020; 83:60-66. [PMID: 31904741 DOI: 10.1097/jcma.0000000000000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study aimed to investigate the expression of Th9 and Th22 cells in rats with cerebral palsy (CP) after human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation. METHODS First, hUC-MSCs were isolated from fresh umbilical cords and identified. Rats were divided into the normal group, CP group, and hUC-MSC transplantation group. The Morris water maze and balance beam tests were performed to evaluate the neurobehavioral ability of the rats. The levels of TNF-α, IL-6, IL-9, and IL-22 in rat brain tissues were detected by ELISA. Th9 and Th22 proportions in brain tissues were detected by flow cytometric analysis. The mRNA levels of IL-9, IL-22, PU.1, and AHR in brain tissues were determined by qRT-PCR. RESULTS hUC-MSC transplantation enhanced the neurobehavioral ability of CP rats. Furthermore, Th9 and Th22 proportions were decreased in brain tissues from CP rats after hUC-MSC transplantation. The levels of proinflammatory cytokines (TNF-α and IL-6), Th9-related IL-9 and PU.1, and Th22-related IL-22 and AHR were markedly higher in brain tissues from CP rats than in brain tissues from control rats, but their levels were significantly decreased after hUC-MSC transplantation. CONCLUSION Our data indicate that Th9 and Th22 proportions are decreased in CP rats after hUC-MSC transplantation.
Collapse
Affiliation(s)
- Xia Niu
- School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyan Xu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhihua Luo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiulai Tang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Monasterio G, Budini V, Fernández B, Castillo F, Rojas C, Alvarez C, Cafferata EA, Vicencio E, Cortés BI, Cortez C, Vernal R. IL-22-expressing CD4 + AhR + T lymphocytes are associated with RANKL-mediated alveolar bone resorption during experimental periodontitis. J Periodontal Res 2019; 54:513-524. [PMID: 31032952 DOI: 10.1111/jre.12654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 02/10/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Over the past few years, the importance of interleukin-22 (IL-22) and T-helper (Th)22 lymphocytes in the pathogenesis of periodontitis has become apparent; however, there are still aspects that are not addressed yet. Cells expressing IL-22 and aryl hydrocarbon receptor (AhR), transcription factor master switch gene implicated in the differentiation and function of Th22 lymphocytes, have been detected in periodontal tissues of periodontitis-affected patients. In addition, IL-22 has been associated with osteoclast differentiation and their bone resorptive activity in vitro. However, the destructive potential of IL-22-expressing AhR+ Th22 lymphocytes over periodontal tissues during periodontitis has not been demonstrated in vivo yet. Therefore, this study aimed to analyze whether IL-22-expressing CD4+ AhR+ T lymphocytes detected in periodontal lesions are associated with alveolar bone resorption during experimental periodontitis. MATERIAL AND METHODS Using a murine model of periodontitis, the expression levels of IL-22 and AhR, as well as the Th1-, Th2-, Th17- and T regulatory-associated cytokines, were analyzed in periodontal lesions using qPCR. The detection of CD4+ IL-22+ AhR+ T lymphocytes was analyzed in periodontal lesions and cervical lymph nodes that drain these periodontal lesions using flow cytometry. In addition, the expression of the osteoclastogenic mediator called receptor activator of nuclear factor-κB ligand (RANKL) was analyzed by qPCR, western blot, and immunohistochemistry. Finally, alveolar bone resorption was analyzed using micro-computed tomography and scanning electron microscopy, and the bone resorption levels were correlated with IL-22 and RANKL expression. RESULTS Higher levels of IL-22, AhR, and RANKL, as well as IL-1β, IL-6, IL-12, IL-17, IL-23, and TNF-α, were expressed in periodontal lesions of infected mice compared with periodontal tissues of sham-infected and non-infected controls. Similarly, high RANKL immunoreaction was observed in periodontal tissues of infected mice; however, few or absent RANKL immunoreaction was observed in controls. This association between RANKL and periodontal infection was ratified by western blot. Furthermore, a higher detection of CD4+ IL-22+ AhR+ T lymphocytes was found in periodontal lesions and cervical lymph nodes that drain these periodontal lesions in infected mice compared with non-infected controls. Finally, the increased IL-22 and RANKL expression showed positive correlation between them and with the augmented alveolar bone resorption observed in experimental periodontal lesions. CONCLUSION This study demonstrates the increase of IL-22-expressing CD4+ AhR+ T lymphocytes in periodontitis-affected tissues and shows a positive correlation between IL-22, RANKL expression, and alveolar bone resorption.
Collapse
Affiliation(s)
- Gustavo Monasterio
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
| | - Victoria Budini
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
| | - Baltasar Fernández
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
| | - Francisca Castillo
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
| | - Carolina Rojas
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
| | - Carla Alvarez
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Oral Pathology Laboratory, Universidad Andres Bello, Santiago, Chile
| | - Emilio A Cafferata
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Emiliano Vicencio
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Faculty of Sciences, Center for Genomic and Bioinformatic, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile
- Faculty of Sciences, Center for Genomic and Bioinformatic, Universidad Mayor, Santiago, Chile
| | - Cristian Cortez
- Faculty of Sciences, Center for Genomic and Bioinformatic, Universidad Mayor, Santiago, Chile
| | - Rolando Vernal
- Faculty of Dentistry, Periodontal Biology Laboratory, Universidad de Chile, Santiago, Chile
- Faculty of Health Sciences, Dentistry Unit, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
17
|
Bakheet SA, Ansari MA, Nadeem A, Attia SM, Alhoshani AR, Gul G, Al-Qahtani QH, Albekairi NA, Ibrahim KE, Ahmad SF. CXCR3 antagonist AMG487 suppresses rheumatoid arthritis pathogenesis and progression by shifting the Th17/Treg cell balance. Cell Signal 2019; 64:109395. [PMID: 31449849 DOI: 10.1016/j.cellsig.2019.109395] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by uncontrolled joint inflammation and damage to bone and cartilage. Previous studies have shown that chemokine receptors have important roles in RA development, and that blocking these receptors effectively inhibits RA progression. Our study was undertaken to investigate the role of AMG487, a selective CXCR3 antagonist, in DBA/1J mice bearing collagen-induced arthritis (CIA). Following induction of CIA, animals were treated with 5 mg/kg AMG487 intraperitoneally every 48 h, starting from day 21 until day 41 and evaluated for clinical score, and histological hallmarks of arthritic inflammation. We further investigated the effect of AMG487 on Th1 (T-bet), Th17 (IL-17A, RORγt, STAT3), Th22 (IL-22), and T regulatory (Treg; Foxp3 and IL-10) cells in splenic CXCR3+ and CD4+ T cells using flow cytometry. We also assessed the effect of AMG487 on T-bet, RORγt, IL-17A, IL-22, Foxp3, and IL-10 at both mRNA and protein levels using RT-PCR and Western blot analyses of knee samples. The severity of clinical scores, and histological inflammatory damage decreased significantly in AMG487-treated compared with CIA control mice. Moreover, the percentage of Th1, Th17, and Th22 cells decreased significantly and that of Treg cells increased in AMG487-treated mice. We further observed that AMG487-treatment downregulated T-bet, IL-17A, RORγt, and IL-22, whereas it upregulated Foxp3 and IL-10 mRNA and protein levels. This study demonstrates the antiarthritic effects of AMG487 in CIA animal model and supports the development of CXCR3 antagonists as a novel strategy for the treatment of inflammatory and arthritic conditions.
Collapse
Affiliation(s)
- Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gazala Gul
- Department of Pathology, College of Medicine, Yenepoya University, Mangaluru, Karnataka, India
| | - Q H Al-Qahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
18
|
du Teil Espina M, Gabarrini G, Harmsen HJM, Westra J, van Winkelhoff AJ, van Dijl JM. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol Rev 2019; 43:1-18. [PMID: 30219863 DOI: 10.1093/femsre/fuy035] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial communities inhabiting the human body, collectively called the microbiome, are critical modulators of immunity. This notion is underpinned by associations between changes in the microbiome and particular autoimmune disorders. Specifically, in rheumatoid arthritis, one of the most frequently occurring autoimmune disorders worldwide, changes in the oral and gut microbiomes have been implicated in the loss of tolerance against self-antigens and in increased inflammatory events promoting the damage of joints. In the present review, we highlight recently gained insights in the roles of microbes in the etiology of rheumatoid arthritis. In addition, we address important immunomodulatory processes, including biofilm formation and neutrophil function, which have been implicated in host-microbe interactions relevant for rheumatoid arthritis. Lastly, we present recent advances in the development and evaluation of emerging microbiome-based therapeutic approaches. Altogether, we conclude that the key to uncovering the etiopathogenesis of rheumatoid arthritis will lie in the immunomodulatory functions of the oral and gut microbiomes.
Collapse
Affiliation(s)
- Marines du Teil Espina
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Giorgio Gabarrini
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Arie Jan van Winkelhoff
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
19
|
Cardoso PRG, Matias KA, Dantas AT, Marques CDL, Pereira MC, Duarte ALBP, Rego MJBDM, Pitta IDR, Pitta MGDR. Losartan, but not Enalapril and Valsartan, Inhibits the Expression of IFN-γ, IL-6, IL-17F and IL-22 in PBMCs from Rheumatoid Arthritis Patients. Open Rheumatol J 2018; 12:160-170. [PMID: 30288187 PMCID: PMC6151964 DOI: 10.2174/1874312901812010160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Rheumatoid Arthritis (RA) is a chronic and inflammatory disease that affects about 1% of the world's population. Almost 70% of RA patients have a cardiovascular disease such as Systemic Arterial Hypertension (SAH). Inflammatory cytokines are clearly involved in the pathogenesis of RA and correlated with SAH. Objective: It is necessary to understand whether the antihypertensive drugs have a dual effect as immunomodulators and which one is the best choice for RA SAH patients. Methods: Peripheral Blood Mononuclear Cells (PBMCs) from 16 RA patients were purified and stimulated or not stimulated with anti-CD3 and anti-CD28 mAB and were treated with Enalapril, Losartan and Valsartan at 100μM. Patients were evaluated for clinical and laboratory variables including measures of disease activity by Clinical Disease Activity Index (CDAI) and Disease Activity Score (DAS28). Cytokines were quantified by ELISA sandwich. Results: Losartan was able to reduce levels of IFN-γ (p = 0.0181), IL-6 (p = 0.0056), IL-17F (0.0046) and IL-22 (p = 0.0234) in RA patients. In addition, patients in remission and mild score (DAS28<3.2 and CDAI<10) had a better response to treatment. On the other hand, patients in moderate and severe activity had poor response to Losartan in cytokine inhibition. Conclusion: PBMCs from RA patients are responsive in inhibiting proinflammatory cytokines using Losartan better than Enalapril and Valsartan and it could be a better antihypertensive choice for patients with RA and systemic arterial hypertension treatment.
Collapse
Affiliation(s)
- Pablo R G Cardoso
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Katherine A Matias
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Andrea T Dantas
- Rheumatology Service, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Claudia D L Marques
- Rheumatology Service, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Michelly C Pereira
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Angela L B P Duarte
- Rheumatology Service, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Moacyr Jesus Barreto de Melo Rego
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Ivan da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Nucleus of Research in Immunomodulation and New Therapeutic Approaches Suely Galdino (Nupit SG), Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
20
|
Tamasauskiene L, Sitkauskiene B. Role of Th22 and IL-22 in pathogenesis of allergic airway diseases: Pro-inflammatory or anti-inflammatory effect? Pediatr Neonatol 2018; 59:339-344. [PMID: 29292068 DOI: 10.1016/j.pedneo.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
A new population of T cells known as Th22 was described for the first time in 2009. These cells are usually identified by the production of IL-22. However, this cytokine is also secreted by other cells such as Th1, Th2, Th17, natural killers, and innate lymphoid cells. Th22 is known as a pro-inflammatory agent in allergic skin diseases. Recently, more evidence has emerged showing associations between these cells and other diseases. The role of Th22 in asthma and allergic rhinitis is controversial: some authors suggest that Th22 has a pro-inflammatory effect, while others state that Th22 has anti-inflammatory properties. The aim of this article was to review the role of Th22 and IL-22 in allergic airway diseases based on the most recent literature. This review suggests that Th22 plays a significant role in the pathogenesis of allergic airway diseases and has predominantly anti-inflammatory properties. More studies are needed to clarify the role of Th22 in more detail.
Collapse
Affiliation(s)
- Laura Tamasauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Brigita Sitkauskiene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
21
|
Serum Levels of IL-22 and ACPA in Patients with Rheumatoid Arthritis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
van der Geest T, Roeleveld DM, Walgreen B, Helsen MM, Nayak TK, Klein C, Hegen M, Storm G, Metselaar JM, van den Berg WB, van der Kraan PM, Laverman P, Boerman OC, Koenders MI. Imaging fibroblast activation protein to monitor therapeutic effects of neutralizing interleukin-22 in collagen-induced arthritis. Rheumatology (Oxford) 2018; 57:737-747. [PMID: 29361119 DOI: 10.1093/rheumatology/kex456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
Objectives RA is a chronic autoimmune disease leading to progressive destruction of cartilage and bone. RA patients show elevated IL-22 levels and the amount of IL-22-producing Th cells positively correlates with the extent of erosive disease, suggesting a role for this cytokine in RA pathogenesis. The purpose of this study was to determine the feasibility of SPECT/CT imaging with 111In-labelled anti-fibroblast activation protein antibody (28H1) to monitor the therapeutic effect of neutralizing IL-22 in experimental arthritis. Methods Mice (six mice/group) with CIA received anti-IL-22 or isotype control antibodies. To monitor therapeutic effects after treatment, SPECT/CT images were acquired 24 h after injection of 111In-28H1. Imaging results were compared with macroscopic, histologic and radiographic arthritis scores. Results Neutralizing IL-22 before CIA onset effectively prevented arthritis development, reaching a disease incidence of only 50%, vs 100% in the control group. SPECT imaging showed significantly lower joint tracer uptake in mice treated early with anti-IL-22 antibodies compared with the control-treated group. Reduction of disease activity in those mice was confirmed by macroscopic, histological and radiographic pathology scores. However, when treatment was initiated in a later phase of CIA, progression of joint pathology could not be prevented. Conclusion These findings suggest that IL-22 plays an important role in CIA development, and neutralizing this cytokine seems an attractive new strategy in RA treatment. Most importantly, SPECT/CT imaging with 111In-28H1 can be used to specifically monitor therapy responses, and is potentially more sensitive in disease monitoring than the gold standard method of macroscopic arthritis scoring.
Collapse
Affiliation(s)
- Tessa van der Geest
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Debbie M Roeleveld
- Department of Experimental Rheumatology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Birgitte Walgreen
- Department of Experimental Rheumatology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Monique M Helsen
- Department of Experimental Rheumatology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Tapan K Nayak
- Roche Pharmaceutical Research & Early Development, Innovation Center Basel, Basel, Switzerland
| | - Christian Klein
- Roche Pharmaceutical Research & Early Development, Innovation Center Zurich, Schlieren, Switzerland
| | - Martin Hegen
- Inflammation & Immunology Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Josbert M Metselaar
- Department of Targeted Therapeutics, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Experimental Molecular Imaging, University Clinic & Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - Wim B van den Berg
- Department of Experimental Rheumatology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev 2017; 16:1209-1218. [PMID: 29037907 DOI: 10.1016/j.autrev.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Interleukin-22 (IL22) is one of the members of IL10 family. Elevated levels of this cytokine can be seen in diseases caused by T lymphocytes, such as Psoriasis, Rheumatoid arthritis, interstitial lung diseases. IL22 is produced by different cells in both innate and acquired immunities. Different types of T cells are able to produce IL22, but the major IL22-producing T-cell is the TCD4. TH22 cell is a new line of TCD4 cells, which differentiated from naive T cells in the presence of TNFα and IL6; 50% of peripheral blood IL22 is produced by these cells. IL22 has important functions in host defense at mucosal surfaces as well as in tissue repair. In this review, we assess the current understanding of this cytokine and focus on the possible roles of IL-22 in autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Blood Borne Infections Research Center, AcademicCenter for Education, Culture and Research (ACECR), Razavi Khorasan Branch,Mashhad, Iran
| | - Jamshid Gholizadeh Navashenaq
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical sciencesfaculty, Tarbiat Modares University, Tehran, Iran
| | - Hamed Mohammadi
- ImmunologyResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- BiotechnologyResearch Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Ren W, Wang Z, Wu Z, Hu Z, Dai F, Chang J, Li B, Liu H, Ruan Y. JAK2/STAT3 Pathway Was Associated with the Protective Effects of IL-22 On Aortic Dissection with Acute Lung Injury. DISEASE MARKERS 2017; 2017:1917804. [PMID: 28827891 PMCID: PMC5554575 DOI: 10.1155/2017/1917804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023]
Abstract
Patients with aortic dissection (AD) may present acute lung injury (ALI) that may affect the prognosis. In this study, we aim to investigate the roles and mechanism of IL-22 in the pathogenesis of AD complicated with ALI. Six hundred and twenty-one AD patients were included, and the incidence of ALI and pulmonary CT findings were analyzed. Mouse ALI model was established through AngII, and then IL-22 injection and AG490 were given. The pathological changes, infiltration of inflammatory cells, and expression of STAT3 were determined. For the in vitro experiment, cultivated pulmonary microvascular endothelial cells (PMVECs) were treated by angiotensin II (AngII), followed by treating with IL-22 and/or AG490. The expression and migration of STAT3 was determined. Flow cytometry was carried out to evaluate the apoptosis. IL-22 contributed to the expression of STAT3 in lung tissues and attenuation of ALI. IL-22 obviously inhibited the apoptosis of PMVECs mediated by AngII and downregulated the expression and intranuclear transmission of STAT3. Such phenomenon was completely inhibited upon administration of AG490, an inhibitor of JAK2. Our data showed IL-22 contributed to the inhibition of PMVEC apoptosis mediated by AngII through activating the JAK2/STAT3 signaling pathway, which may attenuate the ALI induced by AngII.
Collapse
Affiliation(s)
- Wei Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhiyong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Feifeng Dai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jinxing Chang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huagang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yongle Ruan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
25
|
Zayoud M, Marcu-Malina V, Vax E, Jacob-Hirsch J, Elad-Sfadia G, Barshack I, Kloog Y, Goldstein I. Ras Signaling Inhibitors Attenuate Disease in Adjuvant-Induced Arthritis via Targeting Pathogenic Antigen-Specific Th17-Type Cells. Front Immunol 2017; 8:799. [PMID: 28736556 PMCID: PMC5500629 DOI: 10.3389/fimmu.2017.00799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing “double positive” as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4+ T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential novel therapeutic approach for RA.
Collapse
Affiliation(s)
- Morad Zayoud
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Victoria Marcu-Malina
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Einav Vax
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Galit Elad-Sfadia
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Barshack
- Institute of Pathology, Chaim Sheba Academic Medical Center, Ramat Gan, Israel
| | - Yoel Kloog
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Itamar Goldstein
- Sheba Cancer Research Center, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Rheumatology Unit, Chaim Sheba Academic Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Díaz-Zúñiga J, Melgar-Rodríguez S, Monasterio G, Pujol M, Rojas L, Alvarez C, Carvajal P, Vernal R. Differential human Th22-lymphocyte response triggered by Aggregatibacter actinomycetemcomitans serotypes. Arch Oral Biol 2017; 78:26-33. [PMID: 28189882 DOI: 10.1016/j.archoralbio.2017.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/04/2017] [Accepted: 02/05/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE In Aggregatibacter actinomycetemcomitans, different serotypes have been described based on lipopolysaccharide (LPS) antigenicity. When T lymphocytes were stimulated with these serotypes, different patterns of T-helper (Th)1 and Th17-type of immune responses were reported. Recently, two new Th phenotypes have been described and named Th9 and Th22 lymphocytes; however, their role in the pathogenesis of periodontitis remains unclear. This study aimed to investigate the potential Th9 and/or Th22 lymphocyte responses when stimulated with autologous dendritic cells infected with different A. actinomycetemcomitans serotypes. METHODS Monocyte-derived dendritic cells and naïve CD4+ T lymphocytes were obtained from healthy donors and stimulated with different serotypes of A. actinomycetemcomitans at a multiplicity of infection MOI=102 or their purified LPS (10-50ng/ml). The levels for the Th9 and Th22-associated cytokines, as well as the transcription factor master-switch genes implied in their differentiation Spi-B and AhR, were quantified by qPCR and ELISA. RESULTS When stimulated with the serotype b of A. actinomycetemcomitans, higher levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were detected in dendritic cells, as well as higher levels of IL-22 and AhR were detected in T lymphocytes, when compared with stimulation with the other serotypes. CONCLUSIONS The serotype b of A. actinomycetemcomitans has a higher capacity of trigger Th22-type of immune response in both dendritic cells and T lymphocytes. These data allow us to suggest that, when the serotype b of A. actinomycetemcomitans is a significant part of the subgingival biofilm, the Th22 polarization might be triggered within the periodontal lesion.
Collapse
Affiliation(s)
- Jaime Díaz-Zúñiga
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Myriam Pujol
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Leticia Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carla Alvarez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Paola Carvajal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile; Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
27
|
Roeleveld DM, Marijnissen RJ, Walgreen B, Helsen MM, van den Bersselaar L, van de Loo FA, van Lent PL, van der Kraan PM, van den Berg WB, Koenders MI. Higher efficacy of anti-IL-6/IL-21 combination therapy compared to monotherapy in the induction phase of Th17-driven experimental arthritis. PLoS One 2017; 12:e0171757. [PMID: 28158305 PMCID: PMC5291406 DOI: 10.1371/journal.pone.0171757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
Th17 cells and their cytokines are linked to the pathogenesis of rheumatoid arthritis, a chronic autoimmune disease characterized by joint inflammation. Th17 development is initiated by combined signaling of TGF-β and IL-6 or IL-21, and can be reduced in the absence of either IL-6 or IL-21. The aim of this study was to assess whether combinatorial IL-6/IL-21 blockade would more potently inhibit Th17 development, and be more efficacious in treating arthritis than targeting either cytokine. We assessed in vitro Th17 differentiation efficacy in the absence of IL-6 and/or IL-21. To investigate in vivo effects of IL-6/IL-21 blockade on Th17 and arthritis development, antigen-induced arthritis (AIA) was induced in IL-6-/- x IL-21R-/- mice. The therapeutic potential of this combined blocking strategy was assessed by treating mice with collagen-induced arthritis (CIA) with anti-IL-6R antibodies and soluble (s)IL-21R.Fc. We demonstrated that combined IL-6/IL-21 blocking synergistically reduced in vitro Th17 differentiation. In mice with AIA, absence of IL-6 and IL-21 signaling more strongly reduced Th17 levels and resulted in stronger suppression of arthritis than the absence of either cytokine. Additionally, anti-IL-6/anti-IL-21 treatment of CIA mice during the arthritis induction phase reduced disease development more potent than IL-6 or IL-21 inhibition alone, as effective as anti-TNF treatment. Collectively, these results suggest dual IL-6/IL-21 inhibition may be a more efficacious therapeutic strategy compared to single cytokine blockade to suppress arthritis development.
Collapse
Affiliation(s)
- Debbie M. Roeleveld
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail:
| | - Renoud J. Marijnissen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Birgitte Walgreen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monique M. Helsen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Fons A. van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter L. van Lent
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M. van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wim B. van den Berg
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije I. Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
28
|
Zhao M, Li Y, Xiao W. Anti-apoptotic effect of interleukin-22 on fibroblast-like synoviocytes in patients with rheumatoid arthritis is mediated via the signal transducer and activator of transcription 3 signaling pathway. Int J Rheum Dis 2017; 20:214-224. [PMID: 27493089 DOI: 10.1111/1756-185x.12939] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM Inadequate apoptosis of fibroblast-like synoviocytes (FLS) plays a crucial role in the immunopathogenesis of rheumatoid arthritis (RA). Interleukin-22 (IL-22) is a novel member of the cytokine network that has been found to be involved in the immunological process underlying RA. In this study, we investigated the effect of IL-22 on the survival of RA-FLS from RA patients and examined the possible mechanism to determine new therapeutic strategies for RA. METHODS FLS obtained from patients with RA were cultured in vitro and treated with sodium nitroprussiate (SNP) to induce apoptosis in the presence or absence of IL-22. RA-FLS viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RA-FLS apoptosis was analyzed by annexin V/propidium iodide staining (AV/PI). The levels of IL-22R1, pSTAT3-Y705, pSTAT3-S727, total STAT3, Bcl-xL and Bcl-2 were detected by Western blot analysis. RESULTS IL-22R1 was expressed on RA-FLS. IL-22 pretreatment at concentrations ranging from 10 to 100 ng/mL increased RA-FLS viability and prevented SNP-induced apoptosis. Treatment with the STAT3 inhibitors, HO3867 or STA21, reversed the protective effect of IL-22 on SNP-induced apoptosis of RA-FLS. IL-22-induced phosphorylation of STAT3 (pSTAT3-Y705 and pSTAT3-S727) was increased in RA-FLS. Also IL-22 increased Bcl-2 expression in SNP-treated RA-FLS, and the effect was reversed by treatment with HO3867 or STA21. CONCLUSION IL-22 protects against SNP-induced apoptosis in RA-FLS by activating the STAT3 pathway and the downstream target gene, Bcl-2. Therefore, therapeutic strategies that target the IL-22/STAT3 pathway are implicated as candidates for RA treatment.
Collapse
Affiliation(s)
- Min Zhao
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Rheumatology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yishuo Li
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Weiguo Xiao
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Zhong W, Zhao L, Liu T, Jiang Z. IL-22-producing CD4+T cells in the treatment response of rheumatoid arthritis to combination therapy with methotrexate and leflunomide. Sci Rep 2017; 7:41143. [PMID: 28117352 PMCID: PMC5259708 DOI: 10.1038/srep41143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/15/2016] [Indexed: 12/24/2022] Open
Abstract
T cells are key players in immune-mediated rheumatoid arthritis (RA). We previously reported that interleukin (IL)-22+CD4+T helper (IL-22+ Th) cells and IL-22 critically control the pathogenesis of RA. Here we monitored circulating levels of different IL-22+ Th cell subsets and measured plasma levels of IL-22, IL-17, and interferon (IFN)-γ in 60 patients with active RA following 12-week combination methotrexate (MTX) and leflunomide (LEF) therapy (MTX+LEF) and 20 healthy individuals. We found the frequencies of circulating IFN-γ-IL-17-IL-22+ (Th22), IFN-γ-IL-17+ (total Th17), IFN-γ+IL-17-IL-22+ (IL-22+Th1) cells, and IFN-γ-IL-17+IL-22+ (IL-22+Th17) cells, as well as the plasma levels of IL-22, IL-17 and IFN-γ to be significantly reduced in RA patients that responded to treatment, but not in non-responders. Reductions in plasma IL-22 level significantly correlated with percentage of circulating Th22 cells and the decrease of plasma IL-22 level correlated with the reduction of DAS28 in responders. Our data suggests that circulating Th22 cells and plasma IL-22 level play a detrimental role in RA. The combination MTX+LEF therapy, by targeting Th22 cells and reducing IL-22 level, relieves the immune defects and ameliorates symptoms of RA. This study provides novel mechanistic understanding of the pathogenesis of RA, which may promote a design of better therapies for RA.
Collapse
Affiliation(s)
- Wei Zhong
- The First Hospital of Jilin University, Department of Rheumatology, Changchun, 130021, China
| | - Ling Zhao
- The First Hospital of Jilin University, Department of Rheumatology, Changchun, 130021, China
| | - Tao Liu
- The First Hospital of Jilin University, Department of Rheumatology, Changchun, 130021, China
| | - Zhenyu Jiang
- The First Hospital of Jilin University, Department of Rheumatology, Changchun, 130021, China
| |
Collapse
|
30
|
Sainz-de-la-Maza M, Molins B, Mesquida M, Llorenç V, Zarranz-Ventura J, Sala-Puigdollers A, Matas J, Adan A, Foster CS. Interleukin-22 serum levels are elevated in active scleritis. Acta Ophthalmol 2016; 94:e395-9. [PMID: 27009382 DOI: 10.1111/aos.13005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate serum cytokine profile from patients with active scleritis in a two-centre prospective case-control study. METHODS The serum of 20 active scleritis patients not treated with any local, periocular, or systemic immunomodulatory therapy (IMT) was analysed with multiplex assay to determine the levels of 11 cytokines interleukin (IL)-1β, IL-6, IL-2, IFN-γ, IL-10, IL-12p40, IL-13, IL-17A, IL-5, TNF-α, and TNF-β, and with ELISA to determine the levels of TGF-β1, IL-22, and IL-23. Twenty-five age-matched healthy volunteers were used as controls. In a subgroup of 13 patients with active disease, a second serum sample was obtained when the disease was inactive and levels of IL-22 were determined. Serum IL-22 levels from patients with active scleritis were correlated with type of scleritis (non-necrotizing and necrotizing), degree of inflammation (0-4+ :≤2+ and >2+), and associated systemic disease. RESULTS Serum levels of IL-22 were elevated in active scleritis patients compared to controls (6.41 ± 1.52 pg/ml versus 1.93 ± 0.39 pg/ml, p = 0.012) and significantly decreased after scleritis remission with the use of IMT (p = 0.005). There was no statistical association with scleritis type, degree of inflammation, or associated systemic disease. The serum levels of other cytokines were not significantly different from controls. CONCLUSION In our study cohort, IL-22 serum levels were significantly elevated in active scleritis patients compared to controls and decreased significantly after remission. Our results suggest that IL-22, a T helper (Th) 17- and Th22- derived cytokine, may play a critical role in the physiopathology of scleritis.
Collapse
Affiliation(s)
- Maite Sainz-de-la-Maza
- Institute Clinic of Ophthalmology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Blanca Molins
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Marina Mesquida
- Institute Clinic of Ophthalmology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Victor Llorenç
- Institute Clinic of Ophthalmology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Javier Zarranz-Ventura
- Institute Clinic of Ophthalmology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Medical Retina and Uveitis Service, Moorfields Eye Hospital, London, UK
| | - Anna Sala-Puigdollers
- Institute Clinic of Ophthalmology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Jessica Matas
- Institute Clinic of Ophthalmology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Alfredo Adan
- Institute Clinic of Ophthalmology, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institution (MERSI), Waltham, MA, USA
- Ocular Immunology and Uveitis Foundation (OIUF), Waltham, MA, USA
| |
Collapse
|
31
|
Shen E, Wang M, Xie H, Zou R, Lin Q, lai L, Li F, Liang Z, Xu Y, Zhou M. Existence of Th22 in children and evaluation of IL-22 + CD4 + T, Th17, and other T cell effector subsets from healthy children compared to adults. BMC Immunol 2016; 17:20. [PMID: 27338754 PMCID: PMC4918114 DOI: 10.1186/s12865-016-0158-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/14/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Children are prone to get infections, especially in the respiratory system and the gut mainly because their immune system is immature. T cells significantly contribute to the prevention of infections, and different helper T cell (Th) subsets play different anti-pathogen roles. Interleukin (IL)-22 producing by T-helper 22 cells (Th22) play an important role in host defense against Gram-negative bacterial organisms in gut and lung. T-helper 17 cells (Th17) protect against extracelluar bacteria and fungi especially at the epithelial surface. However, there is no report comparing IL-22 producing T cells and Th17 cells in healthy young children to adults. METHODS Flow cytometry (FCM) was used to observe whether Th22 subset existed in the peripheral blood of healthy young children. Meanwhile, we determined the frequencies of Th subsets including Th17, Th1 and Th2, cytotoxic T (Tc)1 subset, CD4+ and CD8+ memory T cells in the peripheral blood of both young children and adults. RESULTS In the present study, we demonstrated that Th22 subset existed in peripheral blood of children, with IL-22 mainly secreted by CD4 + CD45RO+ memory T cells. Moreover, we observed that IL-22 + CD4 + T cells and Th subsets including Th17, Th1, and Th2 frequencies of young children (1-6 years old) were significantly lower than adults. While the Th1 frequency from Group A (1-3 years old) was markedly lower than that from Group B (4-6 years old). No significant differences of Th17 or IL-22 + CD4 + T cells frequencies were observed between these two groups. In addition, Tc1 subset frequencies were also remarkably lower in young children than in adults. Furthermore, lower frequencies of CD45RO+ memory CD4+ and CD8+ T cells in young children than in adults, and significant correlation between CD45RO+ memory CD4 + T cells and IL-22 + CD4 + T cells, Th1, Th17 were observed. CONCLUSIONS Th22 subset exists in the peripheral blood of young children. Compared with adults, there are lower frequencies of IL-22 + CD4 + T cells, as well as Th1, Th17, Th2 and Tc1 subsets in the peripheral blood of young children.
Collapse
Affiliation(s)
- Erxia Shen
- />Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Science, Guangzhou Medical University, Guangzhou, 510182 China
- />Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| | - Mengjie Wang
- />Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Science, Guangzhou Medical University, Guangzhou, 510182 China
| | - Hairui Xie
- />Yuexiu District Children’s Hospital of Guangzhou, Guangzhou, 510115 China
| | - Ruqiong Zou
- />Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Science, Guangzhou Medical University, Guangzhou, 510182 China
| | - Qiwen Lin
- />Guangzhou Blood Center, Guangzhou, 510095 China
| | - Lili lai
- />Yuexiu District Children’s Hospital of Guangzhou, Guangzhou, 510115 China
| | - Fujun Li
- />Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Science, Guangzhou Medical University, Guangzhou, 510182 China
| | - Zhimei Liang
- />Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Science, Guangzhou Medical University, Guangzhou, 510182 China
| | - Yanran Xu
- />Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Science, Guangzhou Medical University, Guangzhou, 510182 China
| | - Maohua Zhou
- />Department of Laboratory Medicine, Guangdong General Hospital, Academy of Medical Sciences, Guangzhou, 510080 China
| |
Collapse
|
32
|
Ryba-Stanisławowska M, Werner P, Brandt A, Myśliwiec M, Myśliwska J. Th9 and Th22 immune response in young patients with type 1 diabetes. Immunol Res 2016; 64:730-5. [PMID: 26659093 DOI: 10.1007/s12026-015-8765-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Th17, Th22 and Th9 are recently discovered effector populations that may contribute to the pathogenesis of autoimmune and inflammatory diseases. The presented study aimed to investigate the link between Th22 and Th9 subsets in type 1 diabetes, as this disease involves different subsets of CD4+ T lymphocytes. The study groups consisted of 23 patients with type 1 diabetes and 11 healthy individuals. All subjects had CD4+IL-22 Th22 and CD4+IL-9 Th9 lymphocytes investigated by flow cytometry. In addition, the plasma concentrations of IL-22 as well as IL-9 were analyzed. Our study demonstrated that Th9 and Th22 cell counts as well as their plasma cytokines were upregulated in patients with type 1 and correlated with HbA1c and CRP values. Taking these all into account, one can conclude that Th22 and Th9 lymphocyte activities may contribute to chronic, low-level inflammation that is considered an integral part of type 1 diabetes.
Collapse
Affiliation(s)
| | - Paulina Werner
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Agnieszka Brandt
- Clinic of Pediatrics, Department of Diabetology and Endocrinology, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Clinic of Pediatrics, Department of Diabetology and Endocrinology, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| | - Jolanta Myśliwska
- Department of Immunology, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| |
Collapse
|
33
|
Pinto LG, Talbot J, Peres RS, Franca RF, Ferreira SH, Ryffel B, Aves-Filho JCF, Figueiredo F, Cunha TM, Cunha FQ. Joint production of IL-22 participates in the initial phase of antigen-induced arthritis through IL-1β production. Arthritis Res Ther 2015; 17:235. [PMID: 26330334 PMCID: PMC4556214 DOI: 10.1186/s13075-015-0759-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by neutrophil articular infiltration, joint pain and the progressive destruction of cartilage and bone. IL-22 is a key effector molecule that plays a critical role in autoimmune diseases. However, the function of IL-22 in the pathogenesis of RA remains controversial. In this study, we investigated the role of IL-22 in the early phase of antigen-induced arthritis (AIA) in mice. METHODS AIA was induced in C57BL/6, IL-22(-/-), ASC(-/-) and IL-1R1(-/-) immunized mice challenged intra-articularly with methylated bovine serum albumin (mBSA). Expression of IL-22 in synovial membranes was determined by RT-PCR. Articular hypernociception was evaluated using an electronic von Frey. Neutrophil recruitment and histopathological analyses were assessed in inflamed knee joint. Joint levels of inflammatory mediators and mBSA-specific IgG concentration in the serum were measured by ELISA. RESULTS The IL-22 mRNA expression and protein levels in synovial tissue were increased during the onset of AIA. In addition, pharmacological inhibition (anti-IL-22 antibody) and genetic deficiency (IL-22(-/-) mice) reduced articular pain and neutrophil migration in arthritic mice. Consistent with these findings, recombinant IL-22 joint administration promoted articular inflammation per se in WT mice, restoring joint nociception and neutrophil infiltration in IL-22(-/-) mice. Moreover, IL-22-deficient mice showed reduced synovitis (inflammatory cell influx) and lower joint IL-1β levels, whereas the production of IL-17, MCP-1/CCL2, and KC/CXCL1 and the humoral immune response were similar, compared with WT mice. Corroborating these results, the exogenous administration of IL-22 into the joints induced IL-1β production in WT mice and reestablished IL-1β production in IL-22(-/-) mice challenged with mBSA. Additionally, IL-1R1(-/-) mice showed attenuated inflammatory features induced by mBSA or IL-22 challenge. Articular nociception and neutrophil migration induced by IL-22 were also reduced in ASC(-/-) mice. CONCLUSIONS These results suggest that IL-22 plays a pro-inflammatory/pathogenic role in the onset of AIA through an ASC-dependent stimulation of IL-1β production.
Collapse
Affiliation(s)
- Larissa G Pinto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Jhimmy Talbot
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Raphael S Peres
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Rafael F Franca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Present Address: Aggeu Magalhaes Research Center, Oswaldo Cruz Foundation - FIOCRUZ, Avenida Profesor Moreaes Rego s/n, Recife, 50740-465, Brazil.
| | - Sérgio H Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Bernhard Ryffel
- Université d'Orléans and CNRS, UMR 7355 Molecular and Experimental Immunology and Neurogenetics, 3b rue de la Férollerie, 45071, Orléans, France.
| | - José Carlos F Aves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Florêncio Figueiredo
- Laboratory of Pathology, School of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasilia, 70910-900, Brazil.
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
34
|
Zhang Y, Li Y, Lv TT, Yin ZJ, Wang XB. Elevated circulating Th17 and follicular helper CD4(+) T cells in patients with rheumatoid arthritis. APMIS 2015; 123:659-66. [PMID: 25912557 DOI: 10.1111/apm.12399] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
It remains not fully elucidated the potential functions of Th17 cells and follicular helper T (Tfh) cells and secreting cytokines in the pathogenesis of rheumatoid arthritis (RA) and their association with disease activity. In this study, the frequencies of Th17 and Tfh cells were determined by flow cytometry, and the levels of interleukin (IL)-17, IL-21, and IL-22 were measured by ELISA in RA patients with different disease activities. The dynamic changes of cell subsets were also detected in response to disease-modify antirheumatic drugs (DMARDs) therapy. The percentages of CD3(+) CD4(+) IL-17A(+) (Th17) cells and CD3(+) CD4(+) CXCR5(+) ICOS(high) (Tfh) cells, as well as the concentrations of IL-17, IL-21, and IL-22 were significantly elevated in RA patients than those in healthy individuals. Furthermore, Tfh cells, IL-21, and IL-22 in the serum was positively correlated with the values of disease activity score. Concentrations of IL-21 and IL-22 in the serum were remarkably reduced following the DMARDs therapies. Our data suggested that Th17 cells, Tfh cells as well as the secreting cytokines may be involved in the pathogenesis of RA. The frequency of circulating Tfh cells and the productions of IL-21 and IL-22 were associated with the disease activity of RA patients, and might be potential therapeutic targets for treatment of RA.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Immunology and Rheumatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Li
- Department of Immunology and Rheumatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ting-Ting Lv
- Department of Immunology and Rheumatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhen-Jie Yin
- Department of Immunology and Rheumatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin-Bo Wang
- Department of Immunology and Rheumatology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
35
|
Lu T, Liu Y, Li P, Yu S, Huang X, Ma D, Ji C. Decreased circulating Th22 and Th17 cells in patients with aplastic anemia. Clin Chim Acta 2015; 450:90-6. [PMID: 26238188 DOI: 10.1016/j.cca.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/08/2015] [Accepted: 07/30/2015] [Indexed: 01/31/2023]
Abstract
BACKGROUND Aplastic anemia (AA) is an immune-mediated disorder and mainly related to active destruction of hematopoietic cells by effector T lymphocytes. T helper (Th) 22 cells characterized as a novel subset of CD4+ T cells participate in the pathogenesis of autoimmune and hematological diseases. However, the role of Th22 subset in AA remains unknown. METHODS 31 untreated AA patients and 30 healthy controls were included in this study. The percentages of Th22, Th17 and pure Th17 cells in peripheral blood were detected by flow cytometry. ELISA to measure interleukin (IL)-22 and IL-17A plasma levels and qRT-PCR for the mRNA levels of Th22 and Th17 related molecules were performed. RESULTS The proportions of Th22, pure Th17, Th17 cells and plasma levels of IL-22 were significantly lower in untreated AA patients than those in normal controls. A positive correlation was found between Th22 and pure Th17 cells in AA. Moreover, percentages of Th22 cells correlated positively with reticulocyte counts and percentages. In addition, STAT3/STAT5 mRNA expression ratio was elevated in AA patients. CONCLUSION Together, our results showed Th22 cells correlating with clinical characteristics of AA patients, indicating a possible role of Th22 immune response in the pathogenesis and therapeutic intervention of AA.
Collapse
Affiliation(s)
- Ting Lu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Yan Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Shuang Yu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Xiaoyang Huang
- Department of Paediatrics, Qilu Hospital, Shandong University, Jinan 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
36
|
Mellado M, Martínez-Muñoz L, Cascio G, Lucas P, Pablos JL, Rodríguez-Frade JM. T Cell Migration in Rheumatoid Arthritis. Front Immunol 2015; 6:384. [PMID: 26284069 PMCID: PMC4515597 DOI: 10.3389/fimmu.2015.00384] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies.
Collapse
Affiliation(s)
- Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Laura Martínez-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Graciela Cascio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Sanitaria Hospital , Madrid , Spain
| | - José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| |
Collapse
|
37
|
Roeleveld DM, Koenders MI. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine 2015; 74:101-7. [PMID: 25466295 DOI: 10.1016/j.cyto.2014.10.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023]
Abstract
Over the past few years, the importance of Interleukin (IL)-17 and T helper (Th)17 cells in the pathology of Rheumatoid Arthritis (RA) has become apparent. RA is a systemic autoimmune disease that affects up to 1% of the population worldwide. It is characterized by an inflamed, hyperplastic synovium with pannus formation, leading to bone and cartilage destruction in the joints. By the production of effector cytokines like IL-17 and IL-22, the T helper 17 subset protects the host against bacterial and fungal infections, but it can also promote the development of various autoimmune diseases like RA. Hence, the Th17 pathway recently became a very interesting target in RA treatment. Up to now, several therapies targeting the Th17 cells or its effector cytokines have been tested, or are currently under investigation. This review clarifies the role of Th17 cells and its cytokines in the pathogenesis of RA, and provides an overview of the clinical trials using immunotherapy to target this particular T helper subset or the two main effector cytokines by which the Th17 cells exert their function, IL-17 and IL-22.
Collapse
Affiliation(s)
- Debbie M Roeleveld
- Radboud University Medical Center, Experimental Rheumatology, Department of Rheumatology, Geert Grooteplein 26-28, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Marije I Koenders
- Radboud University Medical Center, Experimental Rheumatology, Department of Rheumatology, Geert Grooteplein 26-28, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
38
|
Paulissen SM, van Hamburg JP, Dankers W, Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine 2015; 74:43-53. [DOI: 10.1016/j.cyto.2015.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
|
39
|
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation and resultant progressive joint damage. It has become increasingly evident that cytokines play an important role in the pathogenesis of RA. Interleukin-22 (IL-22) is a member of the IL-10 cytokine family. Recent findings suggest that not only the expression of IL-22 is abnormal both in RA patients and in arthritis mice but also the aberrant IL-22 performs significantly in disease onset of RA. In this paper, we focus on the critical role of IL-22 in RA. Hopefully, the information obtained may lead to a better understanding of the pathogenesis and development of novel therapeutic strategies for this systemic autoimmune disease.
Collapse
Affiliation(s)
- Qiang Xie
- School of Pharmacy, Anhui Medical University , Hefei, Anhui , PR China
| | | | | |
Collapse
|
40
|
Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2014; 74:5-17. [PMID: 25458968 DOI: 10.1016/j.cyto.2014.09.011] [Citation(s) in RCA: 779] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
CD4(+) T helper (Th) cells are critical for proper immune cell homeostasis and host defense, but are also major contributors to pathology of autoimmune and inflammatory diseases. Since the discovery of the Th1/Th2 dichotomy, many additional Th subsets were discovered, each with a unique cytokine profile, functional properties, and presumed role in autoimmune tissue pathology. This includes Th1, Th2, Th17, Th22, Th9, and Treg cells which are characterized by specific cytokine profiles. Cytokines produced by these Th subsets play a critical role in immune cell differentiation, effector subset commitment, and in directing the effector response. Cytokines are often categorized into proinflammatory and anti-inflammatory cytokines and linked to Th subsets expressing them. This article reviews the different Th subsets in terms of cytokine profiles, how these cytokines influence and shape the immune response, and their relative roles in promoting pathology in autoimmune and inflammatory diseases. Furthermore, we will discuss whether Th cell pathogenicity can be defined solely based on their cytokine profiles and whether rigid definition of a Th cell subset by its cytokine profile is helpful.
Collapse
Affiliation(s)
- Itay Raphael
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Saisha Nalawade
- Department of Biology, University of Texas at San Antonio, TX 78249, United States
| | - Todd N Eagar
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, TX 77030, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, TX 78249, United States.
| |
Collapse
|
41
|
Immunopathogenesis of ocular Behçet's disease. J Immunol Res 2014; 2014:653539. [PMID: 25061613 PMCID: PMC4100451 DOI: 10.1155/2014/653539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/10/2014] [Indexed: 12/12/2022] Open
Abstract
Behçet's disease (BD) is a chronic recurrent systemic inflammatory disorder of unknown etiology characterized by oral and genital ulcerations, skin lesions, and uveitis. The ocular involvement of BD, or Behçet's uveitis (BU), is characterized by panuveitis or posterior uveitis with occlusive retinal vasculitis and tends to be more recurrent and sight threatening than other endogenous autoimmune uveitides, despite aggressive immunosuppression. Although pathogenesis of BD is unclear, researches have revealed that immunological aberrations may be the cornerstone of BD development. General hypothesis of BD pathogenesis is that inflammatory response is initiated by infectious agents or autoantigens in patients with predisposing genetic factors and perpetuated by both innate and acquired immunity. In addition, a network of immune mediators plays a substantial role in the inflammatory cascade. Recently, we found that the immunopathogenesis of BU is distinct from other autoimmune uveitides regarding intraocular effector cell profiles, maturation markers of dendritic cells, and the cytokine/chemokine environment. In addition, accumulating evidence indicates the involvement of Th17 cells in BD and BU. Recent studies on genetics and biologics therapies in refractory BU also support the immunological association with the pathogenesis of BU. In this review, we provide an overview of novel findings regarding the immunopathogenesis of BU.
Collapse
|
42
|
Zhao L, Chou Y, Jiang Y, Jiang Z, Chu CQ. Analysis of IL-17 production by flow cytometry and ELISPOT assays. Methods Mol Biol 2014; 1172:243-56. [PMID: 24908311 DOI: 10.1007/978-1-4939-0928-5_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interleukin (IL)-17 represents a family of cytokines with six members, namely IL-17A, B, C, D, E, and F. IL-17A and IL-17F are best studied proinflammatory cytokines. CD4(+) T helper cells producing IL-17A have been identified as a distinct T helper subset, Th17 cells. IL-17 and Th17 cells are important mediators in tissue inflammation in immune-mediated inflammatory diseases. IL-17 is also produced by other immune cells and plays an important role in host defense against microbial infection. Cell-based assays are sensitive and quantitative, and enable identification of cellular sources of IL-17 production. This chapter describes usage of flow cytometry and ELISPOT assays to quantify IL-17A-producing cells in disease and in vitro experiments to study T cell function.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Rheumatology, The First Hospital, Jinlin University Normal Bethune Medical College, Changchun, China
| | | | | | | | | |
Collapse
|