1
|
Saravanan L, Mahale A, Gota V, Khandelia P, Kulkarni OP. Necrostatin-1 attenuates oral squamous cell carcinoma by modulating tumour immune response in mice. Fundam Clin Pharmacol 2025; 39:e70008. [PMID: 40222051 DOI: 10.1111/fcp.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Necroptosis has been shown to play an important role in various pathologies, including pancreatic cancer (PDAC). However, its role in the progression of oral cancer (OSCC) remains unclear. OBJECTIVES To determine the expression of key necroptosis pathway markers in an OSCC mouse model and evaluate the therapeutic effect of a necroptosis inhibitor on the progression of OSCC. METHODS AND RESULTS 4-NQO-induced OSCC in mice resembles very closely to human OSCC. The expression of RIPK-1, RIPK-3, MLKL and their respective phosphorylation was increased in OSCC tissues of cancer-bearing mice. In the analysis of the necroptosis pathway in human OSCC with the TCGA database, we found similar overexpression of RIPK-1 in human cancer, which correlated with the severity of cancer in terms of different cancer grades and stages. Pharmacological blockade of necroptosis with necrostatin-1 (NEC-1) reduced the progression and development of OSCC, characterized by reduced number and severity of tumour lesions, improved histology with reduced hyperplasia, dysplasia and invasive carcinoma. Immune profiling of blood, spleen and tumour tissues demonstrated suppressed expression of MDSCs (CD11b+Gr-1+) and M2-macrophages (CD11b+F4/80+CD206+), while M1-macrophages (CD11b+F4/80+MHCII+) were elevated in the treatment group. The ratio of M2/M1 was reduced in the treated group, suggesting the promotion of anti-tumour immune response. Expression of Arg-1, YM1/2, IL-10 and TGF-β was reduced in tumour tissues in the treated group. CONCLUSION In summary, blocking the necroptosis pathway alters the tumour microenvironment (TME) and inhibits the progression of OSCC. Targeting necroptosis could be an effective therapy for treating OSCC in a clinical setup.
Collapse
Affiliation(s)
- Lavanya Saravanan
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ashutosh Mahale
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Vikram Gota
- Advance Centre for Treatment Research & Education in Cancer, Tata Memorial Centre (ACTREC), Navi Mumbai, Maharashtra, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Onkar Prakash Kulkarni
- Metabolic and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| |
Collapse
|
2
|
Kaufman HL, Silk AW. Using oncolytic viruses to induce hyperacute rejection against cancer. Nat Rev Clin Oncol 2025; 22:309-310. [PMID: 40011714 DOI: 10.1038/s41571-025-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Affiliation(s)
- Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| | - Ann W Silk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
3
|
Hirose T, Hotta K, Otsuka R, Seino KI. Mechanism and regulation of the complement activity in kidney xenotransplantation. Transplant Rev (Orlando) 2025; 39:100931. [PMID: 40233672 DOI: 10.1016/j.trre.2025.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Xenotransplantation is emerging as one of several potential solutions for addressing organ donor shortages, with significant progress bringing it closer to clinical application. However, challenges remain, particularly concerning complement system dysregulation caused by species differences, as well as xenoantigens and coagulopathy. Complement regulatory proteins expressed on endothelial cells of donor xenografts are less compatible with complement components in recipients. These difficulties contribute to hyperacute rejection, characterized by antibody-mediated complement activation that destroys the graft within 24 h. Moreover, because molecules are incompatible across different species, ischemia-reperfusion injury or infection can easily elicit complement activity via all three pathways, resulting in xenograft loss via complement-mediated vascular injury. Complement activity also stimulate innate and adaptive immune cells. To address this issue, genetic modifications in donor pigs and the development of novel medicines have been tested in preclinical models with promising results. Pigs modified to express human complement-regulating molecules such as CD46, CD55, and CD59 have shown longer kidney xenograft survivals over years in preclinical models with nonhuman primates, paving the way for clinical trials. Anti-complement component agents such as C1 esterase and C5 inhibitors have also been shown to increase xenograft survivals. This review examines the role of the complement system in kidney xenotransplantation, emphasizing new research and clinical trial advancements.
Collapse
Affiliation(s)
- Takayuki Hirose
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan.
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Ryo Otsuka
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Yim WY, Li C, Tong F, Hou J, Chen Y, Liu Z, Wang Z, Geng B, Wang Y, Dong N. Circadian immune system in solid organ transplantation: a review article. Front Immunol 2025; 16:1556057. [PMID: 40098968 PMCID: PMC11911371 DOI: 10.3389/fimmu.2025.1556057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
The innate and adaptive immune systems are intricately regulated by the circadian clock machinery. Recent clinical investigations have shed light on the influence of timing in organ procurement and transplantation on graft survival. In this review, we explore various mechanisms of immunological functions associated with the steps involved in organ transplantation, spanning from surgical harvesting to reperfusion and linking to the circadian rhythm. A deeper understanding of these processes has the potential to extend the principles of chrono-immunotherapy to the realm of organ transplantation, with the aim of enhancing graft durability and improving patient outcomes. This review concludes with some perspectives on future directions in this exciting and still evolving field of research.
Collapse
Affiliation(s)
- Wai Yen Yim
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghao Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Hou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqi Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingchuan Geng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Maremonti F, Tonnus W, Gavali S, Bornstein S, Shah A, Giacca M, Linkermann A. Ferroptosis-based advanced therapies as treatment approaches for metabolic and cardiovascular diseases. Cell Death Differ 2024; 31:1104-1112. [PMID: 39068204 PMCID: PMC11369293 DOI: 10.1038/s41418-024-01350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Ferroptosis has attracted attention throughout the last decade because of its tremendous clinical importance. Here, we review the rapidly growing body of literature on how inhibition of ferroptosis may be harnessed for the treatment of common diseases, and we focus on metabolic and cardiovascular unmet medical needs. We introduce four classes of preclinically established ferroptosis inhibitors (ferrostatins) such as iron chelators, radical trapping agents that function in the cytoplasmic compartment, lipophilic radical trapping antioxidants and ninjurin-1 (NINJ1) specific monoclonal antibodies. In contrast to ferroptosis inducers that cause serious untoward effects such as acute kidney tubular necrosis, the side effect profile of ferrostatins appears to be limited. We also consider ferroptosis as a potential side effect itself when several advanced therapies harnessing small-interfering RNA (siRNA)-based treatment approaches are tested. Importantly, clinical trial design is impeded by the lack of an appropriate biomarker for ferroptosis detection in serum samples or tissue biopsies. However, we discuss favorable clinical scenarios suited for the design of anti-ferroptosis clinical trials to test such first-in-class compounds. We conclude that targeting ferroptosis exhibits outstanding treatment options for metabolic and cardiovascular diseases, but we have only begun to translate this knowledge into clinically relevant applications.
Collapse
Affiliation(s)
- Francesca Maremonti
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
| | - Ajay Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Mauro Giacca
- King's College London British Heart Foundation Centre, School of Cardiovascular & Metabolic Medicine and Sciences, London, UK
| | - Andreas Linkermann
- Division of Nephrology, Medical Clinic III, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany.
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Ye Y, Maroney KJ, Wiener HW, Mamaeva OA, Junkins AD, Burkholder GA, Sudenga SL, Khushman M, Al Diffalha S, Bansal A, Shrestha S. RNA-seq analysis identifies transcriptomic profiles associated with anal cancer recurrence among people living with HIV. Ann Med 2023; 55:2199366. [PMID: 37177979 PMCID: PMC10184583 DOI: 10.1080/07853890.2023.2199366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/17/2022] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Chemoradiation therapy (CRT) is the standard of care for squamous cell carcinoma of the anus (SCCA), the most common type of anal cancer. However, approximately one fourth of patients still relapse after CRT. METHODS We used RNA-sequencing technology to characterize coding and non-coding transcripts in tumor tissues from CRT-treated SCCA patients and compare them between 9 non-recurrent and 3 recurrent cases. RNA was extracted from FFPE tissues. Library preparations for RNA-sequencing were created using SMARTer Stranded Total RNA-Seq Kit. All libraries were pooled and sequenced on a NovaSeq 6000. Function and pathway enrichment analysis was performed with Metascape and enrichment of gene ontology (GO) was performed with Gene Set Enrichment Analysis (GSEA). RESULTS There were 449 differentially expressed genes (DEGs) observed (390 mRNA, 12 miRNA, 17 lincRNA and 18 snRNA) between the two groups. We identified a core of upregulated genes (IL4, CD40LG, ICAM2, HLA-I (HLA-A, HLA-C) and HLA-II (HLA-DQA1, HLA-DRB5) in the non-recurrent SCCA tissue enriching to the gene ontology term 'allograft rejection', which suggests a CD4+ T cell driven immune response. Conversely, in the recurrent tissues, keratin (KRT1, 10, 12, 20) and hedgehog signaling pathway (PTCH2) genes involved in 'Epidermis Development,', were significantly upregulated. We identified miR-4316, that inhibit tumor proliferation and migration by repressing vascular endothelial growth factors, as being upregulated in non-recurrent SCCA. On the contrary, lncRNA-SOX21-AS1, implicated in the progression of many other cancers, was also found to be more common in our recurrent compared to non-recurrent SCCA. Our study identified key host factors which may drive the recurrence of SCCA and warrants further studies to understand the mechanism and evaluate their potential use in personalized treatment.Key MessageOur study used RNA sequencing (RNA-seq) to identify pivotal factors in coding and non-coding transcripts which differentiate between patients at risk for recurrent anal cancer after treatment. There were 449 differentially expressed genes (390 mRNA, 12 miRNA, 17 lincRNA and 18 snRNA) between 9 non-recurrent and 3 recurrent squamous cell carcinoma of anus (SCCA) tissues. The enrichment of genes related to allograft rejection was observed in the non-recurrent SCCA tissues, while the enrichment of genes related to epidermis development was positively linked with recurrent SCCA tissues.
Collapse
Affiliation(s)
- Yuanfan Ye
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Kevin J. Maroney
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Howard W. Wiener
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Olga A. Mamaeva
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Anna D. Junkins
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Greer A. Burkholder
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Staci L. Sudenga
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohd Khushman
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameer Al Diffalha
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anju Bansal
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
8
|
Pan Y, Zhang Y, Shi X, Li D, Xu X, Xiao B, Piao Y, Xiang J, Shao S, Ho FCY, Shen Y, Zhang AP, Tang J. Electrical stimulation induces anti-tumor immunomodulation via a flexible microneedle-array-integrated interdigital electrode. Sci Bull (Beijing) 2023; 68:2779-2792. [PMID: 37863773 DOI: 10.1016/j.scib.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Immunotherapy has revolutionized cancer therapy, using chemical or biological agents to reinvigorate the immune system. However, most of these agents have poor tumor penetration and inevitable side effects that complicate therapeutic outcomes. Electrical stimulation (ES) is a promising alternative therapy against cancers that does not involve chemical or biological agents but is limited in the fabrication and operation of complex micrometer-scale ES devices. Here, we present an optically microprinted flexible interdigital electrode with a gold-plated polymer microneedle array to generate alternating electric fields for cancer treatment. A flexible microneedle-array-integrated interdigital electrode (FMIE) was fabricated by combining optical 3D microprinting and electroless plating processes. FMIE-mediated ES of cancer cells induced necrotic cell death through mitochondrial Ca2+ overload and increased intracellular reactive oxygen species (ROS) production. This led to the release of damage-associated molecular patterns that activated the immune response and potentiated immunogenic cell death (ICD). FMIE-based ES has an excellent safety profile and systemic anti-tumor effects, inhibiting the growth of primary and distant tumors as well as melanoma lung metastasis. FMIE-based ES-driven cancer immunomodulation provides a new pathway for drug-free cancer therapy.
Collapse
Affiliation(s)
- Yixuan Pan
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yangxi Zhang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xueying Shi
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dongdong Li
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaodan Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Bing Xiao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Frederic Chun-Yip Ho
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - A Ping Zhang
- Photonics Research Institute, Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
| |
Collapse
|
9
|
Wu Y, Li C, Khan AA, Chen K, Su R, Xu S, Sun Y, Gao F, Wang K, Wang X, Lian Z, Wang S, Yu M, Hu X, Yang F, Zheng S, Qiu N, Liu Z, Xu X. Insulin-induced gene 2 protects against hepatic ischemia-reperfusion injury via metabolic remodeling. J Transl Med 2023; 21:739. [PMID: 37858181 PMCID: PMC10585752 DOI: 10.1186/s12967-023-04564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion (IR) injury is the primary reason for complications following hepatectomy and liver transplantation (LT). Insulin-induced gene 2 (Insig2) is one of several proteins that anchor the reticulum in the cytoplasm and is essential for metabolism and inflammatory responses. However, its function in IR injury remains ambiguous. METHODS Insig2 global knock-out (KO) mice and mice with adeno-associated-virus8 (AAV8)-delivered Insig2 hepatocyte-specific overexpression were subjected to a 70% hepatic IR model. Liver injury was assessed by monitoring hepatic histology, inflammatory responses, and apoptosis. Hypoxia/reoxygenation stimulation (H/R) of primary hepatocytes and hypoxia model induced by cobalt chloride (CoCl2) were used for in vitro experiments. Multi-omics analysis of transcriptomics, proteomics, and metabolomics was used to investigate the molecular mechanisms underlying Insig2. RESULTS Hepatic Insig2 expression was significantly reduced in clinical samples undergoing LT and the mouse IR model. Our findings showed that Insig2 depletion significantly aggravated IR-induced hepatic inflammation, cell death and injury, whereas Insig2 overexpression caused the opposite phenotypes. The results of in vitro H/R experiments were consistent with those in vivo. Mechanistically, multi-omics analysis revealed that Insig2 is associated with increased antioxidant pentose phosphate pathway (PPP) activity. The inhibition of glucose-6-phosphate-dehydrogenase (G6PD), a rate-limiting enzyme of PPP, rescued the protective effect of Insig2 overexpression, exacerbating liver injury. Finally, our findings indicated that mouse IR injury could be attenuated by developing a nanoparticle delivery system that enables liver-targeted delivery of substrate of PPP (glucose 6-phosphate). CONCLUSIONS Insig2 has a protective function in liver IR by upregulating the PPP activity and remodeling glucose metabolism. The supplementary glucose 6-phosphate (G6P) salt may serve as a viable therapeutic target for alleviating hepatic IR.
Collapse
Affiliation(s)
- Yichao Wu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Abid Ali Khan
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kangchen Chen
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yiyang Sun
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaodong Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shuo Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Mengyuan Yu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xin Hu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Fan Yang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Nasha Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Cell Replacement Therapy for Type 1 Diabetes Patients: Potential Mechanisms Leading to Stem-Cell-Derived Pancreatic β-Cell Loss upon Transplant. Cells 2023; 12:cells12050698. [PMID: 36899834 PMCID: PMC10000642 DOI: 10.3390/cells12050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cell replacement therapy using stem-cell-derived insulin-producing β-like cells (sBCs) has been proposed as a practical cure for patients with type one diabetes (T1D). sBCs can correct diabetes in preclinical animal models, demonstrating the promise of this stem cell-based approach. However, in vivo studies have demonstrated that most sBCs, similarly to cadaveric human islets, are lost upon transplantation due to ischemia and other unknown mechanisms. Hence, there is a critical knowledge gap in the current field concerning the fate of sBCs upon engraftment. Here we review, discuss effects, and propose additional potential mechanisms that could contribute toward β-cell loss in vivo. We summarize and highlight some of the literature on phenotypic loss in β-cells under both steady, stressed, and diseased diabetic conditions. Specifically, we focus on β-cell death, dedifferentiation into progenitors, trans-differentiation into other hormone-expressing cells, and/or interconversion into less functional β-cell subtypes as potential mechanisms. While current cell replacement therapy efforts employing sBCs carry great promise as an abundant cell source, addressing the somewhat neglected aspect of β-cell loss in vivo will further accelerate sBC transplantation as a promising therapeutic modality that could significantly enhance the life quality of T1D patients.
Collapse
|
11
|
Abstract
ABSTRACT Sepsis and trauma remain the leading causes of morbidity and mortality. Our understanding of the molecular pathogenesis in the development of multiple organ dysfunction in sepsis and trauma has evolved as more focus is on secondary injury from innate immunity, inflammation, and the potential role of endogenous danger molecules. Studies of the past several decades have generated evidence for extracellular RNAs (exRNAs) as biologically active mediators in health and disease. Here, we review studies on plasma exRNA profiling in mice and humans with sepsis and trauma, the role and mode of action by exRNAs, such as ex-micro(mi)RNAs, in host innate immune response, and their potential implications in various organ injury during sepsis and trauma.
Collapse
Affiliation(s)
- Williams Brittney
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rosemary Kozar
- Shock Trauma Center and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chao Wei
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Eichenberger EM, Troy J, Ruffin F, Dagher M, Thaden JT, Ford ML, Fowler VG. Gram-negative bacteremia in solid organ transplant recipients: Clinical characteristics and outcomes as compared to immunocompetent non-transplant recipients. Transpl Infect Dis 2022; 24:e13969. [PMID: 36411527 PMCID: PMC9780155 DOI: 10.1111/tid.13969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Outcomes from Gram-negative bacteremia (GNB) in solid organ transplant (SOT) recipients are poorly understood. METHODS This is a single center prospective cohort study comparing the clinical characteristics and outcomes of SOT recipients with GNB to immunocompetent non-SOT patients with GNB between 1/1/2002 through 12/31/2018. Outcomes of interest included incidence of septic shock, respiratory failure, and time to death. A multivariable logistic regression model was used to determine factors associated with incidence of septic shock and respiratory failure. Time to death was evaluated using Cox proportional hazard models. RESULTS A total of 297 SOT and 1245 immunocompetent non-SOT patients were included. Incidence of septic shock did not significantly differ between the groups (SOT 25.3% vs. non-SOT 24.6%, p = .8225). Overall survival did not significantly differ by transplant status (30-day survival: SOT 76%, 95% confidence interval [CI] 70, 92, non-SOT 74%, 95% CI 71, 77: log rank: p = .76). SOT recipients taking three immunosuppressive medications had significantly lower odds of developing septic shock or respiratory failure requiring intubation and mechanical ventilation than those taking ≤1 agent (shock: adjusted odds ratio [aOR] 0.29, 95% CI 0.09, 0.90, p = .0316; respiratory failure: aOR 0.14, 95% CI: 0.04, 0.49, p = .0020). CONCLUSIONS SOT recipients with GNB do not experience higher rates of septic shock, respiratory failure, or mortality than immnon-SOT recipients with GNB. Among SOT recipients, a greater number of immunosuppressive medications may be associated with improved outcomes during GNB. Future studies are needed to understand the potential relationship between levels of immunosuppression and clinical outcome in SOT recipients with GNB.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center
- Department of Medicine, Division of Infectious Disease, Emory University School of Medicine
| | - Jesse Troy
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine
| | - Felicia Ruffin
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center
| | - Michael Dagher
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center
| | - Mandy L Ford
- Department of Surgery, Division of Transplant, Emory University School of Medicine
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center
| |
Collapse
|
13
|
Cheng X, Wei Y, Jiang X, Wang C, Liu M, Yan J, Zhang L, Zhou Y. Insight into the Prospects for Tumor Therapy Based on Photodynamic Immunotherapy. Pharmaceuticals (Basel) 2022; 15:1359. [PMID: 36355531 PMCID: PMC9693017 DOI: 10.3390/ph15111359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2024] Open
Abstract
Malignancy is one of the common diseases with high mortality worldwide and the most important obstacle to improving the overall life expectancy of the population in the 21st century. Currently, single or combined treatments, including surgery, chemotherapy, and radiotherapy, are still the mainstream regimens for tumor treatment, but they all present significant side effects on normal tissues and organs, such as organ hypofunction, energy metabolism disorders, and various concurrent diseases. Based on this, theranostic measures for the highly selective killing of tumor cells have always been a hot area in cancer-related fields, among which photodynamic therapy (PDT) is expected to be an ideal candidate for practical clinical application due to its precise targeting and excellent safety performance, so-called PDT refers to a therapeutic method mainly composed of photosensitizers (PSs), laser light, and reactive oxygen species (ROS). Photoimmunotherapy (PIT), a combination of PDT and immunotherapy, can induce systemic antitumor immune responses and inhibit continuing growth and distant metastasis of residual tumor cells, demonstrating a promising application prospect. This article reviews the types of immune responses that occur in the host after PDT treatment, including innate and adaptive immunity. To further help PIT-related drugs improve their pharmacokinetic properties and bioavailability, we highlight the potential improvement of photodynamic immunotherapy from three aspects: immunostimulatory agents, tumor-associated antigens (TAAs) as well as different immune cells. Finally, we focus on recent advances in various strategies and shed light on their corresponding mechanisms of immune activation and possible clinical applications such as cancer vaccines. Having discovered the inherent potential of PDT and the mechanisms that PDT triggers host immune responses, a variety of immunotherapeutic strategies have been investigated in parallel with approaches to improve PDT efficiency. However, it remains to be further elucidated under what conditions the immune effect induced by PDT can achieve tumor immunosuppression and to what extent PDT-induced antitumor immunity will lead to complete tumor rejection. Currently, PIT presents several outstanding intractable challenges, such as the aggregation ability of PSs locally in tumors, deep tissue penetration ability of laser light, immune escape, and biological toxicity, and it is hoped that these issues raised will help to point out the direction of preclinical research on PIT and accelerate its transition to clinical practice.
Collapse
Affiliation(s)
- Xiaoxia Cheng
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yiqu Wei
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Xiaomei Jiang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Chunli Wang
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Mengyu Liu
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Jiaxin Yan
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lei Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yaqi Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Pathology Department, Jiaozuo Second People’s Hospital, Jiaozuo 454001, China
| |
Collapse
|
14
|
Franchon Marques Tejada N, Ziroldo Lopes JV, Duarte Gonçalves LE, Mamede Costa Andrade da Conceição I, Franco GR, Ghirotto B, Câmara NOS. AIM2 as a putative target in acute kidney graft rejection. Front Immunol 2022; 13:839359. [PMID: 36248890 PMCID: PMC9561248 DOI: 10.3389/fimmu.2022.839359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acute rejection (AR) is a process triggered via the recognition of grafted organ-derived antigens by the immune system, which could present as a life-threatening condition. In the context of a kidney transplant, despite improvement with immunosuppressive therapies, AR maintains a significant incidence of 10%, and currently available drugs generally act in similar and canonical pathways of lymphocyte activation. This prompted the research for different approaches to identify potential novel targets that could improve therapeutic interventions. Here, we conducted a transcriptome analysis comparing groups of acute rejection (including T cell-mediated rejection and antibody-mediated rejection) to stable grafts that included differentially expressed genes, transcription factor and kinase enrichment, and Gene Set Enrichment Analysis. These analyses revealed inflammasome enhancement in rejected grafts and AIM2 as a potential component linked to acute rejection, presenting a positive correlation to T-cell activation and a negative correlation to oxidative phosphorylation metabolism. Also, the AIM2 expression showed a global accuracy in discerning acute rejection grafts (area under the curve (AUC) = 0.755 and 0.894, p < 0.0001), and meta-analysis comprising different studies indicated a considerable enhancement of AIM2 in rejection (standardized mean difference (SMD) = 1.45, [CI 95%, 1.18 to 1.71]), especially for T cell-mediated rejection (TCMR) (SMD = 2.01, [CI 95%, 1.58 to 2.45]). These findings could guide future studies of AIM2 as either an adjuvant target for immunosuppression or a potential biomarker for acute rejection and graft survival.
Collapse
Affiliation(s)
- Nathália Franchon Marques Tejada
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - João Vitor Ziroldo Lopes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Duarte Gonçalves
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Izabela Mamede Costa Andrade da Conceição
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Glória Regina Franco
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Ghirotto
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Niels Olsen Saraiva Câmara, ;
| |
Collapse
|
15
|
Chen F, Zou L, Williams B, Chao W. Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxid Redox Signal 2021; 35:1324-1339. [PMID: 33588628 PMCID: PMC8817700 DOI: 10.1089/ars.2021.0005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Sepsis is a critical clinical syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. Despite decades of intensive research, sepsis remains a leading cause of in-hospital mortality with few specific treatments. Recent Advances: Toll-like receptors (TLRs) are a part of the innate immune system and play an important role in host defense against invading pathogens such as bacteria, virus, and fungi. Using a combination of genetically modified animal models and pharmacological agents, numerous preclinical studies during the past two decades have demonstrated that dysregulated TLR signaling may contribute to sepsis pathogenesis. However, many clinical trials targeting inflammation and innate immunity such as TLR4 have yielded mixed results. Critical Issues: Here we review various TLRs and the specific molecules these TLRs sense-both the pathogen-associated and host-derived stress molecules, and their converging signaling pathways. We critically analyze preclinical investigations into the role of TLRs in animal sepsis, the complexity of targeting TLRs for sepsis intervention, and the disappointing clinical trials of the TLR4 antagonist eritoran. Future Directions: Future sepsis treatments will depend on better understanding the complex biological mechanisms of sepsis pathogenesis, the high heterogeneity of septic humans as defined by clinical presentations and unique immunological biomarkers, and improved stratifications for targeted interventions.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brittney Williams
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Bai K, Zhao T, Li Y, Li X, Zhang Z, Du Z, Wang Z, Xu Y, Sun B, Bai X. Integrating Genetic and Transcriptomic Data to Reveal Pathogenesis and Prognostic Markers of Pancreatic Adenocarcinoma. Front Genet 2021; 12:747270. [PMID: 34567094 PMCID: PMC8458879 DOI: 10.3389/fgene.2021.747270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies and mortality for PAAD have remained increasing under the conditions of substantial improvements in mortality for other major cancers. Although multiple of studies exists on PAAD, few studies have dissected the oncogenic mechanisms of PAAD based on genomic variation. In this study, we integrated somatic mutation data and gene expression profiles obtained by high-throughput sequencing to characterize the pathogenesis of PAAD. The mutation profile containing 182 samples with 25,470 somatic mutations was obtained from The Cancer Genome Atlas (TCGA). The mutation landscape was generated and somatic mutations in PAAD were found to have preference for mutation location. The combination of mutation matrix and gene expression profiles identified 31 driver genes that were closely associated with tumor cell invasion and apoptosis. Co-expression networks were constructed based on 461 genes significantly associated with driver genes and the hub gene FAM133A in the network was identified to be associated with tumor metastasis. Further, the cascade relationship of somatic mutation-Long non-coding RNA (lncRNA)-microRNA (miRNA) was constructed to reveal a new mechanism for the involvement of mutations in post-transcriptional regulation. We have also identified prognostic markers that are significantly associated with overall survival (OS) of PAAD patients and constructed a risk score model to identify patients’ survival risk. In summary, our study revealed the pathogenic mechanisms and prognostic markers of PAAD providing theoretical support for the development of precision medicine.
Collapse
Affiliation(s)
- Kaisong Bai
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tong Zhao
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Yilong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China.,Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinjian Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zhantian Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zuchao Du
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zimin Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yan Xu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China.,Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuewei Bai
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
17
|
Praetorius H. The bacteria and the host: a story of purinergic signaling in urinary tract infections. Am J Physiol Cell Physiol 2021; 321:C134-C146. [PMID: 33979212 DOI: 10.1152/ajpcell.00054.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The local environment forces a selection of bacteria that might invade the urinary tract, allowing only the most virulent to access the kidney. Quite similar to the diet in setting the stage for the gut microbiome, renal function determines the conditions for bacteria-host interaction in the urinary tract. In the kidney, the term local environment or microenvironment is completely justified because the environment literally changes within a few micrometers. The precise composition of the urine is a function of the epithelium lining the microdomain, and the microenvironment in the kidney shows more variation in the content of nutrients, ion composition, osmolality, and pH than any other site of bacteria-host interaction. This review will cover some of the aspects of bacterial-host interaction in this unique setting and how uropathogenic bacteria can alter the condition for bacteria-host interaction. There will be a particular focus on the recent findings regarding how bacteria specifically trigger host paracrine signaling, via release of extracellular ATP and activation of P2 purinergic receptors. These finding will be discussed from the perspective of severe urinary tract infections, including pyelonephritis and urosepsis.
Collapse
|
18
|
Ponticelli C, Campise MR. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int 2021; 100:536-545. [PMID: 33932457 DOI: 10.1016/j.kint.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Several factors, such as donor brain death, ischemia-reperfusion injury, rejection, infection, and chronic allograft dysfunction, may induce an inflammatory state in kidney transplantation. Furthermore, inflammatory cells, cytokines, growth factors, complement and coagulation cascade create an unbalanced interaction with innate and adaptive immunity, which are both heavily involved in atherogenesis. The crosstalk between inflammation and thrombosis may lead to a prothrombotic state and impaired fibrinolysis in kidney transplant recipients increasing the risk of cardiovascular disease. Inflammation is also associated with elevated levels of fibroblast growth factor 23 and low levels of Klotho, which contribute to major adverse cardiovascular events. Hyperuricemia, glucose intolerance, arterial hypertension, dyslipidemia, and physical inactivity may create a condition called metaflammation that concurs in atherogenesis. Another major consequence of the inflammatory state is the development of chronic hypoxia that through the mediation of interleukins 1 and 6, angiotensin II, and transforming growth factor beta can result in excessive accumulation of extracellular matrix, which can disrupt and replace functional parenchyma, leading to interstitial fibrosis and chronic allograft dysfunction. Lifestyle and regular physical activity may reduce inflammation. Several drugs have been proposed to control the graft inflammatory state, including low-dose aspirin, statins, renin-angiotensin inhibitors, xanthine-oxidase inhibitors, vitamin D supplements, and interleukin-6 blockade. However, no prospective controlled trial with these measures has been conducted in kidney transplantation.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Ospedale Maggiore Policlinico, Milano, Italy (retired).
| | - Maria Rosaria Campise
- Division of Nephrology and Dialysis, Ca' Granda Foundation, Scientific Institute Ospedale Maggiore Policlinico di Milano, Milano, Italy
| |
Collapse
|
19
|
Liu C, Min L, Zhou Y, Luo Y, Tang F, Lu M, Duan H, Zhang W, Yu X, Tu C. Long-term results of uncemented allograft prosthesis composite reconstruction for the tumor in proximal femur: a minimum follow-up of sixty-five months. BMC Musculoskelet Disord 2021; 22:128. [PMID: 33522918 PMCID: PMC7849157 DOI: 10.1186/s12891-021-03991-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Uncemented allograft prosthesis composite (APC) has been applied for tumorous bone defect reconstruction in the proximal femur. However, the long-term results are rarely reported. This study aimed to evaluate long-term outcomes of uncemented APC. METHODS Eighteen patients who received uncemented APC reconstruction in the proximal femur after tumor resections were retrospectively reviewed. RESULTS The average resection length was 110 mm (80-154) and the average follow-up was 106.7 months (65-141). Bone union achieved in all patients with an average duration of 7.6 months (5-10). The average HHS, MSTS score and gluteus medius strength at one-year follow-up were 88.0 (80-94), 25.2 (22-28) and 4 (3-5), respectively. While at the last follow-up, the HHS, MSTS score and gluteus medius strength were 83.0 (48-100), 24.0 (10-30) and 4 (2-5), respectively. Five intraoperative fractures were fixed with cerclage wires. Two postoperative periprosthetic and prosthetic fractures received a revision. Three local recurrent patients received a secondary surgery. One of these three lung metastatic patients underwent lung metastatic tumor resection. Another two patients were diagnosed with both bone and lung metastases, only one of them underwent amputation. Two greater trochanteric fractures received no treatment. There were10 severe, 3 moderate and 5 mild allograft resorptions without treatment. CONCLUSION Uncemented APC is a reliable reconstruction for neoplastic bone defect of the proximal femur, especially for the young patient who expected long-life expectancy and good function. Though allograft resorption and trochanteric fracture are the common complications, they seem no effect on the function.
Collapse
Affiliation(s)
- Cai Liu
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Li Min
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Yong Zhou
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Yi Luo
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Fan Tang
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Minxun Lu
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Hong Duan
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Wenli Zhang
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Xinzhu Yu
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China
| | - Chongqi Tu
- Department of Orthopedic Surgery, West China Hospital of Sichuan University, Guoxue Road 37#, Chengdu, 610041, China.
| |
Collapse
|
20
|
Wu Z, Liang J, Huang W, Jiang L, Paul C, Gao X, Alam P, Kanisicak O, Xu M, Wang Y. Immunomodulatory effects of mesenchymal stem cells for the treatment of cardiac allograft rejection. Exp Biol Med (Maywood) 2020; 246:851-860. [PMID: 33327780 DOI: 10.1177/1535370220978650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.
Collapse
Affiliation(s)
- Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Xiang Gao
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Perwez Alam
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
21
|
Peng P, Hu H, Liu P, Xu LX. Neoantigen-specific CD4 + T-cell response is critical for the therapeutic efficacy of cryo-thermal therapy. J Immunother Cancer 2020; 8:jitc-2019-000421. [PMID: 32938627 PMCID: PMC7497524 DOI: 10.1136/jitc-2019-000421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Background Traditional tumor thermal ablations, such as radiofrequency ablation (RFA) and cryoablation, can result in good local control of tumor, but traditional tumor thermal ablations are limited by poor long-term survival due to the failure of control of distal metastasis. Our previous studies developed a novel cryo-thermal therapy to treat the B16F10 melanoma mouse model. Long-term survival and T-cell-mediated durable antitumor immunity were achieved after cryo-thermal therapy, but whether tumor antigen-specific T-cells were augmented by cryo-thermal therapy was not determined. Methods The long-term antitumor therapeutic efficacy of cryo-thermal therapy was performed in B16F10 murine melanoma models. Splenocytes derived from mice treated with RFA or cryo-thermal therapy were coincubated with tumor antigen peptides to detect the frequency of antigen specific CD4+ and CD8+ T-cells by flow cytometry. Splenocytes were then stimulated and expanded by αCD3 or peptides and adoptive T-cell therapy experiments were performed to identify the antitumor efficacy of T-cells induced by RFA and cryo-thermal therapy. Naïve mice and tumor-bearing mice were used as control groups. Results Local cryo-thermal therapy generated a stronger systematic antitumor immune response than RFA and a long-lasting antitumor immunity that protected against tumor rechallenge. In vitro studies showed that the antigen-specific CD8+ T-cell response was induced by both cryo-thermal therapy and RFA, but the strong neoantigen-specific CD4+ T-cell response was only induced by cryo-thermal therapy. Cryo-thermal therapy-induced strong antitumor immune response was mainly mediated by CD4+ T-cells, particularly neoantigen-specific CD4+ T-cells. Conclusion Cryo-thermal therapy induced a stronger and broader antigen-specific memory T-cells. Specifically, cryo-thermal therapy, but not RFA, led to a strong neoantigen-specific CD4+ T-cell response that mediated the resistance to tumor challenge.
Collapse
Affiliation(s)
- Peng Peng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Hu
- Providence Portland Medical Center, Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Ping Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Prevention of P2 Receptor-Dependent Thrombocyte Activation by Pore-Forming Bacterial Toxins Improves Outcome in A Murine Model of Urosepsis. Int J Mol Sci 2020; 21:ijms21165652. [PMID: 32781764 PMCID: PMC7460651 DOI: 10.3390/ijms21165652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Urosepsis is a potentially life-threatening, systemic reaction to uropathogenic bacteria entering the bloodstream of the host. One of the hallmarks of sepsis is early thrombocyte activation with a following fall in circulating thrombocytes as a result of intravascular aggregation and sequestering of thrombocytes in the major organs. Development of a thrombocytopenic state is associated with a poorer outcome of sepsis. Uropathogenic Escherichia coli frequently produce the pore-forming, virulence factor α-haemolysin (HlyA), of which the biological effects are mediated by ATP release and subsequent activation of P2 receptors. Thus, we speculated that inhibition of thrombocyte P2Y1 and P2Y12 receptors might ameliorate the septic response to HlyA-producing E. coli. The study combined in vitro measurements of toxin-induced thrombocyte activation assessed as increased membrane abundance of P-selectin, fibronectin and CD63 and data from in vivo murine model of sepsis-induced by HlyA-producing E. coli under infusion of P2Y1 and P2Y12 antagonists. Our data show that the P2Y1 receptor antagonist almost abolishes thrombocyte activation by pore-forming bacterial toxins. Inhibition of P2Y1, by constant infusion of MRS2500, markedly increased the survival in mice with induced sepsis. Moreover, MRS2500 partially prevented the sepsis-induced depletion of circulating thrombocytes and dampened the sepsis-associated increase in proinflammatory cytokines. In contrast, P2Y12 receptor inhibition had only a marginal effect in vivo and in vitro. Taken together, inhibition of the P2Y1 receptor gives a subtle dampening of the thrombocyte activation and the cytokine response to bacteraemia, which may explain the improved survival observed by P2Y1 receptor antagonists.
Collapse
|
23
|
Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, Garg AD. Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells 2020; 9:E1823. [PMID: 32752206 PMCID: PMC7464343 DOI: 10.3390/cells9081823] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Immune-checkpoint blockers (ICBs) have revolutionized oncology and firmly established the subfield of immuno-oncology. Despite this renaissance, a subset of cancer patients remain unresponsive to ICBs due to widespread immuno-resistance. To "break" cancer cell-driven immuno-resistance, researchers have long floated the idea of therapeutically facilitating the immunogenicity of cancer cells by disrupting tumor-associated immuno-tolerance via conventional anticancer therapies. It is well appreciated that anticancer therapies causing immunogenic or inflammatory cell death are best positioned to productively activate anticancer immunity. A large proportion of studies have emphasized the importance of immunogenic apoptosis (i.e., immunogenic cell death or ICD); yet, it has also emerged that necroptosis, a programmed necrotic cell death pathway, can also be immunogenic. Emergence of a proficient immune profile for necroptosis has important implications for cancer because resistance to apoptosis is one of the major hallmarks of tumors. Putative immunogenic or inflammatory characteristics driven by necroptosis can be of great impact in immuno-oncology. However, as is typical for a highly complex and multi-factorial disease like cancer, a clear cause versus consensus relationship on the immunobiology of necroptosis in cancer cells has been tough to establish. In this review, we discuss the various aspects of necroptosis immunobiology with specific focus on immuno-oncology and cancer immunotherapy.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Pieter De Wijngaert
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Isaure Vanmeerbeerk
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| | - Shaun Martin
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Laboratory of Cellular Transport Systems, KU Leuven, 3000 Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Dmitri V Krysko
- Department of Human Structure and Repair, Cell Death Investigation and Therapy Laboratory, Ghent University, 9000 Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Jan B Parys
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut (LKI), Laboratory of Molecular and Cellular Signaling, KU Leuven, 3000 Leuven, Belgium
| | - Peter Vandenabeele
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, Laboratory of Cell Stress & Immunity (CSI), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Siu JH, Motallebzadeh R, Pettigrew GJ. Humoral autoimmunity after solid organ transplantation: Germinal ideas may not be natural. Cell Immunol 2020; 354:104131. [DOI: 10.1016/j.cellimm.2020.104131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
25
|
Abstract
This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent “homeostatic DAMP:SAMP ratio” in each case and a “homeostatic window” of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.
Collapse
|
26
|
Ma H, Wang M, Zhou Y, Yang JJ, Wang LY, Yang RH, Wen MJ, Kong L. Noncoding RNA 886 alleviates tumor cellular immunological rejection in host C57BL/C mice. Cancer Med 2020; 9:5258-5271. [PMID: 32476259 PMCID: PMC7367629 DOI: 10.1002/cam4.3148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Non‐coding RNA 886 (nc886/VTRNA2‐1) is a Pol III transcript and an atypical imprinted gene. Its exact function as a negative regulator of protein kinase R establishes its connection with innate immunity. Studies have shown that nc886 silencing is closely associated with prostate cancer progression. Previous work has constructed a cell model of stable nc886 overexpression (“mimic” or “nc886+”) in PC‐3M‐1E8 cell lines (1E8), which are highly bone‐metastatic human prostate cancer cells with low expression of nc886, and cells expressing the mimic were validated to have lower invasive and metastatic abilities than cells expressing the scramble transcript in vitro and in vivo. In this study, we directly injected mimic or scramble cells into the left ventricle of C57BL/C mice, an immunocompetent animal model, to elucidate the immune mechanisms of tumor‐host interactions. Interestingly, we found that tumor cells induced the inflammation of many important organs due to xenogeneic antigen rejection; this inflammation was ultimately repaired by tissue fibrosis after 28 days, except for in the spleen. The reason is that mimic cells, as heterogeneous antigens, are mostly directly recognized by macrophages or T cells in blood, and few mimic cells enter the spleen compared with scramble cells. The induction of splenic macrophage polarization to M2 macrophages by scramble cells is a critical factor in maintaining chronic splenic inflammation. In addition, we recognize that nc886 broadly decreases the expression of some human leukocyte antigen molecules and antigen transporters. This evidence reveals the interesting role of nc886 in regulating tumor cell antigens.
Collapse
Affiliation(s)
- Hui Ma
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Pathology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Ying Zhou
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Jia-Jie Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Li-Yong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, PR China
| | - Rong-Hui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Min-Jie Wen
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Hemi-tongue Allograft Transplantation in Dogs. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2767. [PMID: 32440434 PMCID: PMC7209899 DOI: 10.1097/gox.0000000000002767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 02/19/2020] [Indexed: 12/16/2022]
Abstract
Background When complete recovery of tongue function following tumor excision is desired, reestablishment of the complex movements of the tongue is necessary. However, currently available methods for recovery of tongue function, such as flap surgery or prosthesis insertion, are inadequate. In the current study, we investigated the effects of transplantations of tongue allografts. Methods Hemi-tongue allotransplantation procedures were performed with 8 pairs of sex-blind and unrelated beagle dogs. In each donor, the right side of the tongue, including the lingual and hypoglossal nerves, extrinsic muscles of the tongue, mucous membrane of the oral floor, lingual artery, and vein were exposed. A vascularized transplantation method was used with manual anastomosis of the blood vessels and nerves. Results Survival of the grafted tongue was only noted in 1 dog that died 5 days after transplantation. We suspected that the death was due to nutritional deficiency or dehydration, rather than hyperacute rejection of the transplant or technical failure of the microsurgical anastomosis. The grafted tongue was partially connected to the side of the recipient tongue, and lymphocyte infiltration was observed in this dog. Conclusions Postoperative management is difficult in dogs. Even if tongue allograft including nerves and extrinsic muscles is performed, it seems to take a long time before the tongue recovers its functions. Furthermore, expansive tongue allograft was too invasive a treatment for animals. If we want to adapt this procedure to humans, the first trial in a human will be done without animal experiments, as was the case with face transplantations.
Collapse
|
28
|
Kothandan VK, Kothandan S, Kim DH, Byun Y, Lee YK, Park IK, Hwang SR. Crosstalk between Stress Granules, Exosomes, Tumour Antigens, and Immune Cells: Significance for Cancer Immunity. Vaccines (Basel) 2020; 8:E172. [PMID: 32276342 PMCID: PMC7349635 DOI: 10.3390/vaccines8020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
RNA granules and exosomes produced by tumour cells under various stresses in the microenvironment act as critical determinants of cell survival by promoting angiogenesis, cancer metastasis, chemoresistance, and immunosuppression. Meanwhile, developmental cancer/testis (CT) antigens that are normally sequestered in male germ cells of the testes, but which are overexpressed in malignant tumour cells, can function as tumour antigens triggering immune responses. As CT antigens are potential vaccine candidates for use in cancer immunotherapy, they could be targeted together with crosstalk between stress granules, exosomes, and immune cells for a synergistic effect. In this review, we describe the effects of exosomes and exosomal components presented to the recipient cells under different types of stresses on immune cells and cancer progression. Furthermore, we discuss their significance for cancer immunity, as well as the outlook for their future application.
Collapse
Affiliation(s)
- Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| | - Sangeetha Kothandan
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Do Hee Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Youngro Byun
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun 58128, Korea
| | - Seung Rim Hwang
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
29
|
Johnsen N, Christensen MG, Hamilton AD, Praetorius H. HlyA cause platelet activation and neutrophil/ monocyte interaction during urosepsis. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.05088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Dieudé M, Turgeon J, Karakeussian Rimbaud A, Beillevaire D, Qi S, Patey N, Gaboury LA, Boilard É, Hébert M. Extracellular vesicles derived from injured vascular tissue promote the formation of tertiary lymphoid structures in vascular allografts. Am J Transplant 2020; 20:726-738. [PMID: 31729155 PMCID: PMC7064890 DOI: 10.1111/ajt.15707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Tertiary lymphoid structures (TLS) accumulate at sites of chronic injury where they function as an ectopic germinal center, fostering local autoimmune responses. Vascular injury leads to the release of endothelial-derived apoptotic exosome-like vesicles (ApoExo) that contribute to rejection in transplanted organs. The purpose of the study was to evaluate the impact of ApoExo on TLS formation in a model of vascular allograft rejection. Mice transplanted with an allogeneic aortic transplant were injected with ApoExo. The formation of TLS was significantly increased by ApoExo injection along with vascular remodeling and increased levels of antinuclear antibodies and anti-perlecan/LG3 autoantibodies. ApoExo also enhanced allograft infiltration by γδT17 cells. Recipients deficient in γδT cells showed reduced TLS formation and lower autoantibodies levels following ApoExo injection. ApoExo are characterized by proteasome activity, which can be blocked by bortezomib. Bortezomib treated ApoExo reduced the recruitment of γδT17 cells to the allograft, lowered TLS formation, and reduced autoantibody production. This study identifies vascular injury-derived extracellular vesicles (ApoExo), as initiators of TLS formation and demonstrates the pivotal role of γδT17 in coordinating TLS formation and autoantibody production. Finally, our results suggest proteasome inhibition with bortezomib as a potential option for controlling TLS formation in rejected allografts.
Collapse
Affiliation(s)
- Mélanie Dieudé
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Université de MontréalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Julie Turgeon
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Annie Karakeussian Rimbaud
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Déborah Beillevaire
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Shijie Qi
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Nathalie Patey
- Centre de recherche du CHU Ste‐JustineDépartement de pathologieUniversité de MontréalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Louis A. Gaboury
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell BiologyUniversity of MontrealMontréalQuébecCanada
| | - Éric Boilard
- Centre de Recherche du CHU de QuébecUniversité LavalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Marie‐Josée Hébert
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Université de MontréalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| |
Collapse
|
31
|
Watanabe T, Martinu T, Chruscinski A, Boonstra K, Joe B, Horie M, Guan Z, Bei KF, Hwang DM, Liu M, Keshavjee S, Juvet SC. A B cell-dependent pathway drives chronic lung allograft rejection after ischemia-reperfusion injury in mice. Am J Transplant 2019; 19:3377-3389. [PMID: 31365766 DOI: 10.1111/ajt.15550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) limits long-term survival after lung transplant (LT). Ischemia-reperfusion injury (IRI) promotes chronic rejection (CR) and CLAD, but the underlying mechanisms are not well understood. To examine mechanisms linking IRI to CR, a mouse orthotopic LT model using a minor alloantigen strain mismatch (C57BL/10 [B10, H-2b ] → C57BL/6 [B6, H-2b ]) and isograft controls (B6→B6) was used with antecedent minimal or prolonged graft storage. The latter resulted in IRI with subsequent airway and parenchymal fibrosis in prolonged storage allografts but not isografts. This pattern of CR after IRI was associated with the formation of B cell-rich tertiary lymphoid organs within the grafts and circulating autoantibodies. These processes were attenuated by B cell depletion, despite preservation of allograft T cell content. Our observations suggest that IRI may promote B cell recruitment that drives CR after LT. These observations have implications for the mechanisms leading to CLAD after LT.
Collapse
Affiliation(s)
- Tatsuaki Watanabe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kristen Boonstra
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Miho Horie
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Zehong Guan
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ke Fan Bei
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David M Hwang
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Surgery Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
Juvet S, Martinu T. DNase to the Rescue! Clearing Mitochondrial DNA May Have NET Benefits in Lung Transplantation. Am J Respir Cell Mol Biol 2019; 62:277-278. [PMID: 31726015 PMCID: PMC7055693 DOI: 10.1165/rcmb.2019-0390ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stephen Juvet
- Toronto Lung Transplant ProgramUniversity Health NetworkToronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant ProgramUniversity Health NetworkToronto, Ontario, Canada
| |
Collapse
|
34
|
Exquisite sensitivity of adrenocortical carcinomas to induction of ferroptosis. Proc Natl Acad Sci U S A 2019; 116:22269-22274. [PMID: 31611400 DOI: 10.1073/pnas.1912700116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adrenocortical carcinomas (ACCs) are rare and highly malignant cancers associated with poor survival of patients. Currently, mitotane, a nonspecific derivative of the pesticide DDT (1,1-(dichlorobiphenyl)-2,2-dichloroethane), is used as the standard treatment, but its mechanism of action in ACCs remains elusive. Here we demonstrate that the human ACC NCI-H295R cell line is remarkably sensitive to induction of ferroptosis, while mitotane does not induce this iron-dependent mode of regulated necrosis. Supplementation with insulin, transferrin, and selenium (ITS) is commonly used to keep NCI-H295R cells in cell culture. We show that this supplementation prevents spontaneous ferroptosis, especially when it contains polyunsaturated fatty acids (PUFAs), such as linoleic acid. Inhibitors of apoptosis (zVAD, emricasan) do not prevent the mitotane-induced cell death but morphologically prevent membrane blebbing. The expression of glutathione peroxidase 4 (GPX4) in H295R cells, however, is significantly higher when compared to HT1080 fibrosarcoma cells, suggesting a role for ferroptosis. Direct inhibition of GPX4 in H295R cells led to high necrotic populations compared to control, while cotreatment with ferrostatin-1 (Fer-1) completely reverted ferroptosis. Interestingly, the analysis of public databases revealed that several key players of the ferroptosis pathway are hypermethylated and/or mutated in human ACCs. Finally, we also detected that growth hormone-releasing hormone (GHRH) antagonists, such as MIA602, kill H295R cells in a nonapoptotic manner. In summary, we found elevated expression of GPX4 and higher sensitivity to ferroptosis in ACCs. We hypothesize that instead of treatment with mitotane, human adrenocortical carcinomas may be much more sensitive to induction of ferroptosis.
Collapse
|
35
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Lin L, Xu H, Bishawi M, Feng F, Samy K, Truskey G, Barbas AS, Kirk AD, Brennan TV. Circulating mitochondria in organ donors promote allograft rejection. Am J Transplant 2019; 19:1917-1929. [PMID: 30761731 PMCID: PMC6591073 DOI: 10.1111/ajt.15309] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/13/2019] [Accepted: 02/03/2019] [Indexed: 01/25/2023]
Abstract
The innate immune system is a critical regulator of the adaptive immune responses that lead to allograft rejection. It is increasingly recognized that endogenous molecules released from tissue injury and cell death are potent activators of innate immunity. Mitochondria, ancestrally related to bacteria, possess an array of endogenous innate immune-activating molecules. We have recently demonstrated that extracellular mitochondria are abundant in the circulation of deceased organ donors and that their presence correlates with early allograft dysfunction. Here we demonstrate the ability of mitochondria to activate endothelial cells (ECs), the initial barrier between a solid organ allograft and its host. We find that mitochondria exposure leads to the upregulation of EC adhesion molecules and their production of inflammatory cytokines and chemokines. Additionally, mitochondrial exposure causes dendritic cells to upregulate costimulatory molecules. Infusion of isolated mitochondria into heart donors leads to significant increase in allograft rejection in a murine heterotopic heart transplantation model. Finally, co-incubation of human peripheral blood mononuclear cells with mitochondria-treated ECs results in increased numbers of effector (IFN-γ+ , TNF-α+ ) CD8+ T cells. These data indicate that circulating extracellular mitochondria in deceased organ donors may directly activate allograft ECs and promote graft rejection in transplant recipients.
Collapse
Affiliation(s)
- Liwen Lin
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - He Xu
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Muath Bishawi
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina,Biomedical Engineering, Duke University Medical Center, Durham, North Carolina
| | - FeiFei Feng
- Department of Toxicology, Zhengzhou University, Zhengzhou, China
| | - Kannan Samy
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - George Truskey
- Biomedical Engineering, Duke University Medical Center, Durham, North Carolina
| | - Andrew S Barbas
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Allan D Kirk
- Departments of Surgery, Duke University Medical Center, Durham, North Carolina,Immunology, Duke University Medical Center, Durham, North Carolina
| | - Todd V Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
37
|
Shi S, Verstegen MMA, Mezzanotte L, de Jonge J, Löwik CWGM, van der Laan LJW. Necroptotic Cell Death in Liver Transplantation and Underlying Diseases: Mechanisms and Clinical Perspective. Liver Transpl 2019; 25:1091-1104. [PMID: 31077562 PMCID: PMC6617733 DOI: 10.1002/lt.25488] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Cell death is a natural process for the turnover of aged cells, but it can also arise as a result of pathological conditions. Cell death is recognized as a key feature in both acute and chronic hepatobiliary diseases caused by drug, alcohol, and fat uptake; by viral infection; or after surgical intervention. In the case of chronic disease, cell death can lead to (chronic) secondary inflammation, cirrhosis, and the progression to liver cancer. In liver transplantation, graft preservation and ischemia/reperfusion injury are associated with acute cell death. In both cases, so-called programmed cell death modalities are involved. Several distinct types of programmed cell death have been described of which apoptosis and necroptosis are the most well known. Parenchymal liver cells, including hepatocytes and cholangiocytes, are susceptible to both apoptosis and necroptosis, which are triggered by distinct signal transduction pathways. Apoptosis is dependent on a proteolytic cascade of caspase enzymes, whereas necroptosis induction is caspase-independent. Moreover, different from the "silent" apoptotic cell death, necroptosis can cause a secondary inflammatory cascade, so-called necroinflammation, triggered by the release of various damage-associated molecular patterns (DAMPs). These DAMPs activate the innate immune system, leading to both local and systemic inflammatory responses, which can even cause remote organ failure. Therapeutic targeting of necroptosis by pharmacological inhibitors, such as necrostatin-1, shows variable effects in different disease models.
Collapse
Affiliation(s)
- Shaojun Shi
- Department of SurgeryErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | | | - Laura Mezzanotte
- Department of RadiologyErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | - Jeroen de Jonge
- Department of SurgeryErasmus MC ‐ University Medical CenterRotterdamthe Netherlands
| | | | | |
Collapse
|
38
|
P2X 1 receptor blockers reduce the number of circulating thrombocytes and the overall survival of urosepsis with haemolysin-producing Escherichia coli. Purinergic Signal 2019; 15:265-276. [PMID: 31129780 DOI: 10.1007/s11302-019-09658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 01/14/2023] Open
Abstract
Urosepsis is a severe condition often caused by Escherichia coli that spontaneously have ascended the urinary tract to the kidneys causing pyelonephritis and potentially bacteraemia. The number of sepsis cases has been steadily increasing over the last decades, and there are still no specific, molecular supportive therapies for sepsis to supplement antibiotic treatment. P2X1 receptors are expressed by a number of immune cells including thrombocytes, which presently have been established as an important player in the acute immune response to bacterial infections. P2X1 receptor-deficient mice have been shown to be relatively protected against urosepsis, with markedly reduced levels of circulating proinflammatory cytokines and intravascular coagulation. However, here we show that continuous intravenous infusion with P2X1 receptor antagonist markedly accelerates development of a septic response to induced bacteraemia with uropathogenic E. coli. Mice exposed to the P2X1 receptor antagonists die very early with haematuria, substantially elevated plasma levels of proinflammatory cytokines, massive intravascular coagulation and a concomitant reduction in circulating thrombocytes. Interestingly, infusion of P2X1 receptor antagonists causes a marked acute reduction in circulating thrombocytes and a higher number of bacteria in the blood. These data support the notion that the number of functional thrombocytes is important for the acute defence against bacteria in the circulation and that the P2X1 receptor potentially could be essential for this response.
Collapse
|
39
|
Aljabri A, Vijayan V, Stankov M, Nikolin C, Figueiredo C, Blasczyk R, Becker JU, Linkermann A, Immenschuh S. HLA class II antibodies induce necrotic cell death in human endothelial cells via a lysosomal membrane permeabilization-mediated pathway. Cell Death Dis 2019; 10:235. [PMID: 30850581 PMCID: PMC6408495 DOI: 10.1038/s41419-019-1319-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022]
Abstract
Antibody-mediated rejection (AMR) is the major cause of allograft loss after solid organ transplantation. Circulating donor-specific antibodies against human leukocyte antigen (HLA), in particular HLA class II antibodies are critical for the pathogenesis of AMR via interactions with endothelial cells (ECs). To investigate the effects of HLA class II antibody ligation to the graft endothelium, a model of HLA-DR antibody-dependent stimulation was utilized in primary human ECs. Antibody ligation of HLA class II molecules in interferon-γ-treated ECs caused necrotic cell death without complement via a pathway that was independent of apoptosis and necroptosis. HLA-DR-mediated cell death was blocked by specific neutralization of antibody ligation with recombinant HLA class II protein and by lentiviral knockdown of HLA-DR in ECs. Importantly, HLA class II-mediated cytotoxicity was also induced by relevant native allele-specific antibodies from human allosera. Necrosis of ECs in response to HLA-DR ligation was mediated via hyperactivation of lysosomes, lysosomal membrane permeabilization (LMP), and release of cathepsins. Notably, LMP was caused by reorganization of the actin cytoskeleton. This was indicated by the finding that LMP and actin stress fiber formation by HLA-DR antibodies were both downregulated by the actin polymerization inhibitor cytochalasin D and inhibition of Rho GTPases, respectively. Finally, HLA-DR-dependent actin stress fiber formation and LMP led to mitochondrial stress, which was revealed by decreased mitochondrial membrane potential and generation of reactive oxygen species in ECs. Taken together, ligation of HLA class II antibodies to ECs induces necrotic cell death independent of apoptosis and necroptosis via a LMP-mediated pathway. These findings may enable novel therapeutic approaches for the treatment of AMR in solid organ transplantation.
Collapse
Affiliation(s)
- Abid Aljabri
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.,King Saud Medical City, Riyadh, Saudi Arabia
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Metodi Stankov
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Christoph Nikolin
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Carl Gustav Carus, Dresden, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
40
|
Johnsen N, Hamilton ADM, Greve AS, Christensen MG, Therkildsen JR, Wehmöller J, Skals M, Praetorius HA. α-Haemolysin production, as a single factor, causes fulminant sepsis in a model of Escherichia coli-induced bacteraemia. Cell Microbiol 2019; 21:e13017. [PMID: 30761726 DOI: 10.1111/cmi.13017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022]
Abstract
α-Haemolysin (HlyA) from uropathogenic Escherichia coli has been demonstrated to be a significant virulence factor for ascending urinary tract infections. Once the E. coli reach the well-vascularised kidneys, there is a high risk of bacteraemia and a subsequent septic host response. Despite this, HlyA has the potential to accelerate the host response both directly and via its ability to facilitate adenosine triphosphate release from cells. It has not been settled whether HlyA aggravates bacteraemia into a septic state. To address this, we used an E. coli strain in a model of acute urosepsis that was either transfected with a plasmid containing the full HlyA operon or one with deletion in the HlyA gene. Here, we show that HlyA accelerates the host response to E. coli in the circulation. Mice exposed to HlyA-producing E. coli showed massively increased proinflammatory cytokines, a substantial fall in circulating thrombocytes, extensive haematuria, and intravascular haemolysis. This was not seen in mice exposed to either E. coli that do not secrete HlyA or vehicle controls. Consistent with the massive host response to the bacteria, the mice exposed to HlyA-producing E. coli died exceedingly early, whereas mice exposed to E. coli without HlyA production and vehicle controls survived the entire observation period. These data allow us to conclude that HlyA is a virulence factor that accelerates a state of bacteraemia into fulminant sepsis in a mouse model.
Collapse
Affiliation(s)
- Nanna Johnsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | - Julia Wehmöller
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Marianne Skals
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
41
|
Tonnus W, Meyer C, Paliege A, Belavgeni A, von Mässenhausen A, Bornstein SR, Hugo C, Becker JU, Linkermann A. The pathological features of regulated necrosis. J Pathol 2019; 247:697-707. [PMID: 30714148 DOI: 10.1002/path.5248] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 12/13/2022]
Abstract
Necrosis of a cell is defined by the loss of its plasma membrane integrity. Morphologically, necrosis occurs in several forms such as coagulative necrosis, colliquative necrosis, caseating necrosis, fibrinoid necrosis, and others. Biochemically, necrosis was demonstrated to represent a number of genetically determined signalling pathways. These include (i) kinase-mediated necroptosis, which depends on receptor interacting protein kinase 3 (RIPK3)-mediated phosphorylation of the pseudokinase mixed lineage kinase domain like (MLKL); (ii) gasdermin-mediated necrosis downstream of inflammasomes, also referred to as pyroptosis; and (iii) an iron-catalysed mechanism of highly specific lipid peroxidation named ferroptosis. Given the molecular understanding of the nature of these pathways, specific antibodies may allow direct detection of regulated necrosis and correlation with morphological features. Necroptosis can be specifically detected by immunohistochemistry and immunofluorescence employing antibodies to phosphorylated MLKL. Likewise, it is possible to generate cleavage-specific antibodies against epitopes in gasdermin protein family members. In ferroptosis, however, specific detection requires quantification of oxidative lipids by mass spectrometry (oxylipidomics). Together with classical cell death markers, such as TUNEL staining and detection of cleaved caspase-3 in apoptotic cells, the extension of the arsenal of necrosis markers will allow pathological detection of specific molecular pathways rather than isolated morphological descriptions. These novel pieces of information will be extraordinarily helpful for clinicians as inhibitors of necroptosis (necrostatins), ferroptosis (ferrostatins), and inflammasomes have emerged in clinical trials. Anatomical pathologists should embrace these novel ancillary tests and the concepts behind them and test their impact on diagnostic precision, prognostication, and the prediction of response to the upcoming anti-necrotic therapies. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Ulrich Becker
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW B cells have recently emerged as important immune players in solid organ rejection, especially in cardiac allograft vasculopathy (CAV), a chronic form of rejection following heart transplantation. B cells can exert either regulatory or effector functions. This review will provide an update on effector B cells in CAV. RECENT FINDINGS Independent studies reported the abundance of B cells in graft infiltrates during CAV, especially around coronary arteries. Infiltrates comprise CD20+ CD27+ memory B cells together with differentiated CD20-CD138+ plasma cells, which are almost always associated with T cells and macrophages. The structure of some of these infiltrates evokes that of germinal centers, suggesting the generation of tertiary lymphoid organs in the graft. Remarkably, B-cell infiltrates are most often detected in the absence of circulating donor human leukocyte antigen-specific antibodies, strongly suggesting that the two components are unrelated. Characterization of B-cell clones isolated from explanted human cardiac graft infiltrates revealed the prevalence of polyreactive innate, B1-like B cells. Accumulating evidence suggests that these cells act primarily as antigen-presenting cells in situ. Additional effector functions, such as local antibody secretion and pro-inflammatory cytokine production, promoting T-cell polarization, macrophage activation and fibrosis are also considered. SUMMARY Converging observations made through animal and human studies add substantial support for an effector B-cell role in the pathophysiology of CAV. On the basis of these collective findings, a therapeutic strategy targeting B cells could reasonably be envisaged to prevent or treat this complication.
Collapse
Affiliation(s)
- Emmanuel Zorn
- Columbia Center for Translational Immunology, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
43
|
Pandya UM, Egbuta C, Abdullah Norman TM, Chiang CYE, Wiersma VR, Panchal RG, Bremer E, Eggleton P, Gold LI. The Biophysical Interaction of the Danger-Associated Molecular Pattern (DAMP) Calreticulin with the Pattern-Associated Molecular Pattern (PAMP) Lipopolysaccharide. Int J Mol Sci 2019; 20:ijms20020408. [PMID: 30669362 PMCID: PMC6359024 DOI: 10.3390/ijms20020408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) chaperone protein, calreticulin (CRT), is essential for proper glycoprotein folding and maintaining cellular calcium homeostasis. During ER stress, CRT is overexpressed as part of the unfolded protein response (UPR). In addition, CRT can be released as a damage-associated molecular pattern (DAMP) molecule that may interact with pathogen-associated molecular patterns (PAMPs) during the innate immune response. One such PAMP is lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall. In this report, we show that recombinant and native human placental CRT strongly interacts with LPS in solution, solid phase, and the surface of gram-negative and gram-positive bacteria. Furthermore, LPS induces oilgomerization of CRT with a disappearance of the monomeric form. The application of recombinant CRT (rCRT) to size exclusion and anion exchange chromatography shows an atypical heterogeneous elution profile, indicating that LPS affects the conformation and ionic charge of CRT. Interestingly, LPS bound to CRT is detected in sera of bronchiectasis patients with chronic bacterial infections. By ELISA, rCRT dose-dependently bound to solid phase LPS via the N- and C-domain globular head region of CRT and the C-domain alone. The specific interaction of CRT with LPS may be important in PAMP innate immunity.
Collapse
Affiliation(s)
- Unnati M Pandya
- New York University School of Medicine--Langone Health, Departments of Medicine and Pathology, Division of Translational Medicine, 550 First Ave, New York, NY 10016, USA.
| | - Chinaza Egbuta
- New York University School of Medicine--Langone Health, Departments of Medicine and Pathology, Division of Translational Medicine, 550 First Ave, New York, NY 10016, USA.
| | | | - Chih-Yuan Edward Chiang
- Target Discovery and Experimental Microbiology Department, Molecular and Translational Sciences Division, US Army Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | - Valerie R Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| | - Rekha G Panchal
- Target Discovery and Experimental Microbiology Department, Molecular and Translational Sciences Division, US Army Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, The Netherlands.
| | - Paul Eggleton
- University of Exeter Medical School, Exeter EX1 2LU, Devon UK.
- UCB Pharma, Slough SL1 3WE, UK.
| | - Leslie I Gold
- New York University School of Medicine--Langone Health, Departments of Medicine and Pathology, Division of Translational Medicine, 550 First Ave, New York, NY 10016, USA.
| |
Collapse
|
44
|
Tonnus W, Linkermann A. Regulated Necrosis and Its Immunogenicity. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
45
|
Heil M, Vega-Muñoz I. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:225-285. [PMID: 30904194 DOI: 10.1016/bs.ircmb.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of nucleic acids in aberrant compartments is a signal of danger: fragments of cytosolic or extracellular self-DNA indicate cellular dysfunctions or disruption, whereas cytosolic fragments of nonself-DNA or RNA indicate infections. Therefore, nucleic acids trigger immunity in mammals and plants. In mammals, endosomal Toll-like receptors (TLRs) sense single-stranded (ss) or double-stranded (ds) RNA or CpG-rich DNA, whereas various cytosolic receptors sense dsDNA. Although a self/nonself discrimination could favor targeted immune responses, no sequence-specific sensing of nucleic acids has been reported for mammals. Specific immune responses to extracellular self-DNA versus DNA from related species were recently reported for plants, but the underlying mechanism remains unknown. The subcellular localization of mammalian receptors can favor self/nonself discrimination based on the localization of DNA fragments. However, autoantibodies and diverse damage-associated molecular patterns (DAMPs) shuttle DNA through membranes, and most of the mammalian receptors share downstream signaling elements such as stimulator of interferon genes (STING) and the master transcription regulators, nuclear factor (NF)-κB, and interferon regulatory factor 3 (IRF3). The resulting type I interferon (IFN) response stimulates innate immunity against multiple threats-from infection to physical injury or endogenous DNA damage-all of which lead to the accumulation of eDNA or cytoplasmatic dsDNA. Therefore, no or only low selective pressures might have favored a strict self/nonself discrimination in nucleic acid sensing. We conclude that the discrimination between self- and nonself-DNA is likely to be less strict-and less important-than assumed originally.
Collapse
Affiliation(s)
- Martin Heil
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Isaac Vega-Muñoz
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
46
|
Bruni A, Bornstein S, Linkermann A, Shapiro AMJ. Regulated Cell Death Seen through the Lens of Islet Transplantation. Cell Transplant 2018; 27:890-901. [PMID: 29845882 PMCID: PMC6050903 DOI: 10.1177/0963689718766323] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clinical islet transplantation effectively restores euglycemia and corrects glycosylated
hemoglobin in labile type 1 diabetes mellitus (T1DM). Despite marked improvements in islet
transplantation outcomes, acute islet cell death remains a substantial obstacle that
compromises long-term engraftment outcomes. Multiple organ donors are routinely required
to achieve insulin independence. Therapeutic agents that ameliorate cell death and/or
control injury-related inflammatory cascades offer potential to improve islet transplant
success. Apoptotic cell death has been identified as a major contributor to cellular
demise and therapeutic strategies that subvert initiation and consequences of apoptotic
cell death have shown promise in pre-clinical models. Indeed, in numerous pathologies and
diseases apoptosis has been the most extensively described form of regulated cell death.
However, recent identification of novel, alternative regulated cell death pathways in
other disease states and solid organ transplantation suggest that these additional
pathways may also have substantial relevance in islet transplantation. These regulated,
non-apoptotic cell death pathways exhibit distinct biochemical characteristics but have
yet to be fully characterized within islet transplantation. We review herein the various
regulated cell death pathways and highlight their relative potential contributions to
islet viability, engraftment failure and islet dysfunction.
Collapse
Affiliation(s)
- Antonio Bruni
- 1 Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,2 Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Stefan Bornstein
- 3 Division of Nephrology, Medical Clinic 3, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Andreas Linkermann
- 3 Division of Nephrology, Medical Clinic 3, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - A M James Shapiro
- 1 Clinical Islet Transplant Program, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,2 Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Garg AD, Agostinis P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol Rev 2018; 280:126-148. [PMID: 29027218 DOI: 10.1111/imr.12574] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immunogenicity of cancer cells is an emerging determinant of anti-cancer immunotherapy. Beyond developing immunostimulatory regimens like dendritic cell-based vaccines, immune-checkpoint blockers, and adoptive T-cell transfer, investigators are beginning to focus on the immunobiology of dying cancer cells and its relevance for the success of anticancer immunotherapies. It is currently accepted that cancer cells may die in response to anti-cancer therapies through regulated cell death programs, which may either repress or increase their immunogenic potential. In particular, the induction of immunogenic cancer cell death (ICD), which is hallmarked by the emission of damage-associated molecular patterns (DAMPs); molecules analogous to pathogen-associated molecular patterns (PAMPs) acting as danger signals/alarmins, is of great relevance in cancer therapy. These ICD-associated danger signals favor immunomodulatory responses that lead to tumor-associated antigens (TAAs)-directed T-cell immunity, which paves way for the removal of residual, treatment-resistant cancer cells. It is also emerging that cancer cells succumbing to ICD can orchestrate "altered-self mimicry" i.e. mimicry of pathogen defense responses, on the levels of nucleic acids and/or chemokines (resulting in type I interferon/IFN responses or pathogen response-like neutrophil activity). In this review, we exhaustively describe the main molecular, immunological, preclinical, and clinical aspects of immunosuppressive cell death or ICD (with respect to apoptosis, necrosis and necroptosis). We also provide an extensive historical background of these fields, with special attention to the self/non-self and danger models, which have shaped the field of cell death immunology.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Faitot F, Besch C, Battini S, Ruhland E, Onea M, Addeo P, Woehl-Jaeglé ML, Ellero B, Bachellier P, Namer IJ. Impact of real-time metabolomics in liver transplantation: Graft evaluation and donor-recipient matching. J Hepatol 2018; 68:699-706. [PMID: 29191459 DOI: 10.1016/j.jhep.2017.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS There is an emerging need to assess the metabolic state of liver allografts especially in the novel setting of machine perfusion preservation and donor in cardiac death (DCD) grafts. High-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS-NMR) could be a useful tool in this setting as it can extemporaneously provide untargeted metabolic profiling. The purpose of this study was to evaluate the potential value of HR-MAS-NMR metabolomic analysis of back-table biopsies for the prediction of early allograft dysfunction (EAD) and donor-recipient matching. METHOD The metabolic profiles of back-table biopsies obtained by HR-MAS-NMR, were compared according to the presence of EAD using partial least squares discriminant analysis. Network analysis was used to identify metabolites which changed significantly. The profiles were compared to native livers to identify metabolites for donor-recipient matching. RESULTS The metabolic profiles were significantly different in grafts that caused EAD compared to those that did not. The constructed model can be used to predict the graft outcome with excellent accuracy. The metabolites showing the most significant differences were lactate level >8.3 mmol/g and phosphocholine content >0.646 mmol/g, which were significantly associated with graft dysfunction with an excellent accuracy (AUROClactates = 0.906; AUROCphosphocholine = 0.816). Native livers from patients with sarcopenia had low lactate and glycerophosphocholine content. In patients with sarcopenia, the risk of EAD was significantly higher when transplanting a graft with a high-risk graft metabolic score. CONCLUSION This study underlines the cost of metabolic adaptation, identifying lactate and choline-derived metabolites as predictors of poor graft function in both native livers and liver grafts. HR-MAS-NMR seems a valid technique to evaluate graft quality and the consequences of cold ischemia on the graft. It could be used to assess the efficiency of graft resuscitation on machine perfusion in future studies. LAY SUMMARY Real-time metabolomic profiles of human grafts during back-table can accurately predict graft dysfunction. High lactate and phosphocholine content are highly predictive of graft dysfunction whereas low lactate and phosphocholine content characterize patients with sarcopenia. In these patients, the cost of metabolic adaptation may explain the poor outcomes.
Collapse
Affiliation(s)
- Francois Faitot
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France; Laboratoire ICube, UMR7357, University of Strasbourg, France
| | - Camille Besch
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | | | - Elisa Ruhland
- Laboratoire ICube, UMR7357, University of Strasbourg, France
| | - Mihaela Onea
- Pathology Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Pietro Addeo
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Marie-Lorraine Woehl-Jaeglé
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Bernard Ellero
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Philippe Bachellier
- Hepatobiliopancreatic Surgery and Transplantation Department, Hopital de Hautepierre, CHU de Strasbourg, France
| | - Izzie-Jacques Namer
- Laboratoire ICube, UMR7357, University of Strasbourg, France; Nuclear Medicine Department, Hôpital de Hautepierre, CHU de Strasbourg, France.
| |
Collapse
|
49
|
Affiliation(s)
- Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Simon P Parmentier
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
50
|
Abstract
Receptor-interacting protein kinases 1 and 3 (RIPK1/3) have best been described for their role in mediating a regulated form of necrosis, referred to as necroptosis. During this process, RIPK3 phosphorylates mixed lineage kinase domain-like (MLKL) to cause plasma membrane rupture. RIPK3-deficient mice have recently been demonstrated to be protected in a series of disease models, but direct evidence for activation of necroptosis in vivo is still limited. Here, we sought to further examine the activation of necroptosis in kidney ischemia-reperfusion injury (IRI) and from TNFα-induced severe inflammatory response syndrome (SIRS), two models of RIPK3-dependent injury. In both models, MLKL-ko mice were significantly protected from injury to a degree that was slightly, but statistically significantly exceeding that of RIPK3-deficient mice. We also demonstrated, for the first time, accumulation of pMLKL in the necrotic tubules of human patients with acute kidney injury. However, our data also uncovered unexpected elevation of blood flow in MLKL-ko animals, which may be relevant to IRI and should be considered in the future. To further understand the mode of regulation of cell death by MLKL, we screened a panel of clinical plasma membrane channel blockers and we found phenytoin to inhibit necroptosis. However, we further found that phenytoin attenuated RIPK1 kinase activity in vitro, likely due to the hydantoin scaffold also present in necrostatin-1, and blocked upstream necrosome formation steps in the cells undergoing necroptosis. We further report that this clinically used anti-convulsant drug displayed protection from kidney IRI and TNFα-induces SIRS in vivo. Overall, our data reveal the relevance of RIPK3-pMLKL regulation for acute kidney injury and identifies an FDA-approved drug that may be useful for immediate clinical evaluation of inhibition of pro-death RIPK1/RIPK3 activities in human diseases.
Collapse
|