1
|
Xu C, Liu M, Xie X, Li Z, Zhu Y, Ye Y, Du M, Hu S, Liu T, Guo Y, Wen W, Liu H, Tu Z. Multifunctional Boron-based 2D Nanoplatforms Ameliorate Severe Respiratory Inflammation by Targeting Multiple Inflammatory Mediators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412626. [PMID: 39950864 PMCID: PMC11967860 DOI: 10.1002/advs.202412626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/04/2025] [Indexed: 04/05/2025]
Abstract
Effective management of serious respiratory diseases, such as asthma and recalcitrant rhinitis, remains a global challenge. Here, it is shown that induced sputum supernatants (ISS) from patients with asthma contain higher levels of cell-free DNA (cfDNA) compared to that of healthy volunteers. Although cfDNA scavenging strategies have been developed for inflammation modulation in previous studies, this fall short in clinical settings due to the excessive neutrophil extracellular trap (NET) formation, reactive oxygen and nitrogen species (RONS) and bacterial infections in injured airway tissues. Based on this, a multifunctional boron-based 2D nanoplatform B-PM is designed by coating boron nanosheets (B-NS) with polyamidoamine generation 1 (PG1) dendrimer, which can simultaneously target cfDNA, NETs, RONS, and bacteria. The effects of B-PM in promoting mucosal repair, reducing airway inflammation, and mucus production have been demonstrated in model mice, and the therapeutic effect is superior to dexamethasone. Furthermore, flow cytometry with clustering analysis and transcriptome analysis with RNA-sequencing are adopted to comprehensively evaluate the in vivo anti-inflammation therapeutic effects. These findings emphasize the significance of a multi-targeting strategy to modulate dysregulated inflammation and highlight multifunctional boron-based 2D nanoplatforms for the amelioration of respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Changyi Xu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Ming Liu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Xinran Xie
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Zhixin Li
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yuefei Zhu
- Department of Biomedical EngineeringColumbia UniversityNew York10027USA
| | - Yang Ye
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Mengya Du
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Suhua Hu
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Tianrun Liu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yubiao Guo
- Department of Pulmonary and Critical Care MedicineThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510655China
| | - Weiping Wen
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Huanliang Liu
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Zhaoxu Tu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| |
Collapse
|
2
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
3
|
Kamide Y, Sonehara K, Sekiya K, Ueki S, Nakamura Y, Okada Y, Taniguchi M. Bioactive Mediator Profile of Mepolizumab-Treated Eosinophilic Granulomatosis With Polyangiitis. Allergy 2025; 80:882-885. [PMID: 39526755 DOI: 10.1111/all.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Yosuke Kamide
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyoshi Sekiya
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuto Nakamura
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara, Japan
- Research Center for Immunology and Allergology, Shonan-Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
4
|
Wang Q, He W, Zhou Y, Liu Y, Li X, Wang Y, Wang J, Han X, Zhang X. Improvement of glucocorticoid sensitivity and attenuation of pulmonary allergic reactions by exogenous supplementation with betaine in HDM and LPS-induced allergic mouse model. Clin Transl Allergy 2025; 15:e70039. [PMID: 39921638 PMCID: PMC11806522 DOI: 10.1002/clt2.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Childhood asthma is a heterogeneous disease that exhibits different characteristics and varying severity; however, the metabolite alterations underlying the difference in asthma severity, especially in severe asthma, are not well understood. The aim of this study was to identify the plasma metabolic profile of children with different asthma severity and explore the potential intervention targets in severe asthma and glucocorticoid resistance. METHODS Untargeted liquid chromatography mass spectrometry was utilized to analyze plasma metabolites in 54 children with mild-to-moderate asthma, 50 children with severe asthma and 39 healthy controls. Multivariate statistical analyses were used to explore plasma metabolic alterations that were strongly associated with asthma severity. Meanwhile, the severe allergic airway inflammation mice with glucocorticoid resistance were constructed to validate the potential therapeutic capacity of metabolites. RESULTS The plasma metabolic profiles of children with mild to moderate asthma and severe asthma exhibited significant alterations. The distinct plasma metabolite shifts were accompanied by functional alterations in lipid metabolism, particularly choline metabolism, glycerophospholipids and sphingolipid metabolism. 11-cis-retinol, LysoPC (20:4 [8Z,11Z,14Z,17Z]), and glycerophosphatidylcholine were associated with exacerbated airway inflammation and lung function. Furthermore, 2-Hydroxyestradiol, LysoPC (18:3 [6Z,9Z,12Z]), zeaxanthin, and betaine were shifted exclusively in the severe asthma group and may serve as potential biomarkers. Subsequent in vivo studies demonstrated that betaine supplementation partially improved glucocorticoid resistance. CONCLUSIONS Overall, children with different asthma severity displayed distinct plasma metabolic patterns. These may contribute to the difference in response to glucocorticoids in childhood asthma and could be potential targets and interventions.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory MedicineChildren's Hospital of Fudan UniversityShanghaiChina
| | - Wen He
- Department of Respiratory MedicineChildren's Hospital of Fudan UniversityShanghaiChina
| | - Yufeng Zhou
- International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyInstitute of PediatricsChildren's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
- National Health Commission (NHC) Key Laboratory of Neonatal DiseasesFudan UniversityChildren's Hospital of Fudan UniversityShanghaiChina
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular MedicineDepartment of Biochemistry and Molecular BiologySchool of Basic Medical Sciences and Shanghai Xuhui Central HospitalFudan UniversityShanghaiChina
| | - Xiaoling Li
- Department of Respiratory MedicineChildren's Hospital of Fudan UniversityShanghaiChina
| | - Yingwen Wang
- Department of NursingChildren's Hospital of Fudan UniversityShanghaiChina
| | - Jiayu Wang
- National Health Commission (NHC) Key Laboratory of Neonatal DiseasesFudan UniversityChildren's Hospital of Fudan UniversityShanghaiChina
| | - Xiao Han
- Guangzhou Women and Children's Medical CentreInstitute of PediatricsGuangzhou Medical UniversityGuangzhouChina
| | - Xiaobo Zhang
- Department of Respiratory MedicineChildren's Hospital of Fudan UniversityShanghaiChina
- Center for Pediatric Clinical Quality Control of ShanghaiShanghaiChina
| |
Collapse
|
5
|
Ding K, He X, Liang D, Xu L, Xiao B, Hou L, Xue F, Zhou G, Ma L. Alanyl-Glutamine Inhibits the Epithelial-Mesenchymal Transition of Airway Epithelial Cells in Asthmatic Mice via DPP4-SIRT1 Pathway. Int Arch Allergy Immunol 2024; 186:369-386. [PMID: 39510053 DOI: 10.1159/000541681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Alanyl-glutamine (Ala-Gln) is a compound known for its protective effects in various tissue injuries. However, its role in asthma-related lung injuries remains underexplored. This study investigates the mechanisms by which Ala-Gln modulates sDPP4-induced airway epithelial-mesenchymal transition and ovalbumin (OVA)-induced asthma in a mouse model. METHODS An asthma model was established in female C57BL/6 J mice by using OVA. CD4+ T cells and bronchial epithelial cells (BECs) were isolated from the spleen and bronchi of the mice, respectively. Interventions included recombinant sCD26/sDPP4 protein, Ala-Gln, and EX527 (a SIRT1 inhibitor). Flow cytometry was used to assess Th17 and Treg cell populations. Mice were treated with Ala-Gln, EX527, and budesonide (BUD). Histopathological changes in lung tissues were evaluated using hematoxylin-eosin and Masson staining. White blood cell counts were measured with a hematology analyzer. The expression levels of DPP4, IL-17, SIRT1, SMAD2/3, N-cadherin, E-cadherin, MMP9, and α-SMA proteins were analyzed. RESULTS Treatment with recombinant sCD26/sDPP4 resulted in decreased E-cadherin expression in BECs and increased levels of α-SMA, MMP9, and N-cadherin, effects that were mitigated by Ala-Gln. Ala-Gln also prevented the reduction in SIRT1 expression in BECs and the increase in Th17 cell differentiation induced by recombinant sCD26/sDPP4. EX527 administration alongside Ala-Gln reversed these changes and enhanced the phosphorylation of SMAD2/3 through SIRT1 signaling. BUD alone reduced inflammation and fibrosis in bronchial tissue and lowered the Th17/Treg ratio in peribronchial lymph nodes. The therapeutic effect of BUD was further improved with concurrent Ala-Gln treatment. CONCLUSION Ala-Gln can inhibit BEC fibrosis and Th17 cell differentiation mediated by recombinant sCD26/sDPP4 through the SIRT1 pathway. Combined with BUD, Ala-Gln enhanced therapeutic efficacy in OVA-induced asthma in mice, which could offer improved outcomes for asthmatic patients with elevated DPP4 levels.
Collapse
Affiliation(s)
- Kai Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Xiaowen He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Donglu Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Lanling Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Bo Xiao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Lixia Hou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Feiqian Xue
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Guiming Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guilin Medical University, Guilin, China
- Key Laboratory of Basic Research on Respiratory Diseases, Guangxi Health Commission, Guilin, China
| |
Collapse
|
6
|
Wang S, Xue M, Wang J, Wu R, Shao Y, Luo K, Liu J, Zhu M. Effects of intravenous pulse methylprednisolone in neuromyelitis optica during the acute phase. Ann Clin Transl Neurol 2024; 11:2731-2744. [PMID: 39222472 PMCID: PMC11514921 DOI: 10.1002/acn3.52188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. While intravenous pulse methylprednisolone (IVMP) is the recommended initial treatment option for acute onset NMOSD, its therapeutic mechanism remains unclear. We hypothesized that IVMP would reduce the expression of pro-inflammatory factors and increase the resolution of inflammation in patients with NMOSD. METHODS Mendelian randomization (MR) analysis was used to screen meaningful inflammatory and resolution factors for inclusion. Three MR methods with inverse variance weighting (IVW) were primarily used to identify positive results. Interleukin (IL)-10, IL-1β, IL-6, C-X-C motif chemokine ligand 12 (CXCL12), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were screened from 41 inflammatory factors, and resolvin D1 (RvD1), maresin 1 (MaR1), and lipoxin A4 (LXA4) were screened from 6 resolution markers for inclusion. Subsequently, 12 patients with NMOSD were enrolled and treated with IVMP. Serum levels of the aforementioned inflammatory and resolution markers were measured by enzyme-linked immunosorbent assay before and after IVMP treatment. RESULTS High levels of TRAIL, CXCL12, and IL-1β were associated with an increased risk of NMOSD (TRAIL: odds ratio [OR], 1.582; 95% confidence interval [CI], 1.003-2.495; CXCL12: OR, 3.610; 95% CI, 1.011-12.889; IL-1β: OR, 4.500; 95% CI, 1.129-17.927). High levels of RvD1, MaR1, and LXA4 were associated with a reduced risk of NMOSD (RvD1: OR, 0.725; 95% CI, 0.538-0.976; MaR1: OR, 0.985; 95% CI, 0.970-0.999; LXA4: OR, 0.849; 95% CI, 0.727-0.993). Among patients with NMOSD, serum levels of IL-6, CXCL12, and TRAIL significantly decreased following IVMP treatment, compared with pretreatment levels, while levels of IL-1β, LXA4, and MaR1 significantly increased after IVMP treatment (p < 0.05). A significant positive correlation was observed between CXCL12 levels and Expanded Disability Status Scale (EDSS) scores (r = 0.451, p < 0.05). CONCLUSION Several systemic inflammatory regulators associated with the pathogenesis of NMOSD were identified. The protective roles of LXA4 and MaR1 may be indispensable components of glucocorticoid treatment. Therefore, the use of resolution markers may be a potential strategy for improving central nervous system injury in individuals with NMOSD.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mengru Xue
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jianglong Wang
- First Operating RoomThe First Hospital of Jilin UniversityChangchunChina
| | - Rui Wu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Yanqing Shao
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Ke Luo
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jiacheng Liu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mingqin Zhu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
7
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
8
|
Höpner L, Proschmann U, Inojosa H, Ziemssen T, Akgün K. Corticosteroid-depending effects on peripheral immune cell subsets vary according to disease modifying strategies in multiple sclerosis. Front Immunol 2024; 15:1404316. [PMID: 38938576 PMCID: PMC11208457 DOI: 10.3389/fimmu.2024.1404316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
Background The primary treatment for acute relapses in multiple sclerosis (MS) is the intravenous administration of high-dose methylprednisolone (IVMP). However, the mechanisms through which corticosteroid treatment impacts acute neuroinflammation in people with MS (pwMS) remain not fully understood. In particular, the changes induced by glucocorticoids (GCs) on cells of the innate immune system and the differences between patients with distinct immunotherapies have received little attention to date. Methods We conducted immunophenotyping using flow cytometry on peripheral blood mononuclear cells of pwMS who received IVMP treatment during a relapse. We compared the impact of an IVMP treatment on a broad variety of immune cell subsets within three groups: twelve patients who were treatment-naïve to disease modifying therapies (wDMT) to ten patients on platform therapies (PT) and eighteen patients on fingolimod therapy (FTY). Results We observed pronounced interindividual short- and intermediate-term effects of IVMP on distinct immune cells subsets. In addition to the well-documented decrease in T-helper cells (Th cells), we detected significant alterations after the first IVMP infusion within the innate immune response among neutrophil, eosinophil and basophil granulocytes, monocytes and plasmacytoid dendritic cells (pDCs). When comparing patients wDMT to the PT and FTY cohorts, we found that IVMP had a similar impact on innate immune cells across all treatment groups. However, we did not observe a significant further decline in T lymphocyte counts during IVMP in patients with pre-existing lymphopenia under FTY treatment. Although T cell apoptosis is considered the main mechanism of action of GCs, patients with FTY still reported symptom improvement following IVMP treatment. Conclusion In addition to T cell suppression, our data suggests that further immunoregulatory mechanisms of GC, particularly on cells of the innate immune response, are of greater significance than previously understood. Due to the regulation of the adaptive immune cells by DMTs, the impact of GC on these cells varies depending on the underlying DMT. Additional studies involving larger cohorts and cerebrospinal fluid samples are necessary to gain a deeper understanding of the immune response to GC in pwMS with different DMTs during relapse to define and explain differences in clinical response profiles.
Collapse
Affiliation(s)
| | | | | | | | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
9
|
Ran Y, Yin S, Xie P, Liu Y, Wang Y, Yin Z. ICAM-1 targeted and ROS-responsive nanoparticles for the treatment of acute lung injury. NANOSCALE 2024; 16:1983-1998. [PMID: 38189459 DOI: 10.1039/d3nr04401g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Acute lung injury (ALI) is an inflammatory disease caused by multiple factors such as infection, trauma, and chemicals. Without effective intervention during the early stages, it usually quickly progresses to acute respiratory distress syndrome (ARDS). Since ordinary pharmaceutical preparations cannot precisely target the lungs, their clinical application is limited. In response, we constructed a γ3 peptide-decorated and ROS-responsive nanoparticle system encapsulating therapeutic dexamethasone (Dex/PSB-γ3 NPs). In vitro, Dex/PSB-γ3 NPs had rapid H2O2 responsiveness, low cytotoxicity, and strong intracellular ROS removal capacity. In a mouse model of ALI, Dex/PSB-γ3 NPs accumulated at the injured lung rapidly, alleviating pulmonary edema and cytokine levels significantly. The modification of NPs by γ3 peptide achieved highly specific positioning of NPs in the inflammatory area. The ROS-responsive release mechanism ensured the rapid release of therapeutic dexamethasone at the inflammatory site. This combined approach improves treatment accuracy, and drug bioavailability, and effectively inhibits inflammation progression. Our study could effectively reduce the risk of ALI progressing to ARDS and hold potential for the early treatment of ALI.
Collapse
Affiliation(s)
- Yu Ran
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shanmei Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712038, China
| | - Yaxue Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Khantakova JN, Mutovina A, Ayriyants KA, Bondar NP. Th17 Cells, Glucocorticoid Resistance, and Depression. Cells 2023; 12:2749. [PMID: 38067176 PMCID: PMC10706111 DOI: 10.3390/cells12232749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Depression is a severe mental disorder that disrupts mood and social behavior and is one of the most common neuropsychological symptoms of other somatic diseases. During the study of the disease, a number of theories were put forward (monoamine, inflammatory, vascular theories, etc.), but none of those theories fully explain the pathogenesis of the disease. Steroid resistance is a characteristic feature of depression and can affect not only brain cells but also immune cells. T-helper cells 17 type (Th17) are known for their resistance to the inhibitory effects of glucocorticoids. Unlike the inhibitory effect on other subpopulations of T-helper cells, glucocorticoids can enhance the differentiation of Th17 lymphocytes, their migration to the inflammation, and the production of IL-17A, IL-21, and IL-23 in GC-resistant disease. According to the latest data, in depression, especially the treatment-resistant type, the number of Th17 cells in the blood and the production of IL-17A is increased, which correlates with the severity of the disease. However, there is still a significant gap in knowledge regarding the exact mechanisms by which Th17 cells can influence neuroinflammation in depression. In this review, we discuss the mutual effect of glucocorticoid resistance and Th17 lymphocytes on the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Anastasia Mutovina
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| | - Kseniya A. Ayriyants
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| |
Collapse
|
11
|
Chen Z, Huang Y, Wang B, Peng H, Wang X, Wu H, Chen W, Wang M. T cells: an emerging cast of roles in bipolar disorder. Transl Psychiatry 2023; 13:153. [PMID: 37156764 PMCID: PMC10167236 DOI: 10.1038/s41398-023-02445-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Bipolar disorder (BD) is a distinctly heterogeneous and multifactorial disorder with a high individual and social burden. Immune pathway dysregulation is an important pathophysiological feature of BD. Recent studies have suggested a potential role for T lymphocytes in the pathogenesis of BD. Therefore, greater insight into T lymphocytes' functioning in patients with BD is essential. In this narrative review, we describe the presence of an imbalance in the ratio and altered function of T lymphocyte subsets in BD patients, mainly in T helper (Th) 1, Th2, Th17 cells and regulatory T cells, and alterations in hormones, intracellular signaling, and microbiomes may be potential causes. Abnormal T cell presence explains the elevated rates of comorbid inflammatory illnesses in the BD population. We also update the findings on T cell-targeting drugs as potentially immunomodulatory therapeutic agents for BD disease in addition to classical mood stabilizers (lithium, valproic acid). In conclusion, an imbalance in T lymphocyte subpopulation ratios and altered function may be involved in the development of BD, and maintaining T cell immune homeostasis may provide an overall therapeutic benefit.
Collapse
Affiliation(s)
- Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
12
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
13
|
Li H, Ma L, Li W, Zheng B, Wang J, Chen S, Wang Y, Ge F, Qin B, Zheng X, Deng Y, Zeng R. Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood of mice. Front Immunol 2022; 13:977235. [PMID: 36211408 PMCID: PMC9533174 DOI: 10.3389/fimmu.2022.977235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Infants with respiratory syncytial virus (RSV)-associated bronchiolitis are at increased risk of childhood asthma. Recent studies demonstrated that certain infections induce innate immune memory (also termed trained immunity), especially in macrophages, to respond more strongly to future stimuli with broad specificity, involving in human inflammatory diseases. Metabolic reprogramming increases the capacity of the innate immune cells to respond to a secondary stimulation, is a crucial step for the induction of trained immunity. We hypothesize that specific metabolic reprogramming of lung trained macrophages induced by neonatal respiratory infection is crucial for childhood allergic asthma. Objective To address the role of metabolic reprogramming in lung trained macrophages induced by respiratory virus infection in allergic asthma. Methods Neonatal mice were infected and sensitized by the natural rodent pathogen Pneumonia virus of mice (PVM), a mouse equivalent strain of human RSV, combined with ovalbumin (OVA). Lung CD11b+ macrophages in the memory phase were re-stimulated to investigate trained immunity and metabonomics. Adoptive transfer, metabolic inhibitor and restore experiments were used to explore the role of specific metabolic reprogramming in childhood allergic asthma. Results PVM infection combined with OVA sensitization in neonatal mice resulted in non-Th2 (Th1/Th17) type allergic asthma following OVA challenge in childhood of mice. Lung CD11b+ macrophages in the memory phage increased, and showed enhanced inflammatory responses following re-stimulation, suggesting trained macrophages. Adoptive transfer of the trained macrophages mediated the allergic asthma in childhood. The trained macrophages showed metabolic reprogramming after re-stimulation. Notably, proline biosynthesis remarkably increased. Inhibition of proline biosynthesis suppressed the development of the trained macrophages as well as the Th1/Th17 type allergic asthma, while supplement of proline recovered the trained macrophages as well as the allergic asthma. Conclusion Proline metabolism reprogramming of trained macrophages induced by early respiratory infection combined with allergen sensitization contributes to development of allergic asthma in childhood. Proline metabolism could be a well target for prevention of allergic asthma in childhood.
Collapse
Affiliation(s)
- Hanglin Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Linyan Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Wenjian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Boyang Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Shunyan Chen
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Yang Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Fei Ge
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
| | - Beibei Qin
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Clinical Lab, Hebei Provincial People’s Hospital, Shijiazhuang, China
| | - Xiaoqing Zheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yuqing Deng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Ruihong Zeng
- Department of Immunology, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ruihong Zeng,
| |
Collapse
|
14
|
El-Saber Batiha G, Al-Gareeb AI, Saad HM, Al-kuraishy HM. COVID-19 and corticosteroids: a narrative review. Inflammopharmacology 2022; 30:1189-1205. [PMID: 35562628 PMCID: PMC9106274 DOI: 10.1007/s10787-022-00987-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
It has been reported that corticosteroid therapy was effective in the management of severe acute respiratory syndrome (SARS) and the Middle East Respiratory Syndrome (MERS), and recently in coronavirus disease 2019 (COVID-19). Corticosteroids are potent anti-inflammatory drugs that mitigate the risk of acute respiratory distress syndrome (ARDS) in COVID-19 and other viral pneumonia, despite a reduction of viral clearance; corticosteroids inhibit the development of cytokine storm and multi-organ damage. The risk-benefit ratio should be assessed for critical COVID-19 patients. In conclusion, corticosteroid therapy is an effective way in the management of COVID-19, it reduces the risk of complications primarily acute lung injury and the development of ARDS. Besides, corticosteroid therapy mainly dexamethasone and methylprednisolone are effective in reducing the severity of COVID-19 and associated comorbidities such as chronic obstructive pulmonary diseases (COPD), rheumatoid arthritis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyiah University, Baghdad, Iraq
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744 Matrouh Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyiah University, Baghdad, Iraq
| |
Collapse
|
15
|
Li Y, Ding T, Chen J, Ji J, Wang W, Ding B, Ge W, Fan Y, Xu L. The protective capability of Hedyotis diffusa Willd on lupus nephritis by attenuating the IL-17 expression in MRL/lpr mice. Front Immunol 2022; 13:943827. [PMID: 35958622 PMCID: PMC9359319 DOI: 10.3389/fimmu.2022.943827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
Lupus nephritis (LN), the most severe organ manifestation of systemic lupus erythematosus (SLE), is generally treated with glucocorticoids (GC) in clinical practice, leading to drug resistance and adverse effects in the long term. Fortunately, the combination of GC and traditional Chinese medical prescriptions can attenuate the adverse effects and improve therapeutic efficiency. Hedyotis diffusa Willd (HDW) is one of the most commonly used herbal compounds for LN treatment, which exhibits “heat-clearing” and “detoxification” effects. However, the underlying pharmacological mechanism remains unclear. The present study identified the chemical compounds in HDW extract with UPLC-Q-TOF-MS/MS. A total of 49 components were identified in the HDW extract, and the IL-17 signaling pathway was highly enriched by network pharmacological analysis. MRL/lpr model mice, reflecting the spontaneous development of LN, were used to evaluate the protective activity and investigate the underlying mechanism of the combination treatment. The white blood cell content (WBC), including lymphocytes and neutrophils, cytokines (IL-6, MCP-1, TNF-a), and various autoantibodies (ANA, ab-dsDNA, ab-snRNP/sm) in the blood of MRL/lpr mice were significantly improved by the intragastric administration of HDW. Additionally, the expression of STAT3, IL-17, Ly6G, and MPO in the kidney and neutrophil NETosis were ameliorated with HDW treatment. The pathological and morphological analysis suggested that HDW application could reduce urinary protein levels and inflammatory cell infiltration and inhibit glomerular interstitial cell proliferation. Hence, HDW might ameliorate lupus nephritis by inhibiting IL-6 secretion and STAT3-induced IL-17 expression. The active compounds in HDW were predictively selected with computational methods. The docking affinity of asiatic acid, neoandrographolide to IL-6, glycyrrhetinic acid, oleanolic acid, ursolic acid, and wilforlide A to STAT3 are extremely high. In conclusion, the IL-6 and STAT3/IL-17signaling pathways could be critical regulative targets of HDW on LN.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tao Ding
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinjun Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Ding
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weihong Ge
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Xu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Li Xu,
| |
Collapse
|
16
|
Ouyang K, Oparaugo N, Nelson AM, Agak GW. T Cell Extracellular Traps: Tipping the Balance Between Skin Health and Disease. Front Immunol 2022; 13:900634. [PMID: 35795664 PMCID: PMC9250990 DOI: 10.3389/fimmu.2022.900634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
The role of extracellular traps (ETs) in the innate immune response against pathogens is well established. ETs were first identified in neutrophils and have since been identified in several other immune cells. Although the mechanistic details are not yet fully understood, recent reports have described antigen-specific T cells producing T cell extracellular traps (TETs). Depending on their location within the cutaneous environment, TETs may be beneficial to the host by their ability to limit the spread of pathogens and provide protection against damage to body tissues, and promote early wound healing and degradation of inflammatory mediators, leading to the resolution of inflammatory responses within the skin. However, ETs have also been associated with worse disease outcomes. Here, we consider host-microbe ET interactions by highlighting how cutaneous T cell-derived ETs aid in orchestrating host immune responses against Cutibacterium acnes (C. acnes), a commensal skin bacterium that contributes to skin health, but is also associated with acne vulgaris and surgical infections following joint-replacement procedures. Insights on the role of the skin microbes in regulating T cell ET formation have broad implications not only in novel probiotic design for acne treatment, but also in the treatment for other chronic inflammatory skin disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Nicole Oparaugo
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA, United States
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- *Correspondence: George W. Agak,
| |
Collapse
|
17
|
Pasman R, Krom BP, Zaat SAJ, Brul S. The Role of the Oral Immune System in Oropharyngeal Candidiasis-Facilitated Invasion and Dissemination of Staphylococcus aureus. FRONTIERS IN ORAL HEALTH 2022; 3:851786. [PMID: 35464779 PMCID: PMC9021398 DOI: 10.3389/froh.2022.851786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans and Staphylococcus aureus account for most invasive fungal and bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed to mediate S. aureus invasion of immunocompromised hosts during co-colonization of oral mucosal surfaces. The status of the oral immune system crucially contributes to this process in two distinct ways: firstly, by allowing invasive C. albicans growth during dysfunction of extra-epithelial immunity, and secondly following invasion by some remaining function of intra-epithelial immunity. Immunocompromised individuals at risk of developing invasive oral C. albicans infections could, therefore, also be at risk of contracting concordant S. aureus BSIs. Considering the crucial contribution of both oral immune function and dysfunction, the aim of this review is to provide an overview of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Stanley Brul
| |
Collapse
|
18
|
Beurel E, Medina-Rodriguez EM, Jope RS. Targeting the Adaptive Immune System in Depression: Focus on T Helper 17 Cells. Pharmacol Rev 2022; 74:373-386. [PMID: 35302045 PMCID: PMC8973514 DOI: 10.1124/pharmrev.120.000256] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a vital need to understand mechanisms contributing to susceptibility to depression to improve treatments for the 11% of Americans who currently suffer from this debilitating disease. The adaptive immune system, comprising T and B cells, has emerged as a potential contributor to depression, as demonstrated in the context of lymphopenic mice. Overall, patients with depression have reduced circulating T and regulatory B cells, "immunosuppressed" T cells, and alterations in the relative abundance of T cell subtypes. T helper (Th) cells have the capacity to differentiate to various lineages depending on the cytokine environment, antigen stimulation, and costimulation. Regulatory T cells are decreased, and the Th1/Th2 ratio and the Th17 cells are increased in patients with depression. Evidence for changes in each Th lineage has been reported to some extent in patients with depression. However, the evidence is strongest for the association of depression with changes in Th17 cells. Th17 cells produce the inflammatory cytokine interleukin (IL)-17A, and the discovery of Th17 cell involvement in depression evolved from the well established link that IL-6, which is required for Th17 cell differentiation, contributes to the onset, and possibly maintenance, of depression. One intriguing action of Th17 cells is their participation in the gut-brain axis to mediate stress responses. Although the mechanisms of action of Th17 cells in depression remain unclear, neutralization of IL-17A by anti-IL-17A antibodies, blocking stress-induced production, or release of gut Th17 cells represent feasible therapeutic approaches and might provide a new avenue to improve depression symptoms. SIGNIFICANCE STATEMENT: Th17 cells appear as a promising therapeutic target for depression, for which efficacious therapeutic options are limited. The use of neutralizing antibodies targeting Th17 cells has provided encouraging results in depressed patients with comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| |
Collapse
|
19
|
Costa TJ, De Oliveira JC, Giachini FR, Lima VV, Tostes RC, Bomfim GF. Programming of Vascular Dysfunction by Maternal Stress: Immune System Implications. Front Physiol 2022; 13:787617. [PMID: 35360231 PMCID: PMC8961444 DOI: 10.3389/fphys.2022.787617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence highlights that several insults during pregnancy impact the vascular function and immune response of the male and female offspring. Overactivation of the immune system negatively influences cardiovascular function and contributes to cardiovascular disease. In this review, we propose that modulation of the immune system is a potential link between prenatal stress and offspring vascular dysfunction. Glucocorticoids are key mediators of stress and modulate the inflammatory response. The potential mechanisms whereby prenatal stress negatively impacts vascular function in the offspring, including poor hypothalamic–pituitary–adrenal axis regulation of inflammatory response, activation of Th17 cells, renin–angiotensin–aldosterone system hyperactivation, reactive oxygen species imbalance, generation of neoantigens and TLR4 activation, are discussed. Alterations in the immune system by maternal stress during pregnancy have broad relevance for vascular dysfunction and immune-mediated diseases, such as cardiovascular disease.
Collapse
Affiliation(s)
- Tiago J. Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Júlio Cezar De Oliveira
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rita C. Tostes
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Gisele Facholi Bomfim
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
- *Correspondence: Gisele Facholi Bomfim,
| |
Collapse
|
20
|
Nemirovsky A, Ilan K, Lerner L, Cohen-Lavi L, Schwartz D, Goren G, Sergienko R, Greenberg D, Slonim-Nevo V, Sarid O, Friger M, Regev S, Odes S, Hertz T, Monsonego A. Brain-immune axis regulation is responsive to cognitive behavioral therapy and mindfulness intervention: Observations from a randomized controlled trial in patients with Crohn's disease. Brain Behav Immun Health 2022; 19:100407. [PMID: 35024638 PMCID: PMC8728050 DOI: 10.1016/j.bbih.2021.100407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is a chronic inflammatory bowel disease associated with psychological stress that is regulated primarily by the hypothalamus-pituitary-adrenal (HPA) axis. Here, we determined whether the psychological characteristics of CD patients associate with their inflammatory state, and whether a 3-month trial of cognitive-behavioral and mindfulness-based stress reduction (COBMINDEX) impacts their inflammatory process. METHODS Circulating inflammatory markers and a wide range of psychological parameters related to stress and well-being were measured in CD patients before and after COBMINDEX. Inflammatory markers in CD patients were also compared to age- and sex-matched healthy controls (HCs). RESULTS CD patients exhibited increased peripheral low-grade inflammation compared with HCs, demonstrated by interconnected inflammatory modules represented by IL-6, TNFα, IL-17, MCP-1 and IL-18. Notably, higher IL-18 levels correlated with higher score of stress and a lower score of wellbeing in CD patients. COBMINDEX was accompanied by changes in inflammatory markers that coincided with changes in cortisol: changes in serum levels of cortisol correlated positively with those of IL-10 and IFNα and negatively with those of MCP-1. Furthermore, inflammatory markers of CD patients at baseline predicted COBMINDEX efficacy, as higher levels of distinct cytokines and cortisol at baseline, correlated negatively with changes in disease activity (by Harvey-Bradshaw Index) and psychological distress (global severity index measure) following COBMINDEX. CONCLUSION CD patients have a characteristic immunological profile that correlates with psychological stress, and disease severity. We suggest that COBMINDEX induces stress resilience in CD patients, which impacts their well-being, and their disease-associated inflammatory process.
Collapse
Affiliation(s)
- Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Karny Ilan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Livnat Lerner
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Liel Cohen-Lavi
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Doron Schwartz
- Dept. of Gastroenterology and Hepatology, Soroka Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ganit Goren
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ruslan Sergienko
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Dan Greenberg
- Department of Health Systems Management, School of Public Health, Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Vered Slonim-Nevo
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Orly Sarid
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Michael Friger
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Shirley Regev
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Shmuel Odes
- Dept. of Gastroenterology and Hepatology, Soroka Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Tomer Hertz
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - on behalf of the Israeli IBD Research Nucleus (IIRN)
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Spitzer Department of Social Work Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Public Health, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Health Systems Management, School of Public Health, Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Dept. of Gastroenterology and Hepatology, Soroka Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
21
|
Sous R, Levkiavska Y, Sharma R, Jariwal R, Amodio D, Johnson RH, Heidari A, Kuran R. Two Cases of Miliary and Disseminated Coccidioidomycosis Following Glucocorticoid Therapy and Literature Review. J Investig Med High Impact Case Rep 2022; 10:23247096211051928. [PMID: 35225034 PMCID: PMC8891939 DOI: 10.1177/23247096211051928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A 49-year-old man with no significant past medical history received dexamethasone as part of his treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Less than 3 weeks later, the patient developed acute respiratory distress syndrome. Radiological and serological testing led to a diagnosis of acute hypoxic miliary coccidioidomycosis. A 52-year-old man with a past medical history of chronic kidney disease (CKD) was treated with prednisone for focal segmental glomerulosclerosis (FSGS). Within 2 weeks, this patient developed bilateral lower extremity weakness. Radiology, serology, and lumbar puncture proved a diagnosis of reactivated coccidioidomycosis with miliary pattern and coccidioidomycosis meningoencephalitis with arachnoiditis. Whether treatment with glucocorticoids caused reactivation of coccidioidomycosis is discussed in this case series.
Collapse
Affiliation(s)
| | | | - Rupam Sharma
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| | | | - Daniela Amodio
- Rio Bravo Family Medicine Residency Program, Bakersfield, CA, USA
| | - Royce H Johnson
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| | - Arash Heidari
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| | - Rasha Kuran
- Kern Medical, Bakersfield, CA, USA.,Valley Fever Institute at Kern Medical, Bakersfield, CA, USA
| |
Collapse
|
22
|
Moreno-Córdova V, Berra-Romani R, Flores Mendoza LK, Reyes-Leyva J. Th17 Lymphocytes in Children with Asthma: Do They Influence Control? PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2021; 34:147-152. [PMID: 34958246 PMCID: PMC8817680 DOI: 10.1089/ped.2021.0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Background: Allergic asthma was considered as an inflammation mediated by specific CD4+ helper lymphocytes (Th2); however, this paradigm changed in 2005, when a third group of helper cells called Th17 cells were identified. Th17 lymphocytes are the main source of interleukin (IL)-17A-F, IL-21, and IL-22; however, their physiological role in children is unclear. This study aimed to determine the percentage of Th17 cells and IL-17A in pediatric patients diagnosed with asthma and to associate it with disease control using a validated questionnaire. Methods: This cross-sectional, prospective, comparative study included 92 asthma-diagnosed children 4-18 years of age. The Asthma Control Test was used as an assessment measure to classify patients as controlled (n = 30), partially controlled (n = 31), and uncontrolled (n = 31). Th17 cells and IL-17A were analyzed by flow cytometry. Patients receiving inhaled steroid therapy as monotherapy or associated with a long-acting bronchodilator were included. Results: The mean percentage of Th17 cells in the participants was 4.55 ± 7.34 (Controlled), 5.50 ± 8.09 (Partially Controlled), and 6.14 ± 7.11 (Uncontrolled). There was no significant difference between the 3 groups (P = 0.71). The mean percentage of IL-17A in all the participants was 9.84 ± 9.4 (Controlled), 10.10 ± 10.5 (Partially Controlled), and 11.42 ± 8.96 (Uncontrolled); no significant difference between the 3 groups (P = 0.79) was observed. Th17 lymphocyte levels were similar among the 3 groups and the same trend was observed with IL-17A. A significant correlation between Th17 or IL-17A and the degree of asthma control (Th17, P = 0.24; IL-17A, P = 0.23) was not found. Conclusions: The percentages of both Th17 lymphocytes and IL-17A found in children with asthma were not significantly different in the 3 groups, which suggests that they do not play an important role in asthma control. Our findings may contribute to the knowledge related to non-Th2 inflammation in children. Clinical-Trials.gov ID: 2015-2102-85.
Collapse
Affiliation(s)
- Verónica Moreno-Córdova
- Department of Pediatric Pulmonology, Instituto Mexicano del Seguro Social (IMSS) Centro Médico Nacional “Manuel Ávila Camacho” Puebla, Puebla, México
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Lilian K. Flores Mendoza
- Clinical and Research Laboratory (LACIUS, URS), Department of Chemical, Biological, and Agricultural Sciences (DC-QB), Division of Sciences and Engineering, University of Sonora, Navojoa, México
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla, México
| |
Collapse
|
23
|
Akşan B, Akadam-Teker AB. Genetic variants in IL-17A rs10484879 and serum levels of IL-17A are associated with psoriasis risk. Arch Dermatol Res 2021; 314:937-942. [PMID: 34853870 DOI: 10.1007/s00403-021-02308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Psoriasis is an inflammatory skin disease characterized by keratinocyte hyperproliferation with effective environmental and genetic factors. Recent studies showing that the IL-23/IL-17 axis plays a central role in the pathogenesis of the disease. Experimental and clinical studies suggest that IL-17A, an important regulatory effector cytokine in this pathway and triggers changes mainly in affected tissues. Based on the central role of IL-17A in the pathogenesis of psoriasis, we thought that variations in this gene could affect the susceptibility and severity of this disease. Therefore, in this study, we aimed to analyze whether IL-17A rs10484879 variant has an effect on psoriasis pathogenesis in Turkish population. In this case-control study, the study group consisting of 564 patient (188 psoriasis patients (66 males/122 females)/376 controls (132 males/244 females) and they were genotyped in terms of IL-17A (rs10484879) polymorphism with TaqMan 5 'Allelic Discrimination Test. IL-17A serum levels were measured with the Enzyme-linked immunosorbent assay (ELISA). The genotype distributions of the IL-17A rs10484879 polymorphism between the patient and control groups were statistically different in the TT genotype and it was observed more commonly in the patient group compared to the controls (p < 0.001). Similarly, the T allele was observed with a higher prevalence in the patient group compared to the controls (p = 0.007). IL-17A serum levels were associated with increased serum concentration, respectively, TT > GT > GG in all study groups (p < 0.05). We would like to report that IL-17A rs10484879 TT genotype and T allele are associated with increased risk of psoriasis in the Turkish population.
Collapse
Affiliation(s)
- Burak Akşan
- Department of Skin Diseases, Faculty of Medicine, Giresun University, Giresun, Turkey
| | | |
Collapse
|
24
|
Siomkajło M, Mizera Ł, Szymczak D, Kolačkov K, Grzegrzółka J, Bolanowski M, Daroszewski J. Effect of systemic steroid therapy in Graves' orbitopathy on regulatory T cells and Th17/Treg ratio. J Endocrinol Invest 2021; 44:2475-2484. [PMID: 33866536 DOI: 10.1007/s40618-021-01565-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Glucocorticoids are a mainstay treatment for Graves' orbitopathy, yet their exact mechanisms of action remain unclear. We aimed to determine whether the therapeutic effects of systemic steroid therapy in Graves' orbitopathy are mediated by changes in regulatory T lymphocytes (Tregs) and T helper 17 lymphocytes (Th17). METHODS We assessed Treg and Th17 levels in the peripheral blood of 32 patients with active, moderate-to-severe Graves' orbitopathy who received 12 weekly pulses of methylprednisolone, and determined their association with disease severity, disease activity, and treatment outcomes. The acute orbitopathy phase was confirmed based on clinical evaluation and magnetic resonance imaging, and assessed using the clinical activity score (CAS). The severity of the disease was classified according to ETA/EUGOGO guidelines, and quantified based on the total eye score. Treatment response was determined based on specific criteria (e.g., changes in CAS score, diplopia grade, visual acuity, etc.). Treg and Th17 cells were identified using flow cytometry. RESULTS Methylprednisolone treatment improved the activity of the disease and altered the Th17/Treg balance (i.e., the percentage of Tregs decreased while the number of Th17 cells remained unchanged). There was no association between the Treg/Th17 ratio and the activity and severity of the disease or the treatment response. CONCLUSIONS Therapeutic effects of steroid therapy in Graves' orbitopathy are not mediated by Treg and Th17 alterations in the peripheral blood. The decrease in peripheral Treg percentage is likely a consequence of the non-specific effects of steroids and does not impact clinical outcome.
Collapse
Affiliation(s)
- M Siomkajło
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland.
| | - Ł Mizera
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - D Szymczak
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - K Kolačkov
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - J Grzegrzółka
- Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | - M Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - J Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| |
Collapse
|
25
|
Shimba A, Ejima A, Ikuta K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front Immunol 2021; 12:706951. [PMID: 34691020 PMCID: PMC8531522 DOI: 10.3389/fimmu.2021.706951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex. Their production is controlled by circadian rhythm and stress, the latter of which includes physical restraint, hunger, and inflammation. Importantly, GCs have various effects on immunity, metabolism, and cognition, including pleiotropic effects on the immune system. In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed, they suppress inflammatory cytokine expression and cell-mediated immunity, leading to increased risks of some infections. However, recent studies have shown that endogenous GCs induced by the diurnal cycle and dietary restriction enhance immune responses against some infections by promoting the survival, redistribution, and response of T and B cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated immunity in some stress conditions. Taken together, GCs have both immunoenhancing and immunosuppressive effects on the immune system.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Wang N, Brix S, Larsen JM, Thysen AH, Rasmussen MA, Workman CT, Stokholm J, Bønnelykke K, Bisgaard H, Chawes BL. Innate IL-23/Type 17 immune responses mediate the effect of the 17q21 locus on childhood asthma. Clin Exp Allergy 2021; 51:892-901. [PMID: 33987892 DOI: 10.1111/cea.13900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Several childhood asthma risk loci that relate to immune function have been identified by genome-wide association studies (GWAS), but the underlying mechanisms remain unknown. OBJECTIVE Here, we examined whether perturbed innate immune responses mediate the association between known genetic risk variants and development of childhood asthma. METHODS Peripheral blood mononuclear cells from 336 six-month-old infants from the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000 ) cohort were stimulated in vitro with six different innate ligands (LPS, CpG, poly(I:C), R848, HDMAPP and aluminium hydroxide together with low levels of LPS) followed by quantification of 18 released cytokines and chemokines 40 h after the stimulations. The innate immune response profiles were decomposed by principal component (PC) analysis, and PC1-5 were used in mediation analyses of the effect of 25 known genetic risk variants on childhood asthma until age 7. RESULTS The effects of two variants from the 17q21 locus (rs7216389, rs2305480) on asthma and exacerbation risk were significantly mediated by immune parameters induced in response to ligands mimicking intracellular colonization; bacterial DNA (CpG) and double-stranded viral RNA (poly(I:C)). The Th17 and innate lymphoid cell type 3-amplifying cytokine IL-23 was the most prominent cytokine involved. CONCLUSION The 17q21 effect on childhood asthma and exacerbations was partly mediated by deregulation of IL-23 in response to intracellular microbial ligands, which may suggest ineffective clearance of intracellular pathogens in the lungs.
Collapse
Affiliation(s)
- Ni Wang
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jeppe M Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Anna H Thysen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten A Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
27
|
Healey DCC, Cephus JY, Barone SM, Chowdhury NU, Dahunsi DO, Madden MZ, Ye X, Yu X, Olszewski K, Young K, Gerriets VA, Siska PJ, Dworski R, Hemler J, Locasale JW, Poyurovsky MV, Peebles RS, Irish JM, Newcomb DC, Rathmell JC. Targeting In Vivo Metabolic Vulnerabilities of Th2 and Th17 Cells Reduces Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1127-1139. [PMID: 33558372 PMCID: PMC7946768 DOI: 10.4049/jimmunol.2001029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
T effector cells promote inflammation in asthmatic patients, and both Th2 and Th17 CD4 T cells have been implicated in severe forms of the disease. The metabolic phenotypes and dependencies of these cells, however, remain poorly understood in the regulation of airway inflammation. In this study, we show the bronchoalveolar lavage fluid of asthmatic patients had markers of elevated glucose and glutamine metabolism. Further, peripheral blood T cells of asthmatics had broadly elevated expression of metabolic proteins when analyzed by mass cytometry compared with healthy controls. Therefore, we hypothesized that glucose and glutamine metabolism promote allergic airway inflammation. We tested this hypothesis in two murine models of airway inflammation. T cells from lungs of mice sensitized with Alternaria alternata extract displayed genetic signatures for elevated oxidative and glucose metabolism by single-cell RNA sequencing. This result was most pronounced when protein levels were measured in IL-17-producing cells and was recapitulated when airway inflammation was induced with house dust mite plus LPS, a model that led to abundant IL-4- and IL-17-producing T cells. Importantly, inhibitors of the glucose transporter 1 or glutaminase in vivo attenuated house dust mite + LPS eosinophilia, T cell cytokine production, and airway hyperresponsiveness as well as augmented the immunosuppressive properties of dexamethasone. These data show that T cells induce markers to support metabolism in vivo in airway inflammation and that this correlates with inflammatory cytokine production. Targeting metabolic pathways may provide a new direction to protect from disease and enhance the effectiveness of steroid therapy.
Collapse
Affiliation(s)
- Diana C Contreras Healey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jacqueline Y Cephus
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sierra M Barone
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Nowrin U Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Debolanle O Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew Z Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Xuemei Yu
- Kadmon Corporation, New York, NY 10016
| | | | - Kirsten Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Valerie A Gerriets
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, CA 95757
| | - Peter J Siska
- Internal Medicine III, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Ryszard Dworski
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan Hemler
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22904
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; and
| | | | - R Stokes Peebles
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dawn C Newcomb
- Department of Medicine, Division of Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
28
|
Schneider AL, Schleimer RP, Tan BK. Targetable pathogenic mechanisms in nasal polyposis. Int Forum Allergy Rhinol 2021; 11:1220-1234. [PMID: 33660425 DOI: 10.1002/alr.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a challenging disease entity with significant rates of recurrence following appropriate medical and surgical therapy. Recent approval of targeted biologics in CRSwNP compels deeper understanding of underlying disease pathophysiology. Both of the approved biologics for CRSwNP modulate the type 2 inflammatory pathway, and the majority of drugs in the clinical trials pathway are similarly targeted. However, there remain multiple other pathogenic mechanisms relevant to CRSwNP for which targeted therapeutics already exist in other inflammatory diseases that have not been studied directly. In this article we summarize pathogenic mechanisms of interest in CRSwNP and discuss the results of ongoing clinical studies of targeted therapeutics in CRSwNP and other related human inflammatory diseases.
Collapse
Affiliation(s)
| | - Robert P Schleimer
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce K Tan
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
29
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
30
|
Shimba A, Ikuta K. Control of immunity by glucocorticoids in health and disease. Semin Immunopathol 2020; 42:669-680. [PMID: 33219395 DOI: 10.1007/s00281-020-00827-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
Animals receive environmental stimuli from neural signals in order to produce hormones that control immune responses. Glucocorticoids (GCs) are a group of steroid hormones produced in the adrenal cortex and well-known mediators for the nervous and immune systems. GC secretion is induced by circadian rhythm and stress, and plasma GC levels are high at the active phase of animals and under stress condition. Clinically, GCs are used for allergies, autoimmunity, and chronic inflammation, because they have strong anti-inflammatory effects and induce the apoptosis of lymphocytes. Glucocorticoid receptor (GR) acts as a transcription factor and represses the expression of inflammatory cytokines, chemokines, and prostaglandins by binding to its motif, glucocorticoid-response element, or to other transcription factors. In mice, GR suppresses the antigen-stimulated inflammation mediated by macrophages, dendritic cells, and epithelial cells, and impairs cytotoxic immune responses by downregulating interferon-γ production and inhibiting the development of type-1 helper T cells, CD8+ T cells, and natural killer cells. These immune inhibitory effects prevent lethality by excessive inflammation, but at the same time increase the susceptibility to infection and cancer. GCs can also activate the immune system. The circadian cycle of GC secretion controls the diurnal oscillations of the distribution and response of T cells, thus supporting T cell maintenance and effective immune protection against infection. Moreover, several reports have shown that GR has the potential to enhance the activities of Th2, Th17, and immunoglobulin-producing B cells. Stress has two different effects on immune responses: immune suppression to cause mortality by infection and cancer, and excessive immune activation to induce chronic inflammation and autoimmune disease. Consistently, stress-induced GCs strongly suppress cell-mediated immunity and cause viral infection and tumor development. They may also enhance the development of pathogenic helper T cells and cause tissue damage through neural and intestinal inflammation. Past studies have reported the positive and negative effects of GCs on the immune system. These opposing properties of GCs may regulate the immune balance between the responsiveness to antigens and excessive inflammation in steady-state and stress conditions.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
31
|
Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Halwani R, Hamid Q, Hamoudi R. Blood and Salivary Amphiregulin Levels as Biomarkers for Asthma. Front Med (Lausanne) 2020; 7:561866. [PMID: 33195308 PMCID: PMC7659399 DOI: 10.3389/fmed.2020.561866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Background: Amphiregulin (AREG) expression in asthmatic airways and sputum was shown to increase and correlate with asthma. However, no studies were carried out to evaluate the AREG level in blood and saliva of asthmatic patients. Objective: To measure circulating AREG mRNA and protein concentrations in blood, saliva, and bronchial biopsies samples from asthmatic patients. Methods: Plasma and Saliva AREG protein concentrations were measured using ELISA while PBMCs, and Saliva mRNA expression was measured by RT qPCR in non-severe, and severe asthmatic patients compared to healthy controls. Primary asthmatic bronchial epithelial cells and fibroblasts were assessed for AREG mRNA expression and released soluble AREG in their conditioned media. Tissue expression of AREG was evaluated using immunohistochemistry of bronchial biopsies from asthmatic patients and healthy controls. Publicly available transcriptomic databases were explored for the global transcriptomic profile of bronchial epithelium, and PBMCs were explored for AREG expression in asthmatic vs. healthy controls. Results: Asthmatic patients had higher AREG protein levels in blood and saliva compared to control subjects. Higher mRNA expression in saliva and primary bronchial epithelial cells plus higher AREG immunoreactivity in bronchial biopsies were also observed. Both blood and saliva AREG levels showed positive correlations with allergic rhinitis status, atopy status, eczema status, plasma periostin, neutrophilia, Montelukast sodium use, ACT score, FEV1, and FEV1/FVC. In silico analysis showed that severe asthmatic bronchial epithelium with high AREG gene expression is associated with higher neutrophils infiltration. Conclusion: AREG levels measured in a minimally invasive blood sample and a non-invasive saliva sample are higher in non-allergic severe asthma. CLINICAL IMPLICATIONS This is the first report to show the higher level of AREG levels in blood and saliva of non-allergic severe asthma.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K. Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | | | - Ibrahim Yaseen Hachim
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health Authority, Dubai, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, UCL, London, United Kingdom
| |
Collapse
|
32
|
New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2020; 18:269-278. [PMID: 32868909 PMCID: PMC7456664 DOI: 10.1038/s41423-020-00526-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are endogenous hormones that are crucial for the homeostasis of the organism and adaptation to the external environment. Because of their anti-inflammatory effects, synthetic GCs are also extensively used in clinical practice. However, almost all cells in the body are sensitive to GC regulation. As a result, these mediators have pleiotropic effects, which may be undesirable or detrimental to human health. Here, we summarize the recent findings that contribute to deciphering the molecular mechanisms downstream of glucocorticoid receptor activation. We also discuss the complex role of GCs in infectious diseases such as sepsis and COVID-19, in which the balance between pathogen elimination and protection against excessive inflammation and immunopathology needs to be tightly regulated. An understanding of the cell type- and context-specific actions of GCs from the molecular to the organismal level would help to optimize their therapeutic use.
Collapse
|
33
|
Moser T, Akgün K, Proschmann U, Sellner J, Ziemssen T. The role of TH17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev 2020; 19:102647. [PMID: 32801039 DOI: 10.1016/j.autrev.2020.102647] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/08/2020] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) where immunopathology is thought to be mediated by myelin-reactive CD4+ T helper (TH) cells. The TH cells most commonly implicated in the pathogenesis of the disease are of TH1 and TH17 lineage, which are defined by the production of interferon-γ and interleukin-17, respectively. Moreover, there is emerging evidence for the involvement of TH17.1 cells, which share the hallmarks of TH1 and TH17 subsets. In this review, we summarise current knowledge about the potential role of TH17 subsets in the initiation and progression of the disease and put a focus on their response to approved immunomodulatory MS drugs. In this regard, TH17 cells are abundant in peripheral blood, cerebrospinal fluid and brain lesions of MS patients, and their counts and inflammatory mediators are further increased during relapses. Fingolimod and alemtuzumab induce a paramount decrease in central memory T cells, which harbour the majority of peripheral TH17 cells, while the efficacy of natalizumab, dimethyl fumarate and importantly hematopoietic stem cell therapy correlates with TH17.1 cell inhibition. Interestingly, also CD20 antibodies target highly inflammatory TH cells and hamper TH17 differentiation by IL-6 reductions. Moreover, recovery rates of TH cells best correlate with long-term efficacy after therapeutical immunodepletion. We conclude that central memory TH17.1 cells play a pivotal role in MS pathogenesis and they represent a major target of MS therapeutics.
Collapse
Affiliation(s)
- Tobias Moser
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Johann Sellner
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Liechtensteinstrasse 67, 3120 Mistelbach, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technical, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
34
|
Campione E, Cosio T, Lanna C, Mazzilli S, Ventura A, Dika E, Gaziano R, Dattola A, Candi E, Bianchi L. Predictive role of vitamin A serum concentration in psoriatic patients treated with IL-17 inhibitors to prevent skin and systemic fungal infections. J Pharmacol Sci 2020; 144:52-56. [PMID: 32565006 DOI: 10.1016/j.jphs.2020.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The use of biological drugs in psoriasis is replacing traditional therapies due to their specific mechanism and limited side effects. However, the use of Interleukin 17 inhibitors and the modification of its cytokine pathway could favor the risk of fungal infections. All-trans retinoic acid is an active metabolite of vitamin A with anti-inflammatory and immunoregulatory properties through its capacity to stimulate both innate and adaptive immunity and to its effects on proliferation, differentiation and apoptosis in a variety of immune cells. Furthermore, it has been recently discovered that All-trans retinoic acid has a direct fungistatic effect against Candida and Aspergillus Fumigatus. On the basis of these new insights, in the current review, we suggest that the evaluation of serum level of All-trans retinoic acid or vitamin A should be considered as a predictive marker for the development of fungal infections among psoriatic patients treated with Interleukin 17 inhibitors. In clinical practice, vitamin A test could be added in the routine hospital diagnostic management for a better selection of psoriatic patients eligible to Interleukin 17 inhibitors.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Mazzilli
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Emi Dika
- Dermatology Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Annunziata Dattola
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
35
|
The Role of Th17 Cells and IL-17 in Th2 Immune Responses of Allergic Conjunctivitis. J Ophthalmol 2020; 2020:6917185. [PMID: 32566265 PMCID: PMC7267877 DOI: 10.1155/2020/6917185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 11/24/2022] Open
Abstract
Allergic conjunctivitis (AC) is a common allergic disease that is often associated with the onset of rhinitis or asthma. The incidence of AC has increased significantly in recent years possibly due to air pollution and climate warming. AC seriously affects patients' quality of life and work efficiency. Th (T-helper) 2 immune responses and type I hypersensitivity reactions are generally considered the basis of occurrence of AC. It has been found that new subpopulations of T-helper cells, Th17 cells that produce interleukin-17 (IL-17), play an important role in the Th2-mediated pathogenesis of conjunctivitis. Studies have shown that Th17 cells are involved in a variety of immune inflammation, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, and asthma. However, the role of Th17 and IL-17 in AC is unclear. This paper will focus on how T-helper 17 cells and interleukin-17 are activated in the Th2 immune response of allergic conjunctivitis and how they promote the Th2 immune response of AC.
Collapse
|
36
|
Promises and challenges of biologics for severe asthma. Biochem Pharmacol 2020; 179:114012. [PMID: 32389637 DOI: 10.1016/j.bcp.2020.114012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022]
Abstract
Patients with severe asthma that remain uncontrolled incur significant medical burden and healthcare costs. Severe asthma is a heterogeneous airway disorder with complex pathophysiological mechanisms which can be broadly divided into type 2 (T2)-high and T2-low inflammatory pathways. Recent advances in asthma therapeutics with the advent of biologics have heralded an era of promising targeted therapy in this group of patients. The current available biologics, including anti-IgE mAb, anti-IL-5/IL-5R mAb and anti-IL-4Rα mAb, mainly target patients with an asthma endotype characterised by T2-high inflammation. While they have delivered positive outcomes in terms of reduction in exacerbations, improving lung function and quality of life, as well as reducing the dependence on oral corticosteroids, they have not functioned as the "panacea" as a significant proportion of patients do not respond completely to these targeted therapies. In addition, there is a lack of markers that can predict treatment response and clinicians are guided only by subjective asthma symptom scores. Suboptimal treatment response is common for individual patients. There has also been a dearth of effective targeted therapy for patients with T2-low asthma and treatment options remain limited for these patients. There is a pipeline of newer biologics targeting cytokines that operate at the interface between innate and adaptive immunity (e.g. IL-17A, thymic stromal lymphopoietin (TSLP), IL-25, IL-33, IL-32 and IL-36γ) with potential of modifying and reducing the severity of asthma. This commentary provides an overview of treatment with the current biologics and highlights the limitations, challenges and unmet needs in clinical management. We also summarise up-and-coming potential targets and therapeutic biologics for severe asthma.
Collapse
|
37
|
Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert Rev Respir Med 2019; 13:1057-1068. [PMID: 31498708 DOI: 10.1080/17476348.2019.1666002] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Asthma is a respiratory disorder typically characterized by T-helper type 2 (Th2) inflammation that is mediated by cytokines, including IL-4, IL-5, and IL-13. Pathophysiologically, airway inflammation involving prominent eosinophilia, elevated IgE synthesis, airway hyperresponsiveness, mucus hypersecretion, and airway remodeling manifest clinically in patients as wheezing, breathlessness, chest tightness and episodic coughing. However, the Th2 paradigm falls short in interpreting the full spectrum of asthma severity. Areas covered: Severe asthmatics represent a distinct phenotype with their mixed pattern of neutrophilic-eosinophilic infiltration and glucocorticoid insensitivity making them refractory to currently available therapies. Th17 cells and their signature cytokine, IL-17, have been implicated in the development of severe asthma. Here, we review the contribution of IL-17 in the pathological features of asthma, gathered from both human and animal studies published in Pubmed during the past 10 years, and briefly discuss the clinical implications of targeting IL-17 imbalance in asthmatic patients. Expert opinion: With advancement in our understanding of the role of IL-17 in asthma pathology, it is clear that IL-17 is a targetable pathway which may lead to improvement in clinical symptoms of asthma. However, further elucidation of the complex interactions unfurled by IL-17 is essential in the empirical development of effective therapeutic options for refractory asthmatics.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- College of Medicine, University of Sharjah , Sharjah , United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah , Sharjah , United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences , Dubai , United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center , Montreal , Quebec , Canada
| | - Qutayba Hamid
- College of Medicine, University of Sharjah , Sharjah , United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center , Montreal , Quebec , Canada
| |
Collapse
|
38
|
Maeda K, Caldez MJ, Akira S. Innate immunity in allergy. Allergy 2019; 74:1660-1674. [PMID: 30891811 PMCID: PMC6790574 DOI: 10.1111/all.13788] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/26/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022]
Abstract
Innate immune system quickly responds to invasion of microbes and foreign substances through the extracellular and intracellular sensing receptors, which recognize distinctive molecular and structural patterns. The recognition of innate immune receptors leads to the induction of inflammatory and adaptive immune responses by activating downstream signaling pathways. Allergy is an immune-related disease and results from a hypersensitive immune response to harmless substances in the environment. However, less is known about the activation of innate immunity during exposure to allergens. New insights into the innate immune system by sensors and their signaling cascades provide us with more important clues and a framework for understanding allergy disorders. In this review, we will focus on recent advances in the innate immune sensing system.
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Matias J. Caldez
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| | - Shizuo Akira
- Laboratory of Host Defense, The World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center (IFReC)Osaka UniversityOsakaJapan
| |
Collapse
|
39
|
Wang M, Zhang N, Zheng M, Li Y, Meng L, Ruan Y, Han J, Zhao N, Wang X, Zhang L, Bachert C. Cross-talk between T H2 and T H17 pathways in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2019; 144:1254-1264. [PMID: 31271788 DOI: 10.1016/j.jaci.2019.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous disease with a spectrum of endotypes. TH2- and TH17-related cytokines are 2 central regulators involved in the inflammation associated with CRSwNP. OBJECTIVE We sought to investigate the interregulation of TH2 and TH17 pathways in Chinese patients with CRSwNP. METHODS Levels of key TH2- and TH17-related factors were measured in homogenates of polyp tissue obtained from patients with CRSwNP. The relationship of these factors and their expression in groups classified according to tissue IL-5 and IL-17 concentrations were analyzed. Cross-regulation of TH2 and TH17 cytokines and the effects of dexamethasone treatment were studied in dispersed nasal polyp cells. Associations between TH2- and TH17 related factors and comorbid atopic status and asthma, disease recurrence, and edema scores were also explored. RESULTS Four CRSwNP groups were classified based on expression or nonexpression of mutually exclusive TH2- and TH17-related factors. The TH2 cytokines IL-4 and IL-13 inhibited expression of TH17-related factors, whereas the TH17 cytokines IL-17 and TGF-β1 enhanced expression of TH2-related factors. Dexamethasone treatment inhibited both the TH2 and TH17 pathways. A patient's atopic status was related to their TH2 immune response. Edema scores were positively correlated with the TH2 pathway and negatively correlated with the TH17 pathway. CONCLUSION The TH2 and TH17 pathways are mutually exclusive and regulate each other, favoring the development of a TH2 immune response in Chinese patients with CRSwNP.
Collapse
Affiliation(s)
- Min Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Ming Zheng
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Lingling Meng
- Department of Otolaryngology, Bayan Nur Hospital, Bayan Nur, China
| | - Yu Ruan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jinbo Han
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Na Zhao
- Department of Otolaryngology, Yanqing District Hospital, General Practice and Continuing Education Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China; Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium; Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute, Stockholm, Sweden; Department of Ear, Nose and Throat Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
40
|
Georgescu SR, Tampa M, Caruntu C, Sarbu MI, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M. Advances in Understanding the Immunological Pathways in Psoriasis. Int J Mol Sci 2019; 20:ijms20030739. [PMID: 30744173 PMCID: PMC6387410 DOI: 10.3390/ijms20030739] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Psoriasis vulgaris is a chronic, immune-mediated, inflammatory, polygenic skin disorder affecting approximately 2% of the population. It has a great impact on quality of life; patients often experience depression, anxiety, stigma as well as suicidal behavior. Even though psoriasis is one of the most studied dermatological conditions, the pathogenesis of the disease is still not completely elucidated. The complex interactions between keratinocytes, dendritic cells, T-lymphocytes, neutrophils and mast cells are responsible for the histopathological changes seen in psoriasis. The pathogenic model leading to the formation of psoriatic plaques has however evolved a lot over the years. There is now enough evidence to support the role of interleukin (IL) -23, IL-17, IL-22, T helper (Th) -17 cells, Th-22 cells, T regulatory cells, transforming growth factor (TGF)-β1 and IL-10 in the pathogenesis of the disease. Moreover, several inflammatory and anti-inflammatory molecules are currently being investigated, some of them showing promising results. The aim of this paper is to look over the most recent advances in the immunological pathways involved in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Simona-Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania.
| | - Maria-Isabela Sarbu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Cristina-Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Madalina-Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania.
| |
Collapse
|
41
|
de Castro Kroner J, Knoke K, Kofler DM, Steiger J, Fabri M. Glucocorticoids promote intrinsic human T H17 differentiation. J Allergy Clin Immunol 2018; 142:1669-1673.e11. [PMID: 30092286 DOI: 10.1016/j.jaci.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Affiliation(s)
| | - Kristin Knoke
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - David M Kofler
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Julia Steiger
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Mario Fabri
- Department of Dermatology, University of Cologne, Cologne, Germany.
| |
Collapse
|
42
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
43
|
Liberman AC, Budziñski ML, Sokn C, Gobbini RP, Steininger A, Arzt E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front Endocrinol (Lausanne) 2018; 9:235. [PMID: 29867767 PMCID: PMC5964134 DOI: 10.3389/fendo.2018.00235] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Glucocorticoids (GCs) play an important role in regulating the inflammatory and immune response and have been used since decades to treat various inflammatory and autoimmune disorders. Fine-tuning the glucocorticoid receptor (GR) activity is instrumental in the search for novel therapeutic strategies aimed to reduce pathological signaling and restoring homeostasis. Despite the primary anti-inflammatory actions of GCs, there are studies suggesting that under certain conditions GCs may also exert pro-inflammatory responses. For these reasons the understanding of the GR basic mechanisms of action on different immune cells in the periphery (e.g., macrophages, dendritic cells, neutrophils, and T cells) and in the brain (microglia) contexts, that we review in this chapter, is a continuous matter of interest and may reveal novel therapeutic targets for the treatment of immune and inflammatory response.
Collapse
Affiliation(s)
- Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Maia L. Budziñski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Clara Sokn
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Romina Paula Gobbini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Anja Steininger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Eduardo Arzt,
| |
Collapse
|