1
|
Alhosseini MN, Ebadi P, Karimi MH, Migliorati G, Cari L, Nocentini G, Heidari M, Soleimanian S. Therapy with regulatory T-cell infusion in autoimmune diseases and organ transplantation: A review of the strengths and limitations. Transpl Immunol 2024; 85:102069. [PMID: 38844002 DOI: 10.1016/j.trim.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/17/2024]
Abstract
In the last decade, cell therapies have revolutionized the treatment of some diseases, earning the definition of being the "third pillar" of therapeutics. In particular, the infusion of regulatory T cells (Tregs) is explored for the prevention and control of autoimmune reactions and acute/chronic allograft rejection. Such an approach represents a promising new treatment for autoimmune diseases to recover an immunotolerance against autoantigens, and to prevent an immune response to alloantigens. The efficacy of the in vitro expanded polyclonal and antigen-specific Treg infusion in the treatment of a large number of autoimmune diseases has been extensively demonstrated in mouse models. Similarly, experimental work documented the efficacy of Treg infusions to prevent acute and chronic allograft rejections. The Treg therapy has shown encouraging results in the control of type 1 diabetes (T1D) as well as Crohn's disease, systemic lupus erythematosus, autoimmune hepatitis and delaying graft rejection in clinical trials. However, the best method for Treg expansion and the advantages and pitfalls with the different types of Tregs are not fully understood in terms of how these therapeutic treatments can be applied in the clinical setting. This review provides an up-to-date overview of Treg infusion-based treatments in autoimmune diseases and allograft transplantation, the current technical challenges, and the highlights and disadvantages of this therapeutic approaches."
Collapse
Affiliation(s)
| | - Padideh Ebadi
- Islamic Azad University, Department of Biochemistry, Kazerun, Iran
| | | | - Graziella Migliorati
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Luigi Cari
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Giuseppe Nocentini
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
3
|
Wang H, He Y, Dang D, Zhao Y, Zhao J, Lu W. Gut Microbiota-Derived Tryptophan Metabolites Alleviate Allergic Asthma Inflammation in Ovalbumin-Induced Mice. Foods 2024; 13:1336. [PMID: 38731707 PMCID: PMC11082989 DOI: 10.3390/foods13091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Asthma is a prevalent respiratory disease. The present study is designed to determine whether gut microbiota-derived tryptophan metabolites alleviate allergic asthma inflammation in ovalbumin (OVA)-induced mice and explore the effect and potential mechanism therein. Asthma model mice were constructed by OVA treatment, and kynurenine (KYN), indole-3-lactic acid (ILA), in-dole-3-carbaldehyde (I3C), and indole acetic acid (IAA) were administered by intraperitoneal injection. The percent survival, weight and asthma symptom score of mice were recorded. The total immunoglobulin E and OVA-specific (s)IgE in the serum and the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) were detected by the corresponding ELISA kits. The composition of the gut microbiota and tryptophan-targeted metabolism in mouse feces were analyzed using 16S rRNA gene sequencing and targeted metabolomics, respectively. The four tryptophan metabolites improved the percent survival, weight and asthma symptoms of mice, and reduced the inflammatory cells in lung tissues, especially I3C. I3C and IAA significantly (p < 0.05) downregulated the levels of OVA-IgE and inflammatory cytokines. KYN was observed to help restore gut microbiota diversity. Additionally, I3C, KYN, and ILA increased the relative abundance of Anaeroplasma, Akkermansia, and Ruminococcus_1, respectively, which were connected with tryptophan metabolic pathways. IAA also enhanced capability of tryptophan metabolism by the gut microbiota, restoring tryptophan metabolism and increasing production of other tryptophan metabolites. These findings suggest that tryptophan metabolites may modulate asthma through the gut microbiota, offering potential benefits for clinical asthma management.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuan He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Danting Dang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yurong Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Duan R, Huang K, Yu T, Chang C, Chu X, Huang Y, Zheng Z, Ma L, Li B, Yang T. Interleukin-2/anti-interleukin-2 complex attenuates inflammation in a mouse COPD model by expanding CD4 + CD25 + Foxp3 + regulatory T cells. Int Immunopharmacol 2024; 131:111849. [PMID: 38503017 DOI: 10.1016/j.intimp.2024.111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Chronic, nonspecific inflammation of the alveoli and airways is an important pathological feature of chronic obstructive pulmonary disease (COPD), while sustained inflammatory reactions can cause alveolar damage. Regulatory T cells (Tregs) inhibit inflammation, whereas the interleukin-2/anti-interleukin-2 complex (IL-2C) increases the number of Tregs; however, whether the IL-2C has a therapeutic role in COPD remains unknown. Therefore, this study investigated whether IL-2C alleviates lung inflammation in COPD by increasing the number of Tregs. EXPERIMENTAL APPROACH A mouse COPD model was created by exposing mice to lipopolysaccharides (LPS) and cigarette smoke (CS), and the effects of IL-2C treatment on COPD were evaluated. The number of Tregs in the spleen and lung, pulmonary pathological changes, and inflammatory damage were examined through flow cytometry, histopathology, and immunofluorescence, respectively. KEY RESULTS IL-2C increased the number of Treg cells in the spleen and lungs after exposure to CS and LPS, reduced the number of T helper 17 (Th17) cells in lung tissue, and improved the Th17/Treg balance. IL-2C decreased the number of inflammatory cells and reduced the levels of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, CCL5, KC, and MCP-1 in bronchoalveolar lavage fluid and serum. IL-2C significantly reduced the pathological scores for lung inflammation, as well as decreased airway mucus secretion and infiltration of neutrophils and macrophages in the lungs. The depletion of Tregs using anti-CD25 antibodies eliminated the beneficial effects of IL-2C. CONCLUSIONS AND IMPLICATIONS IL-2C is a potential therapeutic agent for alleviating excessive inflammation in the lungs of patients with COPD.
Collapse
Affiliation(s)
- Ruirui Duan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Tao Yu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenli Chang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Chu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Yuhang Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhoude Zheng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Linxi Ma
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Baicun Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| |
Collapse
|
5
|
Nahm DH. Regulatory T Cell-Targeted Immunomodulatory Therapy for Long-Term Clinical Improvement of Atopic Dermatitis: Hypotheses and Perspectives. Life (Basel) 2023; 13:1674. [PMID: 37629531 PMCID: PMC10455293 DOI: 10.3390/life13081674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disorder characterized by itching and eczematous lesions. It is often associated with a personal or familial history of allergic diseases. Allergic inflammation induced by immunoglobulin E and T-helper type 2 (Th2) cell responses to common environmental agents has been suggested to play an essential role in AD pathogenesis. The standard therapies for AD, including topical or systemic agents, focus on controlling skin inflammation. Recently developed monoclonal antibody to interleukin-4 receptor alpha or Janus kinase inhibitors can provide significant clinical improvements in patients with AD by inhibiting Th2 cell-mediated skin inflammation. However, the clinical efficacy of the Th2 cell-targeted therapy is transient and incomplete in patients with AD. Patients with AD are seeking a permanent cure. Therefore, the development of novel immunomodulatory strategies that can improve a long-term clinical outcome and provide a long-term treatment-free clinical remission of AD (disease-modifying therapy) is needed. Regulatory T (Treg) cells play a critical role in the maintenance of immune tolerance and suppress the development of autoimmune and allergic diseases. This review provides three working hypotheses and perspectives for the treatment of AD by Treg cell activation. (1) A decreased number or function of Treg cells is a critical event that causes the activation of Th2 cells, leading to the development and maintenance of AD. (2) Activation of Treg cells is an effective therapeutic approach for AD. (3) Many different immunomodulatory strategies activating Treg cells can provide a long-term clinical improvement of AD by induction of immune tolerance. The Treg cell-targeted immunomodulatory therapies for AD include allergen immunotherapy, microbiota, vitamin D, polyvalent human immunoglobulin G, monoclonal antibodies to the surface antigens of T cell or antigen-presenting cell, and adoptive transfer of autologous Treg cells or genetically engineered Treg cells expanded in vitro.
Collapse
Affiliation(s)
- Dong-Ho Nahm
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Wegrzyn AS, Kedzierska AE, Obojski A. Identification and classification of distinct surface markers of T regulatory cells. Front Immunol 2023; 13:1055805. [PMID: 36741366 PMCID: PMC9892051 DOI: 10.3389/fimmu.2022.1055805] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023] Open
Abstract
Background Regulatory T (Treg) cells have emerged as key players in the maintenance of immune homeostasis. Although significant progress has been made in recent years to define the Treg surface markers involved with or identifying their suppressive function, there remains much to be elucidated, and many questions persist. This study determined the expression of surface markers on human peripheral Treg cells and conventional T (Tconv) cells in a steady state and after activation to gain insight into their mechanism of action and more precisely characterize this regulatory population in humans. Methods To screen Treg and Tconv cells, peripheral blood mononuclear cells (PBMCs) were isolated from volunteers, stained with a commercially available lyophilized antibody array comprising 371 surface antigens, and analyzed by flow cytometry. To compare Treg cells with activated Tconv cells, PBMCs were stimulated with PMA and further stained similar to freshly isolated cells. Results Treg and Tconv cells were positive for 135 and 168 of the 371 antigens, respectively. Based on the frequency distribution, all of the most highly expressed markers identified were shared by both Treg and Tconv cells and participate in T cell activation, act as costimulatory and signaling molecules, or exhibit adhesion and migratory functions. Additionally, we identified several differences in marker expression between Treg and Tconv cells, with most found in the expression of co-stimulatory (ICOS, GITR, 4-1BB) and co-inhibitory (TIGIT, CTLA-4) molecules, as well as chemokine receptors (CXCR4, CXCR5, CCR4, CCR5, CCR7, CCR8, and CXCR7). Furthermore, post-activation expression of surface molecules identified molecules capable of discriminating Treg cells from activated Tconv cells (GITR, 4-1BB, TIGIT, CD120b, and CD39); however, almost all of these markers were also expressed in a small fraction of activated Tconv cells. Conclusions These results offer insight into the biology of Tregs and contribute to their accurate identification and characterization in variety of immunological diseases as well as physiological processes.
Collapse
Affiliation(s)
- Agnieszka S. Wegrzyn
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Bioengineering Group, Wroclaw, Poland,*Correspondence: Agnieszka S. Wegrzyn,
| | - Anna E. Kedzierska
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Bioengineering Group, Wroclaw, Poland,Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrzej Obojski
- Department of Internal Medicine and Allergology, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
7
|
Abstract
The large-scale implementation of genomic medicine in Africa has not been actualized. This overview describes how routine molecular genetics and advanced protein engineering/structural biotechnology could accelerate the implementation of genomic medicine. By using data-mining and analysis approaches, we analyzed relevant information obtained from public genomic databases on pharmacogenomics biomarkers and reviewed published studies to discuss the ideas. The results showed that only 68 very important pharmacogenes currently exist, while 867 drug label annotations, 201 curated functional pathways, and 746 annotated drugs have been catalogued on the largest pharmacogenomics database (PharmGKB). Only about 5009 variants of the reported ∼25,000 have been clinically annotated. Predominantly, the genetic variants were derived from 43 genes that contribute to 2318 clinically relevant variations in 57 diseases. Majority (∼60%) of the clinically relevant genetic variations in the pharmacogenes are missense variants (1390). The enrichment analysis showed that 15 pharmacogenes are connected biologically and are involved in the metabolism of cardiovascular and cancer drugs. The review of studies showed that cardiovascular diseases are the most frequent non-communicable diseases responsible for approximately 13% of all deaths in Africa. Also, warfarin pharmacogenomics is the most studied drug on the continent, while CYP2D6, CYP2C9, DPD, and TPMT are the most investigated pharmacogenes with allele activities indicated in African and considered to be intermediate metaboliser for DPD and TPMT (8.4% and 11%). In summary, we highlighted a framework for implementing genomic medicine starting from the available resources on ground.
Collapse
Affiliation(s)
- Oluwafemi G Oluwole
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marc Henry
- Medical Biotechnology and Immunotherapy Unit, Department of Integrative Biomedical Sciences Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Kim JH, Ahn S, Ghosh P, Rhee DK. Immunization with a Pneumococcal pep27 Mutant Strain Alleviates Atopic Dermatitis through the Upregulation of Regulatory T-Cell Activity and Epithelial Barrier Function and Suppressing TSLP Expression. J Invest Dermatol 2023; 143:115-123.e6. [PMID: 35988588 DOI: 10.1016/j.jid.2022.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Atopic dermatitis (AD) is an inflammatory disease driven in part by type 2 helper T (Th2) cytokines and skin barrier disruption alleviating the entry of allergens. Thymic stromal lymphopoietin (TSLP), an epithelial cell‒derived cytokine, is known to aggravate AD symptoms by activating Th2. In addition, regulatory T cells (Tregs) inhibit inflammatory cells such as Th2. However, the relationship between TSLP and Tregs in AD is unclear. A murine dermatitis model was induced by applying oxazolone to the ear skin of mice. Prophylactic and therapeutic responses were analyzed by immunizing mice intranasally with a pneumococcal pep27 mutant (Δpep27 mutant), attenuated strain by reducing the virulence of a pathogen. Intranasal immunization with a pneumococcal pep27 mutant could elicit anti-inflammatory Treg-relevant factors and epithelial barrier genes (loricrin, involucrin, filaggrin, and small proline-rich repeat proteins). Thus, pneumococcal pep27-mutant immunization suppressed epidermal collapse, IgE, TSLP, and upregulation of Th2 expression by upregulating Treg activity. In contrast, Treg inhibition aggravated AD symptoms through the upregulation of TSLP and Th2 and the repression of epithelial barrier function compared with that of the noninhibited pneumococcal Δpep27-mutant group. Taken together, immunization with pneumococcal Δpep27 mutant upregulated Treg and epithelial barrier function and inhibited TSLP and Th2 to relieve AD symptoms.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saemi Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Prachetash Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; DNBio Pharm, Research Center, Suwon, Republic of Korea.
| |
Collapse
|
9
|
Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders - Advances and challenges. Hum Vaccin Immunother 2022; 18:2035117. [PMID: 35240914 PMCID: PMC9009914 DOI: 10.1080/21645515.2022.2035117] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune diseases are caused when immune cells act against self-protein. This biological self-non-self-discrimination phenomenon is controlled by a distinct group of lymphocytes known as regulatory T cells (Tregs), which are key inflammatory response regulators and play a pivotal role in immune tolerance and homeostasis. Treg-mediated robust immunosuppression provides self-tolerance and protection against autoimmune diseases. However, once this system fails to operate or poorly operate, it leads to an extreme situation where immune system reacts against self-antigens and destroys host organs, thus causing autoimmune diseases. Tregs can target both innate and adaptive immunity via modulating multiple immune cells such as neutrophils, monocytes, antigen-presenting cells, B cells, and T cells. This review highlights the Treg-mediated immunosuppression, role of several markers and their interplay during Treg development and differentiation, and advances in therapeutic aspects of Treg cells to reduce severity of autoimmunity-related conditions along with emphasizing limitations and challenges of their usages.
Collapse
Affiliation(s)
- Tapas Kumar Goswami
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, UK
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
10
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
11
|
Fathman CG, Yip L, Gómez-Martín D, Yu M, Seroogy CM, Hurt CR, Lin JT, Jenks JA, Nadeau KC, Soares L. How GRAIL controls Treg function to maintain self-tolerance. Front Immunol 2022; 13:1046631. [PMID: 36569931 PMCID: PMC9773990 DOI: 10.3389/fimmu.2022.1046631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) normally maintain self-tolerance. Tregs recognize "self" such that when they are not working properly, such as in autoimmunity, the immune system can attack and destroy one's own tissues. Current therapies for autoimmunity rely on relatively ineffective and too often toxic therapies to "treat" the destructive inflammation. Restoring defective endogenous immune regulation (self-tolerance) would represent a paradigm shift in the therapy of these diseases. One recent approach to restore self-tolerance is to use "low dose IL-2" as a therapy to increase the number of circulating Tregs. However, studies to-date have not demonstrated that low-dose IL-2 therapy can restore concomitant Treg function, and phase 2 studies in low dose IL-2 treated patients with autoimmune diseases have failed to demonstrate significant clinical benefit. We hypothesize that the defect in self-tolerance seen in autoimmunity is not due to an insufficient number of available Tregs, but rather, due to defects in second messengers downstream of the IL-2R that normally control Treg function and stability. Previous studies from our lab and others have demonstrated that GRAIL (a ubiquitin E3 ligase) is important in Treg function. GRAIL expression is markedly diminished in Tregs from patients with autoimmune diseases and allergic asthma and is also diminished in Tregs of mice that are considered autoimmune prone. In the relevant pathway in Tregs, GRAIL normally blocks cullin ring ligase activity, which inhibits IL-2R desensitization in Tregs and consequently promotes Treg function. As a result of this defect in GRAIL expression, the Tregs of patients with autoimmune diseases and allergic asthma degrade IL-2R-associated pJAK1 following activation with low dose IL-2, and thus cannot maintain pSTAT5 expression. pSTAT5 controls the transcription of genes required for Treg function. Additionally, the GRAIL-mediated defect may also allow the degradation of the mTOR inhibitor, DEP domain-containing mTOR interacting protein (Deptor). This can lead to IL-2R activation of mTOR and loss of Treg stability in autoimmune patients. Using a monoclonal antibody to the remnant di-glycine tag on ubiquitinated proteins after trypsin digestion, we identified a protein that was ubiquitinated by GRAIL that is important in Treg function, cullin5. Our data demonstrate that GRAIL acts a negative regulator of IL-2R desensitization by ubiquitinating a lysine on cullin5 that must be neddylated to allow cullin5 cullin ring ligase activity. We hypothesize that a neddylation inhibitor in combination with low dose IL-2 activation could be used to substitute for GRAIL and restore Treg function and stability in the Tregs of autoimmune and allergic asthma patients. However, the neddylation activating enzyme inhibitors (NAEi) are toxic when given systemically. By generating a protein drug conjugate (PDC) consisting of a NAEi bound, via cleavable linkers, to a fusion protein of murine IL-2 (to target the drug to Tregs), we were able to use 1000-fold less of the neddylation inhibitor drug than the amount required for therapeutically effective systemic delivery. The PDC was effective in blocking the onset or the progression of disease in several mouse models of autoimmunity (type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis) and a mouse model of allergic asthma in the absence of detectable toxicity. This PDC strategy represents targeted drug delivery at its best where the defect causing the disease was identified, a drug was designed and developed to correct the defect, and the drug was targeted and delivered only to cells that needed it, maximizing safety and efficacy.
Collapse
Affiliation(s)
- C. Garrison Fathman
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Linda Yip
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Diana Gómez-Martín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Mang Yu
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Christine M. Seroogy
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, University of Wisconsin, Madison, WI, United States
| | | | - Jack T. Lin
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer A. Jenks
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Kari C. Nadeau
- Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
- Sean N. Parker Center for Allergy & Asthma Research, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Luis Soares
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, United States
- IL-2Rx, San Jose, CA, United States
| |
Collapse
|
12
|
Agache I, Zemelka-Wiącek M, Shamji MH, Jutel M. Immunotherapy: State-of-the-art review of therapies and theratypes. J Allergy Clin Immunol 2022; 150:1279-1288. [PMID: 36328808 DOI: 10.1016/j.jaci.2022.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Through its disease-modifying potential, immunotherapy is the keystone to curing allergic diseases. Allergen immunotherapy, applied for more than a century, is currently supported by novel modalities such as mAb-based therapies or small molecules targeting the key nodes of the allergic inflammation network. In this review, a summary of the most significant advances in immunotherapy is presented, addressing not only novel approaches to stratifying patients but also major controlled clinical trials and real-world evidence that strengthen the role of immunotherapy in the treatment of allergies.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
13
|
Palomares O, Elewaut D, Irving PM, Jaumont X, Tassinari P. Regulatory T cells and immunoglobulin E: A new therapeutic link for autoimmunity? Allergy 2022; 77:3293-3308. [PMID: 35852798 DOI: 10.1111/all.15449] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Autoimmune diseases have a prevalence of approximately 7 to 9% and are classified as either organ-specific diseases, including type I diabetes, multiple sclerosis, inflammatory bowel disease and myasthenia gravis, or systemic diseases, including systemic lupus erythematosus, rheumatoid arthritis and Sjögren's syndrome. While many advancements have been made in understanding of the mechanisms of autoimmune disease, including the nature of self-tolerance and its breakdown, there remain unmet needs in terms of effective and highly targeted treatments. T regulatory cells (Tregs) are key mediators of peripheral tolerance and are implicated in many autoimmune diseases, either as a result of reduced numbers or altered function. Tregs may be broadly divided into those generated in the thymus (tTregs) and those generated in the periphery (pTregs). Tregs target many different immune cell subsets and tissues to suppress excessive inflammation and to support tissue repair and homeostasis: there is a fine balance between Treg cell stability and the plasticity that is required to adjust Tregs' regulatory purposes to particular immune responses. The central role of immunoglobulin E (IgE) in allergic disease is well recognized, and it is becoming increasingly apparent that this immunoglobulin also has a wider role encompassing other diseases including autoimmune disease. Anti-IgE treatment restores the capacity of plasmacytoid dendritic cells (pDCs) impaired by IgE- high-affinity IgE receptor (FcεR1) cross-linking to induce Tregs in vitro in atopic patients. The finding that anti-IgE therapy restores Treg cell homeostasis, and that this mechanism is associated with clinical improvement in asthma and chronic spontaneous urticaria suggests that anti-IgE therapy may also have a potential role in the treatment of autoimmune diseases in which Tregs are involved.
Collapse
Affiliation(s)
| | - Dirk Elewaut
- Department of Rheumatology, VIB Center for Inflammation Research, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Peter M Irving
- Guy's and St Thomas' Hospital Foundation Trust, London, UK
- King's College London, London, UK
| | | | | |
Collapse
|
14
|
Zhang J, Zou Y, Chen L, Xu Q, Wang Y, Xie M, Liu X, Zhao J, Wang CY. Regulatory T Cells, a Viable Target Against Airway Allergic Inflammatory Responses in Asthma. Front Immunol 2022; 13:902318. [PMID: 35757774 PMCID: PMC9226301 DOI: 10.3389/fimmu.2022.902318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a multifactorial disorder characterized by the airway chronic inflammation, hyper-responsiveness (AHR), remodeling, and reversible obstruction. Although asthma is known as a heterogeneous group of diseases with various clinical manifestations, recent studies suggest that more than half of the clinical cases are ‘‘T helper type 2 (Th2)-high’’ type, whose pathogenesis is driven by Th2 responses to an inhaled allergen from the environmental exposures. The intensity and duration of inflammatory responses to inhaled allergens largely depend on the balance between effector and regulatory cells, but many questions regarding the mechanisms by which the relative magnitudes of these opposing forces are remained unanswered. Regulatory T cells (Tregs), which comprise diverse subtypes with suppressive function, have long been attracted extensive attention owing to their capability to limit the development and progression of allergic diseases. In this review we seek to update the recent advances that support an essential role for Tregs in the induction of allergen tolerance and attenuation of asthma progression once allergic airway inflammation established. We also discuss the current concepts about Treg induction and Treg-expressed mediators relevant to controlling asthma, and the therapies designed based on these novel insights against asthma in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Leng XY, Yang J, Fan H, Chen QY, Cheng BJ, He HX, Gao F, Zhu F, Yu T, Liu YJ. JMJD3/H3K27me3 epigenetic modification regulates Th17/Treg cell differentiation in ulcerative colitis. Int Immunopharmacol 2022; 110:109000. [PMID: 35777266 DOI: 10.1016/j.intimp.2022.109000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory bowel disease characterized by chronic inflammation and ulceration of the colonic mucosa, frequent relapse, and cancerization that is difficult to cure. In recent years, the incidence of UC has increased. However, its etiology and pathogenesis are still not completely clear. In this study, dextran sodium sulfate (DSS) was used to induce the model, and GSK-J1 and dexamethasone were administered to the mice. A variety of molecular biology and immunological techniques, such as immunofluorescence, PCR and chromatin immunoprecipitation (ChIP), were used to examine JMJD3/H3K27me3-mediated regulation of Th17/Treg cell differentiation in UC by targeting histone modification. This study will provide an important theoretical basis for understanding the pathogenesis and potential therapeutic targets of UC.
Collapse
Affiliation(s)
- Xue-Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China; Department of Endocrinology, The Third People's Hospital of Hubei Province, Wuhan, Hubei 430030, PR China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| | - Bing-Jie Cheng
- Department of Endocrinology, The Third People's Hospital of Hubei Province, Wuhan, Hubei 430030, PR China
| | - Hong-Xia He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| |
Collapse
|
16
|
Bellinghausen I, Khatri R, Saloga J. Current Strategies to Modulate Regulatory T Cell Activity in Allergic Inflammation. Front Immunol 2022; 13:912529. [PMID: 35720406 PMCID: PMC9205643 DOI: 10.3389/fimmu.2022.912529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, atopic diseases, including allergic rhinitis, asthma, atopic dermatitis, and food allergy, increased strongly worldwide, reaching up to 50% in industrialized countries. These diseases are characterized by a dominating type 2 immune response and reduced numbers of allergen-specific regulatory T (Treg) cells. Conventional allergen-specific immunotherapy is able to tip the balance towards immunoregulation. However, in mouse models of allergy adaptive transfer of Treg cells did not always lead to convincing beneficial results, partially because of limited stability of their regulatory phenotype activity. Besides genetic predisposition, it has become evident that environmental factors like a westernized lifestyle linked to modern sanitized living, the early use of antibiotics, and the consumption of unhealthy foods leads to epithelial barrier defects and dysbiotic microbiota, thereby preventing immune tolerance and favoring the development of allergic diseases. Epigenetic modification of Treg cells has been described as one important mechanism in this context. In this review, we summarize how environmental factors affect the number and function of Treg cells in allergic inflammation and how this knowledge can be exploited in future allergy prevention strategies as well as novel therapeutic approaches.
Collapse
Affiliation(s)
- Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
17
|
Caramori G, Nucera F, Mumby S, Lo Bello F, Adcock IM. Corticosteroid resistance in asthma: Cellular and molecular mechanisms. Mol Aspects Med 2022; 85:100969. [PMID: 34090658 DOI: 10.1016/j.mam.2021.100969] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Inhaled glucocorticoids (GCs) are drugs widely used as treatment for asthma patients. They prevent the recruitment and activation of lung immune and inflammatory cells and, moreover, have profound effects on airway structural cells to reverse the effects of disease on airway inflammation. GCs bind to a specific receptor, the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily and modulates pro- and anti-inflammatory gene transcription through a number of distinct and complementary mechanisms. Targets genes include many pro-inflammatory mediators such as chemokines, cytokines, growth factors and their receptors. Inhaled GCs are very effective for most asthma patients with little, if any, systemic side effects depending upon the dose. However, some patients show poor asthma control even after the administration of high doses of topical or even systemic GCs. Several mechanisms relating to inflammation have been considered to be responsible for the onset of the relative GC resistance observed in these patients. In these patients, the side-effect profile of GCs prevent continued use of high doses and new drugs are needed. Targeting the defective pathways associated with GC function in these patients may also reactivate GC responsiveness.
Collapse
Affiliation(s)
- Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy.
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London and the NIHR Imperial Biomedical Research Centre, London, UK.
| |
Collapse
|
18
|
Mendes‐Bastos P, Brasileiro A, Kolkhir P, Frischbutter S, Scheffel J, Moñino‐Romero S, Maurer M. Bruton's tyrosine kinase inhibition-An emerging therapeutic strategy in immune-mediated dermatological conditions. Allergy 2022; 77:2355-2366. [PMID: 35175630 PMCID: PMC9545595 DOI: 10.1111/all.15261] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Bruton's tyrosine kinase (BTK), a member of the Tec kinase family, is critically involved in a range of immunological pathways. The clinical application of BTK inhibitors for B‐cell malignancies has proven successful, and there is strong rationale for the potential benefits of BTK inhibitors in some autoimmune and allergic conditions, including immune‐mediated dermatological diseases. However, the established risk‐to‐benefit profile of “first‐generation” BTK inhibitors cannot be extrapolated to these emerging, non‐oncological, indications. “Next‐generation” BTK inhibitors such as remibrutinib and fenebrutinib entered clinical development for chronic spontaneous urticaria (CSU); rilzabrutinib and tirabrutinib are being studied as potential treatments for pemphigus. Promising data from early‐phase clinical trials in CSU suggest potential for these agents to achieve strong pathway inhibition, which may translate into measurable clinical benefits, as well as other effects such as the disruption of autoantibody production. BTK inhibitors may help to overcome some of the shortcomings of monoclonal antibody treatments for immune‐mediated dermatological conditions such as CSU, pemphigus, and systemic lupus erythematosus. In addition, the use of BTK inhibitors may improve understanding of the pathophysiological roles of mast cells, basophils, and B cells in such conditions.
Collapse
Affiliation(s)
| | - Ana Brasileiro
- Department of Dermatology Hospital Santo António dos Capuchos Centro Hospitalar Universitário Lisboa Central Lisbon Portugal
- NOVA Medical School Universidade NOVA de Lisboa Lisbon Portugal
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Division of Immune‐Mediated Skin Diseases I.M. Sechenov First Moscow State Medical University (Sechenov University) Moscow Russia
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Sherezade Moñino‐Romero
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie‐Centrum‐Charité, Department of Dermatology and Allergy, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology Berlin Germany
| |
Collapse
|
19
|
Liu G, Liu M, Wang J, Mou Y, Che H. The Role of Regulatory T Cells in Epicutaneous Immunotherapy for Food Allergy. Front Immunol 2021; 12:660974. [PMID: 34305893 PMCID: PMC8297384 DOI: 10.3389/fimmu.2021.660974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
In recent decades, a rapid increase in the prevalence of food allergies has led to extensive research on novel treatment strategies and their mechanisms. Mouse models have provided preliminary insights into the mechanism of epicutaneous immunotherapy (EPIT)-induced immune tolerance. In EPIT, antigen applied on the skin surface can be captured, processed, and presented in the lymph nodes (LNs) by Antigen-presenting cells (APCs). In the LNs, induction of regulatory T cells (Treg cells) requires both direct contact during antigen presentation and indirect mechanisms such as cytokines. Foxp3+CD62L+ Treg cells can exhibit the characteristics of hypomethylation of Foxp3 TSDR and Foxp3-LAP+ Treg cells, which increase the expression of surface tissue-specific homing molecules to exert further sustained systemic immune tolerance. Studies have shown that EPIT is a potential treatment for food allergies and can effectively induce immune tolerance, but its mechanism needs further exploration. Here, we review Treg cells' role in immune tolerance induced by EPIT and provide a theoretical basis for future research directions, such as the mechanism of EPIT and the development of more effective EPIT treatments.
Collapse
Affiliation(s)
| | | | | | | | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Xu T, Cui Z, Wang J, Feng Y, Xie R, Li D, Peng J, Huang R, Li T. [Aryl hydrocarbon receptor modulates airway inflammation in mice with cockroach allergen-induced asthma by regulating Th17/Treg differentiation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:716-721. [PMID: 34134959 DOI: 10.12122/j.issn.1673-4254.2021.05.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate whether aryl hydrocarbon receptor (AhR) modulates cockroach allergen (CRE)-induced asthma by regulating Th17/Treg differentiation. OBJECTIVE Mouse models of CRE-induced asthma established by sensitizing and challenging the mice with CRE were randomized into asthma model group, AhR agonist group treated with TCDD (10 μg/ kg), and AhR antagonist group treated with TCDD and CH223191 (10 mg/kg) (n=5), with 5 mice without CRE challenge as the control group. The expressions of AhR, Cyp1a1 and Cyp1b1 mRNA in the lung tissues of the mice were detected using RT-PCR, and pulmonary inflammation was evaluated with immumohistochemical staining. The expressions of inflammatory cytokines in the lungs were detected using ELISA, and the expression of Treg in the lung tissues and pulmonary lymph nodes was analyzed with flow cytometry. OBJECTIVE Both TCDD and CH223191 were capable of modulating pulmonary expressions of AhR and its downstream genes Cyp1a1 and Cyp1b1 in asthmatic mice (P < 0.002). TCDD treatment significantly decreased inflammatory cells and mucus production in the lungs of asthmatic mice, and BALFs from TCDD-treated mice with CRE challenge contained lowered levels of the proinflammatory factors including IL-4, IL-13 and IL-17A (P < 0.001) but increased anti-inflammatory factors including IL-10, IL-22 and TGF-β1 (P < 0.001). All these changes were significantly reversed by treatment with CH223191 to the levels comparable with those in the asthma model group (P>0.05). More importantly, TCDD treatment significantly increased the number of Tregs cells and FOXP3 expression and lowered RORγt mRNA expression in the lungs and pulmonary lymph nodes in asthmatic mice (P < 0.001); inhibition of AhR with CH223191, as compared with TCDD, significantly decreased the expression of CD4+CD25+Foxp3+Treg cells in the lungs and pulmonary lymph nodes and the expression of FOXP3 mRNA in lymphocytes and increased RORγt mRNA expression (P < 0.001) to the levels comparable with those in asthma model group (P>0.05). OBJECTIVE AhR activation modulates airway inflammation in mice with CRE-induced asthma by modulating the differentiation of Th17/Treg.
Collapse
Affiliation(s)
- T Xu
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z Cui
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J Wang
- Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Y Feng
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - R Xie
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - D Li
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J Peng
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - R Huang
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - T Li
- Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Lwin SM, Snowden JA, Griffiths CEM. The promise and challenges of cell therapy for psoriasis. Br J Dermatol 2021; 185:887-898. [PMID: 34036569 DOI: 10.1111/bjd.20517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The management of moderate-to-severe psoriasis has been transformed by the introduction of biological therapies. These medicines, particularly those targeting interleukin (IL)-17 and IL-23p19, can offer clear or nearly clear skin for the majority of patients with psoriasis, with good long-term drug survival. However, as currently used, none of these therapies is curative and disconcertingly there is a small but increasing number of patients with severe psoriasis who have failed all currently available therapeutic modalities. A similar scenario has occurred in other immune-mediated inflammatory diseases (IMIDs) where treatment options are limited in severely affected patients. In these cases, cell therapy, including haematopoietic stem cell transplantation (HSCT) and mesenchymal stromal cells (MSC), has been utilized. This review discusses the various forms of cell therapy currently available, their utility in the management of IMIDs and emerging evidence for efficacy in severe psoriasis that is unresponsive to biological therapy. Balancing the risks and benefits of treatment vs. the underlying disease is key; cell therapy carries significant risks, costs, regulation and other complexities, which must be justified by outcomes. Although HSCT has anecdotally been reported to benefit severe psoriasis, sometimes with apparent cure, this has mainly been in the setting of other coincidental 'routine' indications. In psoriasis, cell therapies, such as MSC and regulatory T cells, with a lower risk of complications are likely to be more appropriate. Well-designed controlled trials coupled with mechanistic studies are warranted if advanced cell therapies are to be developed and delivered as a realistic option for severe psoriasis.
Collapse
Affiliation(s)
- S M Lwin
- St John's Institute of Dermatology, King's College London, Guy's Hospital, London, UK
| | - J A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.,Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - C E M Griffiths
- Dermatology Centre, Salford Royal Hospital, NIHR Manchester Biomedical Research Centre Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Gargano D, Appanna R, Santonicola A, De Bartolomeis F, Stellato C, Cianferoni A, Casolaro V, Iovino P. Food Allergy and Intolerance: A Narrative Review on Nutritional Concerns. Nutrients 2021; 13:1638. [PMID: 34068047 PMCID: PMC8152468 DOI: 10.3390/nu13051638] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Adverse food reactions include immune-mediated food allergies and non-immune-mediated intolerances. However, this distinction and the involvement of different pathogenetic mechanisms are often confused. Furthermore, there is a discrepancy between the perceived vs. actual prevalence of immune-mediated food allergies and non-immune reactions to food that are extremely common. The risk of an inappropriate approach to their correct identification can lead to inappropriate diets with severe nutritional deficiencies. This narrative review provides an outline of the pathophysiologic and clinical features of immune and non-immune adverse reactions to food-along with general diagnostic and therapeutic strategies. Special emphasis is placed on specific nutritional concerns for each of these conditions from the combined point of view of gastroenterology and immunology, in an attempt to offer a useful tool to practicing physicians in discriminating these diverging disease entities and planning their correct management. We conclude that a correct diagnostic approach and dietary control of both immune- and non-immune-mediated food-induced diseases might minimize the nutritional gaps in these patients, thus helping to improve their quality of life and reduce the economic costs of their management.
Collapse
Affiliation(s)
- Domenico Gargano
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Ramapraba Appanna
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Santonicola
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Fabio De Bartolomeis
- Allergy and Clinical Immunology Unit, San Giuseppe Moscati Hospital, 83100 Avellino, Italy; (D.G.); (F.D.B.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Antonella Cianferoni
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| | - Paola Iovino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (R.A.); (A.S.); (C.S.); (V.C.)
| |
Collapse
|
23
|
Caraballo L, Zakzuk J, Acevedo N. Helminth-derived cystatins: the immunomodulatory properties of an Ascaris lumbricoides cystatin. Parasitology 2021; 148:1-13. [PMID: 33563346 DOI: 10.1017/s0031182021000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Helminth infections such as ascariasis elicit a type 2 immune response resembling that involved in allergic inflammation, but differing to allergy, they are also accompanied with strong immunomodulation. This has stimulated an increasing number of investigations, not only to better understand the mechanisms of allergy and helminth immunity but to find parasite-derived anti-inflammatory products that could improve the current treatments of chronic non-communicable inflammatory diseases such as asthma. A great number of helminth-derived immunomodulators have been discovered and some of them extensively analysed, showing their potential use as anti-inflammatory drugs in clinical settings. Since Ascaris lumbricoides is one of the most successful parasites, several groups have focused on the immunomodulatory properties of this helminth. As a result, several excretory/secretory components and purified molecules have been analysed, revealing interesting anti-inflammatory activities potentially useful as therapeutic tools. One of these molecules is A. lumbricoides cystatin, whose genomic, cellular, molecular, and immunomodulatory properties are described in this review.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| |
Collapse
|
24
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|