1
|
Bain V, Correa-Silva S, Matsuo OM, Silva-Avelar I, Zheng Y, Rangel-Santos A, Souza Gonçalves G, de Toledo Fink T, Suguita P, Caires O A Ferreira J, Fernandes Ferreira AE, Litvinov N, Andrade Macaferri da Fonseca F, Astley C, Martins F, Carneiro Sampaio M, de Sousa Marques HH, da Silva CAA, Palmeira P, Bádue Pereira MF. Comprehensive Characterization of Innate and Adaptive Immune Profiles in the Pediatric COVID-19 Convalescent Phase. Pediatr Infect Dis J 2025; 44:557-563. [PMID: 40067781 DOI: 10.1097/inf.0000000000004713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
BACKGROUND Knowledge of the effect of SARS-CoV-2 on the innate and adaptive immune responses of children is currently lacking. We investigated the immune profile of recovered pediatric patients 3 to 11 weeks after acute COVID-19. METHODS Children who were previously healthy or had a preexisting chronic disease and had a positive reverse transcription polymerase chain reaction/serology were enrolled (n=23). The control group was composed of 25 patients without COVID-19 paired by age, sex and baseline chronic conditions. We performed immunophenotyping, hematologic and inflammatory markers analysis, cytokines and T-cell receptor excision circle (TREC) quantifications. RESULTS Most COVID-19 convalescent pediatric patients (COVID-19 CPP) had chronic conditions (73.9%), as well as 80% of the controls. Five children developed multisystem inflammatory syndrome in children. COVID-19 CPP had higher lymphocyte numbers than controls due to an increase in CD4+ T cells. Naive, effector memory (EM) reexpressing CD45RA T cells and follicular CD4+ T cells, as well as TRECs and HLA-DR+ and CD38+CD4+ activated T lymphocytes, were increased in those patients. EM2 and EM3 CD4+ T cells, EM2 CD8+ T cells and memory B cells were elevated in the COVID-19 CPP group. Numbers of neutrophils, monocytes and natural killer cells were equivalent but with increased activation in the recovered patients. CONCLUSIONS In the short-term following infection, COVID-19-recovered patients show persistent activation profiles in phagocytes, T-cell subtypes and natural killer cells. Meanwhile, increased production of lymphocytes, TRECs and naive T cells suggests immune response recovery, even in immunosuppressed patients and children with comorbidities. The clinical implications of these findings should be further studied.
Collapse
Affiliation(s)
- Vera Bain
- From the Departamento de Pediatria, Faculdade de Medicina FMUSP
| | | | - Olivia M Matsuo
- From the Departamento de Pediatria, Faculdade de Medicina FMUSP
| | | | - Yingying Zheng
- From the Departamento de Pediatria, Faculdade de Medicina FMUSP
| | - Andreia Rangel-Santos
- Laboratorio de Pediatria Clinica (LIM-36), Departamento de Pediatria, Hospital das Clinicas HCFMUSP
| | | | | | | | | | | | | | | | - Camilla Astley
- Applied Physiology and Nutrition Research Group-Center of Lifestyle Medicine, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil
| | | | | | | | | | - Patricia Palmeira
- Laboratorio de Pediatria Clinica (LIM-36), Departamento de Pediatria, Hospital das Clinicas HCFMUSP
| | | |
Collapse
|
2
|
Baalbaki N, Slob EMA, Kazer SW, I Abdel‐Aziz M, Bogaard HJ, Golebski K, Maitland‐van der Zee AH. The Omics Landscape of Long COVID-A Comprehensive Systematic Review to Advance Biomarker, Target and Drug Discovery. Allergy 2025; 80:932-948. [PMID: 40084919 PMCID: PMC11969314 DOI: 10.1111/all.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/17/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
An estimated 10% of coronavirus disease (COVID-19) survivors suffer from persisting symptoms referred to as long COVID (LC), a condition for which approved treatment options are still lacking. This systematic review (PROSPERO: CRD42024499281) aimed to explore the pathophysiological mechanisms underlying LC and potential treatable traits across symptom-based phenotypes. We included studies with primary data, written in English, focusing on omics analyses of human samples from LC patients with persistent symptoms of at least 3 months. Our search in PubMed and Embase, conducted on January 8, 2024, identified 642 studies, of which 29 met the inclusion criteria after full-text assessment. The risk of bias was evaluated using the Joanna Briggs Institute appraisal tool. The synthesis of omics data, including genomics, transcriptomics, proteomics, metabolomics, and metagenomics, revealed common findings associated with fatigue, cardiovascular, pulmonary, neurological, and gastrointestinal phenotypes. Key findings included mitochondrial dysfunction, dysregulated microRNAs associated with pulmonary dysfunction, tissue impairment, blood-brain barrier disruption, coagulopathy, vascular dysfunction, microbiome disturbances, microbial-derived metabolite production and persistent inflammation. Limitations include cross-study heterogeneity and variability in sampling methods. Our review emphasizes the complexity of LC and the need for further longitudinal omics-integrated studies to advance the development of biomarkers and targeted treatments.
Collapse
Affiliation(s)
- Nadia Baalbaki
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
| | - Elise M. A. Slob
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Department of Clinical PharmacyHaaglanden Medical CentreThe Haguethe Netherlands
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | - Samuel W. Kazer
- Division of Gastroenterology, Hepatology, and NutritionBoston Children's HospitalBostonMassachusettsUSA
- Department of ImmunologyBlavatnik Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Ragon Institute of MGH, MIT and HarvardCambridgeMassachusettsUSA
| | - Mahmoud I Abdel‐Aziz
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
- Department of Clinical PharmacyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | - Harm Jan Bogaard
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Cardiovascular Sciences Research InstituteAmsterdam UMCAmsterdamthe Netherlands
| | - Korneliusz Golebski
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Pulmonary MedicineAmsterdam UMCAmsterdamthe Netherlands
- Amsterdam Institute for Infection and ImmunityAmsterdamthe Netherlands
- Amsterdam Public HealthAmsterdamthe Netherlands
| |
Collapse
|
3
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. Systematic review and quantitative meta-analysis of age-dependent human T-lymphocyte homeostasis. Front Immunol 2025; 16:1475871. [PMID: 39931065 PMCID: PMC11808020 DOI: 10.3389/fimmu.2025.1475871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To evaluate and quantitatively describe age-dependent homeostasis for a broad range of total T-cells and specific T-lymphocyte subpopulations in healthy human subjects. Methods A systematic literature review was performed to identify and collect relevant quantitative information on T-lymphocyte counts in human blood and various organs. Both individual subject and grouped (aggregated) data on T-lymphocyte observations in absolute and relative values were digitized and curated; cell phenotypes, gating strategies for flow cytometry analyses, organs from which observations were obtained, subjects' number and age were also systematically inventoried. Age-dependent homeostasis of each T-lymphocyte subpopulation was evaluated via a weighted average calculation within pre-specified age intervals, using a piece-wise equal-effect meta-analysis methodology. Results In total, 124 studies comprising 11722 unique observations from healthy subjects encompassing 20 different T-lymphocyte subpopulations - total CD45+ and CD3+ lymphocytes, as well as specific CD4+ and CD8+ naïve, recent thymic emigrants, activated, effector and various subpopulations of memory T-lymphocytes (total-memory, central-memory, effector-memory, resident-memory) - were systematically collected and included in the final database for a comprehensive analysis. Blood counts of most T-lymphocyte subpopulations demonstrate a decline with age, with a pronounced decrease within the first 10 years of life. Conversely, memory T-lymphocytes display a tendency to increase in older age groups, particularly after ~50 years of age. Notably, an increase in T-lymphocyte numbers is observed in neonates and infants (0 - 1 year of age) towards less differentiated T-lymphocyte subpopulations, while an increase into more differentiated subpopulations emerges later (1 - 5 years of age). Conclusion A comprehensive systematic review and meta-analysis of T-lymphocyte age-dependent homeostasis in healthy humans was performed, to evaluate immune T-cell profiles as a function of age and to characterize generalized estimates of T-lymphocyte counts across age groups. Our study introduces a quantitative description of the fundamental parameters characterizing the maintenance and evolution of T-cell subsets with age, based on a comprehensive integration of available organ-specific and systems-level flow cytometry datasets. Overall, it provides the most up-to-date view of physiological T-cell dynamics and its variance and may be used as a consistent reference for gaining further mechanistic understanding of the human immune status in health and disease.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ-LLC, Dubai, United Arab Emirates
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
4
|
An H, Li T, Zhang X, Hu H, Zhang C, Wang Y, Jin S, Li M. Persistent CD19 + B cell lymphopenia in critically ill COVID-19 patients 50 days after symptom onset. Front Cell Infect Microbiol 2024; 14:1488607. [PMID: 39650838 PMCID: PMC11621214 DOI: 10.3389/fcimb.2024.1488607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Long COVID (LC) poses a persistent challenge in clinical practice due to limited understanding of its etiology. LC is hypothesized to stem from aberrant immune responses in COVID-19. Vaccinations, which boost immune cells to restore function, could help ease LC symptoms. Methods To exclude the impact of vaccination, we examined the immune cell profiles of recovering COVID-19 patients before vaccines were available. White blood cell differentials were monitored in ninety-twohealthy unvaccinated controls. Seventy-six unvaccinated COVID-19 patients were monitored upon admission and on the 50th day post-symptom onset (DPSO50). Peripheral lymphocyte subsets were analyzed using flow cytometry. Results Mild cases showed no significant changes in lymphocyte counts or subsets from admission to DPSO50. By DPSO50, severe and critical cases showed almost complete recovery from lymphopenia, with critical cases having CD19+ B-cell counts approximately 45% lower than the mild group. Severe and critical cases exhibited reduced B-cell frequencies, with critical cases displaying around 48% higher natural killer (NK) cell counts. In mild cases, NK cell counts negatively correlated with B-cell counts (r=-0.528, p=0.02). Additionally, critical cases showed positive correlations between NK cell counts and CD4+ T-cell counts (r=0.83, p<0.01), and between NK cell counts and CD8+ T-cell counts (r=0.74, p<0.01). Severe cases demonstrated decreased counts of CD4+CD25+CD127lowFoxP3+ regulatory T-cells (Tregs), which positively correlated with B-cell counts (r=0.37, p<0.05). Discussion Our findings indicate that aberrant immune cell profiles in COVID-19 patients change dynamically during recovery, depending on disease severity. This study suggests that convalescent patients from critical COVID-19 may experience long-lasting B-cell lymphopenia.
Collapse
Affiliation(s)
- Hui An
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyue Zhang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Hu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyu Wang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Aquino A, Zaikova E, Kalinina O, Karonova TL, Rubinstein A, Mikhaylova AA, Kudryavtsev I, Golovkin AS. T Regulatory Cell Subsets Do Not Restore for One Year After Acute COVID-19. Int J Mol Sci 2024; 25:11759. [PMID: 39519310 PMCID: PMC11545974 DOI: 10.3390/ijms252111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, triggers a complex immune response, with T regulatory cells (Tregs) playing a crucial role in maintaining immune homeostasis and preventing excessive inflammation. The current study investigates the function of T regulatory cells during COVID-19 infection and the subsequent recovery period, emphasizing their impact on immune regulation and inflammation control. We conducted a comprehensive analysis of Treg subpopulations in peripheral blood samples from COVID-19 patients at different stages: acute infection, early convalescence, and long-term recovery. Flow cytometry was employed to quantify Tregs including "naïve", central memory (CM), effector memory (EM), and terminally differentiated CD45RA+ effector cells (TEMRA). Additionally, the functional state of the Tregs was assessed by the expression of purinergic signaling molecules (CD39, CD73). Cytokine profiles were assessed through multiplex analysis. Our findings indicate a significant decrease in the number of Tregs during the acute phase of COVID-19, which correlates with heightened inflammatory markers and increased disease severity. Specifically, we found a decrease in the relative numbers of "naïve" and an increase in EM Tregs, as well as a decrease in the absolute numbers of "naïve" and CM Tregs. During the early convalescent period, the absolute counts of all Treg populations tended to increase, accompanied by a reduction in pro-inflammatory cytokines. Despite this, one year after recovery, the decreased subpopulations of regulatory T cells had not yet reached the levels observed in healthy donors. Finally, we observed the re-establishment of CD39 expression in all Treg subsets; however, there was no change in CD73 expression among Tregs. Understanding these immunological changes across different T regulatory subsets and adenosine signaling pathways offers important insights into the disease's pathogenesis and provides a broader view of immune system dynamics during recovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexey S. Golovkin
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia; (A.A.); (A.R.); (I.K.)
| |
Collapse
|
6
|
Piliper EA, Reed JC, Greninger AL. Clinical validation of an RSV neutralization assay and analysis of cross-sectional sera associated with 2021-2023 RSV outbreaks to investigate the immunity debt hypothesis. Microbiol Spectr 2024; 12:e0211524. [PMID: 39470275 PMCID: PMC11619414 DOI: 10.1128/spectrum.02115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infections and hospitalization in infants and the elderly. Newly approved vaccines and the prophylactic antibody nirsevimab have heightened interest in RSV immunologic surveillance, necessitating the development of high-throughput assays assessing anti-RSV neutralizing activity. Quantitative viral neutralization remains the best correlate of protection for RSV infection and the gold standard for RSV immunological testing. Here, we developed a high-throughput RSV strain A2 focus-reduction neutralization test validated to Clinical Laboratory Improvement Amendments (CLIA)/ Good Clinical Laboratory Practices (GCLP) standards using both clinical specimens and commercially available reference sera. The assay is highly accurate, generating reference serum neutralizing titers within twofold of established assays, with an analytical measurement range between 8 and 1,798 international units per mL (IU/mL). Neutralizing activity measured by the assay strongly correlated with antibody titer determined via indirect enzyme-linked immunosorbent assay (ELISA) (ρ = 1.0, P = 0.0014). Individuals recently having tested positive via quantitative reverse transcription polymerase chain reaction (RT-qPCR) for RSV had a 9.1-fold higher geometric mean neutralizing titer relative to RSV PCR negatives (P-value = 0.09). The validated assay was then used to investigate the immunity debt hypothesis for resurgent RSV outbreaks in the 2022-2023 season, using adult clinical remnant sera sent for herpes simplex virus (HSV)-1/2 antibody testing. There was no difference in geometric mean anti-RSV neutralizing titers between sera sampled before and after the 2022-2023 RSV outbreak (P = 0.68). These data are consistent with limited changes in RSV-neutralizing antibody levels in adults across the 2022-23 RSV outbreak. IMPORTANCE Population surveillance studies of serum-neutralizing activity against RSV are crucial for evaluating RSV vaccine efficacy and vulnerabilities to new strains. Here, we designed and validated a high-throughput assay for assessing anti-RSV neutralizing activity, standardized its measurements for comparison with other methodologies, and demonstrated its applicability to real-world samples. Our assay is precise, linear, and yields measurements consistent with other standardized assays, offering a methodology useful for large-scale studies of RSV immunity. We also find no significant difference in neutralizing titers among adults between those taken before and after large RSV outbreaks associated with the latter stages of the coronavirus disease of 2019 (COVID-19) public health emergency, underlining the need for a greater understanding of the dynamics of serological responses to RSV infection.
Collapse
Affiliation(s)
- Eli A. Piliper
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Jonathan C. Reed
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
7
|
Rau A, Gonzalez-Escamilla G, Schroeter N, Othman A, Dressing A, Weiller C, Urbach H, Reisert M, Groppa S, Hosp JA. Inflammation-Triggered Enlargement of Choroid Plexus in Subacute COVID-19 Patients with Neurological Symptoms. Ann Neurol 2024; 96:715-725. [PMID: 38934493 DOI: 10.1002/ana.27016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate whether choroid plexus volumes in subacute coronavirus disease 2019 (COVID-19) patients with neurological symptoms could indicate inflammatory activation or barrier dysfunction and assess their association with clinical data. METHODS Choroid plexus volumes were measured in 28 subacute COVID-19 patients via cerebral magnetic resonance imaging (MRI), compared with those in infection-triggered non-COVID-19 encephalopathy patients (n = 25), asymptomatic individuals after COVID-19 (n = 21), and healthy controls (n = 21). Associations with inflammatory serum markers (peak counts of leukocytes, C-reactive protein [CRP], interleukin 6), an MRI-based marker of barrier dysfunction (CSF volume fraction [V-CSF]), and clinical parameters like olfactory performance and cognitive scores (Montreal Cognitive Assessment) were investigated. RESULTS COVID-19 patients showed significantly larger choroid plexus volumes than control groups (p < 0.001, η2 = 0.172). These volumes correlated significantly with peak leukocyte levels (p = 0.001, Pearson's r = 0.621) and V-CSF (p = 0.009, Spearman's rho = 0.534), but neither with CRP nor interleukin 6. No significant correlations were found with clinical parameters. INTERPRETATION In patients with subacute COVID-19, choroid plexus volume is a marker of central nervous system inflammation and barrier dysfunction in the presence of neurologic symptoms. The absence of plexus enlargement in infection-triggered non-COVID-19 encephalopathy suggests a specific severe acute respiratory syndrome coronavirus 2 effect. This study also documents an increase in choroid plexus volume for the first time as a parainfectious event. ANN NEUROL 2024;96:715-725.
Collapse
Affiliation(s)
- Alexander Rau
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nils Schroeter
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Dressing
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Aljuaid A. Increased Activation Markers of Adaptive Immunity in Patients with Severe COVID-19. J Clin Med 2024; 13:5664. [PMID: 39407725 PMCID: PMC11477269 DOI: 10.3390/jcm13195664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Introduction: COVID-19 is a pandemic disease and is widespread over the world. This disease shows a 5.1% mortality. The understanding of the disease has expanded rapidly in many areas, including virological, epidemiological, clinical, and management dimensions. To better understand the inflammatory and immune profiles that impact the pathogenesis and development of severe COVID-19 symptoms, further studies are essential. This research aims to explore the inflammatory and adaptive immune responses associated with COVID-19, considering factors such as genetic diversity and environmental exposure among Saudi patients. The goal is to determine if patients with severe COVID-19 exhibit different disease phenotypes. Materials and Methods: This case-control study includes 115 participants (healthy and with COVID-19 infection), 55 of which had confirmed cases of COVID-19 in intensive care units (ICUs) at different hospitals in Makkah City, Saudi Arabia. Whole blood samples were collected from June to September 2021 for cellular analyses, and inflammation marker data were collected from hospital records. The expression of activation markers on B (CD27 and CD38) and T cells (CD27 and HLA-DR) was obtained using the flow cytometry technique. Also, serum was collected for cytokine measurements, including IL-6, INF-γ, and TNF- α. Results: The results indicated that lymphopenia and excessive T cell activation were more prevalent in severe cases than in healthy individuals. Furthermore, the results revealed that severe COVID-19 patients had an increased frequency of CD19+ B cells, with changes in B cell subsets. The current study implies impairment and changes in the phenotype of adaptive cells (including T and B cells), with an increase in HLA-DR molecules and inflammation markers with pro-inflammatory cytokines in severe COVID-19 cases. Conclusions: The current study implies impairment and changes in the phenotype of adaptive cells (including T and B cells), with an increase in HLA-DR molecules and inflammation markers in severe COVID-19 cases, which could be targeted for therapeutic interventions. This might be a valuable approach for the diagnosis and treatment of severe COVID-19 cases.
Collapse
Affiliation(s)
- Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Kratzer B, Gattinger P, Trapin D, Ettel P, Körmöczi U, Rottal A, Stieger RB, Sehgal ANA, Feichter M, Borochova K, Tulaeva I, Grabmeier-Pfistershammer K, Tauber PA, Perkmann T, Fae I, Wenda S, Kundi M, Fischer GF, Valenta R, Pickl WF. Differential decline of SARS-CoV-2-specific antibody levels, innate and adaptive immune cells, and shift of Th1/inflammatory to Th2 serum cytokine levels long after first COVID-19. Allergy 2024; 79:2482-2501. [PMID: 39003594 DOI: 10.1111/all.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND SARS-CoV-2 has triggered a pandemic and contributes to long-lasting morbidity. Several studies have investigated immediate cellular and humoral immune responses during acute infection. However, little is known about long-term effects of COVID-19 on the immune system. METHODS We performed a longitudinal investigation of cellular and humoral immune parameters in 106 non-vaccinated subjects ten weeks (10 w) and ten months (10 m) after their first SARS-CoV-2 infection. Peripheral blood immune cells were analyzed by multiparametric flow cytometry, serum cytokines were examined by multiplex technology. Antibodies specific for the Spike protein (S), the receptor-binding domain (RBD) and the nucleocapsid protein (NC) were determined. All parameters measured 10 w and 10 m after infection were compared with those of a matched, noninfected control group (n = 98). RESULTS Whole blood flow cytometric analyses revealed that 10 m after COVID-19, convalescent patients compared to controls had reduced absolute granulocyte, monocyte, and lymphocyte counts, involving T, B, and NK cells, in particular CD3+CD45RA+CD62L+CD31+ recent thymic emigrant T cells and non-class-switched CD19+IgD+CD27+ memory B cells. Cellular changes were associated with a reversal from Th1- to Th2-dominated serum cytokine patterns. Strong declines of NC- and S-specific antibody levels were associated with younger age (by 10.3 years, p < .01) and fewer CD3-CD56+ NK and CD19+CD27+ B memory cells. Changes of T-cell subsets at 10 m such as normalization of effector and Treg numbers, decline of RTE, and increase of central memory T cell numbers were independent of antibody decline pattern. CONCLUSIONS COVID-19 causes long-term reduction of innate and adaptive immune cells which is associated with a Th2 serum cytokine profile. This may provide an immunological mechanism for long-term sequelae after COVID-19.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Doris Trapin
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Paul Ettel
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Körmöczi
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Arno Rottal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Robert B Stieger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Al Nasar Ahmed Sehgal
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Melanie Feichter
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Kristina Borochova
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Inna Tulaeva
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Peter A Tauber
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Sabine Wenda
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department for Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Gottfried F Fischer
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Winfried F Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
10
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
11
|
Sehgal ANA, Safran J, Kratzer B, Gattinger P, Stieger RB, Musiejovsky L, Trapin D, Ettel P, Körmöczi U, Rottal A, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Grabmeier-Pfistershammer K, Perkmann T, Wiedermann U, Valenta R, Pickl WF. Flow Cytometry-Based Measurement of Antibodies Specific for Cell Surface-Expressed Folded SARS-CoV-2 Receptor-Binding Domains. Vaccines (Basel) 2024; 12:377. [PMID: 38675759 PMCID: PMC11053794 DOI: 10.3390/vaccines12040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has now become endemic and is currently one of the important respiratory virus infections regularly affecting mankind. The assessment of immunity against SARS-CoV-2 and its variants is important for guiding active and passive immunization and SARS-CoV-2-specific treatment strategies. METHODS We here devised a novel flow cytometry-based diagnostic platform for the assessment of immunity against cell-bound virus antigens. This platform is based on a collection of HEK-293T cell lines which, as exemplified in our study, stably express the receptor-binding domains (RBDs) of the SARS-CoV-2 S-proteins of eight major SARS-CoV-2 variants, ranging from Wuhan-Hu-1 to Omicron. RESULTS RBD-expressing cell lines stably display comparable levels of RBD on the surface of HEK-293T cells, as shown with anti-FLAG-tag antibodies directed against a N-terminally introduced 3x-FLAG sequence while the functionality of RBD was proven by ACE2 binding. We exemplify the usefulness and specificity of the cell-based test by direct binding of IgG and IgA antibodies of SARS-CoV-2-exposed and/or vaccinated individuals in which the assay shows a wide linear performance range both at very low and very high serum antibody concentrations. In another application, i.e., antibody adsorption studies, the test proved to be a powerful tool for measuring the ratios of individual variant-specific antibodies. CONCLUSION We have established a toolbox for measuring SARS-CoV-2-specific immunity against cell-bound virus antigens, which may be considered as an important addition to the armamentarium of SARS-CoV-2-specific diagnostic tests, allowing flexible and quick adaptation to new variants of concern.
Collapse
Affiliation(s)
- Al Nasar Ahmed Sehgal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Jera Safran
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Pia Gattinger
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert B. Stieger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Laszlo Musiejovsky
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Paul Ettel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Ulrike Körmöczi
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Arno Rottal
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Kristina Borochova
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Yulia Dorofeeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Inna Tulaeva
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Milena Weber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria (J.S.); (R.B.S.)
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
12
|
Andersson NW, Thiesson EM, Lassaunière R, Hansen JV, Hviid A. SARS-CoV-2 Infection and Postacute Risk of Non-Coronavirus Disease 2019 Infectious Disease Hospitalizations: A Nationwide Cohort Study of Danish Adults Aged ≥50 Years. Clin Infect Dis 2024; 78:603-612. [PMID: 37740392 DOI: 10.1093/cid/ciad531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Reports suggest that the potential long-lasting health consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may involve persistent dysregulation of some immune populations, but the potential clinical implications are unknown. We investigated the associated risk of hospitalization due to non-coronavirus disease 2019 (COVID-19) infectious diseases following the postacute phase of SARS-CoV-2 infection. METHODS By cross-linking data from the comprehensive Danish test and surveillance system for COVID-19 together with nationwide healthcare and demographic registers, we established a study cohort of 2 430 694 individuals aged ≥50 years, from 1 January 2021 to 10 December 2022, with no evidence of SARS-CoV-2 infection prior to study entry. Using Poisson regression, we compared the outcome rates of non-COVID-19 infectious disease hospitalizations following the acute phase of (a first) SARS-CoV-2 infection (defined as ≥29 days since the day of infection) in recovered individuals with rates among SARS-CoV-2-uninfected individuals. RESULTS Among 2 430 694 included individuals (mean age, 66.8 [standard deviation, 11.3] years), 930 071 acquired SARS-CoV-2 infection during follow-up totaling 4 519 913 person-years. The postacute phase of SARS-CoV-2 infection was associated with an incidence rate ratio (IRR) of 0.90 (95% confidence interval [CI]: .88-.92) for any infectious disease hospitalization. Findings (IRR [95% CI]) were similar for upper respiratory tract (1.08 [.97-1.20]), lower respiratory tract (0.90 [.87-.93]), influenza (1.04 [.94-1.15]), gastrointestinal (1.28 [.78-2.09]), skin (0.98 [.93-1.03]), urinary tract (1.01 [.96-1.08]), certain invasive bacterial (0.96 [.91-1.01]), and other (0.96 [.92-1.00]) infectious disease hospitalizations and in subgroups. CONCLUSIONS Our study does not support an increased susceptibility to non-COVID-19 infectious disease hospitalization following SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Ria Lassaunière
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Denmark
| | | | - Anders Hviid
- Department of Epidemiology Research, Statens Serum Institut, Denmark
- Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Hafkamp FMJ, Taanman-Kueter EWM, van Capel TMM, Wynberg E, van Willigen HDG, Verveen A, Kootstra NA, Nieuwkerk P, de Jong MD, de Bree GJ, Prins M, Hazenberg MD, Groot Kormelink T, de Jong EC. Aberrant neutrophil degranulation in hospitalized patients with COVID-19 partially remains for 6 months. Eur J Immunol 2024; 54:e2350404. [PMID: 37853954 DOI: 10.1002/eji.202350404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Neutrophils are important players in COVID-19, contributing to tissue damage by release of inflammatory mediators, including ROS and neutrophil elastase. Longitudinal studies on the effects of COVID-19 on neutrophil phenotype and function are scarce. Here, we longitudinally investigated the phenotype and degranulation of neutrophils in COVID-19 patients (28 nonhospitalized and 35 hospitalized patients) compared with 17 healthy donors (HDs). We assessed phenotype, degranulation, CXCL8 (IL-8) release, and ROS generation within 8 days, at one or 6 month(s) after COVID-19 diagnosis. For degranulation and ROS production, we stimulated neutrophils, either with ssRNA and TNF or granulocyte-macrophage colony-stimulating factor and N-Formylmethionyl-leucyl-phenylalanine. During active COVID-19, neutrophils from hospitalized patients were more immature than from HDs and were impaired in degranulation and ROS generation, while neutrophils from nonhospitalized patients only demonstrated reduced CD66b+ granule release and ROS production. Baseline CD63 expression, indicative of primary granule release, and CXCL8 production by neutrophils from hospitalized patients were elevated for up to 6 months. These findings show that patients hospitalized due to COVID-19, but not nonhospitalized patients, demonstrated an aberrant neutrophil phenotype, degranulation, CXCL8 release, and ROS generation that partially persists up to 6 months after infection.
Collapse
Affiliation(s)
- Florianne M J Hafkamp
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Esther W M Taanman-Kueter
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Toni M M van Capel
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elke Wynberg
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hugo D G van Willigen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk Verveen
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Pythia Nieuwkerk
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno D de Jong
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mette D Hazenberg
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands
| | - Tom Groot Kormelink
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Elsaghir A, El-Sabaa EMW, Zahran AM, Mandour SA, Salama EH, Aboulfotuh S, El-Morshedy RM, Tocci S, Mandour AM, Ali WE, Abdel-Wahid L, Sayed IM, El-Mokhtar MA. Elevated CD39+T-Regulatory Cells and Reduced Levels of Adenosine Indicate a Role for Tolerogenic Signals in the Progression from Moderate to Severe COVID-19. Int J Mol Sci 2023; 24:17614. [PMID: 38139439 PMCID: PMC10744088 DOI: 10.3390/ijms242417614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Viral infections trigger inflammation by controlling ATP release. CD39 ectoenzymes hydrolyze ATP/ADP to AMP, which is converted by CD73 into anti-inflammatory adenosine (ADO). ADO is an anti-inflammatory and immunosuppressant molecule which can enhance viral persistence and severity. The CD39-CD73-adenosine axis contributes to the immunosuppressive T-reg microenvironment and may affect COVID-19 disease progression. Here, we investigated the link between CD39 expression, mostly on T-regs, and levels of CD73, adenosine, and adenosine receptors with COVID-19 severity and progression. Our study included 73 hospitalized COVID-19 patients, of which 33 were moderately affected and 40 suffered from severe infection. A flow cytometric analysis was used to analyze the frequency of T-regulatory cells (T-regs), CD39+ T-regs, and CD39+CD4+ T-cells. Plasma concentrations of adenosine, IL-10, and TGF-β were quantified via an ELISA. An RT-qPCR was used to analyze the gene expression of CD73 and adenosine receptors (A1, A2A, A2B, and A3). T-reg cells were higher in COVID-19 patients compared to healthy controls (7.4 ± 0.79 vs. 2.4 ± 0.28; p < 0.0001). Patients also had a higher frequency of the CD39+ T-reg subset. In addition, patients who suffered from a severe form of the disease had higher CD39+ T-regs compared with moderately infected patients. CD39+CD4+ T cells were increased in patients compared to the control group. An analysis of serum adenosine levels showed a marked decrease in their levels in patients, particularly those suffering from severe illness. However, this was paralleled with a marked decline in the expression levels of CD73. IL-10 and TGF-β levels were higher in COVID-19; in addition, their values were also higher in the severe group. In conclusion, there are distinct immunological alterations in CD39+ lymphocyte subsets and a dysregulation in the adenosine signaling pathway in COVID-19 patients which may contribute to immune dysfunction and disease progression. Understanding these immunological alterations in the different immune cell subsets and adenosine signaling provides valuable insights into the pathogenesis of the disease and may contribute to the development of novel therapeutic approaches targeting specific immune mechanisms.
Collapse
Affiliation(s)
- Alaa Elsaghir
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Ehsan M. W. El-Sabaa
- Department of Microbiology & Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Asmaa M. Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Sahar A. Mandour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Eman H. Salama
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Sahar Aboulfotuh
- Department of Clinical Pathology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Reham M. El-Morshedy
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ahmed Mohamed Mandour
- Department of Anesthesia and ICU, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Wael Esmat Ali
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Lobna Abdel-Wahid
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Assiut University, Assiut 71515, Egypt
| | - Ibrahim M. Sayed
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Mohamed A. El-Mokhtar
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
15
|
Islas-Vazquez L, Alvarado-Alvarado YC, Cruz-Aguilar M, Velazquez-Soto H, Villalobos-Gonzalez E, Ornelas-Hall G, Perez-Tapia SM, Jimenez-Martinez MC. Evaluation of the Abdala Vaccine: Antibody and Cellular Response to the RBD Domain of SARS-CoV-2. Vaccines (Basel) 2023; 11:1787. [PMID: 38140191 PMCID: PMC10748004 DOI: 10.3390/vaccines11121787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Abdala is a recently released RBD protein subunit vaccine against SARS-CoV-2. A few countries, including Mexico, have adopted Abdala as a booster dose in their COVID-19 vaccination schemes. Despite that, most of the Mexican population has received full-scheme vaccination with platforms other than Abdala; little is known regarding Abdala's immunological features, such as its antibody production and T- and B-cell-specific response induction. This work aimed to study antibody production and the adaptive cellular response in the Mexican population that received the Abdala vaccine as a booster. We recruited 25 volunteers and evaluated their RBD-specific antibody production, T- and B-cell-activating profiles, and cytokine production. Our results showed that the Abdala vaccine increases the concentration of RBD IgG-specific antibodies. Regarding the cellular response, after challenging peripheral blood cultures with RBD, the plasmablast (CD19+CD27+CD38High) and transitional B-cell (CD19+CD21+CD38High) percentages increased significantly, while T cells showed an increased activated phenotype (CD3+CD4+CD25+CD69+ and CD3+CD4+CD25+HLA-DR+). Also, IL-2 and IFN-γ increased significantly in the supernatant of the RBD-stimulated cells. Our results suggest that Abdala vaccination, used as a booster, evokes antibody production and the activation of previously generated memory against the SARS-CoV-2 RBD domain.
Collapse
Affiliation(s)
- Lorenzo Islas-Vazquez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Yan Carlos Alvarado-Alvarado
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Marisa Cruz-Aguilar
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Henry Velazquez-Soto
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
| | - Eduardo Villalobos-Gonzalez
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Gloria Ornelas-Hall
- Unidad de Vigilancia Epidemiológica Hospitalaria, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
| | - Sonia Mayra Perez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology and Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (L.I.-V.)
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
16
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
17
|
Novak W, Berner J, Svaton M, Jimenez-Heredia R, Segarra-Roca A, Frohne A, Guiliani S, Rouhani D, Eder SK, Rottal A, Trapin D, Scheuchenstuhl A, Pickl WF, Simonitsch-Klupp I, Kager L, Boztug K. Evans syndrome caused by a deleterious mutation affecting the adaptor protein SASH3. Br J Haematol 2023; 203:678-683. [PMID: 37646304 DOI: 10.1111/bjh.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Increasing evidence suggests multilineage cytopenias (also known as Evans syndrome) may be caused by inborn errors of immunity (IEI) with immune dysregulation. We studied a patient with autoimmune haemolytic anaemia and immune thrombocytopenia and identified a germline mutation in SASH3 (c.862C>T;p.Arg288Ter), indicating a recently identified IEI. Immunohistochemistry performed after clinically indicated splenectomy revealed severe hypoplasia/absence of germinal centres. The autoimmune phenotype was associated with an increased CD21low T-bet+ CD11c+ subset along with decreased regulatory T cells, impaired T-cell proliferation and T-cell exhaustion. The younger brother carries the same SASH3 mutation and shares immunophenotypic features but is currently clinical asymptomatic, indicating heterogeneity of SASH3 deficiency.
Collapse
Affiliation(s)
- Wolfgang Novak
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Jakob Berner
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Venerology and Allergology, Klinik Landstrasse, Vienna, Austria
| | - Michael Svaton
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez-Heredia
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anna Segarra-Roca
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Alexandra Frohne
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sarah Guiliani
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - David Rouhani
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Sebastian K Eder
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Arno Rottal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Doris Trapin
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Anja Scheuchenstuhl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Leo Kager
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Kaan Boztug
- St. Anna Children's Hospital, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
18
|
TOPYILDIZ E, EDEER KARACA N, TAŞKIN B, AYGÜN A, ŞAHBUDAK BAL Z, SAZ EU, KURUGÖL NZ, KÜTÜKÇÜLER N, AKSU G. Alterations in B and NK cells highly correlate with disease severity in children with COVID-19. Turk J Med Sci 2023; 53:1205-1213. [PMID: 38813014 PMCID: PMC10763789 DOI: 10.55730/1300-0144.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/26/2023] [Accepted: 08/10/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Children with coronavirus disease 2019 (COVID-19) present milder symptoms than adults and are at lower risk of hospitalization and life-threatening complications. However, the kinetics of lymphocyte subsets and serum immunoglobulins in the peripheral blood during COVID-19 infection remains unclear. In this study, it was aimed to determine the changes in hematological and immunological parameters, especially in the lymphocyte subsets, in the peripheral blood of children with different COVID-19 disease severity. Materials and methods The study was planned as a prospective cohort and included 68 children aged 0-18 years who were admitted to Ege University Faculty of Medicine Department of Pediatrics and diagnosed with COVID-19 infection between May 2020 and December 2021. In addition to demographic characteristics, clinical findings, and severity criteria, hematological, biochemical, and immunological laboratory (T/B lymphocyte subgroups, serum immunoglobulins) results were noted and examined if there were some correlations between disease severity and the laboratory values. Results In the study group, while 60.6% (n = 40) of the patients received treatment in the hospital, 10.6% (n = 7) needed intensive care treatment. Lymphopenia (35.3%) was more common than neutropenia (14.7%) in the COVID-19-infected children. CD19+ B cells were low in a very high percentage of patients (26.5%), and 16.2% had low levels of NK cells. Significant correlation between disease severity and CD19+lymphocytes, CD19+CD38+IgMlow lymphocytes, CD19+CD38+CD27highIgMhigh lymphocytes, CD19+CD81+ lymphocytes (p = 0.001, p = 0.008, p = 0.014, p = 0.025, and rs = 0.394, rs = 0.326, rs = 0.303, rs = 0.280, respectively), significant inverse correlation between disease severity and absolute lymphocytes counts and CD3-CD16+CD56+ lymphocytes (p = 0.004, 0.014, and rs = -0.353, rs = -0.304, respectively) were observed. The percentage of hospitalized patients with low CD3 levels (15%) was significantly higher than that of the outpatients with low CD3 levels. Conclusion As the severity of the disease increased, the CD19+, CD19+CD38+IgMlow, CD19+CD38+CD27highIgMhigh, and CD19+CD81+ lymphocytes percentages increased, while the lymphocyte count and NK cell percentage decreased. Therefore, detecting these prognostic immunobiomarkers related to the severity of the disease may contribute considerably to management of the illness.
Collapse
Affiliation(s)
- Ezgi TOPYILDIZ
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Neslihan EDEER KARACA
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Burcu TAŞKIN
- Department of Pediatric Rheumatology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Ayşe AYGÜN
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Zümrüt ŞAHBUDAK BAL
- Department of Pediatric Infection Disease, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Eylem Ulaş SAZ
- Department of Pediatric Emergency, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Nuri Zafer KURUGÖL
- Department of Pediatric Infection Disease, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Necil KÜTÜKÇÜLER
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, İzmir,
Turkiye
- Department of Pediatric Rheumatology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| | - Güzide AKSU
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Ege University, İzmir,
Turkiye
- Department of Pediatric Rheumatology, Faculty of Medicine, Ege University, İzmir,
Turkiye
| |
Collapse
|
19
|
Starshinova A, Kudryavtsev I, Rubinstein A, Malkova A, Dovgaluk I, Kudlay D. Tuberculosis and COVID-19 Dually Affect Human Th17 Cell Immune Response. Biomedicines 2023; 11:2123. [PMID: 37626620 PMCID: PMC10452633 DOI: 10.3390/biomedicines11082123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
COVID-19 infection not only profoundly impacts the detection of tuberculosis infection (Tbc) but also affects modality in tuberculosis patient immune response. It is important to determine immune response alterations in latent tuberculosis infection as well as in SARS-CoV-2-infected tuberculosis patients. Such changes may have underlying effects on the development and course of further tuberculosis. Here, we aimed to review the characteristics of immune response in TB patients or convalescent COVID-19 patients with latent TB infection (LTBI). MATERIALS AND METHODS We analyzed the features of immune response in tuberculosis and COVID-19 patients. For this, we analyzed publications released from December 2019 to March 2023; those which were published in accessible international databases ("Medline", "PubMed", "Scopus") and with keywords such as "COVID-19", "SARS-CoV-2", "tuberculosis", "pulmonary tuberculosis", "latent tuberculosis infection", "Treg", "follicular Treg", and "Treg subsets", we considered. RESULTS Through our analysis, we found that tuberculosis patients who had been infected with COVID-19 previously and elevated Th1 and Th2 cell levels. High levels of Th1 and Th2 cells may serve as a positive marker, characterizing activated immune response during TB infection. COVID-19 or post-COVID-19 subjects showed decreased Th17 levels, indicating a lack of tuberculosis development. Moreover, the typical course of tuberculosis is associated with an increase in Treg level, but COVID-19 contributes to a hyperinflammatory response. CONCLUSION According to the data obtained, the course of tuberculosis proceeds in a dissimilar way due to the distinct immune response, elicited by SARS-CoV-2. Importantly, the development of active tuberculosis with a severe course is associated with a decline in Treg levels. Both pathogens lead to disturbed immune responses, increasing the risk of developing severe TB. The insights and findings of this paper may be used to improve the future management of individuals with latent and active tuberculosis.
Collapse
Affiliation(s)
- Anna Starshinova
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, 197022 St-Petersburg, Russia; (I.K.); (A.R.)
| | - Artem Rubinstein
- Department of Immunology, Institution of Experimental Medicine, 197022 St-Petersburg, Russia; (I.K.); (A.R.)
| | - Anna Malkova
- Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
| | - Irina Dovgaluk
- Phthisiopulmonology Department, Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia;
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
| |
Collapse
|
20
|
Wu Y, Huang P, Xu M, Zhao Q, Xu Y, Han S, Li H, Wang Y. Immunogenicity and reactogenicity of inactivated SARS-CoV-2 vaccines in healthy adults. Front Immunol 2023; 14:1152899. [PMID: 37559719 PMCID: PMC10407550 DOI: 10.3389/fimmu.2023.1152899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly pathogenic to humans and has caused the ongoing coronavirus disease 2019 (COVID-19) pandemic. Vaccines are one of the efficient ways to prevent the viral infection. After COVID-19 vaccination, the monitoring of the dynamic change in neutralizing antibodies is necessary to determine booster requirements. Methods We estimated the effectiveness of the inactivated vaccines by monitoring dynamic SARS-CoV-2 neutralizing antibodies for over 2 years. Additionally, we also investigated the activation of T lymphocytes (CD3+ T cells) after three doses of the inactivated vaccine. Result The results showed that the rate of reduction of SARS-CoV-2 neutralizing antibody levels gradually showed after each booster dose. The IgG/IgM level at 9 months after the third vaccination were significantly higher than those at 6 months after the second dose (p<0.0001). The expression of CD25+T cell in 18-35 age group was significantly higher than that in the other groups. Nine months after the third dose (the time of last blood sample collection), the expression of CD25+T cell in the 18-35 age group was significantly higher than that at 6 months after the second dose. CD25+T cell in the 18-35 years old group was significantly higher than 6 months after the second vaccination. Conclusion CD25, a late activation marker of lymphocytes and high-activity memory T cell subgroup, exhibited higher levels at the later stages after vaccination. COVID-19 booster vaccination in older adults and regular testing of SARS-CoV-2 neutralizing antibodies are recommended. Booster doses should be administered if the antibody level falls below the 30% inhibition rate.
Collapse
Affiliation(s)
- Yufei Wu
- Institute of Medical Sciences, the Second Hospital of Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Ping Huang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Mingjie Xu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Qianqian Zhao
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Yihui Xu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Shuyi Han
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Huanjie Li
- Institute of Medical Sciences, the Second Hospital of Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
21
|
Abu-Raya B, Viñeta Paramo M, Reicherz F, Lavoie PM. Why has the epidemiology of RSV changed during the COVID-19 pandemic? EClinicalMedicine 2023; 61:102089. [PMID: 37483545 PMCID: PMC10359735 DOI: 10.1016/j.eclinm.2023.102089] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has drastically perturbed the epidemiology of Respiratory Syncytial Virus (RSV) respiratory tract infections in children. The reasons for this are not clear. In this article, we review the current literature and critically discuss the different theories to explain why the epidemiology of RSV has changed during the COVID-19 pandemic. Proposed mechanisms include decreased viral immunity in vulnerable age groups caused by the prolonged lack of RSV circulation early in the pandemic, potential Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2)-induced immune dysregulation, viral interactions between SARS-CoV-2 and RSV, and modifications in health-seeking behaviors as well as heath systems factors. Research in viral genomics and phylogeny, and more robust immunology research is needed to guide RSV prevention and health care resource planning.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Marina Viñeta Paramo
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Frederic Reicherz
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Pascal Michel Lavoie
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|
22
|
Kratzer B, Grabmeier-Pfistershammer K, Trapin D, Körmöczi U, Rottal A, Feichter M, Waidhofer-Söllner P, Smogavec M, Laccone F, Hauser M, Winkler S, Pickl WF, Lechner AM. Mycobacterium avium Complex Infections: Detailed Phenotypic and Functional Immunological Work-Up Is Required despite Genetic Analyses. Int Arch Allergy Immunol 2023; 184:914-931. [PMID: 37279717 DOI: 10.1159/000530844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION Cervical scrofulous lymphadenitis due to Mycobacterium avium complex (MAC) in immunocompetent adults is a rare disease. The presence of MAC infections demands meticulous clinical evaluation of patients along with detailed phenotypic and functional evaluation of their immune system including next-generation sequencing (NGS) analyses of target genes. METHODS Exact clinical histories of the index patients both suffering from retromandibular/cervical scrofulous lymphadenitis were obtained along with phenotypic and functional immunological evaluations of leukocyte populations followed by targeted NGS-based sequencing of candidate genes. RESULTS Immunological investigations showed normal serum immunoglobulin and complement levels, but lymphopenia, which was caused by significantly reduced CD3+CD4+CD45RO+ memory T-cell and CD19+ B-cell numbers. Despite normal T-cell proliferation to a number of accessory cell-dependent and -independent stimuli, the PBMC of both patients elaborated clearly reduced levels of a number of cytokines, including IFN-γ, IL-10, IL-12p70, IL-1α, IL-1β, and TNF-α upon TCR-dependent T-cell stimulation with CD3-coated beads but also superantigens. The IFN-γ production deficiency was confirmed for CD3+CD4+ helper and CD4+CD8+ cytotoxic T cells on the single-cell level by multiparametric flow cytometry irrespective of whether PMA/ionomycin-stimulated whole blood cells or gradient-purified PBMC was analyzed. In the female patient L1, targeted NGS-based sequencing revealed a homozygous c.110T>C mutation in the interferon-γ receptor type 1 (IFNGR1) leading to significantly reduced receptor expression on both CD14+ monocytes and CD3+ T cells. Patient S2 presented with normal IFNGR1 expression on CD14+ monocytes but significantly reduced IFNGR1 expression on CD3+ T cells, despite the absence of detectable homozygous mutations in the IFNGR1 itself or disease-related target genes. Exogenous addition of increasing doses of IFN-γ resulted in proper upregulation of high-affinity FcγRI (CD64) on monocytes from patient S2, whereas monocytes from patient L1 showed only partial induction of CD64 expression after incubation with high doses of IFN-γ. CONCLUSION A detailed phenotypic and functional immunological examination is urgently required to determine the cause of a clinically relevant immunodeficiency, despite detailed genetic analyses.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Doris Trapin
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Ulrike Körmöczi
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Arno Rottal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Melanie Feichter
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Mateja Smogavec
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Franco Laccone
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Michael Hauser
- Paris Lodron University Salzburg, Division of Allergy and Immunology, Department of Biosciences, Salzburg, Austria
| | - Stefan Winkler
- Medical University of Vienna, Department of Medicine I, Division of Infectious Diseases and Tropical Medicine Vienna, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
- Karl Landsteiner University, Krems, Austria
| | - Arno M Lechner
- Paracelsus University Salzburg, University Institute for Clinical Microbiology and Hygiene, Salzburg, Austria
| |
Collapse
|
23
|
Kumari D, Singh S, Kumari M, Gupta H, Chauhan D, Singh K, Rao Eslavath M, Bhushan B, Dogra V, Bargotya M, Bhattar S, Gupta U, Hussain J, Jain S, Meena R, Varshney R, Ganju L, Singh Y. Flow cytometry profiling of cellular immune response in COVID-19 infected, recovered and vaccinated individuals. Immunobiology 2023; 228:152392. [PMID: 37182442 PMCID: PMC10165874 DOI: 10.1016/j.imbio.2023.152392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
INTRODUCTION SARS-CoV-2 has infected over 753 million individuals and caused more than 6.8 million deaths globally to date. COVID-19 disease severity has been associated with SARS-CoV-2 induced hyper inflammation and the immune correlation with its pathogenesis remains unclear. Acute viral infection is characterised by vigorous coordinated innate and adaptive activation, including an early cellular response that correlates well with the amplitude of virus specific humoral response. OBJECTIVE The present study covers a wide spectrum of cellular immune response against COVID-19, irrespective of infection and vaccination. METHODS We analysed immune status of (a) COVID-19 hospitalised patients including deceased and recovered patients, and compared with home isolated and non-infected healthy individuals, and (b) infected home isolated individuals with vaccinated individuals, using flow cytometry. We performed flow cytometry analysis of PBMCs to determine non-specific cell-mediated immune response. RESULTS The immune response revealed extensive induction and activation of multiple immune lineages, including T and B cells, Th17 regulatory subsets and M1, M2 macrophages in deceased and hospitalised recovered patients, vaccinated and healthy individuals. Compromised immune cell expression was observed in deceased patients even in later stages, while expression was restored in hospitalised recovered patients and home isolated individuals. CONCLUSION The findings associated with recovery and convalescence define a new signature of cellular immune response that persists in individuals with SARS-CoV-2 infection and vaccination. The findings will help in providing a better understanding of COVID-19 disease and will aid in developing better therapeutic strategies for treatment.
Collapse
Affiliation(s)
- Diksha Kumari
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Sayar Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Manisha Kumari
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Harshita Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Deepika Chauhan
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Karuna Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | | | - Brij Bhushan
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Vikas Dogra
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi 110093, India
| | - Mona Bargotya
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi 110093, India
| | - Sonali Bhattar
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi 110093, India
| | - Utkarsh Gupta
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi 110093, India
| | - Javid Hussain
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi 110093, India
| | - Shruti Jain
- Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi 110093, India
| | - Ramesh Meena
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Lilly Ganju
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India.
| | - Yamini Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India.
| |
Collapse
|
24
|
Kalicińska E, Szymczak D, Andrasiak I, Milanowska A, Kiraga A, Majeranowski A, Jabłonowska P, Rybka J, Maciej Z, Wróbel T. Impaired adaptive immune response in COVID-19 convalescent patients with hematological malignancies. Eur J Haematol 2023; 110:396-406. [PMID: 36562254 PMCID: PMC9880695 DOI: 10.1111/ejh.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The immune dysregulation during SARS-CoV-2 has the potential to worsen immune homeostasis after recovery. Patients with hematological malignancies with COVID-19 have changes both in the innate and adaptive immune responses. Little is known about the severity of immune dysfunction following recovery from COVID-19 in hematological patients. METHODS Here, we performed a comprehensive analysis of the lymphocyte subsets in peripheral blood mononuclear cells by FACS Canto II in 55 patients, including 42 with hematological malignancies 4-6 weeks after COVID-19. RESULTS Hematological COVID-19 convalescents had deep reduction in CD3+ T cells, including helper T cells (CD3 + CD4+), naïve helper T cells (CD3 + CD4 + CD45RA+), and memory CD4+ T cells among with extremely low levels of Treg cells and decreased expression of both TCRα/β and TCRγ/δ. Severe immune dysregulation in hematological convalescents was expressed by increased activation of T lymphocytes, both as elevated levels of activated T cells (CD3 + HLA-DR+) and activated cytotoxic T cells (CD3 + CD8 + HLA-DR+). CONCLUSIONS Our findings showed a profound impairment of the adaptive immune response in hematological convalescents which might be a result of persistent activation of T cells. Convalescents with lymphoid malignancies showed more pronounced depletion of key T lymphocytes subpopulations in creating an effective adaptive response and immune memory.
Collapse
Affiliation(s)
- Elżbieta Kalicińska
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Donata Szymczak
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | | | - Aneta Milanowska
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Kiraga
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Alan Majeranowski
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paula Jabłonowska
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna Rybka
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Zaucha Maciej
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms, and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
25
|
Thymosin Alpha 1 Restores the Immune Homeostasis in lymphocytes during Post-Acute Sequelae of SARS-CoV-2 infection. Int Immunopharmacol 2023; 118:110055. [PMID: 36989892 PMCID: PMC10030336 DOI: 10.1016/j.intimp.2023.110055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The complex alterations of the immune system and the immune-mediated multiorgan injury plays a key role in host response to SARS-CoV-2 infection and in the pathogenesis of COVID-19, being also associated with adverse outcomes. Thymosin alpha 1 (Tα1) is one of the molecules used in the treatment of COVID-19, as it is known to restore the homeostasis of the immune system during infections and cancer. The use of Tα1 in COVID-19 patients had been widely used in China and in COVID-19 patients, it has been shown to decrease hospitalization rate, especially in those with greater disease severity, and reduce mortality by restoring lymphocytopenia and more specifically, depleted T cells. Persistent dysregulation with depletion of naive B and T cell subpopulations and expansion of memory T cells suggest a chronic stimulation of the immune response in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). Our data obtained from an ex vivo study, showed that in PASC individuals with a chronically altered immune response, Tα1 improve the restoration of an appropriate response, most evident in those with more severe illness and who need respiratory support during acute phase, and in those with specific systemic and psychiatric symptoms of PASC, confirming Tα1 treatment being more effective in compromised patients. The results obtained, along with promising reports on recent trials on Tα1 administration in patients with COVID-19, offer new insights into intervention also for those patients with long-lasting inflammation with post-infectious symptoms, some of which have a delayed onset.
Collapse
Key Words
- post-acute sars-cov-2 symptoms
- thymosin alpha 1
- immune regulation
- anti-inflammatory response
- a-cov, acute covid-19
- aa, ambient air
- cdc, center for desease control and prevention
- em, effector memory
- tfh, follicular helper lymphocytes
- hd, healthy donors
- pasc, post-acute sequelae of sars-cov-2 infection
- pcc, post-covid conditions
- pd-1, programmed cell death-1
- ards, respiratory stress syndrome
- resp sup, respiratory support
- rpmi, roswell park memorial institute
- sev, severe acute phase of infection
- tem, terminal effector memory
- tα1, thymosin alpha 1
Collapse
|
26
|
Dhawan M, Rabaan AA, Alwarthan S, Alhajri M, Halwani MA, Alshengeti A, Najim MA, Alwashmi ASS, Alshehri AA, Alshamrani SA, AlShehail BM, Garout M, Al-Abdulhadi S, Al-Ahmed SH, Thakur N, Verma G. Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long COVID. Vaccines (Basel) 2023; 11:vaccines11030699. [PMID: 36992283 DOI: 10.3390/vaccines11030699] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Al-Madinah 41411, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh Al-Abdulhadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Riyadh 11942, Saudi Arabia
- Dr. Saleh Office for Medical Genetic and Genetic Counseling Services, The House of Expertise, Prince Sattam Bin Abdulaziz University, Dammam 32411, Saudi Arabia
| | - Shamsah H Al-Ahmed
- Specialty Paediatric Medicine, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Geetika Verma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
27
|
Akhtar E, Mily A, Sarker P, Chanda BC, Haque F, Kuddusi RU, Haq MA, Lourda M, Brighenti S, Raqib R. Immune cell landscape in symptomatic and asymptomatic SARS-CoV-2 infected adults and children in urban Dhaka, Bangladesh. Immunobiology 2023; 228:152350. [PMID: 36822063 PMCID: PMC9938758 DOI: 10.1016/j.imbio.2023.152350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/08/2022] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES The study of cellular immunity to SARS-CoV-2 is crucial for evaluating the course of the COVID-19 disease and for improving vaccine development. We aimed to assess the phenotypic landscape of circulating lymphocytes and mononuclear cells in adults and children who were seropositive to SARS-CoV-2 in the past 6 months. METHODS Blood samples (n = 350) were collected in a cross-sectional study in Dhaka, Bangladesh (Oct 2020-Feb 2021). Plasma antibody responses to SARS-CoV-2 were determined by an electrochemiluminescence immunoassay while lymphocyte and monocyte responses were assessed using flow cytometry including dimensionality reduction and clustering algorithms. RESULTS SARS-CoV-2 seropositivity was observed in 52% of adults (18-65 years) and 56% of children (10-17 years). Seropositivity was associated with reduced CD3+T cells in both adults (beta(β) = -2.86; 95% Confidence Interval (CI) = -5.98, 0.27) and children (β = -8.78; 95% CI = -13.8, -3.78). The frequencies of T helper effector (CD4+TEFF) and effector memory cells (CD4+TEM) were increased in seropositive compared to seronegative children. In adults, seropositivity was associated with an elevated proportion of cytotoxic T central memory cells (CD8+TCM). Overall, diverse manifestations of immune cell dysregulations were more prominent in seropositive children compared to adults, who previously had COVID-like symptoms. These changes involved reduced frequencies of CD4+TEFF cells and CD163+CD64+ classical monocytes, but increased levels of intermediate or non-classical monocytes, as well as CD8+TEM cells in symptomatic children. CONCLUSION Seropositive individuals in convalescence showed increased central and effector memory T cell phenotypes and pro-resolving/healing monocyte phenotypes compared to seronegative subjects. However, seropositive children with a previous history of COVID-like symptoms, displayed an ongoing innate inflammatory trait.
Collapse
Affiliation(s)
- Evana Akhtar
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Protim Sarker
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Farjana Haque
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | | | - Md Ahsanul Haq
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh
| | - Magda Lourda
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden; Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, icddrb, Dhaka 1212, Bangladesh.
| |
Collapse
|
28
|
Islam MS, Wang Z, Abdel-Mohsen M, Chen X, Montaner LJ. Tissue injury and leukocyte changes in post-acute sequelae of SARS-CoV-2: review of 2833 post-acute patient outcomes per immune dysregulation and microbial translocation in long COVID. J Leukoc Biol 2023; 113:236-254. [PMID: 36807444 DOI: 10.1093/jleuko/qiac001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
A significant number of persons with coronavirus disease 2019 (COVID-19) experience persistent, recurrent, or new symptoms several months after the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This phenomenon, termed post-acute sequelae of SARS-CoV-2 (PASC) or long COVID, is associated with high viral titers during acute infection, a persistently hyperactivated immune system, tissue injury by NETosis-induced micro-thrombofibrosis (NETinjury), microbial translocation, complement deposition, fibrotic macrophages, the presence of autoantibodies, and lymphopenic immune environments. Here, we review the current literature on the immunological imbalances that occur during PASC. Specifically, we focus on data supporting common immunopathogenesis and tissue injury mechanisms shared across this highly heterogenous disorder, including NETosis, coagulopathy, and fibrosis. Mechanisms include changes in leukocyte subsets/functions, fibroblast activation, cytokine imbalances, lower cortisol, autoantibodies, co-pathogen reactivation, and residual immune activation driven by persistent viral antigens and/or microbial translocation. Taken together, we develop the premise that SARS-CoV-2 infection results in PASC as a consequence of acute and/or persistent single or multiple organ injury mediated by PASC determinants to include the degree of host responses (inflammation, NETinjury), residual viral antigen (persistent antigen), and exogenous factors (microbial translocation). Determinants of PASC may be amplified by comorbidities, age, and sex.
Collapse
Affiliation(s)
- Md Sahidul Islam
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Zhaoxiong Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, Avenida da Universidade, Taipa 999078, University of Macau, Macau S.A.R., China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Research Building N22, University of Macau, Avenida da Universidade, Taipa 999078, Macau S.A.R., China
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States
| |
Collapse
|
29
|
Desai N, Pradhan V, Chougule D, Tiwari S, Mandke C, Yadav RM, Athvale A, Kawle J, Pai V, Pawaskar S, Kharkar H, Bhosale S, Parab A, Ansari S, Kumar KH, Mhashal S, Redkar N, Madkaikar M. Perturbations of immune landscape in COVID-19 associated mucormycosis. Mycoses 2023; 66:226-236. [PMID: 36380699 DOI: 10.1111/myc.13546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND A rise in secondary fungal infections during the COVID-19 pandemic necessitates a deeper understanding of the associated immunological perturbations. OBJECTIVES To evaluate the clinical and immunological characteristics observed in patients with COVID-19 associated mucormycosis (CAM) infection. PATIENTS/ METHODS Cases of mucormycosis with or post-COVID-19 infection were compared with cases of acute COVID-19 and convalescent COVID-19. Lymphocyte subsets, cytokines and other laboratory markers were compared between the groups. RESULTS The frequency of proposed risk factors for CAM was diabetes mellitus (77%), recent history of steroid use (69%) and hypoxia during COVID-19 infection (52%). Iron metabolism was dysregulated in CAM patients with low TIBC and total iron. Further, CAM was accompanied with lymphopenia with drastic reduction in B cell counts; however, plasmablasts were not altered. Further, CAM patients had low immunoglobulin levels and antibodies specific to mucor peptide did not increase in CAM suggesting dysfunction in B-cell response. There was increase in activated effector cytotoxic CD8 T cells and NK cells in CAM compared with COVID-19 infection and healthy controls. Among T helper cells, Tregs were reduced and Th-1 frequency was increased in CAM compared with COVID-19 infection. A distinct cytokine signature was evident in CAM with increase in IL-1β, IFN-γ, IL-6, IL-22, IL-17A, IL-10, IL-2, IL-8, IL-7, IL-21 and GM-CSF. CONCLUSION This is the first study on immunophenotyping in CAM suggesting the need for long-term monitoring of B-cell function after SARS-CoV-2 in patients with dysregulated glycaemic control and the possible benefit of therapeutic supplementation with intravenous immunoglobulins in CAM.
Collapse
Affiliation(s)
- Nidhi Desai
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Vandana Pradhan
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Durga Chougule
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Smrati Tiwari
- Department of Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Charuta Mandke
- Department of Ophthalmology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Reetika Malik Yadav
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Amita Athvale
- Department of Pulmonary Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Juhi Kawle
- Department of Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Vinayak Pai
- Department of Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Swapnal Pawaskar
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Harshada Kharkar
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Snehal Bhosale
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Ankita Parab
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Shazia Ansari
- Department of Ophthalmology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Kinnera Harish Kumar
- Department of Otorhinolaryngology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Shashikant Mhashal
- Department of Otolaryngology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Neelam Redkar
- Department of Medicine, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|
30
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
31
|
Kopitar AN, Repas J, Janžič L, Bizjak M, Vesel TT, Emeršič N, Avramovič MZ, Ihan A, Avčin T, Pavlin M. Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Front Immunol 2023; 14:1157702. [PMID: 37153551 PMCID: PMC10157053 DOI: 10.3389/fimmu.2023.1157702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Although children seem to be less susceptible to COVID-19, some of them develop a rare but serious hyperinflammatory condition called multisystem inflammatory syndrome in children (MIS-C). While several studies describe the clinical conditions of acute MIS-C, the status of convalescent patients in the months after acute MIS-C is still unclear, especially the question of persistence of changes in the specific subpopulations of immune cells in the convalescent phase of the disease. Methods We therefore analyzed peripheral blood of 14 children with MIS-C at the onset of the disease (acute phase) and 2 to 6 months after disease onset (post-acute convalescent phase) for lymphocyte subsets and antigen-presenting cell (APC) phenotype. The results were compared with six healthy age-matched controls. Results All major lymphocyte populations (B cells, CD4 + and CD8+ T cells, and NK cells) were decreased in the acute phase and normalized in the convalescent phase. T cell activation was increased in the acute phase, followed by an increased proportion of γ/δ-double-negative T cells (γ/δ DN Ts) in the convalescent phase. B cell differentiation was impaired in the acute phase with a decreased proportion of CD21 expressing, activated/memory, and class-switched memory B cells, which normalized in the convalescent phase. The proportion of plasmacytoid dendritic cells, conventional type 2 dendritic cells, and classical monocytes were decreased, while the proportion of conventional type 1 dendritic cells was increased in the acute phase. Importantly the population of plasmacytoid dendritic cells remained decreased in the convalescent phase, while other APC populations normalized. Immunometabolic analysis of peripheral blood mononuclear cells (PBMCs) in the convalescent MIS-C showed comparable mitochondrial respiration and glycolysis rates to healthy controls. Conclusions While both immunophenotyping and immunometabolic analyzes showed that immune cells in the convalescent MIS-C phase normalized in many parameters, we found lower percentage of plasmablasts, lower expression of T cell co-receptors (CD3, CD4, and CD8), an increased percentage of γ/δ DN Ts and increased metabolic activity of CD3/CD28-stimulated T cells. Overall, the results suggest that inflammation persists for months after the onset of MIS-C, with significant alterations in some immune system parameters, which may also impair immune defense against viral infections.
Collapse
Affiliation(s)
- Andreja Nataša Kopitar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Janžič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Bizjak
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tina Tajnšek Vesel
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nina Emeršič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Zajc Avramovič
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Avčin
- Department for Allergology, Rheumatology and Clinical Immunology, Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Department of Pediatrics, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Tadej Avčin, ; Mojca Pavlin,
| |
Collapse
|
32
|
Haunhorst S, Bloch W, Javelle F, Krüger K, Baumgart S, Drube S, Lemhöfer C, Reuken P, Stallmach A, Müller M, Zielinski CE, Pletz MW, Gabriel HHW, Puta C. A scoping review of regulatory T cell dynamics in convalescent COVID-19 patients - indications for their potential involvement in the development of Long COVID? Front Immunol 2022; 13:1070994. [PMID: 36582234 PMCID: PMC9792979 DOI: 10.3389/fimmu.2022.1070994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Recovery from coronavirus disease 2019 (COVID-19) can be impaired by the persistence of symptoms or new-onset health complications, commonly referred to as Long COVID. In a subset of patients, Long COVID is associated with immune system perturbations of unknown etiology, which could be related to compromised immunoregulatory mechanisms. Objective The objective of this scoping review was to summarize the existing literature regarding the frequency and functionality of Tregs in convalescent COVID-19 patients and to explore indications for their potential involvement in the development of Long COVID. Design A systematic search of studies investigating Tregs during COVID-19 convalescence was conducted on MEDLINE (via Pubmed) and Web of Science. Results The literature search yielded 17 relevant studies, of which three included a distinct cohort of patients with Long COVID. The reviewed studies suggest that the Treg population of COVID-19 patients can reconstitute quantitatively and functionally during recovery. However, the comparison between recovered and seronegative controls revealed that an infection-induced dysregulation of the Treg compartment can be sustained for at least several months. The small number of studies investigating Tregs in Long COVID allowed no firm conclusions to be drawn about their involvement in the syndrome's etiology. Yet, even almost one year post-infection Long COVID patients exhibit significantly altered proportions of Tregs within the CD4+ T cell population. Conclusions Persistent alterations in cell frequency in Long COVID patients indicate that Treg dysregulation might be linked to immune system-associated sequelae. Future studies should aim to address the association of Treg adaptations with different symptom clusters and blood parameters beyond the sole quantification of cell frequencies while adhering to consensualized phenotyping strategies.
Collapse
Affiliation(s)
- Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wilhelm Bloch
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Baumgart
- Institute for Immunology, Jena University Hospital, Jena, Germany
| | - Sebastian Drube
- Institute for Immunology, Jena University Hospital, Jena, Germany
| | | | - Philipp Reuken
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Clinic for Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Müller
- Department of Infection Immunology, Leibniz Institue for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Christina E. Zielinski
- Department of Infection Immunology, Leibniz Institue for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Mathias W. Pletz
- Institute for Immunology, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Holger H. W. Gabriel
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases related to Professional Activities, Jena, Germany
| |
Collapse
|
33
|
Alahdal M, Elkord E. Exhaustion and over-activation of immune cells in COVID-19: Challenges and therapeutic opportunities. Clin Immunol 2022; 245:109177. [PMID: 36356848 PMCID: PMC9640209 DOI: 10.1016/j.clim.2022.109177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Exhaustion of immune cells in COVID-19 remains a serious concern for infection management and therapeutic interventions. As reported, immune cells such as T effector cells (Teff), T regulatory cells (Tregs), natural killer cells (NKs), and antigen-presenting cells (APCs) exhibit uncontrolled functions in COVID-19. Unfortunately, the mechanisms that orchestrate immune cell functionality and virus interaction are still unknown. Recent studies linked adaptive immune cell exhaustion to underlying epigenetic mechanisms that regulate the epigenetic transcription of inhibitory immune checkpoint receptors (ICs). Further to that, the over-activation of T cells accompanied by the dysfunctionality of DCs and Tregs may enhance uncontrollable alveoli inflammation and cytokine storm in COVID-19. This might explain the reasons behind the failure of DC-based vaccines in inducing sufficient anti-viral responses. This review explains the processes behind the over-activation and exhaustion of innate and adaptive immune cells in COVID-19, which may contribute to developing novel immune intervention strategies.
Collapse
Affiliation(s)
- Murad Alahdal
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33 Birkat Al Mouz, Nizwa 616, Oman.
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33 Birkat Al Mouz, Nizwa 616, Oman; Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom.
| |
Collapse
|
34
|
Zhu Q, Xu Y, Wang T, Xie F. Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Front Immunol 2022; 13:1053437. [PMID: 36505489 PMCID: PMC9727711 DOI: 10.3389/fimmu.2022.1053437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been a global pandemic, caused by a novel coronavirus strain with strong infectivity, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the in-depth research, the close relationship between COVID-19 and immune system has been dug out. During the infection, macrophages, dendritic cells, natural killer cells, CD8+ T cells, Th1, Th17, Tfh cells and effector B cells are all involved in the anti-SARS-CoV-2 responses, however, the dysfunctional immune responses will ultimately lead to the excessive inflammation, acute lung injury, even other organ failure. Thus, a detailed understanding of pertinent immune response during COVID-19 will provide insights in predicting disease outcomes and developing appropriate therapeutic approaches. In this review, we mainly clarify the role of immune cells in COVID-19 and the target-vaccine development and treatment.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Yan Xu
- Department of Respiratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Ting Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Feiting Xie
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Feiting Xie,
| |
Collapse
|
35
|
Mitsuyama Y, Yamakawa K, Kayano K, Maruyama M, Umemura Y, Wada T, Fujimi S. Residual persistence of cytotoxicity lymphocytes and regulatory T cells in patients with severe coronavirus disease 2019 over a 1-year recovery process. Acute Med Surg 2022; 9:e803. [PMID: 36311179 PMCID: PMC9597380 DOI: 10.1002/ams2.803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Aim To clarify the immune cellular changes in critically ill patients recovering from coronavirus disease 2019 (COVID‐19). Methods The immune response of peripheral blood mononuclear cells from patients with severe COVID‐19 in different stages of recovery (3, 6, and 12 months from hospitalization) was evaluated by single‐cell mass cytometry. Immunological changes in patients were compared with those in age‐matched healthy donors. Results Three patients with severe COVID‐19 were compared with four healthy donors. In the patients, there was an increase in the cell density of CD4‐ and CD8‐positive T lymphocytes, and B cells, over the course of the recovery period. CD4‐ and CD8‐positive T lymphocytes expressing T‐bet and granzyme B (Gzm B) in patients were abundant during all recovery periods. The level of regulatory T cells remained high throughout the year. The levels of natural killer (NK) cells in patients were higher than in those in the healthy donors, and the frequency of CD16+ NK cells expressing Gzm B increased throughout the year. Conclusion Patients recovering from severe COVID‐19 showed persistence of cytotoxic lymphocytes, NK cells, and regulatory T cells throughout the posthospitalization year of recovery.
Collapse
Affiliation(s)
- Yumi Mitsuyama
- Division of Trauma and Surgical Critical CareOsaka General Medical CenterOsakaJapan,Department of Traumatology and Acute Critical MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Katsuhide Kayano
- Department of Emergency and Critical Care MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Miho Maruyama
- Division of Trauma and Surgical Critical CareOsaka General Medical CenterOsakaJapan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical CareOsaka General Medical CenterOsakaJapan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care MedicineHokkaido University Faculty of MedicineSapporoJapan
| | - Satoshi Fujimi
- Division of Trauma and Surgical Critical CareOsaka General Medical CenterOsakaJapan
| |
Collapse
|
36
|
Méndez-Frausto G, Godina-González S, Rivas-Santiago CE, Nungaray-Anguiano E, Mendoza-Almanza G, Rivas-Santiago B, Galván-Tejada CE, Gonzalez-Curiel IE. Downregulation of sCD40 and sCTLA4 in Recovered COVID-19 Patients with Comorbidities. Pathogens 2022; 11:pathogens11101128. [PMID: 36297185 PMCID: PMC9608172 DOI: 10.3390/pathogens11101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to analyze molecules associated with regulatory immune response in unvaccinated, recovered COVID-19 patients with and without diabetes mellitus (DM) and hypertension (HTN). We determined anti-SARS-CoV-2 nucleocapsid IgG in plasma by electrochemiluminescence immunoassay. The levels of sCD40, TGF-ß, IL-10, and sCTLA-4 were assessed by ELISA in the serum of the subjects, as well as in healthy donors. We observed that only half of the subjects in the non-comorbid group produced antibodies, whereas all subjects in comorbid groups were IgG-positive for the anti-SARS-CoV-2 nucleocapsid. High levels of sCTL-4 were observed in the non-comorbid group, and the level of IL-10 was observed to increase in seropositive subjects without comorbidities. TGF-ß concentration was similar in all groups studied. Finally, sCD40 decreased in the comorbid group. In conclusion, our results suggest that comorbidities such as DM and HTN alter the production of co-stimulatory inhibitory molecules sCTLA-4 and sCD40 in subjects recovering from mild COVID-19. The alterations observed here were independent of seropositivity, suggesting an effective humoral immune response against COVID-19 separate from the levels of co-stimulatory inhibitory molecules.
Collapse
Affiliation(s)
- Gwendolyne Méndez-Frausto
- Laboratorio de Inmunotoxicología y Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Susana Godina-González
- Laboratorio de Biomarcadores, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - César E. Rivas-Santiago
- CONACYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | - Edna Nungaray-Anguiano
- Laboratorio de Inmunotoxicología y Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
| | - Gretel Mendoza-Almanza
- CONACYT-Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico
| | | | - Carlos E. Galván-Tejada
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Zacatecas 98000, Mexico
| | - Irma E. Gonzalez-Curiel
- Laboratorio de Inmunotoxicología y Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico
- Correspondence: ; Tel.: +52-492-1324310
| |
Collapse
|
37
|
Takiguchi S, Tomita Y, Uehara S, Tateishi K, Yamamoto N, Nakamura M. Immunological imprint on peripheral blood in kidney transplant recipients after two doses of SARS-CoV-2 mRNA vaccination in Japan. Front Med (Lausanne) 2022; 9:999374. [PMID: 36250073 PMCID: PMC9553995 DOI: 10.3389/fmed.2022.999374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The immunological imprint after two doses of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) mRNA vaccination for patients after kidney transplantation (KTx) remain unclear. This study included KTx recipients and volunteer healthy controls (HCs) who received two doses of SARS-CoV-2 mRNA vaccine (Pfizer BioNTech) from January 2021 to December 2021. We analyzed safety within 21 days after each vaccination dose and compared the immune response in peripheral blood mononuclear cells (PBMCs) between the two groups. No graft rejection was observed throughout this study. Adverse events were generally observed within 5 days. The KTx group exhibited a significantly lower degree of symptoms between doses 1 and 2 (P < 0.001). Increases in activated subsets of T and B cells expressing human leukocyte antigen (HLA)-DR and/or CD38 were observed in the HC group after dose 2 (both P < 0.001), with the greatest increases in HLA-DR+CD8+ T cells and CD38+CD19+ B cells (P = 0.042 and P = 0.031, respectively). In addition, PD1+CD8+ T cells—but not PD1+CD4+ T cells—increased significantly in the HC group (P = 0.027). In the KTx group, however, activated HLA-DR+, CD38+, and PD1+ cells remained at baseline levels. Immunoglobulin (Ig)G against SARS-CoV-2 was detected in only four KTx recipients (13.3%) after dose 2 (P < 0.001). Multivariate logistic regression analyses revealed that ΔHLA-DR+CD8+ T cells and ΔCD38+CD19+ B cells were significantly associated with IgG formation (both P = 0.02). SARS-CoV-2 mRNA vaccine generates impaired cellular and humoral immunity for KTx recipients. Results indicate the need for modified vaccination strategies in immunocompromised KTx recipients.
Collapse
Affiliation(s)
- Shinya Takiguchi
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Yusuke Tomita
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan
- *Correspondence: Yusuke Tomita, ; orcid.org/0000-0003-4959-6290
| | - Saeko Uehara
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Koichiro Tateishi
- Department of Virology, Division of Host Defense Mechanism, School of Medicine, Tokai University, Kanagawa, Japan
| | - Norio Yamamoto
- Department of Virology, Division of Host Defense Mechanism, School of Medicine, Tokai University, Kanagawa, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
38
|
Hartley GE, Edwards ESJ, O’Hehir RE, van Zelm MC. New insights into human immune memory from SARS-CoV-2 infection and vaccination. Allergy 2022; 77:3553-3566. [PMID: 36048132 PMCID: PMC9538469 DOI: 10.1111/all.15502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Since early 2020, the world has been embroiled in an ongoing viral pandemic with SARS-CoV-2 and emerging variants resulting in mass morbidity and an estimated 6 million deaths globally. The scientific community pivoted rapidly, providing unique and innovative means to identify infected individuals, technologies to evaluate immune responses to infection and vaccination, and new therapeutic strategies to treat infected individuals. Never before has immunology been so critically at the forefront of combatting a global pandemic. It has now become evident that not just antibody responses, but formation and durability of immune memory cells following vaccination are associated with protection against severe disease from SARS-CoV-2 infection. Furthermore, the emergence of variants of concern (VoC) highlight the need for immunological markers to quantify the protective capacity of Wuhan-based vaccines. Thus, harnessing and modulating the immune response is key to successful vaccination and treatment of disease. We here review the latest knowledge about immune memory generation and durability following natural infection and vaccination, and provide insights into the attributes of immune memory that may protect from emerging variants.
Collapse
Affiliation(s)
- Gemma E. Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Robyn E. O’Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia,Allergy, Asthma and Clinical Immunology ServiceAlfred HospitalMelbourneVictoriaAustralia
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia,Allergy, Asthma and Clinical Immunology ServiceAlfred HospitalMelbourneVictoriaAustralia
| |
Collapse
|
39
|
Schiavetti I, Carmisciano L, Ponzano M, Cordioli C, Cocco E, Marfia GA, Inglese M, Filippi M, Radaelli M, Bergamaschi R, Immovilli P, Capobianco M, De Rossi N, Brichetto G, Scandellari C, Cavalla P, Pesci I, Confalonieri P, Perini P, Trojano M, Lanzillo R, Tedeschi G, Comi G, Battaglia MA, Patti F, Salvetti M, Sormani MP. Signs and symptoms of Covid‐19 in patients with multiple sclerosis. Eur J Neurol 2022; 29:3728-3736. [PMID: 36086905 PMCID: PMC9538224 DOI: 10.1111/ene.15554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Background and purpose Clinical outcomes of multiple sclerosis (MS) patients affected by coronavirus disease 2019 (COVID‐19) have been thoroughly investigated, but a further analysis on main signs and symptoms and their risk factors still needs attention. The objective of this study was to group together and describe based on similarity the most common signs and symptoms of COVID‐19 in MS patients and identify all factors associated with their manifestation. Method Logistic and linear regression models were run to recognize factors associated with each pooled group of symptoms and their total number. Results From March 2020 to November 2021, data were collected from 1354 MS patients with confirmed infection of COVID‐19. Ageusia and anosmia was less frequent in older people (odds ratio [OR] 0.98; p = 0.005) and more in smoker patients (OR 1.39; p = 0.049). Smoke was also associated with an incremental number of symptoms (OR 1.24; p = 0.031), substance abuse (drugs or alcohol), conjunctivitis and rash (OR 5.20; p = 0.042) and the presence of at least one comorbidity with shortness of breath, tachycardia or chest pain (OR 1.24; p = 0.008). Some disease‐modifying therapies were associated with greater frequencies of certain COVID‐19 symptoms (association between anti‐CD20 therapies and increment in the number of concomitant symptoms: OR 1.29; p = 0.05). Differences in frequencies between the three waves were found for flu‐like symptoms (G1, p = 0.024), joint or muscle pain (G2, p = 0.013) and ageusia and anosmia (G5, p < 0.001). All cases should be referred to variants up to Delta. Conclusion Several factors along with the choice of specific therapeutic approaches might have a different impact on the occurrence of some COVID‐19 symptoms.
Collapse
Affiliation(s)
| | | | - Marta Ponzano
- Department of Health Sciences University of Genova Genova Italy
| | - Cinzia Cordioli
- Centro Sclerosi Multipla ASST Spedali Civili di Brescia, Montichiari Italy
| | - Eleonora Cocco
- Centro Sclerosi Multipla, ATS Sardegna Cagliari Italy
- Dipartimento Scienze Mediche e Sanità Pubblica, Università di Cagliari Cagliari Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine Tor Vergata University Rome Italy
| | - Matilde Inglese
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI) University of Genoa Genoa Italy
- IRCCS Ospedale Policlinico San Martino Genoa Italy
| | - Massimo Filippi
- Neurology Unit IRCCS San Raffaele Scientific Institute Milan Italy
- Neurorehabilitation Unit IRCCS San Raffaele Scientific Institute Milan Italy
- Neurophysiology Unit IRCCS San Raffaele Scientific Institute Milan Italy
- Neuroimaging Research Unit, Division of Neuroscience IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| | - Marta Radaelli
- Department of Neurology and Multiple Sclerosis Center, ASST ‘Papa Giovanni XXIII’ Bergamo Italy
| | | | - Paolo Immovilli
- Multiple Sclerosis Center, Ospedale Guglielmo da Saliceto Piacenza Italy
| | - Marco Capobianco
- Regional Referral Multiple Sclerosis Centre, Department of Neurology University Hospital San Luigi Orbassano (Torino) Italy
| | - Nicola De Rossi
- Centro Sclerosi Multipla ASST Spedali Civili di Brescia, Montichiari Italy
| | | | - Cinzia Scandellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Riabilitazione Sclerosi Multipla Bologna Italy
| | - Paola Cavalla
- MS Center, Department of Neuroscience City of Health and Science University Hospital of Turin Turin Italy
| | - Ilaria Pesci
- Centro SM UOC Neurologia, Fidenza, AUSL PR, Fidenza Italy
| | - Paolo Confalonieri
- Multiple Sclerosis Centre, Neuroimmunology Department ‘Carlo Besta’ Neurological Institute Milan Italy
| | - Paola Perini
- Department of Neurology Multiple Sclerosis Center University of Padua Padova Italy
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs University of Bari Bari Italy
| | | | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences University of Campania Napoli Italy
| | - Giancarlo Comi
- Università Vita Salute San Raffaele, Casa di Cura Privata del Policlinico Milan Italy
| | - Mario Alberto Battaglia
- Research Department, Italian Multiple Sclerosis Foundation Genoa Italy
- Department of Life Sciences University of Siena Siena Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia University of Catania Catania Italy
- Centro Sclerosi Multipla, Policlinico Catania University of Catania Catania Italy
| | - Marco Salvetti
- Department of Neuroscience, Mental Health and Sensory Organs Sapienza University of Rome Rome Italy
- Unit of Neurology, IRCCS Neuromed Pozzilli Italy
| | - Maria Pia Sormani
- Department of Health Sciences University of Genova Genova Italy
- IRCCS Ospedale Policlinico San Martino Genoa Italy
| | | |
Collapse
|
40
|
Kudryavtsev IV, Arsentieva NA, Korobova ZR, Isakov DV, Rubinstein AA, Batsunov OK, Khamitova IV, Kuznetsova RN, Savin TV, Akisheva TV, Stanevich OV, Lebedeva AA, Vorobyov EA, Vorobyova SV, Kulikov AN, Sharapova MA, Pevtsov DE, Totolian AA. Heterogenous CD8+ T Cell Maturation and 'Polarization' in Acute and Convalescent COVID-19 Patients. Viruses 2022; 14:1906. [PMID: 36146713 PMCID: PMC9504186 DOI: 10.3390/v14091906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The adaptive antiviral immune response requires interaction between CD8+ T cells, dendritic cells, and Th1 cells for controlling SARS-CoV-2 infection, but the data regarding the role of CD8+ T cells in the acute phase of COVID-19 and post-COVID-19 syndrome are still limited. METHODS . Peripheral blood samples collected from patients with acute COVID-19 (n = 71), convalescent subjects bearing serum SARS-CoV-2 N-protein-specific IgG antibodies (n = 51), and healthy volunteers with no detectable antibodies to any SARS-CoV-2 proteins (HC, n = 46) were analyzed using 10-color flow cytometry. RESULTS Patients with acute COVID-19 vs. HC and COVID-19 convalescents showed decreased absolute numbers of CD8+ T cells, whereas the frequency of CM and TEMRA CD8+ T cells in acute COVID-19 vs. HC was elevated. COVID-19 convalescents vs. HC had increased naïve and CM cells, whereas TEMRA cells were decreased compared to HC. Cell-surface CD57 was highly expressed by the majority of CD8+ T cells subsets during acute COVID-19, but convalescents had increased CD57 on 'naïve', CM, EM4, and pE1 2-3 months post-symptom onset. CXCR5 expression was altered in acute and convalescent COVID-19 subjects, whereas the frequencies of CXCR3+ and CCR4+ cells were decreased in both patient groups vs. HC. COVID-19 convalescents had increased CCR6-expressing CD8+ T cells. Moreover, CXCR3+CCR6- Tc1 cells were decreased in patients with acute COVID-19 and COVID-19 convalescents, whereas Tc2 and Tc17 levels were increased compared to HC. Finally, IL-27 negatively correlated with the CCR6+ cells in acute COVID-19 patients. CONCLUSIONS We described an abnormal CD8+ T cell profile in COVID-19 convalescents, which resulted in lower frequencies of effector subsets (TEMRA and Tc1), higher senescent state (upregulated CD57 on 'naïve' and memory cells), and higher frequencies of CD8+ T cell subsets expressing lung tissue and mucosal tissue homing molecules (Tc2, Tc17, and Tc17.1). Thus, our data indicate that COVID-19 can impact the long-term CD8+ T cell immune response.
Collapse
Affiliation(s)
- Igor V. Kudryavtsev
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Zoia R. Korobova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Dmitry V. Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oleg K. Batsunov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Irina V. Khamitova
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Raisa N. Kuznetsova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tikhon V. Savin
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| | - Tatiana V. Akisheva
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Oksana V. Stanevich
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Smorodintsev Research Institute of Influenza, Prof. Popov St. 15/17, 197376 Saint Petersburg, Russia
| | - Aleksandra A. Lebedeva
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Evgeny A. Vorobyov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Snejana V. Vorobyova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Alexander N. Kulikov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Maria A. Sharapova
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Dmitrii E. Pevtsov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Areg A. Totolian
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Laboratory of Immunology, Saint Petersburg Pasteur Institute, Mira 14, 197101 Saint Petersburg, Russia
| |
Collapse
|
41
|
García-Abellán J, Fernández M, Padilla S, García JA, Agulló V, Lozano V, Ena N, García-Sánchez L, Gutiérrez F, Masiá M. Immunologic phenotype of patients with long-COVID syndrome of 1-year duration. Front Immunol 2022; 13:920627. [PMID: 36090973 PMCID: PMC9451924 DOI: 10.3389/fimmu.2022.920627] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background The pathophysiology of long-COVID remains unknown, and information is particularly limited for symptoms of very long duration. We aimed to assess the serological, T-cell immune responses and ANA titers of patients with long-COVID-19 syndrome of 1-year duration. Methods Prospective, longitudinal study of hospitalized COVID-19 patients followed-up for 12 months. Sequential blood samples and COVID-19 symptom questionnaires (CSQ) were obtained, and humoral and cellular immune responses, antinuclear antibodies (ANA) and inflammation biomarkers were analyzed. Results Of 154 patients discharged from hospital, 72 non-vaccinated with available CSQ in all visits were included. Of them, 14 (19.4%) reported persistent symptoms both at 6-months and 12-months, mainly asthenia (15.3%), myalgia (13.9%), and difficulty concentrating/memory loss (13.9%). Symptomatic patients were more frequently women, smokers, showed higher WHO severity score, and a trend to higher ICU admission. In the adjusted analysis, long-COVID syndrome was associated with lower frequency of detectable neutralizing antibodies (adjusted hazard ratio [aHR] 0.98; 95% confidence interval [CI], 0.97-0.99) and lower SARS-CoV-2-S1/S2 titers (aHR [95%CI] 0.14 [0.03–0.65]). T-cell immune response measured with a SARS-CoV-2-interferon-γ release assay was not different between groups. There was a higher frequency of positive ANA titers (≥160) in symptomatic patients (57.1% vs 29.3%, p=0.04), that was attenuated after adjustment aHR [95% CI] 3.37 [0.84-13.57], p=0.087. Levels of C-reactive protein and D-dimer were higher during follow-up in symptomatic patients, but with no differences at 12 months. Conclusion Patients with 1-year duration long-COVID-19 syndrome exhibit a distinct immunologic phenotype that includes a poorer SARS-CoV-2 antibody response, low-degree chronic inflammation that tends to mitigate, and autoimmunity.
Collapse
Affiliation(s)
- Javier García-Abellán
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Fernández
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Padilla
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Alberto García
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Agulló
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Valle Lozano
- Department of Clinical Chemistry, Hospital General Universitario de Elche, Alicante, Spain
| | - Nuria Ena
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Lidia García-Sánchez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Félix Gutiérrez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Mar Masiá, ; Félix Gutiérrez,
| | - Mar Masiá
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Mar Masiá, ; Félix Gutiérrez,
| |
Collapse
|
42
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
43
|
Kratzer B, Schlax LC, Gattinger P, Waidhofer‐Söllner P, Trapin D, Tauber PA, Sehgal ANA, Körmöczi U, Rottal A, Feichter M, Oberhofer T, Grabmeier‐Pfistershammer K, Borochova K, Dorofeeva Y, Tulaeva I, Weber M, Mühl B, Kropfmüller A, Negrin B, Kundi M, Valenta R, Pickl WF. Combined assessment of S- and N-specific IL-2 and IL-13 secretion and CD69 neo-expression for discrimination of post-infection and post-vaccination cellular SARS-CoV-2-specific immune response. Allergy 2022; 77:3408-3425. [PMID: 35690994 PMCID: PMC9348018 DOI: 10.1111/all.15406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Antibody-based tests are available for measuring SARS-CoV-2-specific immune responses but fast T-cell assays remain scarce. Robust T cell-based tests are needed to differentiate specific cellular immune responses after infection from those after vaccination. METHODS One hundred seventeen individuals (COVID-19 convalescent patients: n = 40; SARS-CoV-2 vaccinees: n = 41; healthy controls: n = 36) were evaluated for SARS-CoV-2-specific cellular immune responses (proliferation, Th1, Th2, Th17, and inflammatory cytokines, activation-induced marker [AIM] expression) by incubating purified peripheral blood mononuclear cells (PBMC) or whole blood (WB) with SARS-CoV-2 peptides (S, N, or M), vaccine antigens (tetanus toxoid, tick borne encephalitis virus) or polyclonal stimuli (Staphylococcal enterotoxin, phytohemagglutinin). RESULTS N-peptide mix stimulation of WB identified the combination of IL-2 and IL-13 secretion as superior to IFN-γ secretion to discriminate between COVID-19-convalescent patients and healthy controls (p < .0001). Comparable results were obtained with M- or S-peptides, the latter almost comparably recalled IL-2, IFN-γ, and IL-13 responses in WB of vaccinees. Analysis 10 months as opposed to 10 weeks after COVID-19, but not allergic disease status, positively correlated with IL-13 recall responses. WB cytokine responses correlated with cytokine and proliferation responses of PBMC. Antigen-induced neo-expression of the C-type lectin CD69 on CD4+ (p < .0001) and CD8+ (p = .0002) T cells informed best about the SARS-CoV-2 exposure status with additional benefit coming from CD25 upregulation. CONCLUSION Along with N- and S-peptide-induced IL-2 and CD69 neo-expression, we suggest to include the type 2 cytokine IL-13 as T-cellular recall marker for SARS-CoV-2 specific T-cellular immune responses after infection and vaccination.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Larissa C. Schlax
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Pia Gattinger
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | - Petra Waidhofer‐Söllner
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Doris Trapin
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Peter A. Tauber
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Al Nasar Ahmed Sehgal
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Ulrike Körmöczi
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Arno Rottal
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Melanie Feichter
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | - Teresa Oberhofer
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria
| | | | - Kristina Borochova
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | - Yulia Dorofeeva
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | - Inna Tulaeva
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria,I. M. Sechenov First Moscow State Medical University (Sechenov University)Department of Clinical Immunology and AllergologyLaboratory for ImmunopathologyMoscowRussia
| | - Milena Weber
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria
| | | | | | - Bettina Negrin
- Österreichische Gesundheitskasse, Klinikum PeterhofBadenAustria
| | - Michael Kundi
- Medical University of ViennaCenter for Public HealthDepartment for Environmental HealthViennaAustria
| | - Rudolf Valenta
- Medical University of ViennaCenter for Pathophysiology, Infectiology and ImmunologyDepartment of Pathophysiology and Allergy ResearchViennaAustria,I. M. Sechenov First Moscow State Medical University (Sechenov University)Department of Clinical Immunology and AllergologyLaboratory for ImmunopathologyMoscowRussia,NRC Institute of Immunology FMBA of RussiaMoscowRussia,Karl Landsteiner University of Health SciencesKremsAustria
| | - Winfried F. Pickl
- Medical University of ViennaCenter for PathophysiologyInfectiology and ImmunologyInstitute of ImmunologyViennaAustria,Karl Landsteiner University of Health SciencesKremsAustria
| |
Collapse
|
44
|
Biomarkers of Inflammation among Patients with COVID-19: A Single-Centre Prospective Study from Prishtina, Kosovo. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:4461647. [PMID: 35873360 PMCID: PMC9298187 DOI: 10.1155/2022/4461647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/17/2022] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 infection involves the phase of viral replication and inflammatory response predicting the severity of COVID-19. The aim of the study was to analyze the association between IL-6 and hematological and inflammatory parameters and outcomes of patients with COVID-19. Plasma interleukin 6 (IL-6) levels and other inflammatory and hematological parameters were analyzed in 86 adult patients diagnosed with SARS-CoV-2 infection in Kosovo. The median age of patients was 61.50 (49.75–67.25) years. Over half of patients were categorised as severe (58%) and had comorbidities (69%) with hypertension being the most common. The overall mortality rate was 4.7%. The distribution of biochemical parameters across disease severity groups was significantly different for C-reactive protein (CRP), lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), white blood cells (WBC), and granulocytes with higher median values in more severe and critically ill patients whereas lower percentage of lymphocytes, monocytes, and platelet count in severe and critically ill patients. IL-6 levels were increased in 63% of patients with significant differences in the distribution across the following groups; age, disease severity, hospitalisation status, pulmonary infiltrates, oxygen therapy, and hypertension status. IL-6 significantly correlated with CRP, LDH, CK, ESR, and percentages of granulocytes. IL-6 and other inflammatory and hematological parameters were strongly associated with disease severity and may predict the outcome of the SARS-CoV-2 infection.
Collapse
|
45
|
Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol 2022; 13:888248. [PMID: 35844604 PMCID: PMC9279859 DOI: 10.3389/fimmu.2022.888248] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Natural Killer (NK) cells are lymphocytes of the innate immunity that play a crucial role in the control of viral infections in the absence of a prior antigen sensitization. Indeed, they display rapid effector functions against target cells with the capability of direct cell killing and antibody-dependent cell-mediated cytotoxicity. Furthermore, NK cells are endowed with immune-modulatory functions innate and adaptive immune responses via the secretion of chemokines/cytokines and by undertaking synergic crosstalks with other innate immune cells, including monocyte/macrophages, dendritic cells and neutrophils. Recently, the Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the specific role of NK cells in COVID-19 pathophysiology still need to be explored, mounting evidence indicates that NK cell tissue distribution and effector functions could be affected by SARS-CoV-2 infection and that a prompt NK cell response could determine a good clinical outcome in COVID-19 patients. In this review, we give a comprehensive overview of how SARS-CoV-2 infection interferes with NK cell antiviral effectiveness and their crosstalk with other innate immune cells. We also provide a detailed characterization of the specific NK cell subsets in relation to COVID-19 patient severity generated from publicly available single cell RNA sequencing datasets. Finally, we summarize the possible NK cell-based therapeutic approaches against SARS-CoV-2 infection and the ongoing clinical trials updated at the time of submission of this review. We will also discuss how a deep understanding of NK cell responses could open new possibilities for the treatment and prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Emergency Medicine Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| |
Collapse
|
46
|
Wiech M, Chroscicki P, Swatler J, Stepnik D, De Biasi S, Hampel M, Brewinska-Olchowik M, Maliszewska A, Sklinda K, Durlik M, Wierzba W, Cossarizza A, Piwocka K. Remodeling of T Cell Dynamics During Long COVID Is Dependent on Severity of SARS-CoV-2 Infection. Front Immunol 2022; 13:886431. [PMID: 35757700 PMCID: PMC9226563 DOI: 10.3389/fimmu.2022.886431] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Several COVID-19 convalescents suffer from the post-acute COVID-syndrome (PACS)/long COVID, with symptoms that include fatigue, dyspnea, pulmonary fibrosis, cognitive dysfunctions or even stroke. Given the scale of the worldwide infections, the long-term recovery and the integrative health-care in the nearest future, it is critical to understand the cellular and molecular mechanisms as well as possible predictors of the longitudinal post-COVID-19 responses in convalescent individuals. The immune system and T cell alterations are proposed as drivers of post-acute COVID syndrome. However, despite the number of studies on COVID-19, many of them addressed only the severe convalescents or the short-term responses. Here, we performed longitudinal studies of mild, moderate and severe COVID-19-convalescent patients, at two time points (3 and 6 months from the infection), to assess the dynamics of T cells immune landscape, integrated with patients-reported symptoms. We show that alterations among T cell subsets exhibit different, severity- and time-dependent dynamics, that in severe convalescents result in a polarization towards an exhausted/senescent state of CD4+ and CD8+ T cells and perturbances in CD4+ Tregs. In particular, CD8+ T cells exhibit a high proportion of CD57+ terminal effector cells, together with significant decrease of naïve cell population, augmented granzyme B and IFN-γ production and unresolved inflammation 6 months after infection. Mild convalescents showed increased naïve, and decreased central memory and effector memory CD4+ Treg subsets. Patients from all severity groups can be predisposed to the long COVID symptoms, and fatigue and cognitive dysfunctions are not necessarily related to exhausted/senescent state and T cell dysfunctions, as well as unresolved inflammation that was found only in severe convalescents. In conclusion, the post-COVID-19 functional remodeling of T cells could be seen as a two-step process, leading to distinct convalescent immune states at 6 months after infection. Our data imply that attenuation of the functional polarization together with blocking granzyme B and IFN-γ in CD8+ cells might influence post-COVID alterations in severe convalescents. However, either the search for long COVID predictors or any treatment to prevent PACS and further complications is mandatory in all patients with SARS-CoV-2 infection, and not only in those suffering from severe COVID-19.
Collapse
Affiliation(s)
- Milena Wiech
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Chroscicki
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Julian Swatler
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Stepnik
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Michal Hampel
- Department of Gastroenterological Surgery and Transplantology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Marta Brewinska-Olchowik
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Maliszewska
- Department of Gastroenterological Surgery and Transplantology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland
| | - Katarzyna Sklinda
- Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marek Durlik
- Department of Gastroenterological Surgery and Transplantology, Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland.,Departament of Gastroenterological Surgery and Transplantology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Waldemar Wierzba
- Central Clinical Hospital of the Ministry of Interior, Warsaw, Poland.,University of Humanities and Economics, Lodz, Poland
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
47
|
Wagner A, Garner-Spitzer E, Schötta AM, Orola M, Wessely A, Zwazl I, Ohradanova-Repic A, Weseslindtner L, Tajti G, Gebetsberger L, Kratzer B, Tomosel E, Kutschera M, Tobudic S, Pickl WF, Kundi M, Stockinger H, Novacek G, Reinisch W, Zielinski C, Wiedermann U. SARS-CoV-2-mRNA Booster Vaccination Reverses Non-Responsiveness and Early Antibody Waning in Immunocompromised Patients – A Phase Four Study Comparing Immune Responses in Patients With Solid Cancers, Multiple Myeloma and Inflammatory Bowel Disease. Front Immunol 2022; 13:889138. [PMID: 35634285 PMCID: PMC9133631 DOI: 10.3389/fimmu.2022.889138] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundIndividuals with secondary immunodeficiencies belong to the most vulnerable groups to succumb to COVID-19 and thus are prioritized for SARS-CoV-2 vaccination. However, knowledge about the persistence and anamnestic responses following SARS-CoV-2-mRNA vaccinations is limited in these patients.MethodsIn a prospective, open-label, phase four trial we analyzed S1-specific IgG, neutralizing antibodies and cytokine responses in previously non-infected patients with cancer or autoimmune disease during primary mRNA vaccination and up to one month after booster.Results263 patients with solid tumors (SOT, n=63), multiple myeloma (MM, n=70), inflammatory bowel diseases (IBD, n=130) and 66 controls were analyzed. One month after the two-dose primary vaccination the highest non-responder rate was associated with lower CD19+ B-cell counts and was found in MM patients (17%). S1-specific IgG levels correlated with IL-2 and IFN-γ responses in controls and IBD patients, but not in cancer patients. Six months after the second dose, 18% of patients with MM, 10% with SOT and 4% with IBD became seronegative; no one from the control group became negative. However, in IBD patients treated with TNF-α inhibitors, antibody levels declined more rapidly than in controls. Overall, vaccination with mRNA-1273 led to higher antibody levels than with BNT162b2. Importantly, booster vaccination increased antibody levels >8-fold in seroresponders and induced anamnestic responses even in those with undetectable pre-booster antibody levels. Nevertheless, in IBD patients with TNF-α inhibitors even after booster vaccination, antibody levels were lower than in untreated IBD patients and controls.ConclusionImmunomonitoring of vaccine-specific antibody and cellular responses seems advisable to identify vaccination failures and consequently establishing personalized vaccination schedules, including shorter booster intervals, and helps to improve vaccine effectiveness in all patients with secondary immunodeficiencies.Trial registrationEudraCT Number: 2021-000291-11
Collapse
Affiliation(s)
- Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- *Correspondence: Ursula Wiedermann, ; Angelika Wagner,
| | - Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Anna-Margarita Schötta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Maria Orola
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Andrea Wessely
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Ines Zwazl
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | | | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Elena Tomosel
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Maximilian Kutschera
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | - Selma Tobudic
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University Vienna, Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
| | - Gottfried Novacek
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | - Walter Reinisch
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University Vienna, Vienna, Austria
| | - Christoph Zielinski
- Central European Cancer Center, Wiener Privatklinik, Vienna, Austria
- The Central European Cancer Center, Central European Cooperative Oncology Group, Headquater (HQ), Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University Vienna, Vienna, Austria
- *Correspondence: Ursula Wiedermann, ; Angelika Wagner,
| |
Collapse
|
48
|
Golke T, Mucher P, Schmidt P, Radakovics A, Repl M, Hofer P, Perkmann T, Fondi M, Schmetterer KG, Haslacher H. Delays during PBMC isolation have a moderate effect on yield, but severly compromise cell viability. Clin Chem Lab Med 2022; 60:701-706. [PMID: 35085430 DOI: 10.1515/cclm-2022-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMCs) are a versatile material for clinical routine as well as for research projects. However, their isolation via density gradient centrifugation is still time-consuming. When samples are taken beyond usual laboratory handling times, it may sometimes be necessary to pause the isolation process. Our aim was to evaluate the impact of delays up to 48 h after the density gradient centrifugation on PBMC yield, purity and viability. METHODS PBMCs were isolated from samples of 20 donors, either with BD Vacutainer CPT tubes (CPT) or with the standard Ficoll method. Isolation was paused after initial density gradient centrifugation for 0, 24, or 48 h. PBMC yield (% output/input), purity (% PBMCs/total cells) and viability (% Annexin V-/propidium iodide-) were compared. RESULTS The yield did not change significantly over time when CPT were used (55%/52%/47%), but did after isolation with the standard method (62%/40%[p<0.0001]/53%[p<0.01]). Purity was marginally affected if CPT were used (95%/93%[p=n.s./92%[p<0.05] vs. 97% for all time points with standard method). Whereas viable PBMCs decreased steadily for CPT isolates (62%/51%[p<0.001]/36%[p<0.0001]), after standard Ficoll gradient isolation, cell apoptosis was more pronounced already after 24 h delay, and viability did not further decrease after 48 h (64%/44%[p<0.0001]/40%[p<0.0001]). CONCLUSIONS In conclusion, our findings suggest that while post-centrifugation delays ≥24 h might have only a minor effect on cell yield and purity, their impact on cell viability is substantial, even when CPT are used.
Collapse
Affiliation(s)
- Tanja Golke
- FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Patrick Mucher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Patricia Schmidt
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Astrid Radakovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Manuela Repl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Philipp Hofer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martina Fondi
- FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Role of T Regulatory Cells and Myeloid-Derived Suppressor Cells in COVID-19. J Immunol Res 2022; 2022:5545319. [PMID: 35497875 PMCID: PMC9042623 DOI: 10.1155/2022/5545319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has been raised as a pandemic disease since December 2019. Immunosuppressive cells including T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs) are key players in immunological tolerance and immunoregulation; however, they contribute to the pathogenesis of different diseases including infections. Tregs have been shown to impair the protective role of CD8+ T lymphocytes against viral infections. In COVID-19 patients, most studies reported reduction, while few other studies found elevation in Treg levels. Moreover, Tregs have a dual role, depending on the different stages of COVID-19 disease. At early stages of COVID-19, Tregs have a critical role in decreasing antiviral immune responses, and consequently reducing the viral clearance. On the other side, during late stages, Tregs reduce inflammation-induced organ damage. Therefore, inhibition of Tregs in early stages and their expansion in late stages have potentials to improve clinical outcomes. In viral infections, MDSC levels are highly increased, and they have the potential to suppress T cell proliferation and reduce viral clearance. Some subsets of MDSCs are expanded in the blood of COVID-19 patients; however, there is a controversy whether this expansion has pathogenic or protective effects in COVID-19 patients. In conclusion, further studies are required to investigate the role and function of immunosuppressive cells and their potentials as prognostic biomarkers and therapeutic targets in COVID-19 patients.
Collapse
|
50
|
Prietl B, Odler B, Kirsch AH, Artinger K, Eigner M, Schmaldienst S, Pfeifer V, Stanzer S, Eberl A, Raml R, Pieber T, Rosenkranz AR, Brodmann M, Eller P, Eller K. Chronic Inflammation Might Protect Hemodialysis Patients From Severe COVID-19. Front Immunol 2022; 13:821818. [PMID: 35265078 PMCID: PMC8901184 DOI: 10.3389/fimmu.2022.821818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Hemodialysis patients (HD) are expected to have excess mortality in coronavirus disease 2019 (COVID-19). This was challenged by a recent study reporting HD patients to have comparable mortality and less ICU admissions when hospitalized with COVID-19. An altered immune system due to chronic inflammation might protect HD-patients from severe COVID-19. Therefore, we aimed to describe the peripheral blood immune phenotype in HD-patients and respective controls with COVID-19.
Collapse
Affiliation(s)
- Barbara Prietl
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander H Kirsch
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Katharina Artinger
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Manfred Eigner
- Klinikum Favoriten, Wiener Krankenanstaltenverbund, Vienna, Austria
| | | | - Verena Pfeifer
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Anita Eberl
- Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Reingard Raml
- Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Thomas Pieber
- Center for Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|