1
|
Thomou C, Nussbaumer M, Grammenou E, Komini C, Vlaikou AM, Papageorgiou MP, Filiou MD. Early Handling Exerts Anxiolytic Effects and Alters Brain Mitochondrial Dynamics in Adult High Anxiety Mice. Mol Neurobiol 2024; 61:10593-10612. [PMID: 38761326 PMCID: PMC11584496 DOI: 10.1007/s12035-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/09/2024] [Indexed: 05/20/2024]
Abstract
Early handling (EH), the brief separation of pups from their mother during early life, has been shown to exert beneficial effects. However, the impact of EH in a high anxiety background as well as the role of brain mitochondria in shaping EH-driven responses remain elusive.Here, we used a high (HAB) vs. normal (NAB) anxiety-related behavior mouse model to study how EH affects pup and dam behavior in divergent anxiety backgrounds. We also investigated EH-induced effects at the protein and mRNA levels in adult male HAB mice in the hypothalamus, the prefrontal cortex, and the hippocampus by examining the same mitochondrial/energy pathways and mitochondrial dynamics mechanisms (fission, fusion, biogenesis, and mitophagy) in all three brain regions.EH exerts anxiolytic effects in adult HAB but not NAB male mice and does not affect HAB or NAB maternal behavior, although basal HAB vs. NAB maternal behaviors differ. In adult HAB male mice, EH does not impact oxidative phosphorylation (OXPHOS) and oxidative stress in any of the brain regions studied but leads to increased protein expression of glycolysis enzymes and a correlation of anxiety-related behavior with Krebs cycle enzymes in HAB mice in the hypothalamus. Intriguingly, EH alters mitochondrial dynamics by increasing hypothalamic DRP1, OPA1, and PGC1a protein levels. At the mRNA level, we observe altered, EH-driven mitochondrial dynamics mRNA signatures which predominantly affect the prefrontal cortex.Taken together, our results show that EH exerts anxiolytic effects in adulthood in high anxiety and modulates mitochondrial dynamics pathways in a brain region-specific manner.
Collapse
Affiliation(s)
- Christina Thomou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Eleni Grammenou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece.
- Institute of Biosciences, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
2
|
Biological underpinnings from psychosocial stress towards appetite and obesity during youth: research implications towards metagenomics, epigenomics and metabolomics. Nutr Res Rev 2019; 32:282-293. [PMID: 31298176 DOI: 10.1017/s0954422419000143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Psychosocial stress, uncontrolled eating and obesity are three interrelated epidemiological phenomena already present during youth. This broad narrative conceptual review summarises main biological underpinnings of the stress-diet-obesity pathway and how new techniques can further knowledge. Cortisol seems the main biological factor from stress towards central adiposity; and diet, physical activity and sleep are the main behavioural pathways. Within stress-diet, the concepts of comfort food and emotional eating are highlighted, as cortisol affects reward pathways and appetite brain centres with a role for insulin, leptin, neuropeptide Y (NPY), endocannabinoids, orexin and gastrointestinal hormones. More recently researched biological underpinnings are microbiota, epigenetic modifications and metabolites. First, the gut microbiota reaches the stress-regulating and appetite-regulating brain centres via the gut-brain axis. Second, epigenetic analyses are recommended as diet, obesity, stress and gut microbiota can change gene expression which then affects appetite, energy homeostasis and stress reactivity. Finally, metabolomics would be a good technique to disentangle stress-diet-obesity interactions as multiple biological pathways are involved. Saliva might be an ideal biological matrix as it allows metagenomic (oral microbiota), epigenomic and metabolomic analyses. In conclusion, stress and diet/obesity research should be combined in interdisciplinary collaborations with implementation of several -omics analyses.
Collapse
|
3
|
Sotiropoulos I, Silva JM, Gomes P, Sousa N, Almeida OFX. Stress and the Etiopathogenesis of Alzheimer's Disease and Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:241-257. [PMID: 32096043 DOI: 10.1007/978-981-32-9358-8_20] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder with a complex physiopathology whose initiators are poorly defined. Accumulating clinical and experimental evidence suggests a causal role of lifetime stress in AD. This chapter summarizes current knowledge about how chronic stress and its accompanying high levels of glucocorticoid (GC) secretion, trigger the two main pathomechanisms of AD: (i) misprocessing of amyloid precursor protein (APP) and the generation of amyloid beta (Aβ) and (ii) Tau hyperphosphorylation and aggregation. Given that depression is a well-known stress-related illness, and the evidence that depression may precede AD, this chapter also explores neurobiological mechanisms that may be common to depressive and AD pathologies. This review also discusses emerging insights into the role of Tau and its malfunction in disrupting neuronal cascades and neuroplasticity and, thus triggering brain pathology.
Collapse
Affiliation(s)
- Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patricia Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho - Campus de Gualtar, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
4
|
Hoffmann A, Spengler D. The Mitochondrion as Potential Interface in Early-Life Stress Brain Programming. Front Behav Neurosci 2018; 12:306. [PMID: 30574076 PMCID: PMC6291450 DOI: 10.3389/fnbeh.2018.00306] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play a central role in cellular energy-generating processes and are master regulators of cell life. They provide the energy necessary to reinstate and sustain homeostasis in response to stress, and to launch energy intensive adaptation programs to ensure an organism’s survival and future well-being. By this means, mitochondria are particularly apt to mediate brain programming by early-life stress (ELS) and to serve at the same time as subcellular substrate in the programming process. With a focus on mitochondria’s integrated role in metabolism, steroidogenesis and oxidative stress, we review current findings on altered mitochondrial function in the brain, the placenta and peripheral blood cells following ELS-dependent programming in rodents and recent insights from humans exposed to early life adversity (ELA). Concluding, we propose a role of the mitochondrion as subcellular intersection point connecting ELS, brain programming and mental well-being, and a role as a potential site for therapeutic interventions in individuals exposed to severe ELS.
Collapse
Affiliation(s)
- Anke Hoffmann
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
5
|
Davis GE, Lowell WE. Solar energy at birth and human lifespan. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:59-68. [DOI: 10.1016/j.jphotobiol.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 01/03/2023]
|
6
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
7
|
Wheelan N, Kenyon CJ, Harris AP, Cairns C, Al Dujaili E, Seckl JR, Yau JL. Midlife stress alters memory and mood-related behaviors in old age: Role of locally activated glucocorticoids. Psychoneuroendocrinology 2018; 89:13-22. [PMID: 29306773 PMCID: PMC5890827 DOI: 10.1016/j.psyneuen.2017.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11β-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11β-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11β-HSD1. This finding supports selective 11β-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife.
Collapse
Affiliation(s)
- Nicola Wheelan
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Christopher J. Kenyon
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Anjanette P. Harris
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Carolynn Cairns
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Emad Al Dujaili
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom
| | - Jonathan R. Seckl
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom
| | - Joyce L.W. Yau
- Centre for Cardiovascular Science, University of Edinburgh, EH16 4TJ, United Kingdom,Centre for Cognitive Aging and Cognitive Epidemiology, University of Edinburgh, EH8 8JZ, United Kingdom,Corresponding author at: Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom.
| |
Collapse
|
8
|
Gemmel M, Bögi E, Ragan C, Hazlett M, Dubovicky M, van den Hove DL, Oberlander TF, Charlier TD, Pawluski JL. Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome. Neurosci Biobehav Rev 2018; 85:102-116. [DOI: 10.1016/j.neubiorev.2017.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
|
9
|
Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity. J Neurosci 2017; 38:441-451. [PMID: 29196316 DOI: 10.1523/jneurosci.1333-17.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/13/2017] [Accepted: 10/12/2017] [Indexed: 01/09/2023] Open
Abstract
Early-life obesity predisposes to obesity in adulthood, a condition with broad medical implications including sleep disorders, which can exacerbate metabolic disturbances and disrupt cognitive and affective behaviors. In this study, we examined the long-term impact of transient peripubertal diet-induced obesity (ppDIO, induced between 4 and 10 weeks of age) on sleep-wake behavior in male mice. EEG and EMG recordings revealed that ppDIO increases sleep during the active phase but reduces resting-phase sleep quality. This impaired sleep phenotype persisted for up to 1 year, although animals were returned to a non-obesiogenic diet from postnatal week 11 onwards. To better understand the mechanisms responsible for the ppDIO-induced alterations in sleep, we focused on the lateral hypothalamus (LH). Mice exposed to ppDIO did not show altered mRNA expression levels of orexin and melanin-concentrating hormone, two peptides that are important for sleep-wake behavior and food intake. Conversely, the LH of ppDIO-exposed mice had reduced contents of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter involved in both sleep-wake and satiety regulation. Interestingly, an acute peripheral injection of the satiety-signaling peptide YY 3-36 increased 5-HT turnover in the LH and ameliorated the ppDIO-induced sleep disturbances, suggesting the therapeutic potential of this peptide. These findings provide new insights into how sleep-wake behavior is programmed during early life and how peripheral and central signals are integrated to coordinate sleep.SIGNIFICANCE STATEMENT Adult physiology and behavior are strongly influenced by dynamic reorganization of the brain during puberty. The present work shows that obesity during puberty leads to persistently dysregulated patterns of sleep and wakefulness by blunting serotonergic signaling in the lateral hypothalamus. It also shows that pharmacological mimicry of satiety with peptide YY3-36 can reverse this neurochemical imbalance and acutely restore sleep composition. These findings add insight into how innate behaviors such as feeding and sleep are integrated and suggest a novel mechanism through which diet-induced obesity during puberty imposes its long-lasting effects on sleep-wake behavior.
Collapse
|
10
|
Schreiner F, Ackermann M, Michalik M, Hucklenbruch-Rother E, Bilkei-Gorzo A, Racz I, Bindila L, Lutz B, Dötsch J, Zimmer A, Woelfle J. Developmental programming of somatic growth, behavior and endocannabinoid metabolism by variation of early postnatal nutrition in a cross-fostering mouse model. PLoS One 2017; 12:e0182754. [PMID: 28859076 PMCID: PMC5578498 DOI: 10.1371/journal.pone.0182754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nutrient deprivation during early development has been associated with the predisposition to metabolic disorders in adulthood. Considering its interaction with metabolism, appetite and behavior, the endocannabinoid (eCB) system represents a promising target of developmental programming. Methods By cross-fostering and variation of litter size, early postnatal nutrition of CB6F1-hybrid mice was controlled during the lactation period (3, 6, or 10 pups/mother). After weaning and redistribution at P21, all pups received standard chow ad libitum. Gene expression analyses (liver, visceral fat, hypothalamus) were performed at P50, eCB concentrations were determined in liver and visceral fat. Locomotor activity and social behavior were analyzed by means of computer-assisted videotracking. Results Body growth was permanently altered, with differences for length, weight, body mass index and fat mass persisting beyond P100 (all 3>6>10,p<0.01). This was paralleled by differences in hepatic IGF-I expression (p<0.01). Distinct gene expression patterns for key enzymes of the eCB system were observed in fat (eCB-synthesis: 3>6>10 (DAGLα p<0.05; NAPE-PLD p = 0.05)) and liver (eCB-degradation: 3>6>10 (FAAH p<0.05; MGL p<0.01)). Concentrations of endocannabinoids AEA and 2-AG in liver and visceral fat were largely comparable, except for a borderline significance for higher AEA (liver, p = 0.049) in formerly overfed mice and, vice versa, tendencies (p<0.1) towards lower AEA (fat) and 2-AG (liver) in formerly underfed animals. In the arcuate nucleus, formerly underfed mice tended to express more eCB-receptor transcripts (CB1R p<0.05; CB2R p = 0.08) than their overfed fellows. Open-field social behavior testing revealed significant group differences, with formerly underfed mice turning out to be the most sociable animals (p<0.01). Locomotor activity did not differ. Conclusion Our data indicate a developmental plasticity of somatic growth, behavior and parameters of the eCB system, with long-lasting impact of early postnatal nutrition. Developmental programming of the eCB system in metabolically active tissues, as shown here for liver and fat, may play a role in the formation of the adult cardiometabolic risk profile following perinatal malnutrition in humans.
Collapse
Affiliation(s)
- Felix Schreiner
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
- * E-mail:
| | - Merle Ackermann
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
| | - Michael Michalik
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
| | - Eva Hucklenbruch-Rother
- Department of Pediatric and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Ildiko Racz
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Laura Bindila
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, Children’s Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Rosenhauer AM, McCann KE, Norvelle A, Huhman KL. An acute social defeat stressor in early puberty increases susceptibility to social defeat in adulthood. Horm Behav 2017; 93:31-38. [PMID: 28390864 DOI: 10.1016/j.yhbeh.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
Syrian hamsters readily display territorial aggression. If they lose even a single agonistic encounter, however, hamsters show striking reductions in aggressive behavior and increases in submissive behavior, a distinct behavioral change that we have previously termed conditioned defeat. This acute social defeat stressor is primarily psychological and is effective in both males and females. Therefore, we maintain that this procedure presents an ideal model for studying behavioral and physiological responses to social stress. Here, we demonstrate that social avoidance following social defeat is a particularly useful dependent measure because of its sensitivity and stability between sexes and across the estrous cycle. In addition, we demonstrate that peripubertal hamsters exposed to a single, 15min social defeat exhibit significantly more social avoidance 24h later when compared with no-defeat controls. Later, defeated and non-defeated hamsters display similar agonistic behavior in adulthood indicating that the peripubertal defeat does not alter adult territorial aggression. After experiencing an additional social defeat in adulthood, however, the hamsters that experienced the pubertal defeat respond to the adult defeat with increased social avoidance when compared with hamsters that were defeated only in adulthood and with no-defeat controls. These data are the first to show that a single social defeat in puberty increases susceptibility to later social defeat in both males and females.
Collapse
Affiliation(s)
- Anna M Rosenhauer
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Katharine E McCann
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Alisa Norvelle
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA 30303, USA.
| |
Collapse
|
12
|
Murphy MO, Loria AS. Sex-specific effects of stress on metabolic and cardiovascular disease: are women at higher risk? Am J Physiol Regul Integr Comp Physiol 2017; 313:R1-R9. [PMID: 28468942 DOI: 10.1152/ajpregu.00185.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) has traditionally been viewed as a male disease; however, the relative risk for obesity and hypertension morbidity and mortality, major risk factors for CVD, is higher for women in the United States. Emerging epidemiological data strongly support stressful experiences as a modifiable risk factor for obesity, insulin resistance, and heart disease in women at all ages. Therefore, primary prevention of these diseases may be associated with both identifying and increasing the knowledge regarding the sex differences in emotional functioning associated with physiological responses to stress. The purpose of this review is to highlight the growing body of clinical and experimental studies showing that stress, obesity-associated metabolic disturbances, and CVD comorbidities are more prevalent in females. Overall, this review reveals the need for investigations to decipher the early origins of these comorbidities. Targeting the sources of behavioral/emotional stress through the trajectory of life has the potential to reduce the alarming projected rates for chronic disease in women.
Collapse
Affiliation(s)
- Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
13
|
Abstract
Altricial infants (i.e., requiring parental care for survival), such as humans and rats, form an attachment to their caregiver and receive the nurturing and protections needed for survival. Learning has a strong role in attachment, as is illustrated by strong attachment formed to non-biological caregivers of either sex. Here we summarize and integrate results from animal and human infant attachment research that highlights the important role of social buffering (social presence) of the stress response by the attachment figure and its effect on infant processing of threat and fear through modulation of the amygdala. Indeed, this work suggests the caregiver switches off amygdala function in rodents, although recent human research suggests a similar process in humans and nonhuman primates. This cross-species analysis helps provide insight and unique understanding of attachment and its role in the neurobiology of infant behavior within attachment.
Collapse
Affiliation(s)
- Regina M Sullivan
- Emotional Brain Institute, The Nathan Kline Institute for Psychiatric Research, Child Study Center, Child and Adolescent Psychiatry, New York University Langone Medical Center
| |
Collapse
|
14
|
Antidepressant responsiveness in adulthood is permanently impaired after neonatal destruction of the neurogenic pool. Transl Psychiatry 2017; 7:e990. [PMID: 28045461 PMCID: PMC5545723 DOI: 10.1038/tp.2016.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
The dynamic turnover of hippocampal neurons is implicated in the regulation of cognitive and affective behavior. Extending our previous demonstration that administration of dexamethasone (ND) to neonatal rats depletes the resident population of neural precursor cells (NPC) and restrains the size of the neurogenic regions, we now show that the adverse effects of ND persist into adulthood. Specifically, ND impairs repletion of the neurogenic pool and neurogenesis; ND also compromises cognitive performance, the ability to actively adapt to an acute stressor and, the efficacy of glucocorticoid (GC) negative feedback. Interestingly, although ND depletes the neurogenic pool, it does not permanently abolish the proliferative machinery of the residual NPC population; however, ND increases the susceptibility of hippocampal granule neurons to apoptosis. Although the antidepressant fluoxetine (FLX) reverses the latter phenomenon, it does not replenish the NPC pool. Treatment of ND-treated adult rats with FLX also improves GC negative feedback, albeit without rescuing the deleterious effects of ND on behavior. In summary, ND leads to protracted disruption of mental functions, some of which are resistant to antidepressant interventions. We conclude that manipulation of the NPC pool during early life may jeopardize the therapeutic potential of antidepressants in adulthood.
Collapse
|
15
|
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
16
|
Sousa N. The dynamics of the stress neuromatrix. Mol Psychiatry 2016; 21:302-12. [PMID: 26754952 PMCID: PMC4759204 DOI: 10.1038/mp.2015.196] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/04/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023]
Abstract
Stressful stimuli in healthy subjects trigger activation of a consistent and reproducible set of brain regions; yet, the notion that there is a single and constant stress neuromatrix is not sustainable. Indeed, after chronic stress exposure there is activation of many brain regions outside that network. This suggests that there is a distinction between the acute and the chronic stress neuromatrix. Herein, a new working model is proposed to understand the shift between these networks. The understanding of the factors that modulate these networks and their interplay will allow for a more comprehensive and holistic perspective of how the brain shifts 'back and forth' from a healthy to a stressed pattern and, ultimately, how the latter can be a trigger for several neurological and psychiatric conditions.
Collapse
Affiliation(s)
- N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal,ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal,Clinical Academic Center–Braga, Braga, Portugal,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal. E-mail:
| |
Collapse
|
17
|
Brydges NM, Holmes MC, Harris AP, Cardinal RN, Hall J. Early life stress produces compulsive-like, but not impulsive, behavior in females. Behav Neurosci 2016; 129:300-8. [PMID: 26030429 PMCID: PMC4450884 DOI: 10.1037/bne0000059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adverse experiences during childhood are associated with the development of psychiatric disorders later in life. In particular, childhood abuse and neglect are risk factors for addictive disorders, such as substance misuse and pathological gambling. Impulsivity and compulsivity are key features of these disorders. Therefore, we investigated whether childhood adversity might increase vulnerability for addictive disorders through promotion of compulsive and impulsive behaviors. Rats were exposed to a brief, variable childhood or prepubertal stress protocol (Postnatal Days 25-27), and their behavior in a delay discounting task was compared with that of control animals in adulthood. Prepubertal stress produced compulsive-type behavior in females. Specifically, stressed females displayed inappropriate responses during a choice phase of the task, perseverating with nosepoke responding instead of choosing between 2 levers. Stressed females also showed learning impairments during task training. However, prepubertal stress was not associated with the development of impulsive behavior, as rates of delay discounting were not affected in either sex. Childhood adversity may contribute to the establishment and maintenance of addictive disorders by increasing perseveration in females. Perseverative behavior may therefore provide a viable therapeutic target for preventing the development of addictive disorders in individuals exposed to childhood adversity. These effects were not seen in males, highlighting sex differences in response to early life stress.
Collapse
Affiliation(s)
| | - Megan C Holmes
- Centre for Cardiovascular Science, The University of Edinburgh
| | | | - Rudolf N Cardinal
- Behavioral and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge
| | - Jeremy Hall
- Centre for Cardiovascular Science, The University of Edinburgh
| |
Collapse
|
18
|
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - A. Zakrisson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
19
|
|
20
|
Hau M, Casagrande S, Ouyang J, Baugh A. Glucocorticoid-Mediated Phenotypes in Vertebrates. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.01.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Cadet JL. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications. Mol Neurobiol 2016; 53:545-560. [PMID: 25502297 PMCID: PMC4703633 DOI: 10.1007/s12035-014-9040-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/12/2022]
Abstract
Substance use disorders (SUDs) are highly prevalent. SUDs involve vicious cycles of binges followed by occasional periods of abstinence with recurrent relapses despite treatment and adverse medical and psychosocial consequences. There is convincing evidence that early and adult stressful life events are risks factors for the development of addiction and serve as cues that trigger relapses. Nevertheless, the fact that not all individuals who face traumatic events develop addiction to licit or illicit drugs suggests the existence of individual and/or familial resilient factors that protect these mentally healthy individuals. Here, I give a brief overview of the epigenetic bases of responses to stressful events and of epigenetic changes associated with the administration of drugs of abuse. I also discuss the psychobiology of resilience and alterations in epigenetic markers that have been observed in models of resilience. Finally, I suggest the possibility that treatment of addiction should involve cognitive and pharmacological approaches that enhance resilience in at risk individuals. Similar approaches should also be used with patients who have already succumbed to the nefarious effects of addictive substances.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
22
|
Bockmühl Y, Patchev AV, Madejska A, Hoffmann A, Sousa JC, Sousa N, Holsboer F, Almeida OFX, Spengler D. Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress. Epigenetics 2015; 10:247-57. [PMID: 25793778 PMCID: PMC4622987 DOI: 10.1080/15592294.2015.1017199] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early-life stress (ELS) induces long-lasting changes in gene expression conferring an increased risk for the development of stress-related mental disorders. Glucocorticoid receptors (GR) mediate the negative feedback actions of glucocorticoids (GC) in the paraventricular nucleus (PVN) of the hypothalamus and anterior pituitary and therefore play a key role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and the endocrine response to stress. We here show that ELS programs the expression of the GR gene (Nr3c1) by site-specific hypermethylation at the CpG island (CGI) shore in hypothalamic neurons that produce corticotropin-releasing hormone (Crh), thus preventing Crh upregulation under conditions of chronic stress. CpGs mapping to the Nr3c1 CGI shore region are dynamically regulated by ELS and underpin methylation-sensitive control of this region's insulation-like function via Ying Yang 1 (YY1) binding. Our results provide new insight into how a genomic element integrates experience-dependent epigenetic programming of the composite proximal Nr3c1 promoter, and assigns an insulating role to the CGI shore.
Collapse
Key Words
- Avp, arginine vasopressin
- BPD, borderline personal disorder
- CGI, CpG island
- CUS, chronic unpredictable stress
- ChIP, chromatin immunoprecipitation
- CpG island shore
- Crh, corticotropin releasing hormone
- DNA methylation
- Dusp1, dual specificity phosphatase 1
- ELS, early-life stress
- EMSA, electrophoretic mobility shift assay
- Fkbp5, FK506 binding protein 51
- GC, glucocorticoid
- GR, glucocorticoid receptor
- GRE, glucocorticoid response element
- HPA, hypothalamic-pituitary-adrenal
- MDD, major depressive disorder
- PTSD, posttraumatic stress disorder
- PVN, paraventricular nucleus
- Pomc, pro-opiomelanocortin
- Sgk1, serum glucocorticoid kinase 1
- YY1, Yin Yang
- Yin Yang
- early-life stress
- glucocorticoid receptor
- insulator
Collapse
|
23
|
Hoffmann A, Zimmermann CA, Spengler D. Molecular epigenetic switches in neurodevelopment in health and disease. Front Behav Neurosci 2015; 9:120. [PMID: 26029068 PMCID: PMC4429584 DOI: 10.3389/fnbeh.2015.00120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/26/2015] [Indexed: 12/16/2022] Open
Abstract
Epigenetic mechanisms encode information above and beyond DNA sequence and play a critical role in brain development and the long-lived effects of environmental cues on the pre- and postnatal brain. Switch-like, rather than graded changes, illustrate par excellence how epigenetic events perpetuate altered activity states in the absence of the initial cue. They occur from early neural development to maturation and can give rise to distinct diseases upon deregulation. Many neurodevelopmental genes harbor bivalently marked chromatin domains, states of balanced inhibition, which guide dynamic “ON or OFF” decisions once the balance is tilted in response to developmental or environmental cues. Examples discussed in this review include neuronal differentiation of embryonic stem cells (ESC) into progenitors and beyond, activation of Kiss1 at puberty onset, and early experience-dependent programming of Avp, a major stress gene. At the genome-scale, genomic imprinting can be epigenetically switched on or off at select genes in a tightly controlled temporospatial manner and provides a versatile mechanism for dosage regulation of genes with important roles in stem cell quiescence or differentiation. Moreover, retrotransposition in neural progenitors provides an intriguing example of an epigenetic-like switch, which is stimulated by bivalently marked neurodevelopmental genes and possibly results in increased genomic flexibility regarding unprecedented challenge. Overall, we propose that molecular epigenetic switches illuminate the catalyzing function of epigenetic mechanisms in guiding dynamic changes in gene expression underpinning robust transitions in cellular and organismal phenotypes as well as in the mediation between dynamically changing environments and the static genetic blueprint.
Collapse
Affiliation(s)
- Anke Hoffmann
- Translational Research, Max Planck Society, Max Planck Institute of Psychiatry Munich, Bavaria, Germany
| | - Christoph A Zimmermann
- Translational Research, Max Planck Society, Max Planck Institute of Psychiatry Munich, Bavaria, Germany
| | - Dietmar Spengler
- Translational Research, Max Planck Society, Max Planck Institute of Psychiatry Munich, Bavaria, Germany
| |
Collapse
|
24
|
|
25
|
Zimmermann CA, Hoffmann A, Raabe F, Spengler D. Role of mecp2 in experience-dependent epigenetic programming. Genes (Basel) 2015; 6:60-86. [PMID: 25756305 PMCID: PMC4377834 DOI: 10.3390/genes6010060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/28/2022] Open
Abstract
Mutations in the X-linked gene MECP2, the founding member of a family of proteins recognizing and binding to methylated DNA, are the genetic cause of a devastating neurodevelopmental disorder in humans, called Rett syndrome. Available evidence suggests that MECP2 protein has a critical role in activity-dependent neuronal plasticity and transcription during brain development. Moreover, recent studies in mice show that various posttranslational modifications, notably phosphorylation, regulate Mecp2’s functions in learning and memory, drug addiction, depression-like behavior, and the response to antidepressant treatment. The hypothalamic-pituitary-adrenal (HPA) axis drives the stress response and its deregulation increases the risk for a variety of mental disorders. Early-life stress (ELS) typically results in sustained HPA-axis deregulation and is a major risk factor for stress related diseases, in particular major depression. Interestingly, Mecp2 protein has been shown to contribute to ELS-dependent epigenetic programming of Crh, Avp, and Pomc, all of these genes enhance HPA-axis activity. Hereby ELS regulates Mecp2 phosphorylation, DNA binding, and transcriptional activities in a tissue-specific and temporospatial manner. Overall, these findings suggest MECP2 proteins are so far underestimated and have a more dynamic role in the mediation of the gene-environment dialog and epigenetic programming of the neuroendocrine stress system in health and disease.
Collapse
Affiliation(s)
- Christoph A Zimmermann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Florian Raabe
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Dietmar Spengler
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| |
Collapse
|
26
|
Friedel E, Schlagenhauf F, Beck A, Dolan RJ, Huys QJ, Rapp MA, Heinz A. The effects of life stress and neural learning signals on fluid intelligence. Eur Arch Psychiatry Clin Neurosci 2015; 265:35-43. [PMID: 25142177 PMCID: PMC4311068 DOI: 10.1007/s00406-014-0519-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/23/2014] [Indexed: 11/24/2022]
Abstract
Fluid intelligence (fluid IQ), defined as the capacity for rapid problem solving and behavioral adaptation, is known to be modulated by learning and experience. Both stressful life events (SLES) and neural correlates of learning [specifically, a key mediator of adaptive learning in the brain, namely the ventral striatal representation of prediction errors (PE)] have been shown to be associated with individual differences in fluid IQ. Here, we examine the interaction between adaptive learning signals (using a well-characterized probabilistic reversal learning task in combination with fMRI) and SLES on fluid IQ measures. We find that the correlation between ventral striatal BOLD PE and fluid IQ, which we have previously reported, is quantitatively modulated by the amount of reported SLES. Thus, after experiencing adversity, basic neuronal learning signatures appear to align more closely with a general measure of flexible learning (fluid IQ), a finding complementing studies on the effects of acute stress on learning. The results suggest that an understanding of the neurobiological correlates of trait variables like fluid IQ needs to take socioemotional influences such as chronic stress into account.
Collapse
Affiliation(s)
- Eva Friedel
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany ,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anne Beck
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Raymond J. Dolan
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Quentin J.M. Huys
- Gatsby Computational Neuroscience Unit, University College London, London, UK ,Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland ,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | - Michael A. Rapp
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany ,Social and Preventive Medicine, University of Potsdam, Potsdam, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany ,Cluster of Excellence NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Snyder KP, Barry M, Valentino RJ. Cognitive impact of social stress and coping strategy throughout development. Psychopharmacology (Berl) 2015; 232:185-95. [PMID: 24958230 PMCID: PMC4451219 DOI: 10.1007/s00213-014-3654-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Stress experience during adolescence has been linked to the development of psychiatric disorders in adulthood, many of which are associated with impairments in prefrontal cortex function. OBJECTIVE The current study was designed to determine the immediate and enduring effects of repeated social stress on a prefrontal cortex-dependent cognitive task. METHODS Early adolescent (P28), mid-adolescent (P42), and adult (P70) rats were exposed to resident-intruder stress for 5 days and tested in an operant strategy-shifting task (OSST) during the following week or several weeks later during adulthood. Engagement of prefrontal cortical neurons during the task was assessed by expression of the immediate early gene, c-fos. RESULTS Social stress during adolescence had no immediate effects on task performance, but impaired strategy-shifting in adulthood, whereas social stress that occurred during adulthood had no effect. The cognitive impairment produced by adolescent social stress was most pronounced in rats with a passive coping strategy. Notably, strategy-shifting performance was positively correlated with medial prefrontal cortical c-fos in adulthood but not in adolescence, suggesting that the task engages different brain regions in adolescents compared to adults. CONCLUSIONS Adolescent social stress produces a protracted impairment in prefrontal cortex-mediated cognition that is related to coping strategy. This impairment may be selectively expressed in adulthood because prefrontal cortical activity is integral to task performance at this age but not during adolescence.
Collapse
Affiliation(s)
| | - Mark Barry
- The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rita J. Valentino
- The University of Pennsylvania, Philadelphia, PA 19104, USA. The Children’s Hospital of Philadelphia, 402D Abramson Pediatric Research Center, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Reul JM, Collins A, Saliba RS, Mifsud KR, Carter SD, Gutierrez-Mecinas M, Qian X, Linthorst AC. Glucocorticoids, epigenetic control and stress resilience. Neurobiol Stress 2015; 1:44-59. [PMID: 27589660 PMCID: PMC4721318 DOI: 10.1016/j.ynstr.2014.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoid hormones play a pivotal role in the response to stressful challenges. The surge in glucocorticoid hormone secretion after stress needs to be tightly controlled with characteristics like peak height, curvature and duration depending on the nature and severity of the challenge. This is important as chronic hyper- or hypo-responses are detrimental to health due to increasing the risk for developing a stress-related mental disorder. Proper glucocorticoid responses to stress are critical for adaptation. Therefore, the tight control of baseline and stress-evoked glucocorticoid secretion are important constituents of an organism's resilience. Here, we address a number of mechanisms that illustrate the multitude and complexity of measures safeguarding the control of glucocorticoid function. These mechanisms include the control of mineralocorticoid (MR) and glucocorticoid receptor (GR) occupancy and concentration, the dynamic control of free glucocorticoid hormone availability by corticosteroid-binding globulin (CBG), and the control exerted by glucocorticoids at the signaling, epigenetic and genomic level on gene transcriptional responses to stress. We review the beneficial effects of regular exercise on HPA axis and sleep physiology, and cognitive and anxiety-related behavior. Furthermore, we describe that, possibly through changes in the GABAergic system, exercise reduces the impact of stress on a signaling pathway specifically in the dentate gyrus that is strongly implicated in the behavioral response to that stressor. These observations underline the impact of life style on stress resilience. Finally, we address how single nucleotide polymorphisms (SNPs) affecting glucocorticoid action can compromise stress resilience, which becomes most apparent under conditions of childhood abuse.
Collapse
Affiliation(s)
- Johannes M.H.M. Reul
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Andrew Collins
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Richard S. Saliba
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Karen R. Mifsud
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Sylvia D. Carter
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Maria Gutierrez-Mecinas
- Neuro-Epigenetics Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Xiaoxiao Qian
- Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | - Astrid C.E. Linthorst
- Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| |
Collapse
|
29
|
Behavioural patterns established during suckling reappear when piglets are forced to form a new dominance hierarchy. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Thompson RS, Strong PV, Clark PJ, Maslanik TM, Wright KP, Greenwood BN, Fleshner M. Repeated fear-induced diurnal rhythm disruptions predict PTSD-like sensitized physiological acute stress responses in F344 rats. Acta Physiol (Oxf) 2014; 211:447-65. [PMID: 24447583 DOI: 10.1111/apha.12239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/25/2013] [Accepted: 01/13/2014] [Indexed: 01/13/2023]
Abstract
AIM To identify objective factors that can predict future sensitized stress responses, thus allowing for effective intervention prior to developing sensitization and subsequent stress-related disorders, including post-traumatic stress disorder (PTSD). METHODS Adult male F344 rats implanted with biotelemetry devices were exposed to repeated conditioned fear or control conditions for 22 days followed by exposure to either no, mild or severe acute stress on day 23. Diurnal rhythms of locomotor activity (LA), heart rate (HR) and core body temperature (CBT) were biotelemetrically monitored throughout the study. In a subset of rat not implanted, corticosterone and indices of chronic stress were measured immediately following stress. RESULTS Rats exposed to repeated fear had fear-evoked increases in behavioural freezing and HR/CBT during exposure to the fear environment and displayed indices of chronic stress. Repeated fear produced flattening of diurnal rhythms in LA, HR and CBT. Repeated fear did not sensitize the corticosterone response to acute stress, but produced sensitized HR/CBT responses following acute stress, relative to the effect of acute stress in the absence of a history of repeated fear. Greater diurnal rhythm disruptions during repeated fear predicted sensitized acute stress-induced physiological responses. Rats exposed to repeated fear also displayed flattened diurnal LA and basal increases in HR. CONCLUSIONS Exposure to repeated fear produces outcomes consistent with those observed in PTSD. The results suggest that diurnal rhythm disruptions during chronic stressors may help predict sensitized physiological stress responses following traumatic events. Monitoring diurnal disruptions during repeated stress may thus help predict susceptibility to PTSD.
Collapse
Affiliation(s)
- R. S. Thompson
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - P. V. Strong
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - P. J. Clark
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
| | - T. M. Maslanik
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
| | - K. P. Wright
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - B. N. Greenwood
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| | - M. Fleshner
- Department of Integrative Physiology; University of Colorado at Boulder; Boulder CO USA
- Center for Neuroscience; University of Colorado at Boulder; Boulder CO USA
| |
Collapse
|