1
|
Pinto E, Meneghel P, Farinati F, Russo FP, Pelizzaro F, Gambato M. Efficacy of immunotherapy in hepatocellular carcinoma: Does liver disease etiology have a role? Dig Liver Dis 2024; 56:579-588. [PMID: 37758610 DOI: 10.1016/j.dld.2023.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The systemic treatment of hepatocellular carcinoma (HCC) is changing rapidly. After a decade of tyrosine kinase inhibitors (TKIs), as the only therapeutic option for the treatment of advanced HCC, in the last few years several phase III trials demonstrated the efficacy of immune checkpoint inhibitors (ICIs). The combination of the anti-PD-L1 atezolizumab and the anti-vascular endothelial growth factor (VEGF) bevacizumab demonstrated the superiority over sorafenib and currently represents the standard of care treatment for advanced HCC. In addition, the combination of durvalumab (an anti-PD-L1) and tremelimumab (an anti-CTLA4) proved to be superior to sorafenib, and in the same trial durvalumab monotherapy showed non-inferiority compared to sorafenib. However, early reports suggest an influence of HCC etiology in modulating the response to these drugs. In particular, a lower effectiveness of ICIs has been suggested in patients with non-viral HCC (in particular non-alcoholic fatty liver disease). Nevertheless, randomized controlled trials available to date have not been stratified for etiology and data suggesting a possible impact of etiology in the outcome of patients managed with ICIs derive from subgroup not pre-specified analyses. In this review, we aim to examine the potential impact of HCC etiology on the response to immunotherapy regimens for HCC.
Collapse
Affiliation(s)
- Elisa Pinto
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Paola Meneghel
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Fabio Farinati
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Francesco Paolo Russo
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy.
| | - Filippo Pelizzaro
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Martina Gambato
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
2
|
Shah YR, Ali H, Tiwari A, Guevara-Lazo D, Nombera-Aznaran N, Pinnam BSM, Gangwani MK, Gopakumar H, Sohail AH, Kanumilli S, Calderon-Martinez E, Krishnamoorthy G, Thakral N, Dahiya DS. Role of fecal microbiota transplant in management of hepatic encephalopathy: Current trends and future directions. World J Hepatol 2024; 16:17-32. [PMID: 38313244 PMCID: PMC10835490 DOI: 10.4254/wjh.v16.i1.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Fecal microbiota transplantation (FMT) offers a potential treatment avenue for hepatic encephalopathy (HE) by leveraging beneficial bacterial displacement to restore a balanced gut microbiome. The prevalence of HE varies with liver disease severity and comorbidities. HE pathogenesis involves ammonia toxicity, gut-brain communication disruption, and inflammation. FMT aims to restore gut microbiota balance, addressing these factors. FMT's efficacy has been explored in various conditions, including HE. Studies suggest that FMT can modulate gut microbiota, reduce ammonia levels, and alleviate inflammation. FMT has shown promise in alcohol-associated, hepatitis B and C-associated, and non-alcoholic fatty liver disease. Benefits include improved liver function, cognitive function, and the slowing of disease progression. However, larger, controlled studies are needed to validate its effectiveness in these contexts. Studies have shown cognitive improvements through FMT, with potential benefits in cirrhotic patients. Notably, trials have demonstrated reduced serious adverse events and cognitive enhancements in FMT arms compared to the standard of care. Although evidence is promising, challenges remain: Limited patient numbers, varied dosages, administration routes, and donor profiles. Further large-scale, controlled trials are essential to establish standardized guidelines and ensure FMT's clinical applications and efficacy. While FMT holds potential for HE management, ongoing research is needed to address these challenges, optimize protocols, and expand its availability as a therapeutic option for diverse hepatic conditions.
Collapse
Affiliation(s)
- Yash R Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Hassam Ali
- Division of Gastroenterology and Hepatology, East Carolina University/Brody School of Medicine, Greenville, NC 27858, United States
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, India
| | - David Guevara-Lazo
- Faculty of Medicine, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | - Bhanu Siva Mohan Pinnam
- Department of Internal Medicine, John H. Stroger Hospital of Cook County, Chicago, IL 60612, United States
| | - Manesh Kumar Gangwani
- Department of Internal Medicine, The University of Toledo, Toledo, OH 43606, United States
| | - Harishankar Gopakumar
- Department of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, United States
| | - Amir H Sohail
- Department of Surgery, University of New Mexico, Albuquerque, NM 87106, United States
| | | | - Ernesto Calderon-Martinez
- Department of Internal Medicine, Universidad Nacional Autonoma de Mexico, Ciudad De Mexico 04510, Mexico
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, United States
| | - Nimish Thakral
- Department of Digestive Diseases and Nutrition, University of Kentucky, Lexington, KY 40536, United States
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology & Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
3
|
Nie G, Zhang H, Xie D, Yan J, Li X. Liver cirrhosis and complications from the perspective of dysbiosis. Front Med (Lausanne) 2024; 10:1320015. [PMID: 38293307 PMCID: PMC10824916 DOI: 10.3389/fmed.2023.1320015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
The gut-liver axis refers to the intimate relationship and rigorous interaction between the gut and the liver. The intestinal barrier's integrity is critical for maintaining liver homeostasis. The liver operates as a second firewall in this interaction, limiting the movement of potentially dangerous compounds from the gut and, as a result, contributing in barrier management. An increasing amount of evidence shows that increased intestinal permeability and subsequent bacterial translocation play a role in liver damage development. The major pathogenic causes in cirrhotic individuals include poor intestinal permeability, nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal permeability and bacterial translocation in advanced liver disease, increasing liver damage. Bacterial dysbiosis is closely related to the development of cirrhosis and its related complications. This article describes the potential mechanisms of dysbiosis in liver cirrhosis and related complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal flora as an entry point.
Collapse
Affiliation(s)
- Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| |
Collapse
|
4
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
5
|
Quinn G, Ali RO, Zhang GY, Hill K, Townsend E, Umarova R, Chakraborty M, Ahmad MF, Gewirtz M, Haddad J, Rosenzweig S, Rampertaap S, Schoenfeld M, Yang S, Koh C, Levy E, Kleiner DE, Etzion O, Heller T. Non-selective dampening of the host immune response after hepatitis C clearance and its association with circulating chemokine and endotoxin levels. Liver Int 2023; 43:2701-2712. [PMID: 37752797 DOI: 10.1111/liv.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND & AIMS Direct-acting antiviral (DAA) therapy has revolutionized treatment for the hepatitis C virus (HCV). While DAA therapy is common, little is known about the intrahepatic immunological changes after sustained virologic response (SVR). We aim to describe transcriptional alterations of the gut microbiome and the liver after SVR. METHODS Twenty-two HCV patients were evaluated before and 9 months after 12 weeks of sofosbuvir/velpatasvir treatment. All achieved SVR. A liver biopsy, portal blood (direct portal vein cannulation), peripheral blood and stool samples were obtained. RNA-seq and immunofluorescent staining were performed on liver biopsies. RNA-seq and 16S rRNA metagenomics were performed on stool. RESULTS Differential expression within liver transcription showed 514 downregulated genes (FDR q < .05; foldchange > 2) enriched in inflammatory pathways; of note, GO:0060337, type 1 IFN signalling (p = 8e-23) and GO:0042742, defence response to bacterium (p = 8e-3). Interestingly, microbial products increased in the portal blood and liver after SVR. Due to the increase in microbial products, the gut microbiome was investigated. There was no dysbiosis by Shannon diversity index or Bacteroides/Firmicutes ratio. There was a differential increase in genes responsible for bacterial lipopolysaccharide production after SVR. CONCLUSIONS The decrease in the antiviral interferon pathway expression was expected after SVR; however, there was an unanticipated decrease in the transcription of genes involved in recognition and response to bacteria, which was associated with increased levels of microbial products. Finally, the alterations in the function of the gut microbiome are a promising avenue for further investigation of the gut-liver axis, especially in the context of the significant immunological changes noted after SVR.
Collapse
Affiliation(s)
- Gabriella Quinn
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rabab O Ali
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Grace Y Zhang
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kareen Hill
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Townsend
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Regina Umarova
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Moumita Chakraborty
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maleeha F Ahmad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Meital Gewirtz
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - James Haddad
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergio Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shakuntala Rampertaap
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Megan Schoenfeld
- NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shanna Yang
- NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Koh
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elliot Levy
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ohad Etzion
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theo Heller
- Translational Hepatology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Gamal-AbdelNaser A, Mohammed WS, ElHefnawi M, AbdAllah M, Elsharkawy A, Zahran FM. The oral microbiome of treated and untreated chronic HCV infection: A preliminary study. Oral Dis 2023; 29:843-852. [PMID: 34396636 DOI: 10.1111/odi.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Chronic hepatitis C virus (HCV) infection is a debilitating disease that is lately treated using direct-acting antivirals (DAAs). Changes in the oral microbiome were detected in other liver diseases; however, oral microbiome was never investigated in patients having chronic HCV infection, whether pre- or post-treatment. MATERIALS AND METHODS This case-control preliminary study enrolled three equal groups: Group (I): untreated HCV patients; group (II): HCV patients who achieved viral clearance after DAA administration; and group (III): healthy controls. For each participant, a buccal swab was harvested and its 16S rRNA was sequenced. RESULTS The oral microbiome of chronic HCV patients had a significantly distinct bacterial community compared to healthy controls, characterized by high diversity and abundance of certain pathogenic species. These changes resemble that of oral lichen planus patients. After treatment by DAAs, the oral microbiome shifted to a community with partial similarity to both the diseased and the healthy ones. CONCLUSIONS Chronic HCV is associated with dysbiotic oral microbiome having abundant pathogenic bacteria. With HCV clearance by DAAs, the oral microbiome shifts to approach the healthy composition.
Collapse
Affiliation(s)
- Ayat Gamal-AbdelNaser
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Waleed S Mohammed
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics & Systems Department, National Research Centre, Giza, Egypt
| | - Mohamed AbdAllah
- Medical Research Division, National Research Centre, Giza, Egypt
| | - Aisha Elsharkawy
- Endemic Medicine and Hepatogastroentrology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fat'heya M Zahran
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate-like T lymphocytes, strikingly enriched at mucosal surfaces and characterized by a semi-invariant αβ T cell receptor (TCR) recognizing microbial derived intermediates of riboflavin synthesis presented by the MHC-Ib molecule MR1. At barrier sites MAIT cells occupy a prime position for interaction with commensal microorganisms, comprising the microbiota. The microbiota is a rich source of riboflavin derived antigens required in early life to promote intra-thymic MAIT cell development and sustain a life-long population of tissue resident cells. A symbiotic relationship is thought to be maintained in health whereby microbes promote maturation and homeostasis, and in turn MAIT cells can engage a TCR-dependent "tissue repair" program in the presence of commensal organisms conducive to sustaining barrier function and integrity of the microbial community. MAIT cell activation can be induced in a MR1-TCR dependent manner or through MR1-TCR independent mechanisms via pro-inflammatory cytokines interleukin (IL)-12/-15/-18 and type I interferon. MAIT cells provide immunity against bacterial, fungal and viral pathogens. However, MAIT cells may have deleterious effects through insufficient or exacerbated effector activity and have been implicated in autoimmune, inflammatory and allergic conditions in which microbial dysbiosis is a shared feature. In this review we summarize the current knowledge on the role of the microbiota in the development and maintenance of circulating and tissue resident MAIT cells. We also explore how microbial dysbiosis, alongside changes in intestinal permeability and imbalance between pro- and anti-inflammatory components of the immune response are together involved in the potential pathogenicity of MAIT cells. Whilst there have been significant improvements in our understanding of how the microbiota shapes MAIT cell function, human data are relatively lacking, and it remains unknown if MAIT cells can conversely influence the composition of the microbiota. We speculate whether, in a human population, differences in microbiomes might account for the heterogeneity observed in MAIT cell frequency across mucosal sites or between individuals, and response to therapies targeting T cells. Moreover, we speculate whether manipulation of the microbiota, or harnessing MAIT cell ligands within the gut or disease-specific sites could offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Maisha F. Jabeen
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Timothy S. C. Hinks
- Respiratory Medicine Unit, Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
8
|
Pinchera B, Moriello NS, Buonomo AR, Zappulo E, Viceconte G, Villari R, Gentile I. Microbiota and hepatitis C virus in the era of direct-acting antiviral agents. Microb Pathog 2023; 175:105968. [PMID: 36626945 DOI: 10.1016/j.micpath.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
The gut microbiota plays a fundamental role in Hepatitis C Virus (HCV)-related liver disease. Indeed, HCV infection alters the gut microbiota, whereas intestinal dysbiosis induces an underlying inflammatory state. This status may lead to liver disease progression. The advent of direct acting antivirals (DAAs) was a turning point in the history of HCV infection, which enhances the chances of recovery. Beyond the elimination of the virus, DAA therapy can affect the gut microbiota of the HCV patient. The study of the gut microbiota in the patient with HCV-related liver disease could be the first step in understanding the etiopathogenesis of hepatopathy thereby opening the way to new therapeutic opportunities. Herein we evaluate current knowledge regarding the gut microbiota in patients with HCV infection and the impact of DAA therapy.
Collapse
Affiliation(s)
- Biagio Pinchera
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
| | - Nicola Schiano Moriello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | | | - Emanuela Zappulo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giulio Viceconte
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Riccardo Villari
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy; Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
Virus Association with Gastric Inflammation and Cancer: An Updated Overview. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.4.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
10
|
Role of Intestinal Microbes in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms232012661. [PMID: 36293518 PMCID: PMC9603943 DOI: 10.3390/ijms232012661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
With the recent availability and upgrading of many emerging intestinal microbes sequencing technologies, our research on intestinal microbes is changing rapidly. A variety of investigations have found that intestinal microbes are essential for immune system regulation and energy metabolism homeostasis, which impacts many critical organs. The liver is the first organ to be traversed by the intestinal portal vein, and there is a strong bidirectional link between the liver and intestine. Many intestinal factors, such as intestinal microbes, bacterial composition, and intestinal bacterial metabolites, are deeply involved in liver homeostasis. Intestinal microbial dysbiosis and increased intestinal permeability are associated with the pathogenesis of many chronic liver diseases, such as alcoholic fatty liver disease (AFLD), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), chronic hepatitis B (CHB), chronic hepatitis C (CHC), autoimmune liver disease (AIH) and the development of hepatocellular carcinoma (HCC). Intestinal permeability and dysbacteriosis often lead to Lipopolysaccharide (LPS) and metabolites entering in serum. Then, Toll-like receptors activation in the liver induces the exposure of the intestine and liver to many small molecules with pro-inflammatory properties. And all of these eventually result in various liver diseases. In this paper, we have discussed the current evidence on the role of various intestinal microbes in different chronic liver diseases. As well as potential new therapeutic approaches are proposed in this review, such as antibiotics, probiotics, and prebiotics, which may have an improvement in liver diseases.
Collapse
|
11
|
Marascio N, De Caro C, Quirino A, Mazzitelli M, Russo E, Torti C, Matera G. The Role of the Microbiota Gut-Liver Axis during HCV Chronic Infection: A Schematic Overview. J Clin Med 2022; 11:5936. [PMID: 36233804 PMCID: PMC9572099 DOI: 10.3390/jcm11195936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis C virus (HCV) still represents one of the most important worldwide health care problems. Since 2011, direct-acting antiviral (DAA) drugs have increased the number of people who have achieved a sustained virological response (SVR). Even if the program to eradicate HCV by 2030 is still ongoing, the SARS-CoV-2 pandemic has created a delay due to the reallocation of public health resources. HCV is characterized by high genetic variability and is responsible for hepatic and extra-hepatic diseases. Depending on the HCV genotype/subtype and comorbidities of patients, tailored treatment is necessary. Recently, it has been shown that liver damage impacts gut microbiota, altering the microbial community (dysbiosis) during persistent viral replication. An increasing number of studies are trying to clarify the role of the gut-liver axis during HCV chronic infection. DAA therapy, by restoring the gut microbiota equilibrium, seems to improve liver disease progression in both naïve and treated HCV-positive patients. In this review, we aim to discuss a snapshot of selected peer-reviewed papers concerning the interplay between HCV and the gut-liver axis.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Carmen De Caro
- System and Applied Pharmacology, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, University Hospital of Padua, 35128 Padua, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Spanu D, Pretta A, Lai E, Persano M, Donisi C, Mariani S, Dubois M, Migliari M, Saba G, Ziranu P, Pusceddu V, Puzzoni M, Astara G, Scartozzi M. Hepatocellular carcinoma and microbiota: Implications for clinical management and treatment. World J Hepatol 2022; 14:1319-1332. [PMID: 36158925 PMCID: PMC9376771 DOI: 10.4254/wjh.v14.i7.1319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota plays an essential role in host homeostasis. It is involved in several physiological processes such as nutrients digestion and absorption, maintenance of intestinal epithelial barrier integrity and immune system self-tolerance. Especially the gut microbiota is assumed to play a crucial role in many gastrointestinal, pancreatic and liver disorders. Its role in hepatic carcinogenesis is also gaining increasing interest, especially regarding the development of therapeutic strategies. Different studies are highlighting a link between some bacterial strains and liver disease, including hepatocellular carcinoma (HCC). Indeed, HCC represents an interesting field of research in this perspective, due to the gut-liver axis, to the implication of microbiota in the immune system and to the increasing number of immunotherapy agents investigated in this tumour. Thus, the assessment of the role of microbiota in influencing clinical outcome for patients treated with these drugs is becoming of increasing importance. Our review aims to give an overview on the relationship between microbiota and HCC development/progression and treatment. We focus on potential implications on the available treatment strategies and those under study in the various stages of disease. We highlight the pathogenic mechanisms and investigate the underlying molecular pathways involved. Moreover, we investigate the potential prognostic and/or predictive role of microbiota for target therapies, immune checkpoint inhibitors and loco-regional treatment. Finally, given the limitation of current treatments, we analyze the gut microbiota-mediated therapies and its potential options for HCC treatment focusing on fecal microbiota transplantation.
Collapse
Affiliation(s)
- Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Giorgio Astara
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato 09042, Cagliari, Italy
| |
Collapse
|
13
|
Compositions of gut microbiota before and shortly after hepatitis C viral eradication by direct antiviral agents. Sci Rep 2022; 12:5481. [PMID: 35361930 PMCID: PMC8971444 DOI: 10.1038/s41598-022-09534-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
It is unclear whether dysbiosis in hepatitis C virus (HCV) infected patients results from the viral infection per se or develops as a result of hepatic dysfunction. We aimed to characterize compositions in gut microbiome before and shortly after HCV clearance. In this prospective cohort study, adult patients with confirmed HCV viremia were screened before receiving direct antiviral agents. Those with recent exposure to antibiotics or probiotics (within one month), prior abdominal surgery, or any malignancy were ineligible. Stool was collected before antiviral therapy started and at 12 weeks after the treatment completed. From the extracted bacterial DNA, 16 s rRNA gene was amplified and sequenced. Each patient was matched 1:2 in age and sex with uninfected controls. A total of 126 individuals were enrolled into analysis. The gut microbiome was significantly different between HCV-infected patients (n = 42), with or without cirrhosis, and their age-and sex-matched controls (n = 84) from the levels of phylum to amplicon sequence variant (all p values < 0.01 by principal coordinates analysis). All patients achieved viral eradication and exhibited no significant changes in the overall composition of gut microbiome following viral eradication (all p values > 0.5), also without significant difference in alpha diversity (all p values > 0.5). For the purpose of exploration, we also reported bacteria found differently abundant before and after HCV eradication, including Coriobacteriaceae, Peptostreptococcaceae, Staphylococcaceae, Morganellaceae, Pasteurellaceae, Succinivibrionaceae, and Moraxellaceae. Gut microbiota is altered in HCV-infected patients as compared with uninfected controls, but the overall microbial compositions do not significantly change shortly after HCV eradication.
Collapse
|
14
|
Honda T, Ishigami M, Yamamoto K, Takeyama T, Ito T, Ishizu Y, Kuzuya T, Nakamura M, Kawashima H, Miyahara R, Ishikawa T, Hirooka Y, Fujishiro M. Changes in the gut microbiota after hepatitis C virus eradication. Sci Rep 2021; 11:23568. [PMID: 34876650 PMCID: PMC8651745 DOI: 10.1038/s41598-021-03009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
The gut microbiota interacts with infectious diseases and affects host immunity. Liver disease is also reportedly associated with changes in the gut microbiota. To elucidate the changes in the gut microbiota before and after hepatitis C virus (HCV) eradication through direct-acting antiviral (DAA) treatment in patients with chronic hepatitis C (CHC), we investigated 42 samples from 14 patients who received DAA therapy for HCV. Fecal samples were obtained before treatment (Pre), when treatment ended (EOT), and 24 weeks after treatment ended (Post24). The target V3-4 region of the 16S rRNA gene from fecal samples was amplified using the Illumina Miseq sequencing platform. The diversity of the gut microbiota did not significantly differ between Pre, EOT, and Post24. Principal coordinates analysis showed that for each patient, the values at Pre, EOT, and Post24 were concentrated within a small area. The linear discriminant analysis of effect size showed that the relative abundances of Faecalibacterium and Bacillus increased at EOT, further increased at Post24, and were significantly increased at Post24 compared to Pre. These suggest that changes in the gut microbiota should be considered as among the various effects observed on living organisms after HCV eradication.
Collapse
Affiliation(s)
- Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomoaki Takeyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, Toyoake, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, Toyoake, Japan
| | - Tetsuya Ishikawa
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Liver, Biliary Tract and Pancreas Diseases, Fujita Health University, Toyoake, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
15
|
Bartolini I, Risaliti M, Tucci R, Muiesan P, Ringressi MN, Taddei A, Amedei A. Gut microbiota and immune system in liver cancer: Promising therapeutic implication from development to treatment. World J Gastrointest Oncol 2021; 13:1616-1631. [PMID: 34853639 PMCID: PMC8603449 DOI: 10.4251/wjgo.v13.i11.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/25/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is a leading cause of death worldwide, and hepatocellular carcinoma (HCC) is the most frequent primary liver tumour, followed by cholangiocarcinoma. Notably, secondary tumours represent up to 90% of liver tumours. Chronic liver disease is a recognised risk factor for liver cancer development. Up to 90% of the patients with HCC and about 20% of those with cholangiocarcinoma have an underlying liver alteration. The gut microbiota-liver axis represents the bidirectional relationship between gut microbiota, its metabolites and the liver through the portal flow. The interplay between the immune system and gut microbiota is also well-known. Although primarily resulting from experiments in animal models and on HCC, growing evidence suggests a causal role for the gut microbiota in the development and progression of chronic liver pathologies and liver tumours. Despite the curative intent of "traditional" treatments, tumour recurrence remains high. Therefore, microbiota modulation is an appealing therapeutic target for liver cancer prevention and treatment. Furthermore, microbiota could represent a non-invasive biomarker for early liver cancer diagnosis. This review summarises the potential role of the microbiota and immune system in primary and secondary liver cancer development, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Ilenia Bartolini
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Matteo Risaliti
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Rosaria Tucci
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Paolo Muiesan
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Maria Novella Ringressi
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Antonio Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliero Universitaria Careggi (AOUC), Florence 50134, Italy
| |
Collapse
|
16
|
Chuaypen N, Jinato T, Avihingsanon A, Chirapongsathorn S, Cheevadhanarak S, Nookaew I, Tanaka Y, Tangkijvanich P. Improvement of Gut Diversity and Composition After Direct-Acting Antivirals in Hepatitis C Virus-Infected Patients With or Without Human Immunodeficiency Virus Coinfection. J Infect Dis 2021; 224:1410-1421. [PMID: 33598686 PMCID: PMC8557699 DOI: 10.1093/infdis/jiab094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The influence of direct-acting antivirals (DAAs) on the composition of gut microbiota in hepatitis C virus (HCV)-infected patients with or without human immunodeficiency virus (HIV) is unclear. METHODS We enrolled 62 patients with HCV monoinfection and 24 patients with HCV/HIV coinfection receiving elbasvir-grazoprevir from a clinical trial. Fecal specimens collected before treatment and 12 weeks after treatment were analyzed using amplicon-based 16S ribosomal RNA sequencing. RESULTS Sustained virological response rates in the monoinfection and coinfection groups were similar (98.4% vs 95.8%). Pretreatment bacterial communities in the patient groups were less diverse and distinct from those of healthy controls. Compared with HCV-monoinfected patients, HCV/HIV-coinfected individuals showed comparable microbial alpha diversity but decreased Firmicutes-Bacteroidetes ratios. The improvement of microbial dysbiosis was observed in responders achieving sustained virological response across fibrosis stages but was not found in nonresponders. Responders with a low degree of fibrosis exhibited a recovery in alpha diversity to levels comparable to those in healthy controls. Reciprocal alterations of increased beneficial bacteria and reduced pathogenic bacteria were also observed in responders. CONCLUSIONS This study indicates a short-term effect of direct-acting antivirals in restoration of microbial dysbiosis. The favorable changes in gut microbiota profiles after viral eradication might contribute toward the reduction of HCV-related complications among infected individuals.
Collapse
Affiliation(s)
- Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thananya Jinato
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Avihingsanon
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Sakkarin Chirapongsathorn
- Division of Gastroenterology and Hepatology, Department of Medicine, Phramongkutklao Hospital, College of Medicine, Royal Thai Army, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Gobran ST, Ancuta P, Shoukry NH. A Tale of Two Viruses: Immunological Insights Into HCV/HIV Coinfection. Front Immunol 2021; 12:726419. [PMID: 34456931 PMCID: PMC8387722 DOI: 10.3389/fimmu.2021.726419] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.
Collapse
Affiliation(s)
- Samaa T Gobran
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Petronela Ancuta
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Fecal Microbiota Transplantation in Patients with HBV Infection or Other Chronic Liver Diseases: Update on Current Knowledge and Future Perspectives. J Clin Med 2021; 10:jcm10122605. [PMID: 34204748 PMCID: PMC8231596 DOI: 10.3390/jcm10122605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease and gut dysbiosis are strictly associated, and the pathophysiology of this bidirectional relationship has recently been the subject of several investigations. Growing evidence highlights the link between gut microbiota composition, impairment of the gut-liver axis, and the development or progression of liver disease. Therefore, the modulation of gut microbiota to maintain homeostasis of the gut-liver axis could represent a potential instrument to halt liver damage, modify the course of liver disease, and improve clinical outcomes. Among all the methods available to achieve this purpose, fecal microbiota transplantation (FMT) is one of the most promising, being able to directly reshape the recipient’s gut microbial communities. In this review, we report the main characteristics of gut dysbiosis and its pathogenetic consequences in cirrhotic patients, discussing the emerging data on the application of FMT for liver disease in different clinical settings.
Collapse
|
19
|
Sultan S, El-Mowafy M, Elgaml A, El-Mesery M, El Shabrawi A, Elegezy M, Hammami R, Mottawea W. Alterations of the Treatment-Naive Gut Microbiome in Newly Diagnosed Hepatitis C Virus Infection. ACS Infect Dis 2021; 7:1059-1068. [PMID: 33119247 DOI: 10.1021/acsinfecdis.0c00432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gut microbiota dysbiosis has been linked to many heath disorders including hepatitis C virus (HCV) infection. However, profiles of the gut microbiota alterations in HCV are inconsistent in the literature and are affected by the treatment regimens. Using samples collected prior to treatment from newly diagnosed patients, we characterized the gut microbiota structure in HCV patients as compared to healthy controls. Treatment-naive HCV microbiota showed increased diversity, an increased abundance of Prevotella, Succinivibrio, Catenibacterium, Megasphaera, and Ruminococcaceae, and a lower abundance of Bacteroides, Dialister, Bilophila, Streptococcus, parabacteroides, Enterobacteriaceae, Erysipelotrichaceae, Rikenellaceae, and Alistipes. Predicted community metagenomic functions showed a depletion of carbohydrate and lipid metabolism in HCV microbiota along with perturbations of amino acid metabolism. Receiver-operating characteristic analysis identified five disease-specific operational taxonomic units (OTUs) as potential biomarkers of HCV infections. Collectively, our findings reveal the alteration of gut microbiota in treatment naive HCV patients and suggest that gut microbiota may hold diagnostic promise in HCV infection.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario K1H8M5, Canada
| | | | - Abdelaziz Elgaml
- Faculty of Pharmacy, Department of Microbiology and Immunology, Horus University, New Damietta 34518, Egypt
| | | | | | | | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario K1H8M5, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario K1H8M5, Canada
| |
Collapse
|
20
|
Ji D, Chen GF, Niu XX, Zhang M, Wang C, Shao Q, Wu V, Wang Y, Cheng G, Hurwitz SJ, Schinazi RF, Lau G. Non-alcoholic fatty liver disease is a risk factor for occurrence of hepatocellular carcinoma after sustained virologic response in chronic hepatitis C patients: A prospective four-years follow-up study. Metabol Open 2021; 10:100090. [PMID: 33889834 PMCID: PMC8050772 DOI: 10.1016/j.metop.2021.100090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background and aim The incidence of hepatocellular carcinoma (HCC) decreases significantly in chronic hepatitis C (CHC) patients with sustained virologic response (SVR) after pegylated-interferon plus ribavirin (PR) or direct-acting antiviral (DAAs) therapy. We follow-up a single cohort of CHC patients to identify risk factors associated with HCC development post-SVR. Method CHC patients with SVR in Beijing/Hong Kong were followed up at 12–24 weekly intervals with surveillance for HCC by ultrasonography and alpha-fetoprotein (AFP). Multivariate Cox proportional hazards regression analysis was used to explore factors associated with HCC occurrence. Results Between October 2015 and May 2017, SVR was observed in 519 and 817 CHC patients after DAAs and PR therapy respectively. After a median post -SVR follow-up of 48 months, HCC developed in 54 (4.4%) SVR subjects. By adjusted Cox analysis, older age (≥55 years) [HR 2.4, 95% CI (1.3–4.3)], non-alcoholic fatty liver diseases [HR 2.4, 95%CI (1.3–4.2), higher AFP level (≥20 ng/ml) [HR 3.4, 95%CI (2.0–5.8)], higher liver stiffness measurement (≥14.6 kPa) [HR 4.2, 95%CI (2.3–7.6)], diabetes mellitus [HR 4.2, 95%CI (2.4–7.4)] at pre-treatment were associated with HCC occurrence. HCC patients in the DAAs induced SVR group had a higher prevalence of NAFLD as compared with those in the PR induced SVR group, 62% (18/29) vs 28% (7/25), p = 0.026. A nomogram formulated with the above six independent variables had a Concordance-Index of 0.835 (95% CI 0.783–0.866). Conclusion Underlying NAFLD is associated with increased incidence of HCC in chronic HCV patients post-SVR, particularly in those treated with DAA. Patients with chronic hepatitis C infection are still at risk of HCC after achieving sustained virus clearance (SVR). Non-alcoholic liver disease (NAFLD) is emerging as an important risk factor for hepatocellular carcinoma. Underlying NAFLD is associated with increased incidence of HCC in patients with chronic HCV infection after sustained virologic response SVR.
Collapse
Key Words
- AFP, alpha-fetoprotein
- ALT, alanine aminotransferase
- ANGPTL, angiopoietin-like proteins
- AST, aspartate aminotransferase
- ASV, asunaprevir
- BCLC, Barcelona-Clinic Liver Cancer Group
- BMI, body mass index
- CHC, chronic hepatitis C
- CI, confidence intervals (CI)
- Chronic hepatitis C
- DAAs, direct-acting antiviral agents
- DCV, daclatasvir
- FGF, fibroblast growth factor
- HCC
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HR, Hazard Ratio
- IFN, interferon
- LDV, ledipasvir
- LSM, liver stiffness measurement
- NAFLD
- PLT, platelet count
- PR, Peg-IFN-α with RBV
- Peg-IFN, Pegylated interferon
- RBV, ribavirin
- SMV, simeprevir
- SOF, sofosbuvir
- SVR, sustained virologic response
- Sustained virologic response
- TBIL, total bilirubin
- TNF, tumor necrosis factor
- ULN, upper limit of normal
Collapse
Affiliation(s)
- Dong Ji
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.,Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China
| | - Guo-Feng Chen
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.,Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China
| | - Xiao-Xia Niu
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.,Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China
| | - Mingjie Zhang
- Faculty of Health Science, Macau University, Taipa, Macau
| | - Cheng Wang
- Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China.,Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong, China
| | - Qing Shao
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.,Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China
| | - Vanessa Wu
- Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China.,Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong, China
| | - Yudong Wang
- Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China.,Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong, China
| | - Gregory Cheng
- Faculty of Health Science, Macau University, Taipa, Macau.,Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong, China
| | - Selwyn J Hurwitz
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - George Lau
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.,Fifth Medical Center of Chinese PLA General Hospital-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, 100039, China.,Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong, China
| |
Collapse
|
21
|
Yamamoto K, Honda T, Ito T, Ishizu Y, Kuzuya T, Nakamura M, Miyahara R, Kawashima H, Ishigami M, Fujishiro M. The relationship between oral-origin bacteria in the fecal microbiome and albumin-bilirubin grade in patients with hepatitis C. J Gastroenterol Hepatol 2021; 36:790-799. [PMID: 32744764 DOI: 10.1111/jgh.15206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bacteria of oral origin (BO) in the gut are associated with prognosis in patients with cirrhosis. The Greengenes database (gg_13_8) is widely used in microbiome analysis, but the expanded Human Oral Microbiome Database (eHOMD), a specialized database for BO, can add more detailed information. We used each database to evaluate the relationship between the albumin-bilirubin grade (ALBI) and the microbiome in patients with hepatitis C. METHODS Eighty patients were classified into the low ALBI group (LA; n = 34) or high ALBI group (HA; n = 46). Isolated DNA from stool was amplified to target the V3-4 regions of 16S rRNA. The microbiomes of the two groups were compared using gg_13_8 or eHOMD. We evaluated the associations between microbiomes and prognoses using Cox proportional hazards models. RESULTS At the genus level, the two groups differed significantly regarding 6 (gg_13_8) and 7 (eHOMD) types of bacteria. All types except Akkermansia are classified as BO. Both databases showed an increase in Streptococcus and Veillonella. eHOMD showed a decrease in Fusobacterium and an increase in Fretibacterium; both produce various types of short-chain fatty acids. At the species level, the two groups demonstrated significant differences in 2 (gg_13_8) and 6 (eHOMD) bacterial types. Selenomonas noxia and Streptococcus salivarius were related to poor prognosis in univariate analysis. CONCLUSION The HA group demonstrated increased BO, most of which produce lactic acid or acetic acid. The correlation between the microbiome and metabolism might be related to prognosis. eHOMD was a useful database for analyzing BO.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. BIOLOGY 2021; 10:biology10010055. [PMID: 33451143 PMCID: PMC7828638 DOI: 10.3390/biology10010055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Gut microbiota alteration is linked to many health disorders including hepatitis C virus (HCV) infection. This dysbiosis in turn impacts the coordination between the gut and the liver that is known as the gut–liver-axis. Here, we discuss the latest findings regarding the changes in gut microbiota structure and functionality post HCV infection and its treatment regimens. In addition, we underline the contribution of the microbiota alterations to HCV associated liver complications. Abstract The gut–liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection.
Collapse
|
23
|
Sadiq FA. Is it time for microbiome-based therapies in viral infections? Virus Res 2021; 291:198203. [PMID: 33132161 PMCID: PMC7580679 DOI: 10.1016/j.virusres.2020.198203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 01/07/2023]
Abstract
Infectious diseases related to viruses, as well as bacterial pathogens, abound in all parts of the world, burdening health and economy. Thus, there is a dire need to find new prevention and treatment strategies to improve clinical practices related to viral infections. Human gut contains trillions of bacteria which have regulatory roles in immune development, homeostasis, and body metabolism. Today, it is difficult to find any prominent viral infection that hasn't had any link with the human gut microbiota. In this opinion-based review article, I argued the significance of manipulating human gut microbiota as novel therapeutics through probiotics or FMT in alleviating complexities related to viral infections, and pinpointed bottlenecks involved in this research.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 1800 Lihu Avenue, 214122, China.
| |
Collapse
|
24
|
Acharya C, Bajaj JS. Chronic Liver Diseases and the Microbiome-Translating Our Knowledge of Gut Microbiota to Management of Chronic Liver Disease. Gastroenterology 2021; 160:556-572. [PMID: 33253686 PMCID: PMC9026577 DOI: 10.1053/j.gastro.2020.10.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Chronic liver disease is reaching epidemic proportions with the increasing prevalence of obesity, nonalcoholic liver disease, and alcohol overuse worldwide. Most patients are not candidates for liver transplantation even if they have end-stage liver disease. There is growing evidence of a gut microbial basis for many liver diseases, therefore, better diagnostic, prognostic, and therapeutic approaches based on knowledge of gut microbiota are needed. We review the questions that need to be answered to successfully translate our knowledge of the intestinal microbiome and the changes associated with liver disease into practice.
Collapse
|
25
|
Jeyarajan AJ, Chung RT. Insights Into the Pathophysiology of Liver Disease in HCV/HIV: Does it End With HCV Cure? J Infect Dis 2020; 222:S802-S813. [PMID: 33245355 PMCID: PMC7693973 DOI: 10.1093/infdis/jiaa279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HCV-HIV coinfected patients exhibit rapid progression of liver damage relative to HCV monoinfected patients. The availability of new directly acting antiviral agents has dramatically improved outcomes for coinfected patients as sustained virologic response rates now exceed 95% and fibrosis-related parameters are improved. Nevertheless, coinfected patients still have a higher mortality risk and more severe hepatocellular carcinoma compared to HCV monoinfected patients, implying the existence of pathways unique to people living with HIV that continue to promote accelerated liver disease. In this article, we review the pathobiology of liver disease in HCV-HIV coinfected patients in the directly acting antiviral era and explore the mechanisms through which HIV itself induces liver damage. Since liver disease is one of the leading causes of non-AIDS-related mortality in HIV-positive patients, enhancing our understanding of HIV-associated fibrotic pathways will remain important for new diagnostic and therapeutic strategies to slow or reverse liver disease progression, even after HCV cure.
Collapse
Affiliation(s)
- Andre J Jeyarajan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raymond T Chung
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Taylor BC, Weldon KC, Ellis RJ, Franklin D, Groth T, Gentry EC, Tripathi A, McDonald D, Humphrey G, Bryant M, Toronczak J, Schwartz T, Oliveira MF, Heaton R, Grant I, Gianella S, Letendre S, Swafford A, Dorrestein PC, Knight R. Depression in Individuals Coinfected with HIV and HCV Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. mSystems 2020; 5:e00465-20. [PMID: 32994287 PMCID: PMC7527136 DOI: 10.1128/msystems.00465-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is influenced by the structure, diversity, and composition of the gut microbiome. Although depression has been described previously in human immunodeficiency virus (HIV) and hepatitis C virus (HCV) monoinfections, and to a lesser extent in HIV-HCV coinfection, research on the interplay between depression and the gut microbiome in these disease states is limited. Here, we characterized the gut microbiome using 16S rRNA amplicon sequencing of fecal samples from 373 participants who underwent a comprehensive neuropsychiatric assessment and the gut metabolome on a subset of these participants using untargeted metabolomics with liquid chromatography-mass spectrometry. We observed that the gut microbiome and metabolome were distinct between HIV-positive and -negative individuals. HCV infection had a large association with the microbiome that was not confounded by drug use. Therefore, we classified the participants by HIV and HCV infection status (HIV-monoinfected, HIV-HCV coinfected, or uninfected). The three groups significantly differed in their gut microbiome (unweighted UniFrac distances) and metabolome (Bray-Curtis distances). Coinfected individuals also had lower alpha diversity. Within each of the three groups, we evaluated lifetime major depressive disorder (MDD) and current Beck Depression Inventory-II. We found that the gut microbiome differed between depression states only in coinfected individuals. Coinfected individuals with a lifetime history of MDD were enriched in primary and secondary bile acids, as well as taxa previously identified in people with MDD. Collectively, we observe persistent signatures associated with depression only in coinfected individuals, suggesting that HCV itself, or interactions between HCV and HIV, may drive HIV-related neuropsychiatric differences.IMPORTANCE The human gut microbiome influences depression. Differences between the microbiomes of HIV-infected and uninfected individuals have been described, but it is not known whether these are due to HIV itself, or to common HIV comorbidities such as HCV coinfection. Limited research has explored the influence of the microbiome on depression within these groups. Here, we characterized the microbial community and metabolome in the stools from 373 people, noting the presence of current or lifetime depression as well as their HIV and HCV infection status. Our findings provide additional evidence that individuals with HIV have different microbiomes which are further altered by HCV coinfection. In individuals coinfected with both HIV and HCV, we identified microbes and molecules that were associated with depression. These results suggest that the interplay of HIV and HCV and the gut microbiome may contribute to the HIV-associated neuropsychiatric problems.
Collapse
Affiliation(s)
- Bryn C Taylor
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- Department of Neuroscience, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
| | - Donald Franklin
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tobin Groth
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Anupriya Tripathi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gregory Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Julia Toronczak
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michelli F Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert Heaton
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Igor Grant
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
27
|
Li D, Xi W, Zhang Z, Ren L, Deng C, Chen J, Sun C, Zhang N, Xu J. Oral microbial community analysis of the patients in the progression of liver cancer. Microb Pathog 2020; 149:104479. [PMID: 32920149 DOI: 10.1016/j.micpath.2020.104479] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/17/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Liver disease has been reported to associate with oral microbiota. This study aimed to identify the salivary microbial structure in liver disease patients and determine whether the disease progression influence the bacterial composition. 16S rDNA high-throughput sequencing and bioinformatic analysis were used to examine oral bacterial diversity in the different status of hepatitis patients including 6 patients with Hepatitis B (Y), 6 patients with Hepatitis B Cirrhosis (YY) and 6 patients with liver cancer (C), and 6 healthy controls (T). Phylogenetic analysis revealed that the genera of Streptococcus, Prevotella, Actinomyces, Veillonella and Neisseria are predominant genus in the saliva of Y, YY, C patients and T group. Lautropia, Abiotrophia and Veillonella were enriched in Y patients, while Treponema, Selenomonas and Oribacterium were also existed in YY patients. Haemophilus, Porphyromonas and Filifactor had high abundance in C patients. The genera of Moryella, Leptotrichia, Lactobacillus, Dialister, Serratia, Enterococcus and Actinobacillus were decreased in all patient samples compared with healthy control samples which may be used for treatment of liver disease. Diversity analyses showed decreased diversity of salivary bacterial communities was discovered in the progress of the liver disease. These findings identified the oral microbiota dysbiosis in liver disease, which may providing available information and possible diagnostic biomarkers for liver patients.
Collapse
Affiliation(s)
- Daxu Li
- Department of Microbiology and immunology, School of Health Sciences Center, Xi'an Jiaotong University, Xi'an, China; Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weijun Xi
- Stomatology Department, Xi'an Gaoxin Hospital, Xi'an, China
| | - Zhe Zhang
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Le Ren
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chunni Deng
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jianghao Chen
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Cong Sun
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Nan Zhang
- Department of Stomatology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jiru Xu
- Department of Microbiology and immunology, School of Health Sciences Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
28
|
Dysbiosis of the Duodenal Mucosal Microbiota Is Associated With Increased Small Intestinal Permeability in Chronic Liver Disease. Clin Transl Gastroenterol 2020; 10:e00068. [PMID: 31373933 PMCID: PMC6736223 DOI: 10.14309/ctg.0000000000000068] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is associated with both alterations of the stool microbiota and increased small intestinal permeability. However, little is known about the role of the small intestinal mucosa-associated microbiota (MAM) in CLD. The aim of this study was to evaluate the relationship between the duodenal MAM and both small intestinal permeability and liver disease severity in CLD.
Collapse
|
29
|
Bajaj JS, Khoruts A. Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. J Hepatol 2020; 72:1003-1027. [PMID: 32004593 DOI: 10.1016/j.jhep.2020.01.017] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Patients with chronic liver disease and cirrhosis demonstrate a global mucosal immune impairment, which is associated with altered gut microbiota composition and functionality. These changes progress along with the advancing degree of cirrhosis and can be linked with hepatic encephalopathy, infections and even prognostication independent of clinical biomarkers. Along with compositional changes, functional alterations to the microbiota, related to short-chain fatty acids, bioenergetics and bile acid metabolism, are also associated with cirrhosis progression and outcomes. Altering the functional and structural profile of the microbiota is partly achieved by medications used in patients with cirrhosis such as rifaximin, lactulose, proton pump inhibitors and other antibiotics. However, the role of faecal or intestinal microbiota transplantation is increasingly being recognised. Herein, we review the challenges, opportunities and road ahead for the appropriate and safe use of intestinal microbiota transplantation in liver disease.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia, USA.
| | - Alexander Khoruts
- Division of Gastroenterology Hepatology and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Méndez-Sánchez N, Valencia-Rodriguez A, Vera-Barajas A, Abenavoli L, Scarpellini E, Ponciano-Rodriguez G, Wang DQH. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. HEPATOMA RESEARCH 2020; 6:5. [PMID: 32582865 PMCID: PMC7313221 DOI: 10.20517/2394-5079.2019.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, alcoholic liver disease (ALD) is one of the most prevalent chronic liver diseases worldwide, representing one of the main etiologies of cirrhosis and hepatocellular carcinoma (HCC). Although we do not know the exact mechanisms by which only a selected group of patients with ALD progress to the final stage of HCC, the role of the gut microbiota within the progression to HCC has been intensively studied in recent years. To date, we know that alcohol-induced gut dysbiosis is an important feature of ALD with important repercussions on the severity of this disease. In essence, an increased metabolism of ethanol in the gut induced by an excessive alcohol consumption promotes gut dysfunction and bacterial overgrowth, setting a leaky gut. This causes the translocation of bacteria, endotoxins, and ethanol metabolites across the enterohepatic circulation reaching the liver, where the recognition of the pathogen-associated molecular patterns via specific Toll-like receptors of liver cells will induce the activation of the nuclear factor kappa-B pathway, which releases pro-inflammatory cytokines and chemokines. In addition, the mitogenic activity of hepatocytes will be promoted and cellular apoptosis will be inhibited, resulting in the development of HCC. In this context, it is not surprising that microbiota-regulating drugs have proven effectiveness in prolonging the overall survival of patients with HCC, making attractive the implementation of these drugs as co-adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | | | | | - Ludovico Abenavoli
- Department of Health Sciences, University “Magna Graecia” Viale Europa, Catanzaro 88100, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit, and Internal Medicine Unit, “Madonna del Soccorso” General Hospital, Via Luciano Manara 7, San Benedetto del Tronto (AP) 63074, Italy
| | - Guadalupe Ponciano-Rodriguez
- Public Health Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Liver fibrosis and CD206 + macrophage accumulation are suppressed by anti-GM-CSF therapy. JHEP Rep 2020; 2:100062. [PMID: 32039403 PMCID: PMC7005658 DOI: 10.1016/j.jhepr.2019.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Chronic liver inflammation leads to fibrosis and cirrhosis and is associated with an accumulation of intrahepatic TNFα-secreting CD206+ macrophages, which may participate in maintaining chronic liver disease in a GM-CSF-dependent manner. We aimed to elucidate the exact role of GM-CSF in the development and progression of chronic liver disease. Methods Liver immunohistochemistry and serum quantification were performed in patients with viral and non-viral-related liver disease to compare CD206+ monocyte/macrophages, fibrosis and GM-CSF. This was followed by functional validations in vitro and in vivo in humanised mice. Results Using multiplex immunofluorescence and histo-cytometry, we show that highly fibrotic livers had a greater density of CD206+ macrophages that produced more TNFα and GM-CSF in the non-tumour liver regions of patients with hepatocellular carcinoma (n = 47), independent of aetiology. In addition, the absolute number of CD206+ macrophages strongly correlated with the absolute number of GM-CSF-producing macrophages. In non-HCC chronic HCV+ patients (n = 40), circulating GM-CSF levels were also increased in proportion to the degree of liver fibrosis and serum viral titres. We then demonstrated in vitro that monocytes converted to TNFα-producing CD206+ macrophage-like cells in response to bacterial products (lipopolysaccharide) in a GM-CSF-dependent manner, confirming the in vivo normalisation of serum GM-CSF concentration following oral antibiotic treatment observed in HBV-infected humanised mice. Finally, anti-GM-CSF neutralising antibody treatment reduced intrahepatic CD206+ macrophage accumulation and abolished liver fibrosis in HBV-infected humanised mice. Conclusions While the direct involvement of CD206+ macrophages in liver fibrosis remains to be demonstrated, these findings show that GM-CSF may play a central role in liver fibrosis and could guide the development of anti-GM-CSF antibody-based therapy for the management of patients with chronic liver disease. Lay summary Liver fibrosis is a major driver of liver disease progression. Herein, we have shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) plays an important role in the development of liver fibrosis. Our findings support the use of anti-GM-CSF neutralising antibodies for the management of patients with chronic liver disease resulting from both viral and non-viral causes. GM-CSF and TNFα producing CD206+ macrophages accumulate in human fibrotic liver Serum GM-CSF is increased in HCV+ patients with higher liver fibrosis GM-CSF drives monocyte to CD206+ macrophage conversion Anti-GM-CSF therapy suppresses liver fibrosis and CD206+ macrophage accumulation
Collapse
Key Words
- ALT, alanine aminotransferase
- BAMBI, BMP and Activin Membrane-bound Inhibitor
- CD206+ macrophages
- DAA, direct-acting antiviral
- DC, dendritic cell
- FFPE, formalin-fixed paraffin-embedded
- GM-CSF
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- HCV
- HIER, heat-induced epitope retrieval
- HSC, hepatic stellate cells
- ICS, intracellular cytokine staining
- Intrahepatic macrophages
- LPS, lipopolysaccharide
- LSM, liver stiffness measurement
- MS, multiple sclerosis
- NASH
- NASH, non-alcoholic steatohepatitis
- PBMCs, peripheral blood mononuclear cells
- RA, rheumatoid arthritis
- SVR, sustained virological response
- TCR, T cell receptor
- TMA, tissue microarray
- TNFα, tumour necrosis factor-α
- TSA, tyramide signal amplification
- anti-GM-CSF neutralizing antibody
- fibrosis
- moMΦs, monocyte-derived macrophage-like cells
- t-SNE, t-distributed stochastic neighbour embedding
Collapse
|
32
|
Baker SS, Baker RD. Gut Microbiota and Liver Injury (II): Chronic Liver Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1238:39-54. [PMID: 32323179 DOI: 10.1007/978-981-15-2385-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic liver injury mainly comprises viral hepatitis, fatty liver disease, autoimmune hepatitis, cirrhosis and liver cancer. It is well established that gut microbiota serves as the key upstream modulator for chronic liver injury progression. Indeed, the term "gut-liver axis" was mostly applied for chronic liver injury. In the current chapter, we will summarize the relationship between gut microbiota and chronic liver injury, including the interaction between them based on latest clinic and basic research.
Collapse
Affiliation(s)
- Susan S Baker
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, USA. .,39 Irving Place, Buffalo, NY, 14201, USA.
| | - Robert D Baker
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, USA
| |
Collapse
|
33
|
Yuan L, Hensley C, Mahsoub HM, Ramesh AK, Zhou P. Microbiota in viral infection and disease in humans and farm animals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:15-60. [PMID: 32475521 PMCID: PMC7181997 DOI: 10.1016/bs.pmbts.2020.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The influence of the microbiota on viral infection susceptibility and disease outcome is undisputable although varies among viruses. The purpose of understanding the interactions between microbiota, virus, and host is to identify practical, effective, and safe approaches that target microbiota for the prevention and treatment of viral diseases in humans and animals, as currently there are few effective and reliable antiviral therapies available. The initial step for achieving this goal is to gather clinical evidences, focusing on the viral pathogens-from human and animal studies-that have already been shown to interact with microbiota. The subsequent step is to identify mechanisms, through experimental evidences, to support the development of translational applications that target microbiota. In this chapter, we review evidences of virus infections altering microbiota and of microbiota enhancing or suppressing infectivity, altering host susceptibility to certain viral diseases, and influencing vaccine immunogenicity in humans and farm animals.
Collapse
Affiliation(s)
- Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States.
| | - Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Ashwin K Ramesh
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Integrated Life Science Building, Blacksburg, VA, United States
| |
Collapse
|
34
|
Meissner EG. The Gut-Liver Axis in Hepatitis C Virus Infection: A Path Towards Altering the Natural History of Fibrosis Progression? Clin Infect Dis 2019; 67:878-880. [PMID: 29718134 DOI: 10.1093/cid/ciy208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Eric G Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| |
Collapse
|
35
|
Pérez-Matute P, Íñiguez M, Villanueva-Millán MJ, Recio-Fernández E, Vázquez AM, Sánchez SC, Morano LE, Oteo JA. Short-term effects of direct-acting antiviral agents on inflammation and gut microbiota in hepatitis C-infected patients. Eur J Intern Med 2019; 67:47-58. [PMID: 31221551 DOI: 10.1016/j.ejim.2019.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
Abstract
Liver damage is associated with gut dysbiosis. New direct-acting antiviral agents (DAAs) are able to eradicate hepatitis C virus (HCV) from the body. However, the short and medium-term effects of DAAs at gut level before advanced liver damage occurs have not been evaluated yet. Thus, we investigated the impact of HCV and DAAs on gut microbiota composition (GM) and systemic inflammation. To achieve this objective, twenty-three non HCV-infected controls and 22 HCV-infected patients were recruited. Only non-cirrhotic patients (fibrosis stage 0-3) were included to avoid the direct impact of cirrhosis and portal hypertension on gut. The HCV-groups were evaluated before the treatment, after completing DAAs treatment and after 3 months. Fecal bacterial 16S rDNA was ultrasequenced and several biochemical/metabolic/inflammatory parameters were quantified. HCV infection was accompanied by a significant increase in TNFα plasma levels. DAAs were able to reduce this increase, especially in lower fibrosis grades. HCV infection was not accompanied by dramatic changes in α-diversity and was not recovered after HCV negativization, although a complete restoration was observed in lower fibrosis degrees. Six phyla, 15 genera and 9 bacterial species resulted differentially abundant among the groups. These differences were almost blunted with lower fibrosis. In summary, neither the usage of DAAs nor 3 months in sustained viral response were able to counteract the changes induced by HCV at gut level. The partial restoration observed in inflammation and α-diversity was only observed in low fibrosis degrees. Thus, it is urgent to begin treatment with DAAs as soon as possible.
Collapse
Affiliation(s)
- Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, (La Rioja), Spain.
| | - María Íñiguez
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, (La Rioja), Spain.
| | - María J Villanueva-Millán
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, (La Rioja), Spain.
| | - Emma Recio-Fernández
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, (La Rioja), Spain.
| | | | - Sheila Castro Sánchez
- Fundación Biomédica Galicia Sur, Instituto de Investigación Sanitaria Galicia Sur, Vigo, (Galicia), Spain.
| | - Luís E Morano
- Fundación Biomédica Galicia Sur, Instituto de Investigación Sanitaria Galicia Sur, Vigo, (Galicia), Spain; Infectious Diseases Department, Hospital Universitario Álvaro Cunqueiro, Vigo, (Galicia), Spain.
| | - José A Oteo
- Infectious Diseases, Microbiota and Metabolism Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, (La Rioja), Spain; Infectious Diseases Department, Hospital Universitario San Pedro, Logroño, (La Rioja), Spain.
| |
Collapse
|
36
|
Merlini E, Cerrone M, van Wilgenburg B, Swadling L, Cannizzo ES, d'Arminio Monforte A, Klenerman P, Marchetti G. Association Between Impaired Vα7.2+CD161++CD8+ (MAIT) and Vα7.2+CD161-CD8+ T-Cell Populations and Gut Dysbiosis in Chronically HIV- and/or HCV-Infected Patients. Front Microbiol 2019; 10:1972. [PMID: 31555223 PMCID: PMC6722213 DOI: 10.3389/fmicb.2019.01972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023] Open
Abstract
Both HIV and HCV infections feature increased microbial translocation (MT) and gut dysbiosis that affect immune homeostasis and disease outcome. Given their commitment to antimicrobial mucosal immunity, we investigated mucosal-associated invariant T (MAIT) cells and Vα7.2+CD161- T-cell frequency/function and their possible associations with MT and gut dysbiosis, in chronic HIV and/or HCV infections. We enrolled 56 virally infected (VI) patients (pts): 13 HIV+ on suppressive cART (HIV-RNA < 40cp/ml), 13 HCV+ naive to DAA (direct-acting antiviral) anti-HCV agents; 30 HCV+/HIV+ on suppressive cART and naive to anti-HCV. 13 age-matched healthy controls (HC) were enrolled. For Vα7.2+CD161++ and Vα7.2+CD161-CD8+ T cells we assessed: activation (CD69), exhaustion (PD1/CD39), and cytolytic activity (granzymeB/perforin). Following PMA/ionomycin and Escherichia coli stimulation we measured intracellular IL17/TNFα/IFNγ. Markers of microbial translocation (Plasma LPS, 16S rDNA, EndoCAb and I-FABP) were quantified. In 5 patients per group we assessed stool microbiota composition by 16S targeted metagenomics sequencing (alpha/beta diversity, relative abundance). Compared to controls, virally infected pts displayed significantly lower circulating Vα7.2+CD161++CD8+ MAIT cells (p = 0.001), yet expressed higher perforin (p = 0.004) and granzyme B (p = 0.002) on CD8+ MAIT cells. Upon E. coli stimulation, the residual MAIT cells are less functional particularly those from HIV+/HCV+ patients. Conversely, in virally infected pts, Vα7.2+CD161-CD8+ cells were comparable in frequency, highly activated/exhausted (CD69+: p = 0.002; PD-1+: p = 0.030) and with cytolytic potential (perforin+: p < 0.0001), yet were poorly responsive to ex vivo stimulation. A profound gut dysbiosis characterized virally infected pts, especially HCV+/HIV+ co-infected patients, delineating a Firmicutes-poor/Bacteroidetes-rich microbiota, with significant associations with MAIT cell frequency/function. Irrespective of mono/dual infection, HIV+ and HCV+ patients display depleted, yet activated/cytolytic MAIT cells with reduced ex vivo function, suggesting an impoverished pool, possibly due to continuous bacterial challenge. The MAIT cell ability to respond to bacterial stimulation correlates with the presence of Firmicutes and Bacteroidetes, possibly suggesting an association between gut dysbiosis and MAIT cell function and posing viral-mediated dysbiosis as a potential key player in the hampered anti-bacterial MAIT ability.
Collapse
Affiliation(s)
- Esther Merlini
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Maddalena Cerrone
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy.,Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom
| | - Bonnie van Wilgenburg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Leo Swadling
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - E Stefania Cannizzo
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Zhou R, Fan X, Schnabl B. Role of the intestinal microbiome in liver fibrosis development and new treatment strategies. Transl Res 2019; 209:22-38. [PMID: 30853445 DOI: 10.1016/j.trsl.2019.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Liver cirrhosis is a major cause of morbidity and mortality worldwide. The most common chronic liver diseases in western countries are alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Although these diseases have different causes, liver fibrosis develops via shared mechanisms. The liver and intestinal microbiome are linked by the portal vein and have bidirectional interactions. Changes in the intestinal microbiome contribute to the pathogenesis and progression of liver diseases including ALD, NAFLD, viral hepatitis and cholestatic disorders, based on studies in patients and animal models. Intestinal microbial dysbiosis has been associated with liver cirrhosis and its complications. We review the mechanisms by which alterations in the microbiome contribute to liver fibrosis and discuss microbiome-based treatment approaches.
Collapse
Affiliation(s)
- Rongrong Zhou
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Changsha, Hunan, China; Department of Medicine, University of California San Diego, La Jolla, California
| | - Xuegong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, and Key Laboratory of Viral Hepatitis, Changsha, Hunan, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
38
|
Piñero F, Vazquez M, Baré P, Rohr C, Mendizabal M, Sciara M, Alonso C, Fay F, Silva M. A different gut microbiome linked to inflammation found in cirrhotic patients with and without hepatocellular carcinoma. Ann Hepatol 2019; 18:480-487. [PMID: 31023615 DOI: 10.1016/j.aohep.2018.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM A pro-oncogenic intestinal microbiome was observed in murine models; however, no specific microbiome in patients with hepatocellular carcinoma (HCC) has been reported. We aimed to compare the gut microbiome found in cirrhotic patients with or without HCC. MATERIALS AND METHODS From 407 patients with Child Pugh A/B cirrhosis prospectively followed, 25 with HCC (cases) were matched with 25 without HCC (wo-HCC) in a 1:1 ratio according to age, gender, etiology, Child Pugh and severity of portal hypertension. In addition, results were also compared with 25 healthy subjects. Fecal stool samples were sequenced for the V3-V4 region of the microbial 16S rRNA (Illumina MiSeq Platform). Plasma cytokines were quantified including interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). RESULTS We found a differential abundance in family members of Firmicutes with a 3-fold increase of Erysipelotrichaceae and a 5-fold decrease in family Leuconostocaceae in HCC when compared to wo-HCC controls. Genus Fusobacterium was found to be 5-fold decreased in HCC vs wo-HCC. The ratio bacteriodes/prevotella was increased in HCC. Three operational taxonomic units (OTUs), genus Odoribacter and Butyricimonas were more abundant in HCC, whereas a decreased abundance in Lachnospiraceae family genus Dorea was observed in HCC patients. A Random Forest model trained with differential abundant taxa correctly classified HCC individuals. This pattern was associated with an inflammatory milieu with a putative increased activation of NOD-like receptor pathways. CONCLUSION We found a pattern of microbiome linked to inflammation that could be potentially useful as HCC biomarker after follow-up validation studies.
Collapse
Affiliation(s)
- Federico Piñero
- Hospital Universitario Austral, Liver Transplant and Hepatology Unit, Austral University School of Medicine, Argentina; Latin American Liver Research, Education and Awareness Network (LALREAN), Argentina.
| | | | - Patricia Baré
- IMEX, CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | | | - Manuel Mendizabal
- Hospital Universitario Austral, Liver Transplant and Hepatology Unit, Austral University School of Medicine, Argentina; Latin American Liver Research, Education and Awareness Network (LALREAN), Argentina
| | | | - Cristina Alonso
- Hospital Universitario Austral, Liver Transplant and Hepatology Unit, Austral University School of Medicine, Argentina; Latin American Liver Research, Education and Awareness Network (LALREAN), Argentina
| | | | - Marcelo Silva
- Hospital Universitario Austral, Liver Transplant and Hepatology Unit, Austral University School of Medicine, Argentina; Latin American Liver Research, Education and Awareness Network (LALREAN), Argentina
| |
Collapse
|
39
|
Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Radovanovic Spurnic A, Gmizic I, Stevanovic O, Djordjevic V, Lekic N, Russo E, Amedei A. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Int J Mol Sci 2019; 20:395. [PMID: 30658519 PMCID: PMC6358912 DOI: 10.3390/ijms20020395] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
The rapid scientific interest in gut microbiota (GM) has coincided with a global increase in the prevalence of infectious and non-infectivous liver diseases. GM, which is also called "the new virtual metabolic organ", makes axis with a number of extraintestinal organs, such as kidneys, brain, cardiovascular, and the bone system. The gut-liver axis has attracted greater attention in recent years. GM communication is bi-directional and involves endocrine and immunological mechanisms. In this way, gut-dysbiosis and composition of "ancient" microbiota could be linked to pathogenesis of numerous chronic liver diseases such as chronic hepatitis B (CHB), chronic hepatitis C (CHC), alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), development of liver cirrhosis, and hepatocellular carcinoma (HCC). In this paper, we discuss the current evidence supporting a GM role in the management of different chronic liver diseases and potential new therapeutic GM targets, like fecal transplantation, antibiotics, probiotics, prebiotics, and symbiotics. We conclude that population-level shifts in GM could play a regulatory role in the gut-liver axis and, consequently, etiopathogenesis of chronic liver diseases. This could have a positive impact on future therapeutic strategies.
Collapse
Affiliation(s)
- Ivana Milosevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Ankica Vujovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Aleksandra Barac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Marina Djelic
- Faculty of Medicine, Universisty of Belgrade; Institute of Medical Physiology "Rihard Burijan", 11000 Belgrade, Serbia.
| | - Milos Korac
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Aleksandra Radovanovic Spurnic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Ivana Gmizic
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Olja Stevanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Vladimir Djordjevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic for Digestive Surgery, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Nebojsa Lekic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Clinic for Digestive Surgery, Clinical Center of Serbia, 11000 Belgrade, Serbia.
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy.
- Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy.
| |
Collapse
|
40
|
Tariq R, Wahab A, Singal AK. Editorial: direct anti-viral agents, hepatitis C virus eradication, and gut-liver axis-another mechanistic piece to the puzzle. Aliment Pharmacol Ther 2018; 48:1321-1322. [PMID: 30488623 DOI: 10.1111/apt.15047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Raseen Tariq
- Department of Medicine, Rochester General Hospital, Rochester, New York
| | - Abdul Wahab
- Department of Medicine, Unity Hospital, Rochester, New York
| | - Ashwani K Singal
- Department of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
41
|
Ponziani FR, Putignani L, Paroni Sterbini F, Petito V, Picca A, Del Chierico F, Reddel S, Calvani R, Marzetti E, Sanguinetti M, Gasbarrini A, Pompili M. Influence of hepatitis C virus eradication with direct-acting antivirals on the gut microbiota in patients with cirrhosis. Aliment Pharmacol Ther 2018; 48:1301-1311. [PMID: 30345704 DOI: 10.1111/apt.15004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The cure of hepatitis C virus (HCV) infection may contribute to the reduction of liver fibrosis progression and potentially influence the gut-liver axis. AIM To investigate the influence of HCV infection eradication with direct-acting antivirals (DAAs) on the gut microbiota composition as well as on intestinal and systemic inflammatory parameters in patients with cirrhosis. METHODS Consecutive patients with HCV-related cirrhosis receiving DAA treatment were included. The gut microbiota composition, intestinal permeability, and inflammation were assessed before treatment and after 1 year. Clinical outcomes such as episodes of decompensation and markers of liver fibrosis were evaluated over a 2-year follow-up period. RESULTS The gut microbiota alpha diversity in cirrhotic patients, which was lower than that in healthy subjects, was significantly improved by the cure of HCV infection and a shift in the overall gut microbiota composition was observed compared to baseline. The abundance of potentially pathogenic bacteria (Enterobacteriaceae, Enterococcus, and Staphylococcus) was decreased after treatment. The gut microbiota composition was associated with the inflammatory profile and markers of liver fibrosis. Although a significant reduction in the serum levels of cytokines and chemokines was observed post-DAA treatment, measures of intestinal permeability and inflammation remained unchanged. CONCLUSIONS Cure of HCV infection with DAAs in patients with cirrhosis is associated with a modification of the gut microbiota, which correlates with fibrosis and inflammation but does not improve intestinal barrier function.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lorenza Putignani
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Parasitology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Paroni Sterbini
- Microbiology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Petito
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Sofia Reddel
- Human Microbiome Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience and Orthopedics, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology Unit, Fondazione Policlinico A. Gemelli IRCCS Roma, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
42
|
He Z, Ding R, Xin H, Liang C. Letter: effects of HCV eradication on cardiovascular diseases. Aliment Pharmacol Ther 2018; 48:1168-1169. [PMID: 30375684 DOI: 10.1111/apt.15003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhiqing He
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ru Ding
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haiguang Xin
- Department of Infection Diseases, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
43
|
Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and Macrophages as Viral Targets and Reservoirs. Int J Mol Sci 2018; 19:E2821. [PMID: 30231586 PMCID: PMC6163364 DOI: 10.3390/ijms19092821] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cell biology to utilize monocytes/macrophages as vessels for dissemination, long-term persistence within tissues and virus replication. Viruses enter cells through endocytosis, phagocytosis, macropinocytosis or membrane fusion. These processes play important roles in the mechanisms contributing to the pathogenesis of these agents and in establishing viral genome persistence and latency. Upon viral infection, monocytes respond with an elevated expression of proinflammatory signalling molecules and antiviral responses, as is shown in the case of the influenza, Chikungunya, human herpes and Zika viruses. Human immunodeficiency virus initiates acute inflammation on site during the early stages of infection but there is a shift of M1 to M2 at the later stages of infection. Cytomegalovirus creates a balance between pro- and anti-inflammatory processes by inducing a specific phenotype within the M1/M2 continuum. Despite facilitating inflammation, infected macrophages generally display abolished apoptosis and restricted cytopathic effect, which sustains the virus production. The majority of viruses discussed in this review employ monocytes/macrophages as a repository but certain viruses use these cells for productive replication. This review focuses on viral adaptations to enter monocytes/macrophages, immune escape, reprogramming of infected cells and the response of the host cells.
Collapse
Affiliation(s)
- Ekaterina Nikitina
- Department of Episomal-Persistent DNA in Cancer- and Chronic Diseases, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
| | - Irina Larionova
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Evgeniy Choinzonov
- Head and Neck Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Julia Kzhyshkowska
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Heidelberg, Germany.
| |
Collapse
|
44
|
Oriolo G, Egmond E, Mariño Z, Cavero M, Navines R, Zamarrenho L, Solà R, Pujol J, Bargallo N, Forns X, Martin-Santos R. Systematic review with meta-analysis: neuroimaging in hepatitis C chronic infection. Aliment Pharmacol Ther 2018. [PMID: 29536563 DOI: 10.1111/apt.14594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic hepatitis C is considered a systemic disease because of extra-hepatic manifestations. Neuroimaging has been employed in hepatitis C virus-infected patients to find in vivo evidence of central nervous system alterations. AIMS Systematic review and meta-analysis of neuroimaging research in chronic hepatitis C treatment naive patients, or patients previously treated without sustained viral response, to study structural and functional brain impact of hepatitis C. METHODS Using PRISMA guidelines a database search was conducted from inception up until 1 May 2017 for peer-reviewed studies on structural or functional neuroimaging assessment of chronic hepatitis C patients without cirrhosis or encephalopathy, with control group. Meta-analyses were performed when possible. RESULTS The final sample comprised 25 studies (magnetic resonance spectroscopy [N = 12], perfusion weighted imaging [N = 1], positron emission tomography [N = 3], single-photon emission computed tomography [N = 4], functional connectivity in resting state [N = 1], diffusion tensor imaging [N = 2] and structural magnetic resonance imaging [N = 2]). The whole sample was of 509 chronic hepatitis C patients, with an average age of 41.5 years old and mild liver disease. A meta-analysis of magnetic resonance spectroscopy studies showed increased levels of choline/creatine ratio (mean difference [MD] 0.12, 95% confidence interval [CI] 0.06-0.18), creatine (MD 0.85, 95% CI 0.42-1.27) and glutamate plus glutamine (MD 1.67, 95% CI 0.39-2.96) in basal ganglia and increased levels of choline/creatine ratio in centrum semiovale white matter (MD 0.13, 95% CI 0.07-0.19) in chronic hepatitis C patients compared with healthy controls. Photon emission tomography studies meta-analyses did not find significant differences in PK11195 binding potential in cortical and subcortical regions of chronic hepatitis C patients compared with controls. Correlations were observed between various neuroimaging alterations and neurocognitive impairment, fatigue and depressive symptoms in some studies. CONCLUSIONS Patients with chronic hepatitis C exhibit cerebral metabolite alterations and structural or functional neuroimaging abnormalities, which sustain the hypothesis of hepatitis C virus involvement in brain disturbances.
Collapse
Affiliation(s)
- G Oriolo
- Department of Psychiatry and Psychology, Hospital Clinic, Institut d'Investigació Biomèdica Arthur Pi I Sunyer (IDIBAPS), Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - E Egmond
- Department of Psychiatry and Psychology, Hospital Clinic, Institut d'Investigació Biomèdica Arthur Pi I Sunyer (IDIBAPS), Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Health and Clinical Psychology, Faculty of Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Z Mariño
- Liver Unit, Hospital Clinic, IDIBAPS, Centro Investigación Biomédica en Red de Enfermedades hepáticas y digestivas, (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - M Cavero
- Department of Psychiatry and Psychology, Hospital Clinic, Institut d'Investigació Biomèdica Arthur Pi I Sunyer (IDIBAPS), Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - R Navines
- Department of Psychiatry and Psychology, Hospital Clinic, Institut d'Investigació Biomèdica Arthur Pi I Sunyer (IDIBAPS), Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - L Zamarrenho
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto (SP), Brazil
| | - R Solà
- Liver Unit, Parc de Salut Mar, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, CIBERSAM, Barcelona, Spain
| | - N Bargallo
- Center of Diagnostic Image (CDIC), Hospital Clinic, Magnetic Resonance Image Core Facility, IDIBAPS, Barcelona, Spain
| | - X Forns
- Liver Unit, Hospital Clinic, IDIBAPS, Centro Investigación Biomédica en Red de Enfermedades hepáticas y digestivas, (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - R Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, Institut d'Investigació Biomèdica Arthur Pi I Sunyer (IDIBAPS), Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto (SP), Brazil
| |
Collapse
|
45
|
Preveden T, Scarpellini E, Milić N, Luzza F, Abenavoli L. Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol 2017. [PMID: 28621554 DOI: 10.1080/17474124.2017.1343663] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a global health problem with 150 million infected people worldwide. Liver can be greatly affected by changes in gut microbiota due to increased intestinal permeability with passage of microbial antigens into the liver through the portal circulation. The concept of 'gut-liver' axis is important to understand the pathophysiology of several liver diseases. Several recent studies also revealed that an altered gut microbiota can be implicated in the pathogenesis of HCV-induced chronic liver disease (CHC). Areas covered: An overview of intestinal microflora composition, host reaction during CHC, and a description of relevant clinical trials on the use of probiotics in this field. Expert commentary: HCV patients gut microbiota composition is stable over liver disease stages. This is a unique example of gut disbiosis stability vs. NAFLD, HBV, HIV, and HCV co-infected patients. The impact of HCV infection on intestinal permeability allows gut disbiosis starting, maintenance and its proinflammatory effect until liver cirrhosis and HCC development. HCV eradication has unraveled the strong impact of gut microbiota unbalance on liver disease development with possible future implications for probiotics use to change the natural history of cirrhosis progression.
Collapse
Affiliation(s)
- Tomislav Preveden
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia
| | - Emidio Scarpellini
- b Division of Gastroenterology , La Sapienza University, Umberto I University Hospital , Rome , Italy
| | - Natasa Milić
- c Faculty of Medicine, Department of Pharmacy , University of Novi Sad , Novi Sad , Serbia
| | - Francesco Luzza
- d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| | - Ludovico Abenavoli
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia.,d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| |
Collapse
|
46
|
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of worldwide cancer mortality. HCC almost exclusively develops in patients with chronic liver disease, driven by a vicious cycle of liver injury, inflammation and regeneration that typically spans decades. Increasing evidence points towards a key role of the bacterial microbiome in promoting the progression of liver disease and the development of HCC. Here, we will review mechanisms by which the gut microbiota promotes hepatocarcinogenesis, focusing on the leaky gut, bacterial dysbiosis, microbe-associated molecular patterns and bacterial metabolites as key pathways that drive cancer-promoting liver inflammation, fibrosis and genotoxicity. On the basis of accumulating evidence from preclinical studies, we propose the intestinal-microbiota-liver axis as a promising target for the simultaneous prevention of chronic liver disease progression and HCC development in patients with advanced liver disease. We will review in detail therapeutic modalities and discuss clinical settings in which targeting the gut-microbiota-liver axis for the prevention of disease progression and HCC development seems promising.
Collapse
Affiliation(s)
- Le-Xing Yu
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
- Institute of Human Nutrition, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| |
Collapse
|
47
|
Tan-Garcia A, Wai LE, Zheng D, Ceccarello E, Jo J, Banu N, Khakpoor A, Chia A, Tham CYL, Tan AT, Hong M, Keng CT, Rivino L, Tan KC, Lee KH, Lim SG, Newell EW, Pavelka N, Chen J, Ginhoux F, Chen Q, Bertoletti A, Dutertre CA. Intrahepatic CD206 + macrophages contribute to inflammation in advanced viral-related liver disease. J Hepatol 2017; 67:490-500. [PMID: 28483682 DOI: 10.1016/j.jhep.2017.04.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Liver inflammation is key in the progression of chronic viral hepatitis to cirrhosis and hepatocellular carcinoma. The magnitude of viral replication and the specific anti-viral immune responses should govern the degree of inflammation, but a direct correlation is not consistently found in chronic viral hepatitis patients. We aim to better define the mechanisms that contribute to chronic liver inflammation. METHODS Intrahepatic CD14+ myeloid cells from healthy donors (n=19) and patients with viral-related liver cirrhosis (HBV, HBV/HDV or HCV; n=15) were subjected to detailed phenotypic, molecular and functional characterisation. RESULTS Unsupervised analysis of multi-parametric data showed that liver disease was associated with the intrahepatic expansion of activated myeloid cells mainly composed of pro-inflammatory CD14+HLA-DRhiCD206+ cells, which spontaneously produced TNFα and GM-CSF. These cells only showed heightened pro-inflammatory responses to bacterial TLR agonists and were more refractory to endotoxin-induced tolerance. A liver-specific enrichment of CD14+HLA-DRhiCD206+ cells was also detected in a humanised mouse model of liver inflammation. This accumulation was abrogated following oral antibiotic treatment, suggesting a direct involvement of translocated gut-derived microbial products in liver injury. CONCLUSIONS Viral-related chronic liver inflammation is driven by the interplay between non-endotoxin-tolerant pro-inflammatory CD14+HLA-DRhiCD206+ myeloid cells and translocated bacterial products. Deciphering this mechanism paves the way for the development of therapeutic strategies specifically targeting CD206+ myeloid cells in viral-related liver disease patients. Lay summary: Viral-related chronic liver disease is driven by intrahepatic pro-inflammatory myeloid cells accumulating in a gut-derived bacterial product-dependent manner. Our findings support the use of oral antibiotics to ameliorate liver inflammation in these patients.
Collapse
Affiliation(s)
- Alfonso Tan-Garcia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Lu-En Wai
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - Dahai Zheng
- Humanised Mouse Unit, Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Erica Ceccarello
- Humanised Mouse Unit, Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive, Singapore 117545, Singapore
| | - Juandy Jo
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore
| | - Nasirah Banu
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Atefeh Khakpoor
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Adeline Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Christine Y L Tham
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anthony T Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Michelle Hong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Choong Tat Keng
- Humanised Mouse Unit, Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Laura Rivino
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kai Chah Tan
- Asian American Liver Centre, Gleneagles Hospital, 6A Napier Road, Singapore 258500, Singapore
| | - Kang Hoe Lee
- Asian American Liver Centre, Gleneagles Hospital, 6A Napier Road, Singapore 258500, Singapore
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, 1E Kent Ridge Road, Singapore 119228, Singapore; Facutly of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 12 Science Drive 2, Singapore 117549, Singapore
| | - Evan W Newell
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Norman Pavelka
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Florent Ginhoux
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Qingfeng Chen
- Humanised Mouse Unit, Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore; National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, 30 Medical Drive, Singapore 117609, Singapore; Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore
| | - Charles-Antoine Dutertre
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Level 4, Singapore 138648, Singapore.
| |
Collapse
|
48
|
Cai YJ, Dong JJ, Dong JZ, Chen Y, Lin Z, Song M, Wang YQ, Chen YP, Shi KQ, Zhou MT. A nomogram for predicting prognostic value of inflammatory response biomarkers in decompensated cirrhotic patients without acute-on-chronic liver failure. Aliment Pharmacol Ther 2017; 45:1413-1426. [PMID: 28345155 DOI: 10.1111/apt.14046] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/21/2016] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammation plays a vital role in liver cirrhosis progression and prognosis. AIM To investigate the prognostic significance of inflammatory response markers in decompensated cirrhotic patients without acute-on-chronic liver failure (ACLF). METHODS Independent predictors were identified using multivariate Cox model and then assembled into a nomogram to predict survival. Concordance index (C-index) and time-dependent receiver operating characteristics (td-ROC) analysis were adopted to evaluate and compare the performance of nomogram, model for end-stage liver disease (MELD) scores, MELD-Na and Chronic Liver Failure-consortium score for acute decompensated (CLIF-C ADs). RESULTS A total of 902 decompensated cirrhotic patients with different aetiologies were enrolled, with 6-month, 1-year and 3-year mortality of 18.6%, 24.4% and 34.8%, respectively. The cut-off values for neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) determined by X-tile program were 5.7 and 1.1 respectively. Patients with NLR>5.7 or LMR≤1.1 had significantly higher mortality (P < 0.001). Independent factors derived from multivariable Cox analysis of development cohort to predict mortality were age, NLR and LMR (hazard ratio (HR): 1.064, 95% confidence interval (CI): 1.045-1.084, P < 0.001; HR: 1.124, 95%CI: 1.091-1.158, P < 0.001; HR: 0.794, 95%CI: 0.702-0.898, P < 0.001, respectively). The C-indexes of nomogram were higher than that of MELD score, MELD-Na and CLIF-C ADs for predicting survival. The tdROC and decision curves showed that nomogram was superior to MELD score, MELD-Na and CLIF-C ADs. Similar results were observed in validation cohort. CONCLUSION The proposed nomogram with neutrophil-to-lymphocyte ratio and lymphocyte-to-monocyte ratio resulted in accurate prognostic prediction for decompensated cirrhotic patients without ACLF.
Collapse
Affiliation(s)
- Y-J Cai
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - J-J Dong
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - J-Z Dong
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Y Chen
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Z Lin
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - M Song
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Y-Q Wang
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Y-P Chen
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - K-Q Shi
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - M-T Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Pérez-Matute P, Oteo JA. Is it enough to eliminate hepatitis C virus to reverse the damage caused by the infection? World J Clin Infect Dis 2017; 7:1-5. [DOI: 10.5495/wjcid.v7.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection represents one of the major causes of chronic liver disease, hepatocellular carcinoma and morbidity/mortality worldwide. It is also a major burden to the healthcare systems. A complete elimination of the HCV from the body through treatment is now possible. However, HCV not only alters the hepatic function. Several extra-hepatic manifestations are present in HCV-infected patients, which increase the mortality rate. Liver and gut are closely associated in what is called the “gut-liver axis”. A disrupted gut barrier leads to an increase in bacterial translocation and an activation of the mucosal immune system and secretion of inflammatory mediators that plays a key role in the progression of liver disease towards decompensated cirrhosis in HCV-infected patients. In addition, both qualitative and quantitative changes in the composition of the gut microbiota (GM) and states of chronic inflammation have been observed in patients with cirrhosis. Thus, a successful treatment of HCV infection should be also accompanied by a complete restoration of GM composition in order to avoid activation of the mucosal immune system, persistent inflammation and the development of long-term complications. Evaluation of GM composition after treatment could be of interest as a reliable indicator of the total or partial cure of these patients. However, studies focused on microbiota composition after HCV eradication from the body are lacking, which opens unique opportunities to deeply explore and investigate this exciting field.
Collapse
|