1
|
Zhang Y, Jin D, Zhu H, Lin M, Peng X. Hepatocytes and Hepatic Stellate Cells Carry Different Levels of DNA Damage due to Their Sensitivity to Oxidative Stress in Chronic Hepatitis B. J Viral Hepat 2025; 32:e70017. [PMID: 39991880 DOI: 10.1111/jvh.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Hepatocellular carcinoma (HCC) and liver cirrhosis (LC) occur in spite of current antiviral therapies in patients with chronic hepatitis (CHB). It is not yet known why HCC and LC are related to hepatocytes and hepatic stellate cells (HSCs), respectively, in the same inflammation circumstances. The expression of the phosphorylated form of histone H2AX (γ-H2AX), a biomarker of DNA damage, was detected in hepatocytes and interstitial cells within the liver tissues of 69 patients with CHB using immunohistochemical assay and immunofluorescence colocalisation technique. Hydrogen peroxide (H2O2) was applied to establish an oxidative DNA damage model. Hepatocytes in CHB patients carried much higher levels of DNA damage than interstitial cells. The DNA damage-carried interstitial cells were confirmed to be HSCs. They lost the damaged DNA during differentiation into myofibroblasts near the foci of inflammatory necrosis. Hepatocyte was much more sensitive to oxidative stress and DNA damage than HSCs, but both MIHA and LX-2 repaired DNA damage efficiently in vitro. Hepatocytes carried much higher levels of DNA damage than HSCs due to their remarkable difference in sensitivity to inflammation-induced oxidative DNA damage. The different sensitivity may render hepatocytes and HSCs to be respectively involved in HCC and LC in the same inflammation circumstances.
Collapse
Affiliation(s)
- Yansong Zhang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Danjing Jin
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hongqiong Zhu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Minyi Lin
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Xiaomou Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| |
Collapse
|
2
|
Xu Y, Chen L, Liu W, Chen L. [Advances in inflammaging in liver disease]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025; 54:90-98. [PMID: 39828280 PMCID: PMC11956859 DOI: 10.3724/zdxbyxb-2024-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Inflammaging is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases. Research on its mechanisms has become a hotspot. In viral hepatitis, inflammaging primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, inflammaging is more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and abnormalities in NAD+ metabolism. In liver tumors, inflammaging is characterized by weakening of tumor suppressive mechanisms, remodeling of the liver microenvironment, metabolic reprogramming, and enhanced immune evasion. Therapeutic strategies targeting inflammaging have been developing recently, and antioxidant therapy, metabolic disorder improvement, and immunotherapy are emerging as important interventions for liver diseases. This review focuses on the mechanisms of inflammaging in liver diseases, aiming to provide novel insights for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Yanping Xu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Luyi Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Weili Liu
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liying Chen
- Department of General Practice, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
3
|
Li Q, Wang L. Navigating the complex role of senescence in liver disease. Chin Med J (Engl) 2024; 137:3061-3072. [PMID: 39679454 PMCID: PMC11706581 DOI: 10.1097/cm9.0000000000003439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Cellular senescence, an irreversible state of cell cycle arrest characterized by phenotypic changes and a specific secretory profile, plays a dual role in liver health and disease. Under physiological conditions, senescence aids organ repair and regeneration, but its accumulation due to aging or pathological stress significantly contributes to chronic liver diseases, including alcoholic liver disease, metabolic dysfunction-associated steatohepatitis, liver fibrosis, and hepatocellular carcinoma. Senescence is identified by a range of cellular and molecular changes, such as morphological alterations, expression of cell cycle inhibitors, senescence-associated β-galactosidase activity, and nuclear membrane changes. The onset of senescence in organ cells can affect the entire organism, primarily through the senescence-associated secretory phenotype, which has autocrine, paracrine, and endocrine effects on tissue microenvironments. The objective of this review is to offer a contemporary overview of the pathophysiological events involving hepatic senescent cells and to elucidate their role in the onset and progression of liver diseases, particularly through mechanisms like telomere shortening, genomic and mitochondrial DNA damage, and inflammation. Additionally, this review discusses the emerging senolytic therapies aimed at targeting senescent cells to delay or mitigate liver disease progression. The therapeutic potential of these interventions, alongside their safety and effectiveness, highlights the need for further research to refine these approaches and address unresolved problems in the field of hepatic cellular senescence.
Collapse
Affiliation(s)
- Qiuting Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
4
|
Dong W, Liu J, Zhang Y, Huang M, Lin M, Peng X. DNA damages in hepatocytes are amended by an inflammation-driven rescue repair mechanism in chronic hepatitis B. Pathol Res Pract 2024; 260:155391. [PMID: 38850878 DOI: 10.1016/j.prp.2024.155391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Our previous study has shown that intrahepatic necroinflammation favors the eliminations of HBV integration and clonal hepatocytes. Here, the effect of inflammation on host DNA damage eliminations in liver biopsy tissues from patients with chronic hepatitis B (CHB) was further investigated. METHODS DNA damage markers, histone γ-H2AX and phosphorylated heterochromatin protein 1γ (p-HP1γ), and senescent marker p21 were detected using immunohistochemical and immunofluorescent assays in liver biopsy samples from 69 CHB patients and 12 liver cirrhosis (LC) patients. Twenty paired hepatocellular carcinoma (HCC) surgical samples were used as controls. RESULTS Both γ-H2AX and p-HP1γ were sensitively detected in nuclear and cytoplasmic/nuclear patterns. Nuclear γ-H2AX was superior as a DNA damage marker in hepatocytes. The level of nuclear γ-H2AX in CHB, comparable to those in LC and HCC, was correlated with liver fibrosis and coexisted with the senescent marker p21. However, hepatocytes carried an alleviated level of DNA damages, which was associated with the level of cytoplasmic γ-H2AX. Cytoplasmic γ-H2AX chiefly occurred in hepatocytes near necroinflammatory foci, was correlated with liver inflammation and usually indicated the decrease or disappearance of nuclear γ-H2AX. The lack of cytoplasmic γ-H2AX together with the high level of nuclear γ-H2AX was associated with the progression from large cell changes/dysplasia to small cell changes/dysplasia. CONCLUSIONS Hepatocytes in CHB already carry massive DNA damages and undergo cellular senescence. The DNA damages in those senescent hepatocytes are histopathologically demonstrated to be amended by a novel cytoplasmic γ-H2AX-indicated and inflammation-driven rescue repair mechanism, which may be involved in hepatocarcinogenesis if it works improperly.
Collapse
Affiliation(s)
- Wenxiao Dong
- Department of Infectious Diseases, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, China
| | - Jian Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yansong Zhang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Mingxing Huang
- Department of Infectious Diseases, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, China
| | - Minyi Lin
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| | - Xiaomou Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
5
|
Muela-Zarzuela I, Suarez-Rivero JM, Gallardo-Orihuela A, Wang C, Izawa K, de Gregorio-Procopio M, Couillin I, Ryffel B, Kitaura J, Sanz A, von Zglinicki T, Mbalaviele G, Cordero MD. NLRP1 inflammasome promotes senescence and senescence-associated secretory phenotype. Inflamm Res 2024; 73:1253-1266. [PMID: 38907167 PMCID: PMC11281979 DOI: 10.1007/s00011-024-01892-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as senescence-associated secretory phenotype (SASP), some of which are produced by the NLRP3 inflammasome. Here, we present evidence that the NLRP1 inflammasome is a DNA damage sensor and a key mediator of senescence. METHODS Senescence was induced in fibroblasts in vitro and in mice. Cellular senescence was assessed by Western blot analysis of several proteins, including p16, p21, p53, and SASP factors, released in the culture media or serum. Inflammasome components, including NLRP1, NLRP3 and GSDMD were knocked out or silenced using siRNAs. RESULTS In vitro and in vivo results suggest that the NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP factors in a Gasdermin D (GSDMD)-dependent manner. Mechanistically, the NLRP1 inflammasome is activated in response to genomic damage detected by the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS). CONCLUSION Our findings show that NLRP1 is a cGAS-dependent DNA damage sensor during senescence and a mediator of SASP release through GSDMD. This study advances the knowledge on the biology of the NLRP1 inflammasome and highlights this pathway as a potential pharmcological target to modulate senescence.
Collapse
Affiliation(s)
- Inés Muela-Zarzuela
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan Miguel Suarez-Rivero
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Andrea Gallardo-Orihuela
- Instituto de Investigación E Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marta de Gregorio-Procopio
- Instituto de Investigación E Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Isabelle Couillin
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, CNRS, University of Orleans, Orléans, France
- IDM, University of Cape Town, Cape Town, South Africa
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355, CNRS, University of Orleans, Orléans, France
- IDM, University of Cape Town, Cape Town, South Africa
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas von Zglinicki
- Ageing Research Laboratories, Newcastle University, Biosciences Institute, Newcastle, UK
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mario D Cordero
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013, Seville, Spain.
- Ageing Research Laboratories, Newcastle University, Biosciences Institute, Newcastle, UK.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28220, Madrid, Spain.
| |
Collapse
|
6
|
Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21:477-492. [PMID: 38485755 DOI: 10.1038/s41575-024-00913-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 06/30/2024]
Abstract
The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.
Collapse
Affiliation(s)
- David Sanfeliu-Redondo
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain.
- Department of Visceral Surgery and Medicine, Inselspital - University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Zhu Y, Anastasiadis ZP, Espindola Netto JM, Evans T, Tchkonia T, Kirkland JL. Past and Future Directions for Research on Cellular Senescence. Cold Spring Harb Perspect Med 2024; 14:a041205. [PMID: 37734865 PMCID: PMC10835613 DOI: 10.1101/cshperspect.a041205] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Cellular senescence was initially described in the early 1960s by Hayflick and Moorehead. They noted sustained cell-cycle arrest after repeated subculturing of human primary cells. Over half a century later, cellular senescence has become recognized as one of the fundamental pillars of aging. Developing senotherapeutics, interventions that selectively eliminate or target senescent cells, has emerged as a key focus in health research. In this article, we note major milestones in cellular senescence research, discuss current challenges, and point to future directions for this rapidly growing field.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Zacharias P Anastasiadis
- Department of Biochemistry and Molecular Biology, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - Tamara Evans
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Robert and Arlene Kogod Center on Aging, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
8
|
Martín-Escolano R, Vidal-Alcántara EJ, Crespo J, Ryan P, Real LM, Lazo-Álvarez JI, Cabezas-González J, Macías J, Arias-Loste MT, Cuevas G, Virseda-Berdices A, Briz V, Resino S, Jiménez-Sousa MÁ, Fernández-Rodríguez A. Immunological and senescence biomarker profiles in patients after spontaneous clearance of hepatitis C virus: gender implications for long-term health risk. Immun Ageing 2023; 20:62. [PMID: 37978401 PMCID: PMC10655350 DOI: 10.1186/s12979-023-00387-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND About 25% of patients with acute hepatitis C virus (HCV) infection show spontaneous clearance within the first six months of infection but may remain at risk of inflammaging, aging, and liver and non-liver disease complications. This study evaluated the differences in the plasma levels of immune checkpoints (ICs) and senescence-associated secretory phenotype (SASP) biomarkers between patients who had spontaneously eliminated HCV infection (SC group) and individuals without evidence of HCV infection (C group). METHODS We performed a multicenter retrospective study of 56 individuals: 32 in the SC and 24 in the C groups. ICs and SASP proteins were analyzed using a Luminex 200TM analyzer. The statistical analysis used Generalized Linear Models with gamma distribution (log-link) adjusted by significant variables and sex. RESULTS 13 ICs (BTLA, CD137(4-1BB), CD27, CD28, CD80, GITR, HVEM, IDO, LAG-3, PD-1, PD-L1, PD-L2, and TIM-3) and 13 SASP proteins (EGF, Eotaxin, IL-1alpha, IL-1RA, IL-8, IL-13, IL-18, IP-10, SDF-1alpha, HGF, beta-NGF, PLGF-1, and SCF) were significantly higher in SC group after approximately more than two years of HCV clearance. After stratifying by sex, differences remained significant for males, which showed higher levels for 13 ICs and 4 SASP proteins in SC. While only PD-L2 was significantly higher in SC women, and no differences in SASP were found. CONCLUSIONS Higher plasma levels of different IC and SASP proteins were found in individuals after more than two years of HCV clearance, mainly in men. Alterations in these molecules might be associated with an increased risk of developing liver and non-hepatic diseases.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, Madrid, Majadahonda, 28220, Spain
| | - Erick Joan Vidal-Alcántara
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, Madrid, Majadahonda, 28220, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Santander, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Internal Medicine Service, Hospital Universitario Infanta Leonor, Facultad de Medicina, Universidad Complutense de Madrid, Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Luis Miguel Real
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen de Valme Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Juan Ignacio Lazo-Álvarez
- Internal Medicine Service, Hospital Universitario Infanta Leonor, Facultad de Medicina, Universidad Complutense de Madrid, Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Joaquín Cabezas-González
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Santander, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Macías
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen de Valme Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Traslational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Santander, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Guillermo Cuevas
- Internal Medicine Service, Hospital Universitario Infanta Leonor, Facultad de Medicina, Universidad Complutense de Madrid, Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, Madrid, Majadahonda, 28220, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Veronica Briz
- Laboratory of Reference and Research On Viral Hepatitis, National Center for Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, Madrid, Majadahonda, 28220, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, Madrid, Majadahonda, 28220, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, Madrid, Majadahonda, 28220, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
9
|
Reyes A, Ortiz G, Duarte LF, Fernández C, Hernández-Armengol R, Palacios PA, Prado Y, Andrade CA, Rodriguez-Guilarte L, Kalergis AM, Simon F, Carreño LJ, Riedel CA, Cáceres M, González PA. Contribution of viral and bacterial infections to senescence and immunosenescence. Front Cell Infect Microbiol 2023; 13:1229098. [PMID: 37753486 PMCID: PMC10518457 DOI: 10.3389/fcimb.2023.1229098] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Cellular senescence is a key biological process characterized by irreversible cell cycle arrest. The accumulation of senescent cells creates a pro-inflammatory environment that can negatively affect tissue functions and may promote the development of aging-related diseases. Typical biomarkers related to senescence include senescence-associated β-galactosidase activity, histone H2A.X phosphorylation at serine139 (γH2A.X), and senescence-associated heterochromatin foci (SAHF) with heterochromatin protein 1γ (HP-1γ protein) Moreover, immune cells undergoing senescence, which is known as immunosenescence, can affect innate and adaptative immune functions and may elicit detrimental effects over the host's susceptibility to infectious diseases. Although associations between senescence and pathogens have been reported, clear links between both, and the related molecular mechanisms involved remain to be determined. Furthermore, it remains to be determined whether infections effectively induce senescence, the impact of senescence and immunosenescence over infections, or if both events coincidently share common molecular markers, such as γH2A.X and p53. Here, we review and discuss the most recent reports that describe cellular hallmarks and biomarkers related to senescence in immune and non-immune cells in the context of infections, seeking to better understand their relationships. Related literature was searched in Pubmed and Google Scholar databases with search terms related to the sections and subsections of this review.
Collapse
Affiliation(s)
- Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gerardo Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Fernández
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Rosario Hernández-Armengol
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yolanda Prado
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Catalina A. Andrade
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Lara-Aguilar V, Crespo-Bermejo C, Llamas-Adán M, Grande-García S, Cortijo-Alfonso ME, Martín-Carbonero L, Domínguez L, Ryan P, de Los Santos I, Bartolomé-Sanchez S, Valle-Millares D, Jiménez-Sousa MÁ, Briz V, Fernández-Rodríguez A. HCV spontaneous clearers showed low senescence profile in people living with HIV under long ART. J Med Virol 2023; 95:e28955. [PMID: 37465865 DOI: 10.1002/jmv.28955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
Coinfection with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) increases immune activation, inflammation, and oxidative stress that could lead to premature senescence. Different HCV infections, either acute or chronic infection, could lead to distinct premature cellular senescence in people living with HIV (PLWHIV). Observational study in 116 PLWHIV under antiretroviral treatment with different HCV status: (i) n = 45 chronically infected with HCV (CHC); (ii) n = 36 individuals who spontaneously clarify HCV (SC); (iii) n = 35 HIV controls. Oxidative stress biomarkers were analyzed at lipid, DNA, protein, and nitrates levels, as well as antioxidant capacity and glutathione reductase enzyme. Replicative senescence was evaluated by relative telomere length (RTL) measurement. Additionally, 26 markers of Senescence-Associated Secretory Phenotype (SASP) were analyzed by multiplex immunoassays (Luminex xMAP technology). Differences were evaluated by generalized linear model (GLMs) adjusted by most significant covariates. The SC group had a senescence signature similar to the HIV control group and slightly lower SASP levels. However, significant differences were observed with respect to the CHC group, where an increase in the nitrate concentration [adjusted arithmetic mean ratio, aAMR = 1.73 (1.27-2.35), p < 0.001, q = 0.009] and the secretion of 13 SASP-associated factors [granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-β, interleukin (IL)-1β, IL-2, IL-8, IL-13, tumor necrosis factor (TNF)-α, IL-1α, IL-1RA, IL-7, IL-15, C-X-C motif chemokine ligand 10 (IP-10), stem cell factor (SCF); q < 0.1)] was detected. The CHC group also showed higher values of IL-1α, IP-10, and placental growth factor 1 (PIGF-1) than HIV controls. The SC group showed a slightly lower senescence profile than the HIV group, which could indicate a more efficient control of viral-induced senescence due to their immune strengths. Chronic HCV infection in PLWHIV led to an increase in nitrate and elevated SASP biomarkers favoring the establishment of viral persistence.
Collapse
Affiliation(s)
- Violeta Lara-Aguilar
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Celia Crespo-Bermejo
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Manuel Llamas-Adán
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Sergio Grande-García
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - María Engracia Cortijo-Alfonso
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | | | - Lourdes Domínguez
- VIH Unit, Internal Medicine Service, Doce de Octubre Hospital Biomedical Research Institute (imas12), Madrid, Spain
- King's College London University, London, UK
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Department of Infectious Diseases, HIV/Hepatitis Internal Medicine Service, Infanta Leonor University Hospital, Madrid, España
| | - Ignacio de Los Santos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
- Internal Medicine-Infectious Diseases Service, La Princesa University Hospital, Madrid, España
| | - Sofía Bartolomé-Sanchez
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Daniel Valle-Millares
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - María Ángeles Jiménez-Sousa
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
| | - Amanda Fernández-Rodríguez
- Viral Hepatitis Reference and Research Laboratory, National Center of Microbiology, Institute of Health Carlos III, Madrid, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Muela-Zarzuela I, Suarez-Rivero JM, Gallardo-Orihuela A, Wang C, Izawa K, de Gregorio-Procopio M, Couillin I, Ryffel B, Kitaura J, Sanz A, von Zglinicki T, Mbalaviele G, Cordero MD. NLRP1 inflammasome modulates senescence and senescence-associated secretory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527254. [PMID: 36798300 PMCID: PMC9934543 DOI: 10.1101/2023.02.06.527254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as the senescence-associated secretory phenotype (SASP). Here, we present evidence that the inflammasome sensor, NLRP1, is a key mediator of senescence induced by irradiation both in vitro and in vivo. The NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP in Gasdermin D (GSDMD)-dependent manner as these responses are reduced in conditions of NLRP1 insufficiency or GSDMD inhibition. Mechanistically, the NLRP1 inflammasome is activated downstream of the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS) in response to genomic damage. These findings provide a rationale for inhibiting the NLRP1 inflammasome-GSDMD axis to treat senescence-driven disorders.
Collapse
|
13
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
14
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
15
|
Impact of eradication of hepatitis C virus on liver-related and -unrelated diseases: morbidity and mortality of chronic hepatitis C after SVR. J Gastroenterol 2022; 58:299-310. [PMID: 36585501 DOI: 10.1007/s00535-022-01940-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus infection is characterized by chronic liver inflammation and fibrogenesis, leading to end-stage liver failure and hepatocellular carcinoma over the course of 20 to 30 years. It seems not only the chronicity of hepatitis C but also the presence of the virus in non-hepatic tissues creates a favorable environment for the potential development of pathogenic impacts on extrahepatic systems and organs. Numerous extra-hepatic manifestations have been reported in association with HCV infection, all of which can substantially affect morbidity, mortality, and quality of life. With the recent development of DAAs, antiviral treatment can cure almost all patients with HCV infection, even those intolerant of or unresponsive to IFN treatment, and several large multicenter studies have confirmed the association of DAA-induced SVR with reductions in liver-related and liver-unrelated complications, such as cardiovascular events, end stage renal disease, and so on. Because, in addition to liver-related diseases, extrahepatic lesions are threatening for patients, it is important to eradicate the virus before these progress and affect life prognosis; in other words, patients should be treated before reaching the point of no return. Tailored surveillance with biomarkers such as M2BPGi and Ang-2, which can be used to identify patients with an elevated risk of EHM, and early prevention or treatment for these patients could improve the morbidity, mortality and QOL. Advancement of both basic and clinical research in this field including the development of more precise biomarkers is highly anticipated.
Collapse
|
16
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
17
|
Leslie J, Geh D, Elsharkawy AM, Mann DA, Vacca M. Metabolic dysfunction and cancer in HCV: Shared pathways and mutual interactions. J Hepatol 2022; 77:219-236. [PMID: 35157957 DOI: 10.1016/j.jhep.2022.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed the treatment and natural history of CHC. While DAA therapy effectively eradicates the virus, the long-lasting overlapping metabolic disease can persist, especially in the presence of obesity, increasing the risk of liver disease progression. This review covers the mechanisms by which HCV tunes hepatic and systemic metabolism, highlighting how systemic metabolic disturbance, lipotoxicity and chronic inflammation favour disease progression and a precancerous niche. We also highlight the therapeutic implications of sustained metabolic dysfunction following sustained virologic response as well as considerations for patients who develop HCC on the background of metabolic dysfunction.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ahmed M Elsharkawy
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, B15 2TH UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey.
| | - Michele Vacca
- Interdisciplinary Department of Medicine, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
18
|
Song M, Yang C. MiRNAs in liver fibrosis: new targets and opportunities for therapy. Microrna 2022:363-372. [DOI: 10.1016/b978-0-323-89774-7.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Udomsinprasert W, Sobhonslidsuk A, Jittikoon J, Honsawek S, Chaikledkaew U. Cellular senescence in liver fibrosis: Implications for age-related chronic liver diseases. Expert Opin Ther Targets 2021; 25:799-813. [PMID: 34632912 DOI: 10.1080/14728222.2021.1992385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION New insights indicate a causative link between cellular senescence and liver fibrosis. Senescent hepatic stellate cells (HSCs) facilitate fibrosis resolution, while senescence in hepatocytes and cholangiocytes acts as a potent mechanism driving liver fibrogenesis. In many clinical studies, telomeres and mitochondrial DNA contents, which are both aging biomarkers, were reportedly associated with a degree of liver fibrosis in patients with chronic liver diseases (CLDs); this highlights their potential as biomarkers for liver fibrogenesis. A deeper understanding of mechanisms underlying multi-step progression of senescence may yield new therapeutic strategies for age-related chronic liver pathologies. AREAS COVERED This review examines the recent findings from preclinical and clinical studies on mechanisms of senescence in liver fibrogenesis and its involvement in liver fibrosis. A comprehensive literature search in electronic databases consisting of PubMed and Scopus from inception to 31 August 2021 was performed. EXPERT OPINION Cellular senescence has diagnostic, prognostic, and therapeutic potential in progressive liver complications, especially liver fibrosis. Stimulating or reinforcing the immune response against senescent cells may be a promising and forthright biotherapeutic strategy. This approach will need a deeper understanding of the immune system's ability to eliminate senescent cells and the molecular and cellular mechanisms underlying this process.
Collapse
Affiliation(s)
| | - Abhasnee Sobhonslidsuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|
20
|
Senescence in HBV-, HCV- and NAFLD- Mediated Hepatocellular Carcinoma and Senotherapeutics: Current Evidence and Future Perspective. Cancers (Basel) 2021; 13:cancers13184732. [PMID: 34572959 PMCID: PMC8468315 DOI: 10.3390/cancers13184732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cell senescence constitutes a physiological process that serves as protection from malignant transformation of cells. However, recent scientific discoveries also identify cell senescence as pivotal in hepatocellular cancer (HCC) biology. The review herein aimed to accumulate evidence on senescence as a mediator of HCC occurrence in hepatitis B (HBV), C (HCV) virus infections, and non-alcoholic fatty liver disease (NAFLD). In HBV infection, the carcinogenic HBV X protein frequently mutates during chronic infection, and subsequently exhibits different effects on senescence. In HCV infection, senescent non-functional T-cells do not effectively clear pre-malignant hepatocytes. Furthermore, the HCV Core protein inhibits the occurrence of normal stress-induced hepatocyte senescence, allowing damaged cells to maintain their proliferative potential. In NAFLD-mediated HCC, current data point towards the gut microbiome and hepatic stellate cell senescence. Additionally, senescence contributes in the development of resistance in targeted therapies, such as sorafenib. Finally, the promising role of senotherapeutics in HCC was also explored. Overall, although we may still be at a primitive stage in fully unraveling the role of senescence in cancer, it seems that understanding and harnessing senescence may have the potential to revolutionize the way we treat hepatocellular cancer.
Collapse
|
21
|
Dabravolski SA, Bezsonov EE, Orekhov AN. The role of mitochondria dysfunction and hepatic senescence in NAFLD development and progression. Biomed Pharmacother 2021; 142:112041. [PMID: 34411916 DOI: 10.1016/j.biopha.2021.112041] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Senescence is a crucial player in several metabolic disorders and chronic inflammatory diseases. Recent data prove the involvement of hepatocyte senescence in the development of NAFLD (non-alcoholic fatty liver disease). As the main energy and ROS (reactive oxygen species) producing organelle, mitochondria play the central role in accelerated senescence and diseases development. In this review, we focus on the role of regulation of mitochondrial Ca2+ homeostasis, NAD+/NADH ratio, UPRmt (mitochondrial unfolded protein response), phospholipids and fatty acid oxidation in hepatic senescence, lifespan and NAFLD disease susceptibility. Additionally, the involvement of mitochondrial and nuclear mutations in lifespan-modulation and NAFLD development is discussed. While nuclear and mitochondria DNA mutations and SNPs (single nucleotide polymorphisms) can be used as effective diagnostic markers and targets for treatments, advanced age should be considered as an independent risk factor for NAFLD development.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus.
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.
| |
Collapse
|
22
|
Tuttle CS, Luesken SW, Waaijer ME, Maier AB. Senescence in tissue samples of humans with age-related diseases: A systematic review. Ageing Res Rev 2021; 68:101334. [PMID: 33819674 DOI: 10.1016/j.arr.2021.101334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/20/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Higher numbers of senescent cells have been implicated in age-related disease pathologies. However, whether different diseases have different senescent phenotypes is unknown. Here we provide a systematic overview of the current available evidence of senescent cells in age-related diseases pathologies in humans and the markers currently used to detect senescence levels in humans. METHODS PubMed, Web of Science and EMBASE were systematically searched from inception to the 29th of September 2019, using keywords related to 'senescence', 'age-related diseases' and 'biopsies'. RESULTS In total 12,590 articles were retrieved of which 103 articles were included in this review. The role of senescence in age-related disease has been assessed in 9 different human organ system and 27 different age-related diseases of which heart (27/103) and the respiratory systems (18/103) are the most investigated. Overall, 27 different markers of senescence have been used to determine cellular senescence and the cell cycle regulator p16ink4a is most often used (23/27 age-related pathologies). CONCLUSION This review demonstrates that a higher expression of senescence markers are observed within disease pathologies. However, not all markers to detect senescence have been assessed in all tissue types.
Collapse
|
23
|
Malikova AZ, Shcherbakova AS, Konduktorov KA, Zemskaya AS, Dalina AA, Popenko VI, Leonova OG, Morozov AV, Kurochkin NN, Smirnova OA, Kochetkov SN, Kozlov MV. Pre-Senescence Induction in Hepatoma Cells Favors Hepatitis C Virus Replication and Can Be Used in Exploring Antiviral Potential of Histone Deacetylase Inhibitors. Int J Mol Sci 2021; 22:4559. [PMID: 33925399 PMCID: PMC8123837 DOI: 10.3390/ijms22094559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Recent evidence suggests that fibrotic liver injury in patients with chronic hepatitis C correlates with cellular senescence in damaged liver tissue. However, it is still unclear how senescence can affect replication of the hepatitis C virus (HCV). In this work, we report that an inhibitor of cyclin-dependent kinases 4/6, palbociclib, not only induced in hepatoma cells a pre-senescent cellular phenotype, including G1 arrest in the cell cycle, but also accelerated viral replicon multiplication. Importantly, suppression of HCV replication by direct acting antivirals (DAAs) was barely affected by pre-senescence induction, and vice versa, the antiviral activities of host-targeting agents (HTAs), such as inhibitors of human histone deacetylases (HDACi), produced a wide range of reactions-from a dramatic reduction to a noticeable increase. It is very likely that under conditions of the G1 arrest in the cell cycle, HDACi exhibit their actual antiviral potency, since their inherent anticancer activity that complicates the interpretation of test results is minimized.
Collapse
|
24
|
Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ. Cellular Senescence in Liver Disease and Regeneration. Semin Liver Dis 2021; 41:50-66. [PMID: 33764485 DOI: 10.1055/s-0040-1722262] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.
Collapse
Affiliation(s)
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Koralewski R, Dymek B, Mazur M, Sklepkiewicz P, Olejniczak S, Czestkowski W, Matyszewski K, Andryianau G, Niedziejko P, Kowalski M, Gruza M, Borek B, Jedrzejczak K, Bartoszewicz A, Pluta E, Rymaszewska A, Kania M, Rejczak T, Piasecka S, Mlacki M, Mazurkiewicz M, Piotrowicz M, Salamon M, Zagozdzon A, Napiorkowska-Gromadzka A, Bartlomiejczak A, Mozga W, Dobrzański P, Dzwonek K, Golab J, Nowotny M, Olczak J, Golebiowski A. Discovery of OATD-01, a First-in-Class Chitinase Inhibitor as Potential New Therapeutics for Idiopathic Pulmonary Fibrosis. J Med Chem 2020; 63:15527-15540. [PMID: 33078933 DOI: 10.1021/acs.jmedchem.0c01179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase) are the enzymatically active chitinases that have been implicated in the pathology of chronic lung diseases such as asthma and interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis. The clinical and preclinical data suggest that pharmacological inhibition of CHIT1 might represent a novel therapeutic approach in IPF. Structural modification of an advanced lead molecule 3 led to the identification of compound 9 (OATD-01), a highly active CHIT1 inhibitor with both an excellent PK profile in multiple species and selectivity against a panel of other off-targets. OATD-01 given orally once daily in a range of doses between 30 and 100 mg/kg showed significant antifibrotic efficacy in an animal model of bleomycin-induced pulmonary fibrosis. OATD-01 is the first-in-class CHIT1 inhibitor, currently completed phase 1b of clinical trials, to be a potential treatment for IPF.
Collapse
Affiliation(s)
- Robert Koralewski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Barbara Dymek
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Marzena Mazur
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Sylwia Olejniczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | | | - Gleb Andryianau
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Piotr Niedziejko
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Michal Kowalski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Mariusz Gruza
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bartłomiej Borek
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Jedrzejczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Elżbieta Pluta
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Magdalena Kania
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Tomasz Rejczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sylwia Piasecka
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Michal Mlacki
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | - Michał Piotrowicz
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Magdalena Salamon
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | | | | - Aneta Bartlomiejczak
- Structural Biology Center, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Witold Mozga
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Dobrzański
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karolina Dzwonek
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jakub Golab
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Marcin Nowotny
- Structural Biology Center, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jacek Olczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Adam Golebiowski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
26
|
Martínez-Castillo M, Rosique-Oramas D, Medina-Avila Z, Pérez-Hernández JL, Higuera-De la Tijera F, Santana-Vargas D, Montalvo-Jave EE, Sanchez-Avila F, Torre A, Kershenobich D, Gutierrez-Reyes G. Differential production of insulin-like growth factor-binding proteins in liver fibrosis progression. Mol Cell Biochem 2020; 469:65-75. [PMID: 32301061 DOI: 10.1007/s11010-020-03728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Noninvasive methods for liver disease diagnoses offer great advantages over biopsy, but they cannot be utilized in all cases. Therefore, specific indicators for chronic liver disease management are necessary. The aim was to assess the production of insulin-like growth factor-binding proteins (IGFBPs) 1-7 and their correlation with the different stages of fibrosis in chronic hepatitis C (CHC). A prospective, cross-sectional, multicenter study was conducted. CHC patients were categorized by FibroTest® and/or FibroScan®. Serum concentrations of IGFBPs 1-7 were determined through multiple suspension arrangement array technology. Significant differences were validated by the Kruskal-Wallis and Mann-Whitney U tests. Logistic regression models were performed to assess the association between the IGFBPs and fibrosis stages. The association was determined utilizing odds ratios (ORs), and receiver operating characteristic (ROC) curves were constructed to distinguish the IGFBPs in relation to the diagnosis of fibrosis. IGFBP-1 and IGFBP-7 concentrations were higher in CHC than in the healthy individuals, whereas IGFBP-3, IGFBP-5, and IGFBP-6 were downregulated in the patients. An apparent increase of all the IGFBPs was found at fibrosis stage F4, but with different regulations. IGFBP-2, -4, -6, and -7 had the best OR, showing the relation to fibrosis progression. The ROC curves showed that IGFBP-7 was the only protein that distinguished F1 from F3 and F2 from F3. IGFBPs participate in liver fibrosis progression and could be employed as circulating novel protein panels for diagnosis and as possible therapeutic targets in liver fibrosis progression.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
| | - Dorothy Rosique-Oramas
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
| | - Zaira Medina-Avila
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
| | | | | | | | | | - Francico Sanchez-Avila
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, México
| | - Aldo Torre
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, México
| | - David Kershenobich
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico
- National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, México
| | - Gabriela Gutierrez-Reyes
- Liver, Pancreas and Motility Laboratory (HIPAM), Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City, Mexico.
| |
Collapse
|
27
|
|
28
|
Inoue-Shinomiya E, Murakawa M, Asahina Y, Nakagawa M, Tsuchiya J, Sato A, Tsunoda T, Miyoshi M, Nitta S, Kawai-Kitahata F, Itsui Y, Azuma S, Kakinuma S, Murata K, Mizokami M, Watanabe M. Association of serum interferon-λ3 levels with hepatocarcinogenesis in chronic hepatitis C patients treated with direct-acting antiviral agents. Hepatol Res 2019; 49:500-511. [PMID: 30623518 DOI: 10.1111/hepr.13307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/10/2018] [Accepted: 12/28/2018] [Indexed: 02/08/2023]
Abstract
AIM Although the efficacy of hepatitis C virus (HCV) treatment is improved dramatically by direct-acting antiviral agents (DAAs), the assessment of hepatocellular carcinoma (HCC) remains important. Interferon lambda 3 (IFN-λ3) is associated with liver fibrosis and inflammation in chronic hepatitis C (CHC) patients, but its impact on carcinogenesis remains controversial and little is known about its effects after viral clearance. To determine the contribution of IFN-λ3 to hepatocarcinogenesis after HCV clearance, we analyzed IFNL3 genotypes and serial serum IFN-λ3 levels in CHC patients who achieved sustained virologic responses (SVR). METHODS This study comprised 201 CHC patients treated with DAAs. Serum samples were collected sequentially and IFN-λ3 levels were quantified by chemiluminescence enzyme immunoassay. The IFNL3 polymorphism (rs8099917) was genotyped in 195 patients. RESULTS One hundred and twenty-five patients were rs8099917 T/T and 70 were non-T/T. Serum IFN-λ3 levels did not differ significantly with IFNL3 genotype, dropped markedly by 1 week and remained low up to 24 weeks after the end of treatment. Interferon-λ3 levels were significantly higher after viral clearance in patients who developed HCC and were associated with a higher potential for hepatocarcinogenesis, such as a higher frequency of non-hypervascular hypointensive nodules (P = 0.046), higher stages of liver fibrosis (P < 0.001), and higher post-treatment levels of Wisteria floribunda agglutinin positive Mac-2 binding protein (P < 0.001) and alanine aminotransferase (P < 0.001). CONCLUSIONS Serum IFN-λ3 levels after HCV clearance are associated with the potential for HCC development. Interferon-λ3 could be helpful for elucidating the relationships among immunologic status, liver fibrosis, liver inflammation, and hepatocarcinogenesis, after achieving SVR.
Collapse
Affiliation(s)
- Emi Inoue-Shinomiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Clinical Laboratory, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoyuki Tsunoda
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazumoto Murata
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan.,Department of Gastroenterology, Graduate School of Medical Sciences, International University of Health and Welfare, Nasushiobara, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|