1
|
Jiang Q, Chen R, Li M, Zhang T, Kong Z, Ma K, Ye C, Sun X, Shu W. Emerging fluorescent probes for bioimaging of drug-induced liver injury biomarkers: Recent advances. Bioorg Chem 2025; 159:108407. [PMID: 40157011 DOI: 10.1016/j.bioorg.2025.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Drug-induced liver injury (DILI) has emerged as a significant concern in clinical settings, being one of the leading causes of acute liver failure. However, the specific pathogenesis of DILI remains unclear, and there is currently a lack of effective targeted therapies. Numerous studies have demonstrated that the occurrence and progression of DILI involve complex pathological processes, closely linked with various cellular substrates and microenvironments. Thus, developing non-invasive, highly sensitive, specific, and reliable methods to detect changes in biomarkers and microenvironments in situ would greatly aid in the precise diagnosis of DILI and help guide therapeutic interventions. Fortunately, fluorescence imaging technology has shown great promise in detecting biological species, microenvironments, and diagnosing DILI due to its superior detection capabilities. In this context, this review described the design strategies, working principles, and practical applications of small molecule fluorescent probes for monitoring biological species and microenvironments in DILI. Importantly, this review highlighted current limitations and future development directions, which may help uncover the underlying relationships between biological species, microenvironments, and DILI. This understanding could lead to potential diagnostic protocols and establish a platform for evaluating treatments and drug efficacy in DILI.
Collapse
Affiliation(s)
- Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ran Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Meng Li
- Huantai County Ecological Environment Management Service Center, Zibo 255000, PR China
| | - Tianyu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Ziyuzhu Kong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Kaifu Ma
- School of Medical Laboratory, Qilu Medical University, Zibo 255000, PR China.
| | - Chao Ye
- School of Pharmaceutical Sciences, Jilin Medical University, Jilin, 132013, PR China
| | - Xiaohan Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
2
|
Devarbhavi HC, Andrade RJ. Natural History of Idiosyncratic Drug-Induced Liver Injury and Prognostic Models. Liver Int 2025; 45:e70138. [PMID: 40364729 PMCID: PMC12076114 DOI: 10.1111/liv.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/26/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND AND AIMS Drug-induced liver injury (DILI) remains a leading cause of acute liver failure worldwide. Drugs such as isoniazid, alone or in combination with other anti-tuberculosis drugs, as well as a growing number of herbal and complementary medicines, have been implicated in most cases of acute liver failure in registry studies. METHODS This review summarizes current knowdledge on the acute and chronic outcomes in patients with idiosyncratic DILI and discusses several of the existing prognostic models. RESULTS AND CONCLUSIONS The reasons why some individuals progress from DILI to end-stage liver disease are still largely unknown. However, collaborative efforts over the past few decades have provided figures on the relative incidence of drug-induced acute liver failure and allowed the development of prognostic models to predict this worse outcome at the onset of the event. The outcome of chronic DILI is less well characterised due to the lack of sufficient follow-up in cohort studies, but several phenotypes of DILI can progress to chronicity, and specific drugs such as nitrofurantoin or amiodarone are classic examples of agents leading to chronic forms of DILI. Therapy for drug-induced acute liver failure and chronic DILI is mainly supportive, although some randomised clinical trials have shown beneficial effects of N-acetylcysteine and corticosteroids.
Collapse
Affiliation(s)
- Harshad C. Devarbhavi
- Department of Gastroenterology and HepatologySt. John's Medical College HospitalBangaloreIndia
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Enfermedades DigestivasInstituto de Investigación Biomédica de Málaga. IBIMA‐Plataforma BIONAND, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd)MalagaSpain
| |
Collapse
|
3
|
Torp N, Israelsen M, Krag A. The steatotic liver disease burden paradox: unravelling the key role of alcohol. Nat Rev Gastroenterol Hepatol 2025; 22:281-292. [PMID: 39639157 DOI: 10.1038/s41575-024-01022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
The classification of steatotic liver disease (SLD) has evolved, incorporating all conditions characterized by hepatic lipid accumulation. SLD represents a continuum of disorders that are shaped by the dynamic factors of alcohol intake and cardiometabolic risk factors. This updated classification has profound implications for both the management and research of SLD, especially with the new distinct category of patients with both metabolic and alcohol-related liver disease. In this Perspective, we highlight the pivotal role of alcohol within the SLD framework. We introduce the 'SLD burden paradox': a concept illustrating the disparity in which metabolic dysfunction-associated steatotic liver disease is more prevalent, yet individuals with SLD and excessive alcohol intake (such as in metabolic and alcohol-related liver disease and in alcohol-related liver disease) account for greater global liver-related morbidity and mortality. We explore strategies to mitigate the effect of SLD on morbidity and mortality, emphasizing the importance of early detection and reducing stigma associated with alcohol intake. Our discussion extends to methods for assessing and monitoring alcohol intake together with the critical role of managing cardiometabolic risk factors in patients across the SLD spectrum. Conclusively, we advocate for a coordinated care framework that adopts a person-centric approach when managing SLD, aiming to improve outcomes and patient care.
Collapse
Affiliation(s)
- Nikolaj Torp
- Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Israelsen
- Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Aleksander Krag
- Centre for Liver Research, Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
4
|
Borgne-Sanchez A, Fromenty B. Mitochondrial dysfunction in drug-induced hepatic steatosis: Recent findings and current concept. Clin Res Hepatol Gastroenterol 2025; 49:102529. [PMID: 39798918 DOI: 10.1016/j.clinre.2025.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα). Many drugs have been shown to cause mitochondrial dysfunction, which can lead to acute and chronic liver lesions. While severe inhibition of mitochondrial FAO would eventually cause microvesicular steatosis, hypoglycemia, and liver failure, moderate impairment of this metabolic pathway can induce macrovacuolar steatosis, which can progress in the long term to steatohepatitis and cirrhosis. Drugs can impair mitochondrial FAO through several mechanisms including direct inhibition of FAO enzymes, sequestration of coenzyme A and l-carnitine, impairment of the activity of one or several MRC complexes and reduced PPARα expression. In drug-induced macrovacuolar steatosis, non-mitochondrial mechanisms can also be involved in lipid accumulation including increased de novo lipogenesis and reduced very-low-density lipoprotein secretion. Nonetheless, mitochondrial dysfunction and subsequent oxidative stress appear to be key events in the progression of steatosis to steatohepatitis. Patients suffering from metabolic dysfunction-associated steatotic liver disease (MASLD) and treated with mitochondriotoxic drugs should be closely monitored to reduce the risk of acute liver injury or a faster transition of steatosis to steatohepatitis. Therapies based on the mitochondrial cofactor l-carnitine, the antioxidant N-acetylcysteine, or thyromimetics might be useful to prevent or treat drug-induced mitochondrial dysfunction, steatosis, and steatohepatitis.
Collapse
Affiliation(s)
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France.
| |
Collapse
|
5
|
Wang Y, Wang J, Chen Z, Liu B, Wang W, Li Y. Exploring the mechanism of SLXG for treating nonalcoholic fatty liver disease based on network pharmacology and molecular docking. Medicine (Baltimore) 2025; 104:e40255. [PMID: 39928768 PMCID: PMC11813010 DOI: 10.1097/md.0000000000040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND The Shugan Lidan Decoction and Chaihu Shugan formula are traditional Chinese medicine formulas for treating liver diseases, with a history of over a 1000 years. By comprehensively improving 2 traditional Chinese medicinal formulas, Shugan Lidan Xiaoshi Granules (SLXG) has been developed for the treatment of nonalcoholic fatty liver disease (NAFLD) and other liver-related metabolic diseases. METHODS First, the effective active ingredients and targets of SLXG were determined using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. The treatment targets for NAFLD were identified using the GeneCards, OMIM, and CTD databases, and the intersection of the decoction and disease targets was obtained. The intersection targets were then subjected to protein-protein interaction network analysis, Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and gene ontology enrichment analysis. KEGG enrichment analysis revealed enrichment of the NAFLD pathway. Molecular docking was performed to validate the binding between the crucial targets enriched in this pathway and the corresponding active ingredients in SLXG. RESULTS A total of 219 disease intersection genes related to NAFLD were identified from the GeneCards, OMIM, and CTD databases, and 239 non-duplicated drug targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. A total of 24 intersection target genes were obtained from both drug- and disease-related databases, with 6 genes enriched in the KEGG NAFLD pathway. Molecular docking results showed that the 13 gene-active ingredient bindings had a binding energy of less than -6.5. CONCLUSION The use of network pharmacology and molecular docking technology has revealed the mechanism of action of SLXG in NAFLD treatment, thus laying a theoretical foundation for the clinical application of SLXG in NAFLD therapy.
Collapse
Affiliation(s)
- Yang Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Jiaxing Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Zitong Chen
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Bin Liu
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Wujie Wang
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| | - Yuliang Li
- Department of Intervention Medicine and Microinvasive Oncology, The Second Hospital of Shandong University, Jinan, China
- Institute of Interventional Oncology, Shandong University, Jinan, China
| |
Collapse
|
6
|
Lo Re V, Newcomb CW, Carbonari DM, Mezochow AK, Hennessy S, Rentsch CT, Park LS, Tate JP, Bräu N, Bhattacharya D, Lim JK, Mezzacappa C, Njei B, Roy JA, Taddei TH, Justice AC, Torgersen J. Hepatotoxicity Score: A New Method to Adjust for Use of Potentially Hepatotoxic Medications by Chronic Liver Disease Status. Pharmacoepidemiol Drug Saf 2024; 33:e70069. [PMID: 39662972 PMCID: PMC11634562 DOI: 10.1002/pds.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Studies evaluating the hepatic safety of medications have been limited by the inability to control for confounding from receipt of other hepatotoxic drugs. OBJECTIVE The objective of this study was to develop an index (Hepatotoxicity Score) to adjust for concomitant hepatotoxic medication exposure within pharmacoepidemiology studies. METHODS We identified 193 medications with ≥ 4 reports of hepatotoxicity and created cohorts of outpatient initiators in the Veterans Health Administration (2000-2021). Exposure occurred from initiation through 30 days after discontinuation or up to 1 year. We measured age-/sex-adjusted rates of hospitalization for severe acute liver injury (ALI) by chronic liver disease (CLD), identified drugs with high rates, and used these rates as weights in the score. To demonstrate real-world use, we calculated the score for proton pump inhibitor (PPI) initiators. We summed the weights of the drugs dispensed within 90 days prior to PPI initiation. Hazard ratios (HRs) of severe ALI (95% confidence intervals) were measured with and without adjustment for Hepatotoxicity Score. RESULTS Among 89 512 PPI initiators with CLD, HRs of severe ALI were higher for lansoprazole (HR = 2.17 [95% CI, 1.24-3.82]), but not pantoprazole (HR = 0.83 [95% CI, 0.61-1.13]), versus omeprazole. Adjustment for Hepatotoxicity Score attenuated HRs of lansoprazole (HR = 1.99 [95% CI, 1.13-3.50]). Among 2 462 414 PPI initiators without CLD, HRs were not significantly higher for lansoprazole (HR = 1.66 [95% CI, 0.99-2.77]) but were significantly lower for pantoprazole (HR = 0.59 [95% CI, 0.37-0.95]), versus omeprazole. Adjustment for Hepatotoxicity Score attenuated HRs of lansoprazole (HR = 1.52 [95% CI, 0.91-2.54]). CONCLUSIONS The Hepatotoxicity Score provides a tool to adjust for confounding due to concomitant hepatotoxic drug exposure within hepatic safety studies.
Collapse
Affiliation(s)
- Vincent Lo Re
- Division of Infectious Diseases, Department of Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real‐World Effectiveness and Safety of Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Craig W. Newcomb
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real‐World Effectiveness and Safety of Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dean M. Carbonari
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real‐World Effectiveness and Safety of Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alyssa K. Mezochow
- Division of Infectious Diseases, Department of Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sean Hennessy
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real‐World Effectiveness and Safety of Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christopher T. Rentsch
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene & Tropical MedicineLondonUK
- US Department of Veterans AffairsVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Lesley S. Park
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| | - Janet P. Tate
- US Department of Veterans AffairsVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Norbert Bräu
- James J. Peters VA Medical CenterBronxNew YorkUSA
- Divisions of Infectious Diseases and Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Debika Bhattacharya
- VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Joseph K. Lim
- US Department of Veterans AffairsVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Catherine Mezzacappa
- US Department of Veterans AffairsVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Basile Njei
- US Department of Veterans AffairsVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Jason A. Roy
- Department of BiostatisticsRutgers University School of Public HealthNew BrunswickNew JerseyUSA
| | - Tamar H. Taddei
- US Department of Veterans AffairsVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Amy C. Justice
- US Department of Veterans AffairsVA Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of MedicineYale School of MedicineNew HavenConnecticutUSA
- Division of Health Policy and ManagementYale School of Public HealthNew HavenConnecticutUSA
| | - Jessie Torgersen
- Division of Infectious Diseases, Department of Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real‐World Effectiveness and Safety of Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
8
|
Goodus MT, Alfredo AN, Carson KE, Dey P, Pukos N, Schwab JM, Popovich PG, Gao J, Mo X, Bruno RS, McTigue DM. Spinal cord injury-induced metabolic impairment and steatohepatitis develops in non-obese rats and is exacerbated by premorbid obesity. Exp Neurol 2024; 379:114847. [PMID: 38852834 PMCID: PMC11874686 DOI: 10.1016/j.expneurol.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Impaired sensorimotor functions are prominent complications of spinal cord injury (SCI). A clinically important but less obvious consequence is development of metabolic syndrome (MetS), including increased adiposity, hyperglycemia/insulin resistance, and hyperlipidemia. MetS predisposes SCI individuals to earlier and more severe diabetes and cardiovascular disease compared to the general population, which trigger life-threatening complications (e.g., stroke, myocardial infarcts). Although each comorbidity is known to be a risk factor for diabetes and other health problems in obese individuals, their relative contribution or perceived importance in propagating systemic pathology after SCI has received less attention. This could be explained by an incomplete understanding of MetS promoted by SCI compared with that from the canonical trigger diet-induced obesity (DIO). Thus, here we compared metabolic-related outcomes after SCI in lean rats to those of uninjured rats with DIO. Surprisingly, SCI-induced MetS features were equal to or greater than those in obese uninjured rats, including insulin resistance, endotoxemia, hyperlipidemia, liver inflammation and steatosis. Considering the endemic nature of obesity, we also evaluated the effect of premorbid obesity in rats receiving SCI; the combination of DIO + SCI exacerbated MetS and liver pathology compared to either alone, suggesting that obese individuals that sustain a SCI are especially vulnerable to metabolic dysfunction. Notably, premorbid obesity also exacerbated intraspinal lesion pathology and worsened locomotor recovery after SCI. Overall, these results highlight that normal metabolic function requires intact spinal circuitry and that SCI is not just a sensory-motor disorder, but also has significant metabolic consequences.
Collapse
Affiliation(s)
- Matthew T Goodus
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anthony N Alfredo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kaitlin E Carson
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Nicole Pukos
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jan M Schwab
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jie Gao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Richard S Bruno
- Human Nutrition Program, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Dana M McTigue
- The Belford Center for Spinal Cord Injury, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Buron N, Porceddu M, Loyant R, Martel C, Allard JA, Fromenty B, Borgne-Sanchez A. Drug-induced impairment of mitochondrial fatty acid oxidation and steatosis: assessment of causal relationship with 45 pharmaceuticals. Toxicol Sci 2024; 200:369-381. [PMID: 38676573 DOI: 10.1093/toxsci/kfae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 nonsteatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-l-carnitine, palmitoyl-CoA + l-carnitine, or octanoyl- l-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate, and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, whereas dexamethasone, olanzapine, and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential, and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin, and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition.
Collapse
Affiliation(s)
- Nelly Buron
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | | | - Roxane Loyant
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Cécile Martel
- MITOLOGICS S.A.S., Faculté de Médecine, Créteil 94000, France
| | - Julien A Allard
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | - Bernard Fromenty
- INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, Rennes 35000, France
| | | |
Collapse
|
10
|
Koenig AB, Tan A, Abdelaal H, Monge F, Younossi ZM, Goodman ZD. Review article: Hepatic steatosis and its associations with acute and chronic liver diseases. Aliment Pharmacol Ther 2024; 60:167-200. [PMID: 38845486 DOI: 10.1111/apt.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Hepatic steatosis is a common finding in liver histopathology and the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), whose global prevalence is rising. AIMS To review the histopathology of hepatic steatosis and its mechanisms of development and to identify common and rare disease associations. METHODS We reviewed literature on the basic science of lipid droplet (LD) biology and clinical research on acute and chronic liver diseases associated with hepatic steatosis using the PubMed database. RESULTS A variety of genetic and environmental factors contribute to the development of chronic hepatic steatosis or steatotic liver disease, which typically appears macrovesicular. Microvesicular steatosis is associated with acute mitochondrial dysfunction and liver failure. Fat metabolic processes in hepatocytes whose dysregulation leads to the development of steatosis include secretion of lipoprotein particles, uptake of remnant lipoprotein particles or free fatty acids from blood, de novo lipogenesis, oxidation of fatty acids, lipolysis and lipophagy. Hepatic insulin resistance is a key feature of MASLD. Seipin is a polyfunctional protein that facilitates LD biogenesis. Assembly of hepatitis C virus takes place on LD surfaces. LDs make important, functional contact with the endoplasmic reticulum and other organelles. CONCLUSIONS Diverse liver pathologies are associated with hepatic steatosis, with MASLD being the most important contributor. The biogenesis and dynamics of LDs in hepatocytes are complex and warrant further investigation. Organellar interfaces permit co-regulation of lipid metabolism to match generation of potentially toxic lipid species with their LD depot storage.
Collapse
Affiliation(s)
- Aaron B Koenig
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Albert Tan
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Hala Abdelaal
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Fanny Monge
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Center for Outcomes Research in Liver Diseases, Washington, DC, USA
| | - Zachary D Goodman
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, Virginia, USA
| |
Collapse
|
11
|
Sindhoora B, Singh V, Mungamuri SK, Bharatraj DK. Pharmacological benefits of durva swaras (Cynodon dactylon L. Pers.) administration in APAP-induced liver injury model of mice - Assessment by metabolic and inflammatory markers. Indian J Pharmacol 2024; 56:260-267. [PMID: 39250623 PMCID: PMC11483052 DOI: 10.4103/ijp.ijp_133_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE Liver derangement underlies the development of metabolic syndrome in perimenopause. Previously, we have observed that durva swaras (DS) improved metabolic-associated fatty liver disease (MAFLD) and abnormal liver enzymes (aspartate aminotransferase and alanine aminotransferase) along with other complications of menopause in ovariectomized rats. We aimed to decipher the hepatoprotective mechanisms of DS in acetaminophen (APAP)-induced liver injury model, which is analogous to the pathophysiology of MAFLD. MATERIALS AND METHODS Male Swiss albino mice were distributed into three groups at random. Group I (Control) was administered with vehicle (distilled water) for 7 days. Group II (APAP) received vehicle for the first 6 days and APAP (350 mg/kg - single dose) on the 7th day. Group III (APAP + D) received test compound DS (quality complied) at a dose of 133 mg/kg for 6 days and APAP (350 mg/kg - single dose) on the 7th day. Subsequently, blood and liver tissues were subjected to biochemical, ultrastructural, and gene expression analysis. RESULTS DS pretreatment protected the liver from APAP-induced disruption of sinusoids and necrosis. DS prevented the elevation of liver enzymes - AST and ALT induced by APAP. Importantly, DS inhibited the APAP-elicited increase in messenger ribonucleic acid levels of hepatic nuclear factor-kappa beta (NF-κB) and pro-inflammatory cytokines, namely interleukin-1 beta, interleukin 6, and tumor necrosis factor-alpha. Moreover, DS activated gene expression of nuclear factor erythroid 2-related factor 2 and liver-X-receptor-alpha (LXR-α) to combat the liver damage. CONCLUSION DS hinders APAP-induced liver damage by activating LXR-α and inhibiting the NF-κB-associated pro-inflammatory cytokine gene expression. These observations confirm the protective role of DS in metabolic dysfunction-associated liver conditions.
Collapse
Affiliation(s)
- B. Sindhoora
- Division of Drug and Food Safety, ICMR-National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, Telangana, India
| | - Vandana Singh
- Senior Scientist, Department of Innovation and R&D, Sarvotham Care Limited, Secunderabad, Telangana, India
| | - Sathish Kumar Mungamuri
- Division of Drug and Food Safety, ICMR-National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, Telangana, India
| | - Dinesh Kumar Bharatraj
- Division of Drug and Food Safety, ICMR-National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Hussein AL, Nema DT, Nasir GA. Evaluation of the role of some non-enzymatic antioxidants among Iraqi patients with non-alcoholic fatty liver disease. Open Life Sci 2024; 19:20220881. [PMID: 38947767 PMCID: PMC11211876 DOI: 10.1515/biol-2022-0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/06/2024] [Accepted: 05/06/2024] [Indexed: 07/02/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation in individuals consuming little or no alcohol, has become highly prevalent globally. Oxidative stress plays a central role in instigating inflammation and cell death pathways driving NAFLD progression. This case-control study aimed to elucidate the association between circulating levels of the pivotal non-enzymatic antioxidants - coenzyme Q10 and vitamins E and C - and liver injury parameters among 60 Iraqi NAFLD patients versus 30 healthy controls. NAFLD diagnosis entailed over 5% hepatic steatosis on ultrasound excluding other etiologies. Patients spanned three age groups: 20-29, 30-39, and 40-49. Substantially diminished antioxidant levels concurrent with elevated alkaline phosphatase enzyme were unveiled in NAFLD patients relative to controls (all p < 0.001). Age-based analysis reinforced widespread antioxidant depletion and liver enzyme augmentation across NAFLD patients. Significant correlations also emerged between antioxidants and liver parameters. Our novel observations confirm an antioxidant inadequacy likely perpetuating pathogenic oxidative reactions in NAFLD. Restoring such deficits through lifestyle or therapeutic interventions may confer preventative and disease-modifying value.
Collapse
Affiliation(s)
- Ammar L. Hussein
- Department of Biochemistry, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Dunia T. Nema
- Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Gulboy A. Nasir
- College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
13
|
López-Pascual E, Rienda I, Perez-Rojas J, Rapisarda A, Garcia-Llorens G, Jover R, Castell JV. Drug-Induced Fatty Liver Disease (DIFLD): A Comprehensive Analysis of Clinical, Biochemical, and Histopathological Data for Mechanisms Identification and Consistency with Current Adverse Outcome Pathways. Int J Mol Sci 2024; 25:5203. [PMID: 38791241 PMCID: PMC11121209 DOI: 10.3390/ijms25105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Drug induced fatty liver disease (DIFLD) is a form of drug-induced liver injury (DILI), which can also be included in the more general metabolic dysfunction-associated steatotic liver disease (MASLD), which specifically refers to the accumulation of fat in the liver unrelated to alcohol intake. A bi-directional relationship between DILI and MASLD is likely to exist: while certain drugs can cause MASLD by acting as pro-steatogenic factors, MASLD may make hepatocytes more vulnerable to drugs. Having a pre-existing MASLD significantly heightens the likelihood of experiencing DILI from certain medications. Thus, the prevalence of steatosis within DILI may be biased by pre-existing MASLD, and it can be concluded that the genuine true incidence of DIFLD in the general population remains unknown. In certain individuals, drug-induced steatosis is often accompanied by concomitant injury mechanisms such as oxidative stress, cell death, and inflammation, which leads to the development of drug-induced steatohepatitis (DISH). DISH is much more severe from the clinical point of view, has worse prognosis and outcome, and resembles MASH (metabolic-associated steatohepatitis), as it is associated with inflammation and sometimes with fibrosis. A literature review of clinical case reports allowed us to examine and evaluate the clinical features of DIFLD and their association with specific drugs, enabling us to propose a classification of DIFLD drugs based on clinical outcomes and pathological severity: Group 1, drugs with low intrinsic toxicity (e.g., ibuprofen, naproxen, acetaminophen, irinotecan, methotrexate, and tamoxifen), but expected to promote/aggravate steatosis in patients with pre-existing MASLD; Group 2, drugs associated with steatosis and only occasionally with steatohepatitis (e.g., amiodarone, valproic acid, and tetracycline); and Group 3, drugs with a great tendency to transit to steatohepatitis and further to fibrosis. Different mechanisms may be in play when identifying drug mode of action: (1) inhibition of mitochondrial fatty acid β-oxidation; (2) inhibition of fatty acid transport across mitochondrial membranes; (3) increased de novo lipid synthesis; (4) reduction in lipid export by the inhibition of microsomal triglyceride transfer protein; (5) induction of mitochondrial permeability transition pore opening; (6) dissipation of the mitochondrial transmembrane potential; (7) impairment of the mitochondrial respiratory chain/oxidative phosphorylation; (8) mitochondrial DNA damage, degradation and depletion; and (9) nuclear receptors (NRs)/transcriptomic alterations. Currently, the majority of, if not all, adverse outcome pathways (AOPs) for steatosis in AOP-Wiki highlight the interaction with NRs or transcription factors as the key molecular initiating event (MIE). This perspective suggests that chemical-induced steatosis typically results from the interplay between a chemical and a NR or transcription factors, implying that this interaction represents the primary and pivotal MIE. However, upon conducting this exhaustive literature review, it became evident that the current AOPs tend to overly emphasize this interaction as the sole MIE. Some studies indeed support the involvement of NRs in steatosis, but others demonstrate that such NR interactions alone do not necessarily lead to steatosis. This view, ignoring other mitochondrial-related injury mechanisms, falls short in encapsulating the intricate biological mechanisms involved in chemically induced liver steatosis, necessitating their consideration as part of the AOP's map road as well.
Collapse
Affiliation(s)
- Ernesto López-Pascual
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ivan Rienda
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Judith Perez-Rojas
- Pathology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Anna Rapisarda
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Guillem Garcia-Llorens
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramiro Jover
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Castell
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
- Joint Research Unit in Experimental Hepatology, Health Research Institute La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Cernea S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life (Basel) 2024; 14:272. [PMID: 38398781 PMCID: PMC10890557 DOI: 10.3390/life14020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The bidirectional relationship between type 2 diabetes and (non-alcoholic fatty liver disease) NAFLD is indicated by the higher prevalence and worse disease course of one condition in the presence of the other, but also by apparent beneficial effects observed in one, when the other is improved. This is partly explained by their belonging to a multisystemic disease that includes components of the metabolic syndrome and shared pathogenetic mechanisms. Throughout the progression of NAFLD to more advanced stages, complex systemic and local metabolic derangements are involved. During fibrogenesis, a significant metabolic reprogramming occurs in the hepatic stellate cells, hepatocytes, and immune cells, engaging carbohydrate and lipid pathways to support the high-energy-requiring processes. The natural history of NAFLD evolves in a variable and dynamic manner, probably due to the interaction of a variable number of modifiable (diet, physical exercise, microbiota composition, etc.) and non-modifiable (genetics, age, ethnicity, etc.) risk factors that may intervene concomitantly, or subsequently/intermittently in time. This may influence the risk (and rate) of fibrosis progression/regression. The recognition and control of the factors that determine a rapid progression of fibrosis (or its regression) are critical, as the fibrosis stages are associated with the risk of liver-related and all-cause mortality.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3, Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; or
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540136 Târgu Mureş, Romania
| |
Collapse
|
15
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|
16
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Yoneda M, Kobayashi T, Iwaki M, Nogami A, Saito S, Nakajima A. Nonalcoholic Fatty Liver Disease as a Systemic Disease and the Need for Multidisciplinary Care. Gut Liver 2023; 17:843-852. [PMID: 37560797 PMCID: PMC10651384 DOI: 10.5009/gnl220545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 08/11/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease, and there has been a rapid increase in cases worldwide. NAFLD is rapidly becoming the leading cause of hepatocellular carcinoma and is also associated with an increased risk of cardiovascular disease or exacerbation of other organ diseases, thus posing a significant health problem from both a medical and a socioeconomic perspective. NAFLD is a systemic disease and requires the involvement of numerous medical professionals. Multidisciplinary collaboration, in which different professionals within different specialties come together and work together toward a common goal, supports better patient care by integrating perspectives of multiple experts and facilitating the exchange of opinions. Due to the large number of potential patients, gastroenterologists and hepatologists cannot manage the patients alone, and collaboration between specialists in various fields, including family doctors, dentists, nutritionists, and pharmacists is required for treatment of NAFLD. This review will discuss NAFLD from the perspective of various specialties and introduce multidisciplinary collaboration.
Collapse
Affiliation(s)
- Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
18
|
Gürler M, Selçuk EB, Özerol BG, Tanbek K, Taşlıdere E, Yıldız A, Yağın FH, Gürel E. Protective effect of dexpanthenol against methotrexate-induced liver oxidative toxicity in rats. Drug Chem Toxicol 2023; 46:708-716. [PMID: 35655424 DOI: 10.1080/01480545.2022.2084103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
Methotrexate is a familiar chemotherapeutic preferred in a wide range of clinical fields such as leukemia, psoriasis, rheumatoid arthritis, neoplastic and autoimmune disorders. However, methotrexate therapy has limitations as it causes severe side effects from which liver damage is the most important one. Several antioxidant compounds have been studied against methotrexate related liver toxicity, but dexpanthenol has not been experienced. Vitamin B5-derived dexpanthenol is a usual therapeutic having a potent anti-inflammatory and antioxidant effect. In this study, we aimed to evaluate the ameliorating effect of dexpanthenol against methotrexate-induced hepatotoxicity. We performed our experiments on Wistar albino rats divided randomly into four groups involving control, dexphantenol, dexpanthenol + methotrexate and methotrexate applied animals. After this experimental work on rats, for the first time, we showed dexpanthenol improvement effect on ROS-caused hepatotoxicity initiated by methotrexate administration in terms of liver tissue antioxidant/oxidant enzymes, liver function tests, and histological changes. We suggest that dexpanthenol might be applied during methotrexate treatment in order to reduce the liver toxicity. However, further studies are needed to find out the optimal dose regimen and to understand the mechanism of action.
Collapse
Affiliation(s)
- Mukaddes Gürler
- Department of Medical Biochemistry, Medical Faculty of Hacettepe University, Ankara, Turkey
| | - Engin Burak Selçuk
- Department of Family Medicine, Medical Faculty of Inonu University, Malatya, Turkey
| | - Beyza Güzide Özerol
- Department of Family Medicine, Yesilyurt Hasan Çalık State Hospital, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Azibe Yıldız
- Department of Histology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Fatma Hilal Yağın
- Department of Biostatistics and Medical Informatics, Medical Faculty of Inonu University, Malatya, Turkey
| | - Elif Gürel
- Department of Medical Biochemistry, Medical Faculty of Inonu University, Malatya, Turkey
| |
Collapse
|
19
|
Miller RT. Risk Assessment for Hepatobiliary Toxicity Liabilities in Drug Development. Toxicol Pathol 2023; 51:432-436. [PMID: 38243687 DOI: 10.1177/01926233231223751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Risk assessment of hepatobiliary toxicities represents one of the greatest challenges and, more often than not, one of the most rewarding activities in which toxicologic pathologists can partake, and often times lead. This is in part because each liver toxicity picture is a bit different, informed by a broad range and diversity of relevant data, and also in part because the heavily relied upon animal models are imperfect regarding predictivity of hepatic effects in humans. Following identification and characterization of a hepatotoxicity hazard, typically in nonclinical toxicology studies, a holistic and integrated assessment of liver-relevant endpoints is conducted that typically incorporates ADME (absorption, distribution, metabolism, and excretion) information (ideally, including extensive transporter data, exposure margins, and possibly concentration of parent/metabolite at region of injury), target expression/function, in silico prediction data, in vitro hepatocyte data, liver/circulating biomarkers, and importantly, species specificity of any of these data. Of course, a thorough understanding, developed in close partnership with clinical colleagues, of the anticipated liver disease status of intended patient populations is paramount to hepatic risk assessment. This is particularly important since the likelihood of translatable determinant hepatic events observed in nonclinical models to occur in humans has been reasonably well established.
Collapse
Affiliation(s)
- Richard T Miller
- Apex Drug Discovery and Innovation Strategies, Apex, North Carolina, USA
| |
Collapse
|
20
|
Faccioli LAP, Cetin Z, Kocas-Kilicarslan ZN, Ortiz K, Sun Y, Hu Z, Kurihara T, Tafaleng EN, Florentino RM, Wang Z, Xia M, Miedel MT, Taylor DL, Behari J, Ostrowska A, Constantine R, Li A, Soto-Gutierrez A. Evaluation of Human Hepatocyte Drug Metabolism Carrying High-Risk or Protection-Associated Liver Disease Genetic Variants. Int J Mol Sci 2023; 24:13406. [PMID: 37686209 PMCID: PMC10487897 DOI: 10.3390/ijms241713406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD), which affects 30 million people in the US and is anticipated to reach over 100 million by 2030, places a significant financial strain on the healthcare system. There is presently no FDA-approved treatment for MASLD despite its public health significance and financial burden. Understanding the connection between point mutations, liver enzymes, and MASLD is important for comprehending drug toxicity in healthy or diseased individuals. Multiple genetic variations have been linked to MASLD susceptibility through genome-wide association studies (GWAS), either increasing MASLD risk or protecting against it, such as PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438. As the impact of genetic variants on the levels of drug-metabolizing cytochrome P450 (CYP) enzymes in human hepatocytes has not been thoroughly investigated, this study aims to describe the analysis of metabolic functions for selected phase I and phase II liver enzymes in human hepatocytes. For this purpose, fresh isolated primary hepatocytes were obtained from healthy liver donors (n = 126), and liquid chromatography-mass spectrometry (LC-MS) was performed. For the cohorts, participants were classified into minor homozygotes and nonminor homozygotes (major homozygotes + heterozygotes) for five gene polymorphisms. For phase I liver enzymes, we found a significant difference in the activity of CYP1A2 in human hepatocytes carrying MBOAT7 (p = 0.011) and of CYP2C8 in human hepatocytes carrying PNPLA3 (p = 0.004). It was also observed that the activity of CYP2C9 was significantly lower in human hepatocytes carrying HSD17B13 (p = 0.001) minor homozygous compared to nonminor homozygous. No significant difference in activity of CYP2E1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, ECOD, FMO, MAO, AO, and CES2 and in any of the phase II liver enzymes between human hepatocytes carrying genetic variants for PNPLA3 rs738409, MBOAT7 rs641738, GCKR rs780094, HSD17B13 rs72613567, and MTARC1 rs2642438 were observed. These findings offer a preliminary assessment of the influence of genetic variations on drug-metabolizing cytochrome P450 (CYP) enzymes in healthy human hepatocytes, which may be useful for future drug discovery investigations.
Collapse
Affiliation(s)
- Lanuza A. P. Faccioli
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zeliha Cetin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zehra N. Kocas-Kilicarslan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Kimberly Ortiz
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Yiyue Sun
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Takeshi Kurihara
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Edgar N. Tafaleng
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
| | - Rodrigo M. Florentino
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
| | - Zi Wang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Mengying Xia
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark T. Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D. Lansing Taylor
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
| | - Jaideep Behari
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Alina Ostrowska
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
| | | | - Albert Li
- Discovery Life Sciences, Huntsville, AL 35806, USA; (R.C.); (A.L.)
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (Z.C.); (Z.N.K.-K.); (K.O.); (Y.S.); (Z.H.); (T.K.); (E.N.T.); (R.M.F.); (A.O.)
- Pittsburgh Liver Research Center, Human Synthetic Liver Biology Core, University of Pittsburgh, Pittsburgh, PA 15261, USA; (D.L.T.); (J.B.)
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; (M.X.); (M.T.M.)
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
21
|
Ma J, Ghabril M, Chalasani N. Drug-Induced Acute-on-Chronic Liver Failure: Challenges and Future Directions. Clin Liver Dis 2023; 27:631-648. [PMID: 37380287 DOI: 10.1016/j.cld.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Drug-induced liver injury (DILI) is a global problem related to prescription and over-the-counter medications as well as herbal and dietary supplements. It can lead to liver failure with the risk of death and need for liver transplantation. Acute-on-chronic liver failure (ACLF) may be precipitated by DILI and is associated with a high risk of mortality. This review addresses the challenges in defining the diagnostic criteria of drug-induced ACLF (DI-ACLF). The studies characterizing DI-ACLF and its outcomes are summarized, highlighting geographic differences in underlying liver disease and implicated agents, as are future directions in the field.
Collapse
Affiliation(s)
- Jiayi Ma
- Gastroenterology and Hepatology, Indiana University School of Medicine, 702 Rotary Circle, Suite 225, Indianapolis, IN 46202, USA
| | - Marwan Ghabril
- Gastroenterology and Hepatology, Indiana University School of Medicine & Indiana University Health, 702 Rotary Circle, Suite 225, Indianapolis, IN 46202, USA
| | - Naga Chalasani
- Gastroenterology and Hepatology, Indiana University School of Medicine & Indiana University Health, 702 Rotary Circle, Suite 225, Indianapolis, IN 46202, USA.
| |
Collapse
|
22
|
Ye L, Ding X, Liu C, Ruan F, Zhong H, Lv R, Yu Y, He C, Zuo Z, Huang J. The hepatoprotective effects of Herbt Tea Essences on phenanthrene-induced liver damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114899. [PMID: 37060801 DOI: 10.1016/j.ecoenv.2023.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-β/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.
Collapse
Affiliation(s)
- Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongbin Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen, Fujian 361005, China
| | - Yi Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
23
|
Niu L, Cao Q, Zhang T, Zhang Y, Liang T, Wang J. Simultaneous detection of mitochondrial viscosity and peroxynitrite in livers from subjects with drug-induced fatty liver disease using a novel fluorescent probe. Talanta 2023; 260:124591. [PMID: 37141820 DOI: 10.1016/j.talanta.2023.124591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Drug-induced fatty liver disease (DIFLD) is a basic clinicopathological example of drug-induced liver injury (DILI). Some drugs can inhibit β-oxidation in hepatocyte mitochondria, leading to steatosis in the liver. Additionally, drug-induced inhibition of β-oxidation and the electron transport chain (ETC) can lead to increased production of reactive oxygen species (ROS) such as peroxynitrite (ONOO-). Therefore, it is reasonable to suspect that compared to a healthy liver, viscosity and ONOO- levels are elevated in livers during DIFLD. A novel, smart, dual-response fluorescent probe-Mito-VO-was designed and synthesized for the simultaneous detection of viscosity and ONOO- content. This probe had a large emission shift of 293 nm and was capable of monitoring the viscosity of, and the ONOO- content in, cell and animal models alike, either individually or simultaneously. For the first time, Mito-VO was successfully used to demonstrate the elevated viscosity and the amount of ONOO- in livers from mice with DIFLD.
Collapse
Affiliation(s)
- Linqiang Niu
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Qijuan Cao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tian Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Yahong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| | - Jianhong Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, 475004, PR China.
| |
Collapse
|
24
|
Fontana RJ, Liou I, Reuben A, Suzuki A, Fiel MI, Lee W, Navarro V. AASLD practice guidance on drug, herbal, and dietary supplement-induced liver injury. Hepatology 2023; 77:1036-1065. [PMID: 35899384 PMCID: PMC9936988 DOI: 10.1002/hep.32689] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Iris Liou
- University of Washington, Seattle, Washington, USA
| | - Adrian Reuben
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - M. Isabel Fiel
- Department of Pathology, Mount Sinai School of Medicine, New York City, New York, USA
| | - William Lee
- Division of Gastroenterology, University of Texas Southwestern, Dallas, Texas, USA
| | - Victor Navarro
- Department of Medicine, Einstein Healthcare Network, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Gheorghe L, Iacob S. Nonalcoholic Fatty Liver Disease Within Other Causes of Chronic Liver Diseases. ESSENTIALS OF NON-ALCOHOLIC FATTY LIVER DISEASE 2023:133-147. [DOI: 10.1007/978-3-031-33548-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Chilvery S, Yelne A, Khurana A, Saifi MA, Bansod S, Anchi P, Godugu C. Acetaminophen induced hepatotoxicity: An overview of the promising protective effects of natural products and herbal formulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154510. [PMID: 36332383 DOI: 10.1016/j.phymed.2022.154510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Yelne
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
27
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
28
|
The activation of M 3 muscarinic receptor reverses liver injuryvia the Sp1/lncRNA Gm2199/miR-212 axis. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1257-1267. [PMID: 36111745 PMCID: PMC9827815 DOI: 10.3724/abbs.2022119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Muscarinic acetylcholine receptors (MRs) play important roles in the regulation of hepatic fibrosis and the receptor agonists and antagonists can affect hepatocyte proliferation. However, little is known about the impact of M 3R subtypes and associated signaling pathways on liver injury. The aim of this study is to explore the function and mechanism of M 3R in the regulation of liver injury. We evaluate liver injury and detect the changes in related indexes, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline (HYP), and transforming growth factor-β1 (TGF-β1), after administration of an M 3R agonist. Western blot analysis and qRT-PCR show that the transcription factor Sp1 and long noncoding RNA (lncRNA) Gm2199 are also changed significantly. Rescue assay is performed to further confirm that M 3R contributes to the progression of hepatocyte proliferation through regulating Sp1 and Gm2199. The activated M 3R can specifically regulate Gm2199 by inhibiting the expression of Sp1. Meanwhile, Gm2199 directly regulates miR-212, and ERK is a potential target of miR-212. Collectively, these findings define a novel mechanism for activating M 3R to reverse liver injury, which affects hepatocyte proliferation through the Sp1/Gm 2199/miR-212/ERK axis.
Collapse
|
29
|
Rodriguez-Diaz C, Taminiau B, García-García A, Cueto A, Robles-Díaz M, Ortega-Alonso A, Martín-Reyes F, Daube G, Sanabria-Cabrera J, Jimenez-Perez M, Isabel Lucena M, Andrade RJ, García-Fuentes E, García-Cortes M. Microbiota diversity in nonalcoholic fatty liver disease and in drug-induced liver injury. Pharmacol Res 2022; 182:106348. [PMID: 35817360 DOI: 10.1016/j.phrs.2022.106348] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The gut microbiota could play a significant role in the progression of nonalcoholic fatty liver disease (NAFLD); however, its relevance in drug-induced liver injury (DILI) remains unexplored. Since the two hepatic disorders may share damage pathways, we analysed the metagenomic profile of the gut microbiota in NAFLD, with or without significant liver fibrosis, and in DILI, and we identified the main associated bacterial metabolic pathways. In the NAFLD group, we found a decrease in Alistipes, Barnesiella, Eisenbergiella, Flavonifractor, Fusicatenibacter, Gemminger, Intestinimonas, Oscillibacter, Parasutterella, Saccharoferementans and Subdoligranulum abundances compared with those in both the DILI and control groups. Additionally, we detected an increase in Enterobacter, Klebsiella, Sarcina and Turicibacter abundances in NAFLD, with significant liver fibrosis, compared with those in NAFLD with no/mild liver fibrosis. The DILI group exhibited a lower microbial bacterial richness than the control group, and lower abundances of Acetobacteroides, Blautia, Caloramator, Coprococcus, Flavobacterium, Lachnospira, Natronincola, Oscillospira, Pseudobutyrivibrio, Shuttleworthia, Themicanus and Turicibacter compared with those in the NAFLD and control groups. We found seven bacterial metabolic pathways that were impaired only in DILI, most of which were associated with metabolic biosynthesis. In the NAFLD group, most of the differences in the bacterial metabolic pathways found in relation to those in the DILI and control groups were related to fatty acid and lipid biosynthesis. In conclusion, we identified a distinct bacterial profile with specific bacterial metabolic pathways for each type of liver disorder studied. These differences can provide further insight into the physiopathology and development of NAFLD and DILI.
Collapse
Affiliation(s)
- Cristina Rodriguez-Diaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Alberto García-García
- UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Alejandro Cueto
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Servicio de Farmacologia Clinica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Mercedes Robles-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain
| | - Aida Ortega-Alonso
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Flores Martín-Reyes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Judith Sanabria-Cabrera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Servicio de Farmacologia Clinica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
| | - Miguel Jimenez-Perez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; UGC de Enfermedades Digestivas, Hospital Regional Universitario, 29010 Málaga, Spain
| | - M Isabel Lucena
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; Servicio de Farmacologia Clinica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain; UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain.
| | - Raúl J Andrade
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain.
| | - Miren García-Cortes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain
| |
Collapse
|
30
|
Lee HW, Lee IJ, Lee SJ, Kim YR, Kim HM. Highly Sensitive Two-Photon Lipid Droplet Tracker for In Vivo Screening of Drug Induced Liver Injury. ACS Sens 2022; 7:1027-1035. [PMID: 35385270 DOI: 10.1021/acssensors.1c02679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are lipid-abundant organelles found in most cell lines and primarily consist of neutral lipids. They serve as a repository of various lipids and are associated with many cellular metabolic processes, including energy storage, membrane synthesis, and protein homeostasis. LDs are prominent in a variety of diseases related to lipid regulation, including obesity, fatty liver disease, diabetes, and atherosclerosis. To monitor LD dynamics in live samples, we developed a highly selective two-photon fluorescent tracker for LDs (LD1). It exhibited outstanding sensitivity with a remarkable two-photon-action cross section (Φδmax > 600 GM), photostability, and low cytotoxicity. In human hepatocytes and in vivo mouse liver tissue imaging, LD1 showed very bright fluorescence with high LD selectivity and minimized background signal to evaluate the stages of nonalcoholic fatty liver disease. Interestingly, we demonstrated that the liver sinusoid morphology became narrower with increasing LD size and visualized the dynamics including fusion of the LDs in vivo. Moreover, real-time and dual-color TPM imaging with LD1 and a two-photon lysosome tracker could be a useful predictive screening tool in the drug development process to monitor impending drug-induced liver injury inducing drug candidates.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Soo-Jin Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Yu Rim Kim
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|
31
|
Arafa EA, Dhayabaran V, Omar NE, Awaisu A. Rare case of norethisterone-induced hepatitis: A case report. Clin Case Rep 2022; 10:e05687. [PMID: 35425601 PMCID: PMC8991762 DOI: 10.1002/ccr3.5687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
We report a case of probable norethisterone-related liver injury, manifesting as a significant rise in liver transaminases in a 62-year-old woman. Upon discontinuation of norethisterone, liver transaminases decreased to normal level within two weeks. Knowledge of rare adverse effects of drugs such as norethisterone is necessary for rapid identification and management, especially in patients with risk factors such as non-alcoholic liver disease and obesity.
Collapse
Affiliation(s)
- Eiman A. Arafa
- Pharmacy DepartmentAlkhor Hospital, Hamad Medical CorporationDohaQatar
| | - Vasumathi Dhayabaran
- Department of Obstetrics and GynecologyAlkhor Hospital, Hamad Medical CorporationDohaQatar
| | - Nabil E. Omar
- Pharmacy DepartmentNational Center for Cancer Care & ResearchHamad Medical CorporationDohaQatar
| | - Ahmed Awaisu
- Department of Clinical Pharmacy and PracticeCollege of PharmacyQU Health, Qatar UniversityDohaQatar
| |
Collapse
|
32
|
Muta K, Saito K, Kemmochi Y, Masuyama T, Kobayashi A, Saito Y, Sugai S. Phosphatidylcholine (18:0/20:4), a potential biomarker to predict ethionamide-induced hepatic steatosis in rats. J Appl Toxicol 2022; 42:1533-1547. [PMID: 35315511 PMCID: PMC9546090 DOI: 10.1002/jat.4324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022]
Abstract
Ethionamide (ETH), a second-line drug for multi-drug resistant tuberculosis, is known to cause hepatic steatosis in rats and humans. To investigate predictive biomarkers for ETH-induced steatosis, we performed lipidomics analysis using plasma and liver samples collected from rats treated orally with ETH at 30 and 100 mg/kg for 14 days. The ETH-treated rats developed hepatic steatosis with Oil Red O staining-positive vacuolation in the centrilobular hepatocytes accompanied by increased hepatic contents of triglycerides (TG) and decreased plasma TG and total cholesterol levels. A multivariate analysis for lipid profiles revealed differences in each of the 35 lipid species in the plasma and liver between the control and the ETH-treated rats. Of those lipids, phosphatidylcholine (PC) (18:0/20:4) decreased dose-dependently in both the plasma and liver. Moreover, serum TG-rich very low-density lipoprotein (VLDL) levels, especially the large particle fraction of VLDL composed of PC containing arachidonic acid (20:4) involved in hepatic secretion of TG, were decreased dose-dependently. In conclusion, the decreased PC (18:0/20:4) in the liver, possibly leading to suppression of hepatic TG secretion, was considered to be involved in the pathogenesis of the ETH-induced hepatic steatosis. Therefore, plasma PC (18:0/20:4) levels are proposed as mechanism-related biomarkers for ETH-induced hepatic steatosis.
Collapse
Affiliation(s)
- Kyotaka Muta
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yusuke Kemmochi
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Taku Masuyama
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Akio Kobayashi
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Shoichiro Sugai
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| |
Collapse
|
33
|
Mihajlovic M, Vinken M. Mitochondria as the Target of Hepatotoxicity and Drug-Induced Liver Injury: Molecular Mechanisms and Detection Methods. Int J Mol Sci 2022; 23:ijms23063315. [PMID: 35328737 PMCID: PMC8951158 DOI: 10.3390/ijms23063315] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
One of the major mechanisms of drug-induced liver injury includes mitochondrial perturbation and dysfunction. This is not a surprise, given that mitochondria are essential organelles in most cells, which are responsible for energy homeostasis and the regulation of cellular metabolism. Drug-induced mitochondrial dysfunction can be influenced by various factors and conditions, such as genetic predisposition, the presence of metabolic disorders and obesity, viral infections, as well as drugs. Despite the fact that many methods have been developed for studying mitochondrial function, there is still a need for advanced and integrative models and approaches more closely resembling liver physiology, which would take into account predisposing factors. This could reduce the costs of drug development by the early prediction of potential mitochondrial toxicity during pre-clinical tests and, especially, prevent serious complications observed in clinical settings.
Collapse
|
34
|
Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines 2021; 10:biomedicines10010055. [PMID: 35052736 PMCID: PMC8772872 DOI: 10.3390/biomedicines10010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) and idiosyncratic drug-induced liver injury (DILI) could share molecular mechanisms involving the immune system. We aimed to identify activation immunological biomarkers in invariant natural killer T (iNKT) and CD4/CD8+ T cells in NAFLD and DILI. Methods: We analyzed the activation profile (CD69, CD25, and HLA-DR) and natural killer group 2 member D (NKG2D) on iNKT cells, and CD4/CD8 T cells in peripheral blood mononuclear cells from NAFLD, with or without significant liver fibrosis, and DILI patients. Results: There was an increase in iNKT cells in NAFLD patients compared to DILI or control subjects. Regarding the cellular activation profile, NAFLD with significant liver fibrosis (F ≥ 2) displayed higher levels of CD69+iNKT cells compared to NAFLD with none or mild liver fibrosis (F ≤ 1) and control patients. CD69+iNKT positively correlated with insulin resistance, aspartate aminotransferase (AST) level, liver fibrosis-4 index (FIB4) and AST to Platelet Ratio Index (APRI). DILI patients showed an increase in CD69+ and HLA-DR+ in both CD4+ and CD8+ T cells, detecting the most relevant difference in the case of CD69+CD8+ T cells. Conclusions: CD69+iNKT may be a biomarker to assess liver fibrosis progression in NAFLD. CD69+CD8+ T cells were identified as a potential distinctive biomarker for distinguishing DILI from NAFLD.
Collapse
|
35
|
Rahban M, Stanek A, Hooshmand A, Khamineh Y, Ahi S, Kazim SN, Ahmad F, Muronetz V, Samy Abousenna M, Zolghadri S, Saboury AA. Infection of Human Cells by SARS-CoV-2 and Molecular Overview of Gastrointestinal, Neurological, and Hepatic Problems in COVID-19 Patients. J Clin Med 2021; 10:4802. [PMID: 34768321 PMCID: PMC8584649 DOI: 10.3390/jcm10214802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is the body's largest interface between the host and the external environment. People infected with SARS-CoV-2 are at higher risk of microbiome alterations and severe diseases. Recent evidence has suggested that the pathophysiological and molecular mechanisms associated with gastrointestinal complicity in SARS-CoV-2 infection could be explained by the role of angiotensin-converting enzyme-2 (ACE2) cell receptors. These receptors are overexpressed in the gut lining, leading to a high intestinal permeability to foreign pathogens. It is believed that SARS-CoV-2 has a lesser likelihood of causing liver infection because of the diminished expression of ACE2 in liver cells. Interestingly, an interconnection between the lungs, brain, and gastrointestinal tract during severe COVID-19 has been mentioned. We hope that this review on the molecular mechanisms related to the gastrointestinal disorders as well as neurological and hepatic manifestations experienced by COVID-19 patients will help scientists to find a convenient solution for this and other pandemic events.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St., 41-902 Bytom, Poland;
| | - Amirreza Hooshmand
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Yasaman Khamineh
- Young Researchers and Elite Club, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran; (A.H.); (Y.K.)
| | - Salma Ahi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran;
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (S.N.K.); (F.A.)
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Mohamed Samy Abousenna
- Central Laboratory for Evaluation of Veterinary Biologics, Agriculture Research Center, Cairo 11517, Egypt;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| |
Collapse
|
36
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
37
|
Bessone F, Hernandez N, Tagle M, Arrese M, Parana R, Méndez-Sánchez N, Ridruejo E, Mendizabal M, Dagher L, Contreras F, Fassio E, Pessoa M, Brahm J, Silva M. Drug-induced liver injury: A management position paper from the Latin American Association for Study of the liver. Ann Hepatol 2021; 24:100321. [PMID: 33609753 DOI: 10.1016/j.aohep.2021.100321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Idiosyncratic drug-induced liver injury (DILI) caused by xenobiotics (drugs, herbals and dietary supplements) is an uncommon cause of liver disease presenting with a wide range of phenotypes and disease severity, acute hepatitis mimicking viral hepatitis to autoimmune hepatitis, steatosis, fibrosis or rare chronic vascular syndromes. Disease severity ranges from asymptomatic liver test abnormalities to acute liver failure. DILI has been traditionally classified in predictable or intrinsic (dose-related) or unpredictable (not dose-related) mechanisms. Few prospective studies are assessing the real prevalence and incidence of hepatotoxicity in the general population. DILI registries represent useful networks used for the study of liver toxicity, aimed at improving the understanding of causes, phenotypes, natural history, and standardized definitions of hepatotoxicity. Although most of the registries do not carry out population-based studies, they may provide important data related to the prevalence of DILI, and also may be useful to compare features from different countries. With the support of the Spanish Registry of Hepatotoxicity, our Latin American Registry (LATINDILI) was created in 2011, and more than 350 DILI patients have been recruited to date. This position paper describes the more frequent drugs and herbs-induced DILI in Latin America, mainly focusing on several features of responsible medicaments. Also, we highlighted the most critical points on the management of hepatotoxicity in general and those based on findings from our Latin American experience in particular.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Medicina, Universidad Nacional de Rosario, Rosario, Argentina.
| | | | - Martin Tagle
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marco Arrese
- Pontificia Universidad Católica de chile, Santiago de Chile, Chile
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Ezequiel Ridruejo
- Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | | | - Lucy Dagher
- Policlínica Metropolitana y CMDLT, Caracas, Venezuela
| | | | - Eduardo Fassio
- Hospital Nacional Prof. Alejandro Posadas, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
38
|
Tokuhara D. Role of the Gut Microbiota in Regulating Non-alcoholic Fatty Liver Disease in Children and Adolescents. Front Nutr 2021; 8:700058. [PMID: 34250000 PMCID: PMC8267179 DOI: 10.3389/fnut.2021.700058] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in children and adolescents. Although obesity is the leading cause of NAFLD, the etiologies of NAFLD are multifactorial (e.g., high-fat diet, a lack of exercise, gender, maternal obesity, the antibiotic use), and each of these factors leads to dysbiosis of the gut microbiota community. The gut microbiota is a key player in the development and regulation of the gut mucosal immune system as well as the regulation of both NAFLD and obesity. Dysbiosis of the gut microbiota promotes the development of NAFLD via alteration of gut-liver homeostasis, including disruption of the gut barrier, portal transport of bacterial endotoxin (lipopolysaccharide) to the liver, altered bile acid profiles, and decreased concentrations of short-chain fatty acids. In terms of prevention and treatment, conventional approaches (e.g., dietary and exercise interventions) against obesity and NAFLD have been confirmed to recover the dysbiosis and dysbiosis-mediated altered metabolism. In addition, increased understanding of the importance of gut microbiota-mediated homeostasis in the prevention of NAFLD suggests the potential effectiveness of gut microbiota-targeted preventive and therapeutic strategies (e.g., probiotics and fecal transplantation) against NAFLD in children and adolescents. This review comprehensively summarizes our current knowledge of the gut microbiota, focusing on its interaction with NAFLD and its potential therapeutic role in obese children and adolescents with this disorder.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
39
|
Bartoli A, Gitto S, Sighinolfi P, Cursaro C, Andreone P. Primary biliary cholangitis associated with SARS-CoV-2 infection. J Hepatol 2021; 74:1245-1246. [PMID: 33610679 PMCID: PMC7892314 DOI: 10.1016/j.jhep.2021.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Alessandra Bartoli
- Division of Internal Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, Modena, Italy; Postgraduate school of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, Italy
| | - Stefano Gitto
- Division of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pamela Sighinolfi
- Division of Pathology, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, Modena, Italy
| | - Carmela Cursaro
- Division of Internal Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, Modena, Italy
| | - Pietro Andreone
- Division of Internal Medicine, Department of Medical and Surgical Sciences, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, Modena, Italy; Chief of Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, Italy.
| |
Collapse
|
40
|
ACG Clinical Guideline: Diagnosis and Management of Idiosyncratic Drug-Induced Liver Injury. Am J Gastroenterol 2021; 116:878-898. [PMID: 33929376 DOI: 10.14309/ajg.0000000000001259] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is common in gastroenterology and hepatology practices, and it can have multiple presentations, ranging from asymptomatic elevations in liver biochemistries to hepatocellular or cholestatic jaundice, liver failure, or chronic hepatitis. Antimicrobials, herbal and dietary supplements, and anticancer therapeutics (e.g., tyrosine kinase inhibitors or immune-checkpoint inhibitors) are the most common classes of agents to cause DILI in the Western world. DILI is a diagnosis of exclusion, and thus, careful assessment for other etiologies of liver disease should be undertaken before establishing a diagnosis of DILI. Model for end-stage liver disease score and comorbidity burden are important determinants of mortality in patients presenting with suspected DILI. DILI carries a mortality rate up to 10% when hepatocellular jaundice is present. Patients with DILI who develop progressive jaundice with or without coagulopathy should be referred to a tertiary care center for specialized care, including consideration for potential liver transplantation. The role of systemic corticosteroids is controversial, but they may be administered when a liver injury event cannot be distinguished between autoimmune hepatitis or DILI or when a DILI event presents with prominent autoimmune hepatitis features.
Collapse
|
41
|
Cataldi M, Citro V, Resnati C, Manco F, Tarantino G. New Avenues for Treatment and Prevention of Drug-Induced Steatosis and Steatohepatitis: Much More Than Antioxidants. Adv Ther 2021; 38:2094-2113. [PMID: 33761100 PMCID: PMC8107075 DOI: 10.1007/s12325-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Drug-induced lipid accumulation in the liver may induce two clinically relevant conditions, drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH). The list of drugs that may cause DIS or DISH is long and heterogeneous and includes therapeutically relevant molecules that cannot be easily replaced by less hepatotoxic medicines, therefore making specific strategies necessary for DIS/DISH prevention or treatment. For years, the only available tools to achieve these goals have been antioxidant drugs and free radical scavengers, which counteract drug-induced mitochondrial dysfunction but, unfortunately, have only limited efficacy. In the present review we illustrate how in vitro preclinical research unraveled new key players in the pathogenesis of specific forms of DISH, and how, in a few cases, proof of concept of the beneficial effects of their pharmacological modulation has been obtained in vivo in animal models of this condition. The key issue emerging from these studies is that, in selected cases, liver toxicity depends on mechanisms unrelated to those responsible for the desired, primary pharmacological effects of the toxic drug and, therefore, specific strategies can be designed to overcome steatogenicity without making the drug ineffective. In particular, the hepatotoxic drug could be given in combination with a second molecule intended to selectively antagonize its liver toxicity whilst, ideally, potentiating its desired pharmacological activity. Although most of the evidence that we discuss is from in vitro or animal models and will need to be further explored and validated in humans, it highlights new avenues to be pursued in order to improve the safety of steatogenic drugs.
Collapse
Affiliation(s)
- Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University of Naples, Naples, Italy
| | - Vincenzo Citro
- Department of General Medicine, "Umberto I" Hospital, Nocera Inferiore, SA, Italy
| | - Chiara Resnati
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University of Naples, Naples, Italy
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University of Naples, Naples, Italy
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, "Federico II" University Medical School of Naples, Naples, Italy.
| |
Collapse
|
42
|
Devarbhavi H, Aithal G, Treeprasertsuk S, Takikawa H, Mao Y, Shasthry SM, Hamid S, Tan SS, Philips CA, George J, Jafri W, Sarin SK. Drug-induced liver injury: Asia Pacific Association of Study of Liver consensus guidelines. Hepatol Int 2021; 15:258-282. [PMID: 33641080 DOI: 10.1007/s12072-021-10144-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023]
Abstract
Idiosyncratic drug-induced liver injury mimics acute and chronic liver disease. It is under recognized and underrecognised because of the lack of pathognomonic diagnostic serological markers. Its consequences may vary from being asymptomatic to self-limiting illness to severe liver injury leading to acute liver failure. Its incidence is likely to be more common in Asia than other parts of the world, mainly because of hepatotoxicity resulting from the treatment of tuberculosis disease and the ubiquitous use of traditional and complimentary medicines in Asian countries. This APASL consensus guidelines on DILI is a concise account of the various aspects including current evidence-based information on DILI with special emphasis on DILI due to antituberculosis agents and traditional and complementary medicine use in Asia.
Collapse
Affiliation(s)
- Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St John's Medical College Hospital, Bangalore, India.
| | - Guruprasad Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | | | - Hajime Takikawa
- Faculty of Medical Technology, Emeritus Professor, School of Medicine, Tokyo, Japan
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, and Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saggere M Shasthry
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Saeed Hamid
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Soek Siam Tan
- Department of Medicine, Hospital Selayang, Bata Caves, Selangor, Malaysia
| | - Cyriac Abby Philips
- The Liver Institute, Center of Excellence in GI Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Jacob George
- Department of Gastroenterology and Hepatology, Westmead Hospital and Sydney West Local Health District, Sydney, Australia
| | - Wasim Jafri
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
43
|
Todorović Vukotić N, Đorđević J, Pejić S, Đorđević N, Pajović SB. Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol 2021; 95:767-789. [PMID: 33398419 PMCID: PMC7781826 DOI: 10.1007/s00204-020-02963-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a serious health burden. It has diverse clinical presentations that can escalate to acute liver failure. The worldwide increase in the use of psychotropic drugs, their long-term use on a daily basis, common comorbidities of psychiatric and metabolic disorders, and polypharmacy in psychiatric patients increase the incidence of psychotropics-induced DILI. During the last 2 decades, hepatotoxicity of various antidepressants (ADs) and antipsychotics (APs) received much attention. Comprehensive review and discussion of accumulated literature data concerning this issue are performed in this study, as hepatotoxic effects of most commonly prescribed ADs and APs are classified, described, and discussed. The review focuses on ADs and APs characterized by the risk of causing liver damage and highlights the ones found to cause life-threatening or severe DILI cases. In parallel, an overview of hepatic oxidative stress, inflammation, and steatosis underlying DILI is provided, followed by extensive review and discussion of the pathophysiology of AD- and AP-induced DILI revealed in case reports, and animal and in vitro studies. The consequences of some ADs and APs ability to affect drug-metabolizing enzymes and therefore provoke drug–drug interactions are also addressed. Continuous collecting of data on drugs, mechanisms, and risk factors for DILI, as well as critical data reviewing, is crucial for easier DILI diagnosis and more efficient risk assessment of AD- and AP-induced DILI. Higher awareness of ADs and APs hepatotoxicity is the prerequisite for their safe use and optimal dosing.
Collapse
Affiliation(s)
- Nevena Todorović Vukotić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.
| | - Jelena Đorđević
- Institute of Physiology and Biochemistry "Ivan Đaja", Faculty of Biology, University of Belgrade, 16 Studentski Trg, 11000, Belgrade, Serbia
| | - Snežana Pejić
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Neda Đorđević
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia
| | - Snežana B Pajović
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 12-14 Mike Petrovića Alasa, P.O. Box 522-090, 11000, Belgrade, Serbia.,Faculty of Medicine, University of Niš, 81 Blvd. Dr. Zorana Đinđića, 18000, Niš, Serbia
| |
Collapse
|
44
|
Jain S, Norinder U, Escher SE, Zdrazil B. Combining In Vivo Data with In Silico Predictions for Modeling Hepatic Steatosis by Using Stratified Bagging and Conformal Prediction. Chem Res Toxicol 2020; 34:656-668. [PMID: 33347274 PMCID: PMC7887803 DOI: 10.1021/acs.chemrestox.0c00511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in rodent studies with repeated oral exposure. The imbalanced nature of the data set (1:8, with the "steatotic" compounds belonging to the minority class) required the use of meta-classifiers-bagging with stratified under-sampling and Mondrian conformal prediction-on top of the base classifier random forest. One major goal was the investigation of the influence of different descriptor combinations on model performance (tested by predicting an external validation set): physicochemical descriptors (RDKit), ToxPrint features, as well as predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to 0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology.
Collapse
Affiliation(s)
- Sankalp Jain
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ulf Norinder
- Unit of Toxicology Sciences, Swetox, Karolinska Institutet, SE-15136 Södertälje, Sweden
| | - Sylvia E Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625 Hannover, Germany
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
45
|
LaBranche TP, Kopec AK, Mantena SR, Hollingshead BD, Harrington AW, Stewart ZS, Zhan Y, Hayes KD, Whiteley LO, Burdick AD, Davis JW. Zucker Lean Rats With Hepatic Steatosis Recapitulate Asymptomatic Metabolic Syndrome and Exhibit Greater Sensitivity to Drug-Induced Liver Injury Compared With Standard Nonclinical Sprague-Dawley Rat Model. Toxicol Pathol 2020; 48:994-1007. [PMID: 33252024 DOI: 10.1177/0192623320968716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty liver disease is a potential risk factor for drug-induced liver injury (DILI). Despite advances in nonclinical in vitro and in vivo models to assess liver injury during drug development, the pharmaceutical industry is still plagued by idiosyncratic DILI. Here, we tested the hypothesis that certain features of asymptomatic metabolic syndrome (namely hepatic steatosis) increase the risk for DILI in certain phenotypes of the human population. Comparison of the Zucker Lean (ZL) and Zucker Fatty rats fed a high fat diet (HFD) revealed that HFD-fed ZL rats developed mild hepatic steatosis with compensatory hyperinsulinemia without increases in liver enzymes. We then challenged steatotic HFD-fed ZL rats and Sprague-Dawley (SD) rats fed normal chow, a nonclinical model widely used in the pharmaceutical industry, with acetaminophen overdose to induce liver injury. Observations in HFD-fed ZL rats included increased liver injury enzymes and greater incidence and severity of hepatic necrosis compared with similarly treated SD rats. The HFD-fed ZL rats also had disproportionately higher hepatic drug accumulation, which was linked with abnormal hepatocellular efflux transporter distribution. Here, we identify ZL rats with HFD-induced hepatic steatosis as a more sensitive nonclinical in vivo test system for modeling DILI compared with SD rats fed normal chow.
Collapse
Affiliation(s)
- Timothy P LaBranche
- 376392Pfizer Inc, Cambridge, MA, USA.,Blueprint Medicines, Cambridge, MA, USA.,*Timothy P. LaBranche and Anna K. Kopec contributed equally
| | - Anna K Kopec
- 2253Pfizer Inc, Groton, CT, USA.,*Timothy P. LaBranche and Anna K. Kopec contributed equally
| | | | | | - Andrew W Harrington
- 2253Pfizer Inc, Chesterfield, MO, USA.,Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Zachary S Stewart
- 2253Pfizer Inc, Andover, MA, USA.,Hooke Laboratories, Lawrence, MA, USA
| | | | - Kyle D Hayes
- 2253Pfizer Inc, Andover, MA, USA.,Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA
| | | | | | - John W Davis
- 376392Pfizer Inc, Cambridge, MA, USA.,Dyne Therapeutics, Waltham, MA, USA
| |
Collapse
|
46
|
Aranha MLG, Garcia MS, de Carvalho Cavalcante DN, Silva APG, Fontes MK, Gusso-Choueri PK, Choueri RB, Perobelli JE. Biochemical and histopathological responses in peripubertal male rats exposed to agrochemicals isolated or in combination: A multivariate data analysis study. Toxicology 2020; 447:152636. [PMID: 33217513 DOI: 10.1016/j.tox.2020.152636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
The widespread use of agrochemicals results in the exposure of the general human population, including children, to several of these chemicals simultaneously. In the present preclinical study, it was investigated the hepatic damages caused by exposure to acephate, carbendazim and mancozeb when administered alone or in different combinations (binary and ternary). Juvenile male Wistar rats were exposed to agrochemicals from post-natal day 53, by gavage. The doses of agrochemicals applied here were determined from previous studies whose results showed no signs of systemic toxicity. All exposures provoked a significant increase in DNA damage (except for acephate alone) and activation of the xenobiotic biotransformation system (except for the ternary mixture). Interestingly, the ternary mixture did not exhibit an exacerbation in adverse effects caused by agrochemicals isolated or in binary combination, even though they are sharing genotoxicity damage induction as a common toxicity pathway. Conversely, some effects observed for isolated or binary combinations of agrochemicals were not observed for ternary combination, suggesting a chemical interaction that could imply antagonism character. Using a multivariate data analysis approach, exposure to isolated agrochemicals were related to a group of adverse effects characterized by hepatic lesion and the attempt of the tissue to mobilize defense cells and increase mitotic rates to minimize damages. Binary mixtures also share similarities in relation to the effects they exhibited, mainly a moderate to high increase in the GST activity and in histopathological alterations suggesting that binary combinations trigger an increased response of the mechanism of xenobiotics biotransformation. Together, obtained results bring important insights regarding adverse effects and possible interaction of the three agrochemicals whose residues are commonly detected in agro-food products.
Collapse
Affiliation(s)
- Maria Luiza Garcia Aranha
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | - Mariana Simões Garcia
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | | | - Ana Priscila Gomes Silva
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | - Mayana Karoline Fontes
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, Brazil
| | - Paloma Kachel Gusso-Choueri
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil.
| | - Juliana Elaine Perobelli
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| |
Collapse
|
47
|
SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol 2020; 73:807-816. [PMID: 32437830 PMCID: PMC7211738 DOI: 10.1016/j.jhep.2020.05.002] [Citation(s) in RCA: 455] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Liver enzyme abnormalities are common in patients with coronavirus disease 2019 (COVID-19). Whether or not severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to liver damage per se remains unknown. Herein, we reported the clinical characteristics and liver pathological manifestations of COVID-19 patients with liver enzyme abnormalities. METHODS We analyzed 156 patients diagnosed with COVID-19 from 2 designated centers in China and compared clinical features between patients with or without elevated aminotransferases. Postmortem liver biopsies were obtained from 2 cases who had elevated aminotransferases. We investigated the patterns of liver impairment by electron microscopy, immunohistochemistry, TUNEL assay and pathological studies. RESULTS Sixty-four out of 156 (41.0%) patients with COVID-19 had elevated aminotransferases. The median levels of alanine aminotransferase were 50 U/L vs. 19 U/L, respectively, aspartate aminotransferase were 45.5 U/L vs. 24 U/L, respectively in abnormal and normal aminotransferase groups. Liver enzyme abnormalities were associated with disease severity, as well as a series of laboratory tests including higher alveolar-arterial oxygen partial pressure difference, higher gamma-glutamyltransferase, lower albumin, decreased CD4+ T cells and B lymphocytes. Ultrastructural examination identified typical coronavirus particles, characterized by spike structures, in the cytoplasm of hepatocytes in 2 COVID-19 cases. SARS-CoV-2-infected hepatocytes displayed conspicuous mitochondrial swelling, endoplasmic reticulum dilatation and glycogen granule decrease. Histologically, massive hepatic apoptosis and some binuclear hepatocytes were observed. Taken together, both ultrastructural and histological evidence indicated a typical lesion of viral infection. Immunohistochemical results showed scarce CD4+ and CD8+ lymphocytes. No obvious eosinophil infiltration, cholestasis, fibrin deposition, granuloma, massive central necrosis, or interface hepatitis were observed. CONCLUSIONS SARS-CoV-2 infection in the liver directly contributes to hepatic impairment in patients with COVID-19. Hence, a surveillance of viral clearance in liver and long-term outcome of COVID-19 is required. LAY SUMMARY Liver enzyme abnormalities are common in patients with coronavirus disease 2019 (COVID-19). We reported the clinical characteristics and liver pathological manifestations of COVID-19 patients with elevated liver enzymes. Our findings suggested that SARS-CoV-2 infection of the liver is a crucial factor contributing to hepatic impairment in patients with COVID-19.
Collapse
|
48
|
Ferron PJ, Gicquel T, Mégarbane B, Clément B, Fromenty B. Treatments in Covid-19 patients with pre-existing metabolic dysfunction-associated fatty liver disease: A potential threat for drug-induced liver injury? Biochimie 2020; 179:266-274. [PMID: 32891697 PMCID: PMC7468536 DOI: 10.1016/j.biochi.2020.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Obese patients who often present metabolic dysfunction-associated fatty liver disease (MAFLD) are at risk of severe presentation of coronavirus disease 2019 (COVID-19). These patients are more likely to be hospitalized and receive antiviral agents and other drugs required to treat acute respiratory distress syndrome and systemic inflammation, combat bacterial and fungal superinfections and reverse multi-organ failure. Among these pharmaceuticals, antiretrovirals such as lopinavir/ritonavir and remdesivir, antibiotics and antifungal agents can induce drug-induced liver injury (DILI), whose mechanisms are not always understood. In the present article, we hypothesize that obese COVID-19 patients with MAFLD might be at higher risk for DILI than non-infected healthy individuals or MAFLD patients. These patients present several concomitant factors, which individually can favour DILI: polypharmacy, systemic inflammation at risk of cytokine storm, fatty liver and sometimes nonalcoholic steatohepatitis (NASH) as well as insulin resistance and other diseases linked to obesity. Hence, in obese COVID-19 patients, some drugs might cause more severe (and/or more frequent) DILI, while others might trigger the transition of fatty liver to NASH, or worsen pre-existing steatosis, necroinflammation and fibrosis. We also present the main mechanisms whereby drugs can be more hepatotoxic in MAFLD including impaired activity of xenobiotic-metabolizing enzymes, mitochondrial dysfunction, altered lipid homeostasis and oxidative stress. Although comprehensive investigations are needed to confirm our hypothesis, we believe that the current epidemic of obesity and related metabolic diseases has extensively contributed to increase the number of cases of DILI in COVID-19 patients, which may have participated in presentation severity and death.
Collapse
Affiliation(s)
- Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Thomas Gicquel
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France; CHU Rennes, Laboratoire de toxicologie médico-légale, F-35000, Rennes, France
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM, UMRS, 1144, Paris, France
| | - Bruno Clément
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000, Rennes, France.
| |
Collapse
|
49
|
Reuben A. Drug-Induced Liver Injury in Liver Transplant Recipients: Informed Insights and Sage Advice From Andalusia. Liver Transpl 2020; 26:1088-1089. [PMID: 32717122 DOI: 10.1002/lt.25853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Adrian Reuben
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC.,Institute of Hepatology, King's College London, University of London, UK
| |
Collapse
|
50
|
Huang R, Zhu L, Wang J, Xue L, Liu L, Yan X, Huang S, Li Y, Yan X, Zhang B, Xu T, Li C, Ji F, Ming F, Zhao Y, Cheng J, Wang Y, Zhao H, Hong S, Chen K, Zhao XA, Zou L, Sang D, Shao H, Guan X, Chen X, Chen Y, Wei J, Zhu C, Wu C. Clinical features of COVID-19 patients with non-alcoholic fatty liver disease. Hepatol Commun 2020; 4:1758-1768. [PMID: 32838108 PMCID: PMC7436597 DOI: 10.1002/hep4.1592] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
Background and Aims Previous studies reported that coronavirus disease 2019 (COVID-19) was likely to result in liver injury. However, few studies investigated liver injury in COVID-19 patients with chronic liver diseases. We described the clinical features in COVID-19 patients with non-alcoholic fatty liver disease (NAFLD). Methods Confirmed COVID-19 patients from hospitals in 10 cities of Jiangsu province, China were retrospectively included between January 18, 2020, and February 26, 2020. Hepatic Steatosis Index (HSI) was used to defined NAFLD. Results A total of 280 COVID-19 patients were enrolled. Eighty-six (30.7%) of 280 COVID-19 patients were diagnosed as NAFLD by HSI. 100 (35.7%) patients presented abnormal liver function on admission. The median ALT levels (34.5 U/L vs. 23.0 U/L, P<0.001) and the proportion of elevated ALT (>40 U/L) (40.7% vs. 10.8%, P<0.001) were significantly higher in patients with NAFLD than in patients without NAFLD on admission. The proportion of elevated ALT in patients with NAFLD was also significantly higher than patients without NAFLD (65.1% vs. 38.7%, P<0.001) during hospitalization. Multivariate analysis showed that age over 50 years (odds ratio [OR] 2.077, 95% confidence interval [CI] 1.183-3.648, P=0.011), and concurrent NAFLD (OR 2.956, 95% CI 1.526-5.726, P=0.001) were independent risk factors of ALT elevation in COVID-19 patients, while the atomized inhalation of interferon α-2b (OR 0.402, 95%CI 0.236-0.683, P=0.001) was associated with the reduced risk of ALT elevation during hospitalization. No patient developed liver failure or death during hospitalization. The complications and clinical outcomes were comparable between COVID-19 patients with and without NAFLD. Conclusions NAFLD patients are more likely to develop liver injury when infected by COVID-19. However, no patient developed severe liver-related complications during hospitalization.
Collapse
Affiliation(s)
- Rui Huang
- Department of Infectious Diseases Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Li Zhu
- Department of Infectious Diseases The Affiliated Infectious Diseases Hospital of Soochow University Suzhou China
| | - Jian Wang
- Department of Infectious Diseases Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Leyang Xue
- Department of Critical Medicine Huai'an No. 4 People's Hospital Huai'an China
| | - Longgen Liu
- Department of Infectious Diseases The Third People's Hospital of Changzhou Changzhou China
| | - Xuebing Yan
- Department of Infectious Diseases Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Songping Huang
- Department of Infectious Diseases Nantong Third People's Hospital Nantong University Nantong China
| | - Yang Li
- Department of Infectious Diseases Taizhou People's Hospital Taizhou China
| | - Xiaomin Yan
- Department of Infectious Diseases Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Biao Zhang
- Department of Quality Control Office Huai'an No. 4 People's Hospital Huai'an China
| | - Tianmin Xu
- Department of Infectious Diseases The Third People's Hospital of Changzhou Changzhou China
| | - Chunyang Li
- Department of Infectious Diseases Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Fang Ji
- Department of Infectious Diseases Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Fang Ming
- Department of Infectious Diseases Nantong Third People's Hospital Nantong University Nantong China
| | - Yun Zhao
- Department of Infectious Diseases The Third People's Hospital of Yangzhou Yangzhou China
| | - Juan Cheng
- Department of Infectious Diseases Yancheng Second People's Hospital Yancheng China
| | - Yinling Wang
- Department of Infectious Diseases The Affiliated Infectious Diseases Hospital of Soochow University Suzhou China
| | - Haiyan Zhao
- Department of Infectious Diseases The People's Hospital of Suqian Suqian China
| | - Shuqin Hong
- Nursing Department Huai'an No. 4 People's Hospital Huai'an China
| | - Kang Chen
- Department of Tuberculosis The Third People's Hospital of Changzhou Changzhou China
| | - Xiang-An Zhao
- Department of Gastroenterology Northern Jiangsu People's Hospital Clinical Medical College of Yangzhou University Yangzhou China
| | - Lei Zou
- Department of Infectious Diseases Yancheng Second People's Hospital Yancheng China
| | - Dawen Sang
- Department of Infectious Diseases Yancheng Second People's Hospital Yancheng China
| | - Huaping Shao
- Department of Infectious Diseases The People's Hospital of Suqian Suqian China
| | - Xinying Guan
- Department of Neurology The Affiliated Hospital of Kangda College of Nanjing Medical University The First People's Hospital of Lianyungang Lianyungang China
| | - Xiaobing Chen
- Department of Emergency The Affiliated Hospital of Kangda College of Nanjing Medical University The First People's Hospital of Lianyungang Lianyungang China
| | - Yuxin Chen
- Department of Laboratory Medicine Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| | - Jie Wei
- Department of Infectious Diseases Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing China
| | - Chuanwu Zhu
- Department of Infectious Diseases The Affiliated Infectious Diseases Hospital of Soochow University Suzhou China
| | - Chao Wu
- Department of Infectious Diseases Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School Nanjing China
| |
Collapse
|