1
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sakuma I, Gaspar RC, Nasiri AR, Dufour S, Kahn M, Zheng J, LaMoia TE, Guerra MT, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner DF, Petersen KF, Huttasch M, Knebel B, Kahl S, Roden M, Samuel VT, Tanaka T, Shulman GI. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis. Proc Natl Acad Sci U S A 2025; 122:e2502978122. [PMID: 40310463 PMCID: PMC12067271 DOI: 10.1073/pnas.2502978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 d without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides against Coenzyme A synthase (Coasy) or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that Coenzyme A synthase knockdown and bempedoic acid are therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis.
Collapse
Affiliation(s)
- Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Rafael C. Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Ali R. Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Jie Zheng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Traci E. LaMoia
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Mateus T. Guerra
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Yuki Taki
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa deoxyribonucleic acid Research Institute, Chiba292-0818, Japan
| | - Dean Yimlamai
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06520
| | | | - Daniel F. Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf40225, Germany
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg85764, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg85764, Germany
- Institute for Pathobiochemistry, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf40225, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf40225, Germany
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg85764, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (Deutsches Diabetes-Zentrum), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf40225, Germany
- German Center for Diabetes Research (Deutsche Zentrum für Diabetesforschung e.V.), Partner Düsseldorf, München-Neuherberg85764, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Varman T. Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- West Haven Veterans Affairs Medical Center, West Haven, CT06516-2770
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba260-8670, Japan
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
3
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
4
|
Bansal B, Lajeunesse-Trempe F, Keshvani N, Lavie CJ, Pandey A. Impact of Metabolic Dysfunction-associated Steatotic Liver Disease on Cardiovascular Structure, Function, and the Risk of Heart Failure. Can J Cardiol 2025:S0828-282X(25)00315-0. [PMID: 40258400 DOI: 10.1016/j.cjca.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
Mounting evidence has established metabolic dysfunction-associated steatotic liver disease (MASLD) as an independent risk factor for heart failure (HF), particularly HF with preserved ejection fraction (HFpEF). In this narrative review we explore the impact of MASLD on cardiovascular structure and function. We summarize findings from multiple cohort studies demonstrating that MASLD is associated with distinct patterns of adverse cardiac remodeling, including increased left ventricular concentricity and impaired diastolic function. These subclinical changes in cardiac structure and function often precede overt HF development and appear to occur in the context of multiple interconnected pathways involving metabolic dysfunction, systemic inflammation, adipose tissue dysregulation, vascular dysfunction, and altered hepatic hemodynamics. Early identification of cardiac structural and functional abnormalities through systematic screening may enable timely intervention in this high-risk population. Lifestyle modifications remain foundational, but achieving and maintaining significant weight loss is challenging. Recent clinical trials have shown promising results with cardiometabolic agents, particularly glucagon-like protein 1 receptor agonists, which demonstrate significant weight loss and hepatic and cardiovascular benefits. Despite these advances, key knowledge gaps remain regarding optimal screening strategies, mechanisms linking MASLD to HF, and targeted therapeutic approaches. Addressing these gaps will be essential for developing effective prevention and treatment strategies in this high-risk population.
Collapse
Affiliation(s)
- Bhavik Bansal
- All India Institute of Medical Sciences, New Delhi, India; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fannie Lajeunesse-Trempe
- Department of Internal Medicine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Neil Keshvani
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Baylor Scott and White Research Institute, Dallas, Texas, USA; Baylor Scott & White The Heart Hospital, Plano, Texas, USA
| | - Carl J Lavie
- Department of Cardiovascular Diseases and Internal Medicine, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
5
|
Lindén D, Tesz G, Loomba R. Targeting PNPLA3 to Treat MASH and MASH Related Fibrosis and Cirrhosis. Liver Int 2025; 45:e16186. [PMID: 39605307 PMCID: PMC11907219 DOI: 10.1111/liv.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is caused by metabolic triggers and genetic predisposition. Among the genetic MASLD risk variants identified today, the common PNPLA3 148M variant exerts the largest effect size of MASLD heritability. The PNPLA3 148M protein is causatively linked to the development of liver steatosis, inflammation and fibrosis in experimental studies and is therefore an appealing target for therapeutic approaches to treat this disease. Several PNPLA3 targeted approaches are currently being evaluated in clinical trials for the treatment of metabolic dysfunction-associated steatohepatitis (MASH), the most severe form of MASLD and promising proof of principle data with reduced liver fat content in homozygous PNPLA3 148M risk allele carriers has been reported from phase 1 trials following hepatic silencing of PNPLA3. Thus, targeting PNPLA3, the strongest genetic determinant of MASH may hold promise as the first precision medicine for the treatment of this disease. A histological endpoint-based phase 2b study has been initiated and several more are expected to be initiated to evaluate treatment effects on histological MASH and liver fibrosis in participants being homozygous for the PNPLA3 148M risk allele variant. The scope of this mini-review is to briefly describe the PNPLA3 148M genetics, function and preclinical experimental evidence with therapeutic approaches targeting PNPLA3 as well as to summarise the PNPLA3 based therapies currently in clinical development.
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM)BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gregory Tesz
- Internal Medicine Research Unit, Discovery & Early DevelopmentPfizer Inc.CambridgeMassachusettsUSA
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and HepatologyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Gomonova VP, Raikhelson KL. [Cardiometabolic and genetic factors in the progression of metabolic dysfunction-associated steatotic liver disease]. TERAPEVT ARKH 2025; 97:149-156. [PMID: 40237751 DOI: 10.26442/00403660.2025.02.203203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 04/18/2025]
Abstract
AIM To evaluate the contribution of cardiometabolicfactors and PNPLA3 I148M (rs738409 C>G) gene polymorphism to the development of compensated advanced chronic liver disease (cACLD) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). MATERIALS AND METHODS 108 patients with MASLD were enrolled and formed the internal validation group; 30 patients with MASLD were selected for external validation. Anamnestic data, anthropometric and laboratory parameters and the presence of PNPLA3 gene polymorphism I148M (rs738409 C>G) were assessed. Steatosis was detected by assessing the controlled attenuation parameter. Liver elasticity was assessed by transient elastography. cACLD was detected when the liver stiffness was ≥8 kPa. RESULTS Statistically significant difference was observed in the internal validation group during comparison of the incidence of cACLD depending on the presence of arterial hypertension (odds ratio - OR 5.58; 95% confidence interval - CI 1.21-25.71), type 2 diabetes mellitus - T2DM (OR 4.58; 95% CI 1.59-13.21), obesity (OR 3.13; 95% CI 1.1-8.9), dyslipidemia (OR 6.12; 95% CI 1.33-28.19) and the mutant G allele of the PNPLA3 gene (OR 3.9; 95% CI 1.28-11.88). Patients with cACLD had significantly higher mean values of waist circumference (WC), alanine aminotransaminase, aspartate aminotransaminase, gamma-glutamyl transferase and triglycerides, non-invasive markers of steatosis and fibrosis. The compiled prognostic model demonstrated a direct relationship between the likelihood of developing cACLD and the presence of T2DM (adjusted odds ratio - AOR 3.28; 95% CI 0.62-17.33), dyslipidemia (AOR 5.89; 95% CI 1.21-28.67) and WC value (AOR 1.05; 95% CI 1.01-1.11). PNPLA3 I148M gene polymorphism did not significantly affect the development of late stages of the disease. External validation of the model showed its moderate diagnostic ability. CONCLUSION T2DM, dyslipidemia and WC values are the determining factors in the development of cACLD in patients with MASLD. The PNPLA3 I148M gene polymorphism has no leading importance for the development of the progressive course of MASLD in the studied cohort.
Collapse
|
7
|
Bayram S, Ülger Y. Association of PNPLA3 rs738409 C > G and rs2896019 T > G Polymorphisms with Nonalcoholic Fatty Liver Disease in a Turkish Population from Adıyaman Province. Genet Test Mol Biomarkers 2025; 29:63-73. [PMID: 40101239 DOI: 10.1089/gtmb.2024.0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Objectives: The purpose of this study was to investigate the effect of patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 C > G and rs2896019 T > G polymorphisms on genetic susceptibility to nonalcoholic fatty liver disease (NAFLD) in a Turkish population from Adıyaman province, located in the Southeast Anatolia Region of Turkey. Materials and Methods: This hospital-based molecular epidemiological case-control study analyzed the PNPLA3 rs738409 C > G and rs2896019 T > G polymorphisms in 335 NAFLD cases and 410 healthy controls. Genotype frequencies were determined using real-time polymerase chain reaction with the TaqMan assay. The association with NAFLD susceptibility was evaluated by calculating odds ratios (ORs) and 95% confidence intervals (CIs) using an unconditional logistic regression model. Results: We found that the PNPLA3 rs738409 C > G (CC vs. GG: OR = 1.90, 95% CI = 1.05-3.44) and rs2896019 T > G (TT vs. GG: OR = 3.24, 95% CI = 1.44-7.27) polymorphisms were linked to an increased risk of NAFLD in almost all genetic models (p < 0.05). In addition, the PNPLA3 Grs738409/Grs2896019 haplotype was associated with NAFLD development (p < 0.05). Significant differences in alanine aminotransferase and aspartate aminotransferase enzyme levels were observed across the genotypes of these polymorphisms (p < 0.05). Conclusion: This is the first study on PNPLA3 single nucleotide polymorphisms (SNPs) and NAFLD in the Turkish population of Adıyaman Province, Southeast Anatolia. Our findings suggest that the PNPLA3 rs738409 C > G and rs2896019 T > G polymorphisms, along with their haplotypes, may influence NAFLD susceptibility. Further independent studies with larger sample sizes and diverse populations are needed to confirm these results.
Collapse
Affiliation(s)
- Süleyman Bayram
- Faculty of Health Sciences, Department of Public Health Nursing, Adıyaman University, Adıyaman, Turkey
| | - Yakup Ülger
- Faculty of Medicine, Department of Gastroenterology, Çukurova University, Adana, Turkey
| |
Collapse
|
8
|
Kozlitina J, Sookoian S. Global Epidemiological Impact of PNPLA3 I148M on Liver Disease. Liver Int 2025; 45:e16123. [PMID: 39373119 PMCID: PMC11815610 DOI: 10.1111/liv.16123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased exponentially over the past three decades, in parallel with the global rise in obesity and type 2 diabetes. It is currently the most common cause of liver-related morbidity and mortality. Although obesity has been identified as a key factor in the increased prevalence of MASLD, individual differences in susceptibility are significantly influenced by genetic factors. PNPLA3 I148M (rs738409 C>G) is the variant with the greatest impact on the risk of developing progressive MASLD and likely other forms of steatotic liver disease. This variant is prevalent across the globe, with the risk allele (G) frequency exhibiting considerable variation. Here, we review the contribution of PNPLA3 I148M to global burden and regional differences in MASLD prevalence, focusing on recent evidence emerging from population-based sequencing studies and prevalence assessments. We calculated the population attributable fraction (PAF) as a means of quantifying the impact of the variant on MASLD. Furthermore, we employ quantitative trait locus (QTL) analysis to ascertain the associations between rs738409 and a range of phenotypic traits. This analysis suggests that these QTLs may underpin pleiotropic effects on extrahepatic traits. Finally, we outline potential avenues for further research and identify key areas for investigation in future studies.
Collapse
Affiliation(s)
- Julia Kozlitina
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Silvia Sookoian
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Clinical and Molecular Hepatology, Translational Health Research Center (CENITRES)Maimónides UniversityBuenos AiresArgentina
| |
Collapse
|
9
|
Sakuma I, Gaspar RC, Nasiri AR, Dufour S, Kahn M, Zheng J, LaMoia TE, Guerra MT, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner DF, Petersen KF, Huttasch M, Knebel B, Kahl S, Roden M, Samuel VT, Tanaka T, Shulman GI. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction-associated steatohepatitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640203. [PMID: 40060523 PMCID: PMC11888431 DOI: 10.1101/2025.02.25.640203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) represents a progressive form of steatotic liver disease which increases the risk for fibrosis and advanced liver disease. The accumulation of discrete species of bioactive lipids has been postulated to activate signaling pathways that promote inflammation and fibrosis. However, the key pathogenic lipid species is a matter of debate. We explored candidates using various dietary, molecular, and genetic models. Mice fed a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) developed steatohepatitis and manifested early markers of liver fibrosis associated with increased cholesterol content in liver lipid droplets within 5 days without any changes in total liver cholesterol content. Treating mice with antisense oligonucleotides (ASOs) against Coenzyme A synthase (Cosay) or treatment with bempedoic acid or atorvastatin decreased liver lipid droplet cholesterol content and prevented CDAHFD-induced MASH and the fibrotic response. All these salutary effects were abrogated with dietary cholesterol supplementation. Analysis of human liver samples demonstrated that cholesterol in liver lipid droplets was increased in humans with MASH and liver fibrosis and was higher in PNPLA3 I148M (variants rs738409) than in HSD17B13 variants (rs72613567). Together, these data identify cholesterol in liver lipid droplets as a critical mediator of MASH and demonstrate that COASY knockdown and bempedoic acid are novel therapeutic approaches to reduce liver lipid droplet cholesterol content and thereby prevent the development of MASH and liver fibrosis. Significance Statement Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis. The role of specific lipid species in its pathogenesis remains debated. Using dietary, molecular, and genetic models, we found that mice on a choline-deficient, high-fat diet (CDAHFD) developed steatohepatitis and early fibrosis, marked by increased cholesterol in liver lipid droplets within five days. Targeting COASY with antisense oligonucleotides or treating with bempedoic acid or atorvastatin reduced lipid droplet cholesterol and prevented MASH. However, dietary cholesterol supplementation negated these effects. Human liver samples confirmed elevated lipid droplet cholesterol in MASH and fibrosis, especially in PNPLA3 I148M carriers. These findings highlight cholesterol reduction as a potential MASH therapy.
Collapse
|
10
|
Pei Y, Goh GBB. Genetic Risk Factors for Metabolic Dysfunction-Associated Steatotic Liver Disease. Gut Liver 2025; 19:8-18. [PMID: 39774124 PMCID: PMC11736312 DOI: 10.5009/gnl240407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is the most common cause of liver disease, and its burden on health systems worldwide continues to rise at an alarming rate. MASLD is a complex disease in which the interactions between susceptible genes and the environment influence the disease phenotype and severity. Advances in human genetics over the past few decades have provided new opportunities to improve our understanding of the multiple pathways involved in the pathogenesis of MASLD. Notably, the PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 single nucleotide polymorphisms have been demonstrated to be robustly associated with MASLD development and disease progression. These genetic variants play crucial roles in lipid droplet remodeling, secretion of hepatic very low-density lipoprotein and lipogenesis, and understanding the biology has brought new insights to this field. This review discusses the current body of knowledge regarding these genetic drivers and how they can lead to development of MASLD, the complex interplay with metabolic factors such as obesity, and how this information has translated clinically into the development of risk prediction models and possible treatment targets.
Collapse
Affiliation(s)
- Yiying Pei
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
- Medicine Academic Clinical Program, Duke-National University of Singapore (Duke-NUS) Medical School, Singapore
| |
Collapse
|
11
|
Armisen J, Rauschecker M, Sarv J, Liljeblad M, Wernevik L, Niazi M, Knöchel J, Eklund O, Sandell T, Sherwood J, Bergenholm L, Hallén S, Wang S, Kamble P, Bhat M, Maxvall I, Wang Y, Lee RG, Bhanot S, Guo S, Romeo S, Lawitz E, Fjellström O, Lindén D, Blau JE, Loomba R. AZD2693, a PNPLA3 antisense oligonucleotide, for the treatment of MASH in 148M homozygous participants: Two randomized phase I trials. J Hepatol 2025:S0168-8278(25)00003-0. [PMID: 39798707 DOI: 10.1016/j.jhep.2024.12.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND & AIMS A common genetic variant (rs738409) encoding an isoleucine to methionine substitution at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single and multiple ascending dose studies. METHODS AZD2693 was assessed in 3D cultures of homozygous PNPLA3 148M primary human hepatocytes and mice expressing human PNPLA3. The single ascending dose study investigated 2-110 mg doses in overweight/mildly obese but otherwise healthy volunteers. The multiple ascending dose study investigated three monthly doses (25 mg, 50 mg and 80 mg) in participants with MRI-proton density fat fraction (MRI-PDFF) ≥7%. Changes in liver fat content were assessed at baseline, weeks 8 and 12 by MRI-PDFF. PNPLA3 mRNA and protein knockdown levels were evaluated for the 80 mg dose. RESULTS AZD2693 potently reduced PNPLA3 expression in human hepatocytes and livers of mice. Clinically, AZD2693 was generally well tolerated (no adverse events leading to discontinuation or treatment-related serious adverse events). Half-life was 14-33 days across investigated doses. A least-square mean liver PNPLA3 mRNA knockdown of 89% and reduction of protein levels demonstrated target engagement. Changes in hepatic steatosis at week 12 were -7.6% and -12.2% (placebo-corrected least-square means) for the 25 mg and 50 mg doses, respectively. There was a dose-dependent increase of polyunsaturated fatty acids in serum triglycerides and decreases vs. placebo in high-sensitivity C-reactive protein and interleukin 6. CONCLUSIONS AZD2693 reduced liver PNPLA3 with an acceptable safety and tolerability profile. These findings support the continued development of AZD2693. IMPACT AND IMPLICATIONS Clinical treatment options for metabolic dysfunction-associated steatohepatitis (MASH) are limited. The genetic risk factor with the largest effect size for progressing to poor liver-related outcomes in MASH is a single-nucleotide polymorphism in the gene PNPLA3 (p.I148M). In phase I single and multiple ascending dose studies, AZD2693, a liver-targeted antisense oligonucleotide, was well tolerated, reduced liver PNPLA3 mRNA and protein levels, and dose-dependently reduced liver fat content in homozygous PNPLA3 148M risk allele carriers. These data support continued development of AZD2693 as a potential precision medicine treatment for MASH. The phase IIb FORTUNA study is now ongoing. CLINICAL TRIAL NUMBER NCT04142424, NCT04483947.
Collapse
Affiliation(s)
- Javier Armisen
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Cambridge, UK
| | - Mitra Rauschecker
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Janeli Sarv
- Late Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mathias Liljeblad
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Wernevik
- Clinical Operations, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Mohammad Niazi
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Olof Eklund
- Global Patient Safety, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Therése Sandell
- Global Patient Safety, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - James Sherwood
- Precision Medicine and Biosamples, Diagnostic and HBS Science, Biopharma Diagnostics, Oncology, R&D, AstraZeneca, Cambridge, UK
| | - Linnéa Bergenholm
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefan Hallén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shan Wang
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prasad Kamble
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maria Bhat
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gothenburg, Sweden
| | - Yixin Wang
- Image Analysis & Platform, Pathology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | | | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ola Fjellström
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny E Blau
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals, R&D, AstraZeneca, Gaithersburg, MD, USA.
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Singla B. Fanlian Huazhuo Formula: A promising herbal preparation for metabolic liver disease. World J Gastroenterol 2024; 30:4964-4968. [PMID: 39679304 PMCID: PMC11612710 DOI: 10.3748/wjg.v30.i46.4964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased significantly in recent decades and is projected to increase further due to the rising obesity rates. MASLD patients are at higher risk of developing advanced liver diseases "cirrhosis and hepatocellular carcinoma" as well as liver- or cardiovascular-related mortality. Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients. Therefore, there is an urgent need for pharmacotherapies that can control and even reverse this disease. Fanlian Huazhuo Formula (FLHZF) is a combination herbal preparation, and its various individual constituents regulate hepatic lipid metabolism, adipose tissue inflammation, and gut microbiota. Despite, these useful effects, limited information is available on its benefits in diet-induced hepatosteatosis. In this article, we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms. Utilizing a series of in vitro and in vivo experiments, the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death. This study paves the way for future investigations aimed at investigating FLHZF's role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate, and governing hepatocyte mitochondrial function, gut microbiome profile, and its effects in other models of MASLD, and female mice.
Collapse
Affiliation(s)
- Bhupesh Singla
- Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38103, United States
| |
Collapse
|
13
|
Chalasani N, Vilar-Gomez E, Loomba R, Yates KP, Diehl AM, Neuschwander-Tetri BA, Dasarathy S, Kowdley KV, Terrault N, Wilson LA, Tonascia J, Sanyal A. PNPLA3 rs738409, age, diabetes, sex, and advanced fibrosis jointly contribute to the risk of major adverse liver outcomes in metabolic dysfunction-associated steatotic liver disease. Hepatology 2024; 80:1212-1226. [PMID: 38652636 PMCID: PMC11798878 DOI: 10.1097/hep.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS The patatin-like phospholipase domain-containing protein 3 ( PNPLA3 ) rs738409 variant is associated with steatotic liver disease and its progression. We examined the association between PNPLA3 and the development of major adverse liver outcomes (MALOs) and how nonmodifiable and modifiable conditions modify this relationship. APPROACH AND RESULTS A total of 2075 adults with biopsy-confirmed metabolic dysfunction-associated steatotic liver disease (MASLD) were enrolled in the metabolic dysfunction-associated steatohepatitis Clinical Research Network (MASH CRN) studies and followed prospectively until death, transplant, or withdrawal of consent. One hundred four MALOs were recorded during an average of 4.3 years. PNPLA3 G-allele (Adj. sub-hazard ratio (sHR): 1.4, 95% CI: 1.07-1.8), advanced fibrosis (AF) (Adj. sHR: 7.8, 95% CI: 4.4-13.8), age >60 years (Adj. sHR: 2.9, 95% CI: 1.3-6.8), and type 2 diabetes mellitus (Adj. sHR: 2.8, 95% CI: 1.8-4.2) were associated with MALO. Among participants with AF, those carrying the G-allele displayed the highest cumulative incidence of MALO (85%) versus noncarriers (53%), p =0.03, and p -value for interaction <0.01. The strength of the association between PNPLA3 and MALO was statistically significantly greater among older than 60 years (sHR: 2.1, 95% CI: 1.5-2.8), women (sHR: 1.4, 95% CI: 1.1-1.9), and those with AF (sHR: 1.9, 95% CI: 1.5-2.4) or type 2 diabetes mellitus (sHR: 2.1, 95% CI: 1.5-2.8) as compared with their counterparts, p -value for interaction between PNPLA3 and each factor<0.01. CONCLUSIONS The deleterious effects of PNPLA3 rs738409 on the risk of MALO are significantly worsened by AF, age, type 2 diabetes mellitus, and sex.
Collapse
Affiliation(s)
- Naga Chalasani
- Division of Gastroenterology, and Hepatology, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology, and Hepatology, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, and Hepatology, University of California, San Diego School of Medicine, La Jolla, CA
| | | | - Anna Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | - Norah Terrault
- Division of Gastrointestinal and Liver Diseases, University of Southern California, Los Angeles, California
| | - Laura A. Wilson
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - James Tonascia
- Department of Biostatistics and Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Arun Sanyal
- Division of Gastroenterology, and Hepatology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
14
|
Wongtrakul W, Niltwat S, Charatcharoenwitthaya N, Karaketklang K, Charatcharoenwitthaya P. Global prevalence of advanced fibrosis in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Gastroenterol Hepatol 2024; 39:2299-2307. [PMID: 38923137 PMCID: PMC11618287 DOI: 10.1111/jgh.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Patients with type 2 diabetes mellitus (T2DM) face a heightened susceptibility to advanced fibrosis, a condition linked to adverse clinical outcomes. However, reported data on liver fibrosis severity among individuals with T2DM vary significantly across studies with diverse characteristics. This meta-analysis aimed to estimate the global prevalence of advanced fibrosis among T2DM patients. METHODS A comprehensive systematic search of the EMBASE and MEDLINE databases from inception to November 2022 was conducted to identify studies assessing advanced fibrosis in individuals with T2DM. Random-effects models were utilized to calculate point estimates of prevalence, accompanied by 95% confidence interval (CI). Meta-regression with subgroup analysis was employed to address heterogeneity. RESULTS We identified 113 eligible studies involving 244,858 individuals from 29 countries. Globally, the prevalence of advanced fibrosis among T2DM patients was 19.5% (95% CI 16.8-22.4%). Regionally, the prevalence rates were as follows: 60.5% in West Asia (95% CI 50.3-70.4%), 24.4% in South Asia (95% CI 16.2-33.7%), 20.1% in East Asia (95% CI 14.7-26.1%), 20.0% in Europe (95% CI 15.8-24.6%), 15.8% in North America (95% CI 11.0-21.3%), and 11.3% in South America (95% CI 6.2-17.5%). The prevalence of advanced fibrosis varied notably based on the study setting and diagnostic methodology employed. Meta-regression models highlighted that 45.13% of the observed heterogeneity could be attributed to combined diagnostic modality and study setting. CONCLUSIONS Globally, approximately one fifth of the T2DM population presents advanced fibrosis, with prevalence differing across geographical regions. Our findings underscore the need for effective strategies to alleviate its global burden.
Collapse
Affiliation(s)
- Wasit Wongtrakul
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Sorachat Niltwat
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Division of Gastroenterology, Department of Medicine, Panyananthaphikkhu Chonprathan Medical CenterSrinakharinwirot UniversityNonthaburiThailand
| | | | - Khemajira Karaketklang
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Phunchai Charatcharoenwitthaya
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
15
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
16
|
Giangregorio F, Mosconi E, Debellis MG, Provini S, Esposito C, Garolfi M, Oraka S, Kaloudi O, Mustafazade G, Marín-Baselga R, Tung-Chen Y. A Systematic Review of Metabolic Syndrome: Key Correlated Pathologies and Non-Invasive Diagnostic Approaches. J Clin Med 2024; 13:5880. [PMID: 39407941 PMCID: PMC11478146 DOI: 10.3390/jcm13195880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Metabolic syndrome (MetS) is a condition marked by a complex array of physiological, biochemical, and metabolic abnormalities, including central obesity, insulin resistance, high blood pressure, and dyslipidemia (characterized by elevated triglycerides and reduced levels of high-density lipoproteins). The pathogenesis develops from the accumulation of lipid droplets in the hepatocyte (steatosis). This accumulation, in genetically predisposed subjects and with other external stimuli (intestinal dysbiosis, high caloric diet, physical inactivity, stress), activates the production of pro-inflammatory molecules, alter autophagy, and turn on the activity of hepatic stellate cells (HSCs), provoking the low grade chronic inflammation and the fibrosis. This syndrome is associated with a significantly increased risk of developing type 2 diabetes mellitus (T2D), cardiovascular diseases (CVD), vascular, renal, pneumologic, rheumatological, sexual, cutaneous syndromes and overall mortality, with the risk rising five- to seven-fold for T2DM, three-fold for CVD, and one and a half-fold for all-cause mortality. The purpose of this narrative review is to examine metabolic syndrome as a "systemic disease" and its interaction with major internal medicine conditions such as CVD, diabetes, renal failure, and respiratory failure. It is essential for internal medicine practitioners to approach this widespread condition in a "holistic" rather than a fragmented manner, particularly in Western countries. Additionally, it is important to be aware of the non-invasive tools available for assessing this condition. Materials and Methods: We conducted an exhaustive search on PubMed up to July 2024, focusing on terms related to metabolic syndrome and other pathologies (heart, Lung (COPD, asthma, pulmonary hypertension, OSAS) and kidney failure, vascular, rheumatological (osteoarthritis, rheumatoid arthritis), endocrinological, sexual pathologies and neoplastic risks. The review was managed in accordance with the PRISMA statement. Finally, we selected 300 studies (233 papers for the first search strategy and 67 for the second one). Our review included studies that provided insights into metabolic syndrome and non-invasive techniques for evaluating liver fibrosis and steatosis. Studies that were not conducted on humans, were published in languages other than English, or did not assess changes related to heart failure were excluded. Results: The findings revealed a clear correlation between metabolic syndrome and all the pathologies above described, indicating that non-invasive assessments of hepatic fibrosis and steatosis could potentially serve as markers for the severity and progression of the diseases. Conclusions: Metabolic syndrome is a multisystem disorder that impacts organs beyond the liver and disrupts the functioning of various organs. Notably, it is linked to a higher incidence of cardiovascular diseases, independent of traditional cardiovascular risk factors. Non-invasive assessments of hepatic fibrosis and fibrosis allow clinicians to evaluate cardiovascular risk. Additionally, the ability to assess liver steatosis may open new diagnostic, therapeutic, and prognostic avenues for managing metabolic syndrome and its complications, particularly cardiovascular disease, which is the leading cause of death in these patients.
Collapse
Affiliation(s)
- Francesco Giangregorio
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Emilio Mosconi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Maria Grazia Debellis
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Stella Provini
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Ciro Esposito
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Matteo Garolfi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Simona Oraka
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Olga Kaloudi
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Gunel Mustafazade
- Department of Internal Medicine, Codogno Hospital, Via Marconi 1, 26900 Codogno, Italy; (F.G.); (E.M.); (M.G.D.); (S.P.); (C.E.); (M.G.); (S.O.); (G.M.)
| | - Raquel Marín-Baselga
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| | - Yale Tung-Chen
- Department of Internal Medicine, Hospital Universitario La Paz, Paseo Castellana 241, 28046 Madrid, Spain;
| |
Collapse
|
17
|
Gandhe A, Kumari S, Elizabeth Sobhia M. Rational design of FXR agonists: a computational approach for NASH therapy. Mol Divers 2024; 28:3363-3376. [PMID: 38055145 DOI: 10.1007/s11030-023-10766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome, posing risks to cardiovascular and hepatic health worldwide. Non-alcoholic steatohepatitis (NASH) which is a severe form of NAFLD, has a global prevalence. Therapeutic targets for NASH include THR-β, GLP-1 receptor, PPARα/δ/γ, FGF21 analogs, and FXR, a bile acid nuclear receptor pivotal for regulating bile acid synthesis and excretion. Our study aims to design the non-steroidal FXR agonist for NASH treatment, as FXR's role in the regulation of bile acid processes, rendering it a promising drug target for NASH therapy. Utilizing tropifexor as a reference molecule, we generated a shape-based pharmacophore model with seven features, identifying key binding requirements within the FXR active site. Virtual screening using this model, coupled with molecular docking studies, helped pinpoint potential ligands from diverse small molecule databases. Further analysis via MM/GBSA revealed 12 molecules with binding affinities comparable to tropifexor. Among them, DB15416 exhibited the lowest binding free energy and superior docking scores. To assess its dynamic stability, we subjected DB15416 to molecular dynamics simulations, confirming its suitability as a FXR agonist. These findings suggest that DB15416 holds promise as a FXR agonist for NASH treatment, which can be evaluated by experimental studies.
Collapse
Affiliation(s)
- Akshata Gandhe
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India
| | - Masilamani Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab, 166062, India.
| |
Collapse
|
18
|
Ahmad R, Haque M. Metformin: Beyond Type 2 Diabetes Mellitus. Cureus 2024; 16:e71730. [PMID: 39421288 PMCID: PMC11486535 DOI: 10.7759/cureus.71730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Metformin was developed from an offshoot of Guanidine. It is known to be the first-line medication for type 2 diabetes mellitus, polycystic ovarian syndrome, and weight reduction. Metformin has also been shown to have effectiveness in the management of non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and various carcinomas like hepatocellular, colorectal, prostate, breast, urinary bladder, blood, melanoma, bone, skin, lung and so on. This narrative review focuses on the effect of metformin on non-alcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma. The search platforms for the topic were PubMed, Scopus, and Google search engine. Critical words for searching included 'Metformin,' AND 'Indications of Metformin,' AND 'Non-Alcoholic Fatty Liver Disease,' AND 'Metformin mechanism of action,' AND 'NAFLD management,' AND 'NAFLD and inflammation,' AND 'Metformin and insulin,' AND 'Metformin and inflammation,' AND 'Liver cirrhosis,' AND 'Hepatocellular carcinoma.' Lifestyle modification and the use of hypoglycemic agents can help improve liver conditions. Metformin has several mechanisms that enhance liver health, including reducing reactive oxygen species, nuclear factor kappa beta (NF-κB), liver enzymes, improving insulin sensitivity, and improving hepatic cell lipophagy. Long-term use of metformin may cause some adverse effects like lactic acidosis and gastrointestinal disturbance. Metformin long-term overdose may lead to a rise in hydrogen sulfide in liver cells, which calls for pharmacovigilance. Drug regulating authorities should provide approval for further research, and national and international guidelines need to be developed for liver diseases, perhaps with the inclusion of metformin as part of the management regime.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
19
|
Gomonova VP, Raikhelson KL, Pazenko EV, Prashnova MK, Lapin SV, Nazarov VD, Sidorenko DV. Compensated advanced chronic liver disease in patients with metabolic dysfunction-associated steatotic liver disease: association with cardiometabolic factors. SECHENOV MEDICAL JOURNAL 2024; 15:15-25. [DOI: 10.47093/2218-7332.2024.1075.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim. Тo study cardiometabolic factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism in association with the compensated advanced chronic liver disease (cACLD) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).Materials and methods. А retrospective cross-sectional study was conducted. The total of 108 patients with MASLD (33 men and 75 women aged 28 to 89 years) involved were divided into two groups based on results of transient elastography: group 1 – with the presence of cACLD (liver stiffness ≥ 8.0 kPa) – 18 patients and group 2 – without cACLD (<8.0 kPa) – 90 patients. Cardiometabolic risk factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism were studied in both groups. Odds ratios (OR) and 95% confidence intervals (CI) were calculated, and a logistic regression model was constructed for the detection of cACLD.Results. Compared to group 2, patients with cACLD had statistically significant higher prevalence of: arterial hypertension (p < 0.05), type 2 diabetes mellitus (p < 0.01), obesity (p < 0.05), dyslipidemia (p < 0.05), and PNPLA3 gene polymorphism (p < 0.05). The OR for cACLD in individuals with arterial hypertension was 5.58 (95% CI: 1.21–25.71; p < 0.05), with type 2 diabetes mellitus – 4.58 (95% CI: 1.59–13.21; p < 0.01), with obesity – 3.83 (95% CI: 1.17–12.52; p < 0.05), with dyslipidemia – 6.12 (95% CI: 1.33–28.20; p < 0.05), in the presence of a polymorphic variant of the PNPLA3 gene in a hetero or homozygous state – 3.9 (95% CI: 1.28–11.89; p < 0.05). The binary logistic regression model for detecting cACLD included type 2 diabetes mellitus, dyslipidemia, and waist circumference. The area under the ROC curve was 0.81 (95% CI: 0.70–0.92), sensitivity was 72.2%, specificity was 74.4%, and accuracy was 84.3%.Conclusion. Type 2 diabetes mellitus, dyslipidemia, and waist circumference are the determining factors for the development of cACLD in patients with MASLD. The PNPLA3 I148M gene polymorphism does not play a leading role in the development of progressive MASLD in the study cohort.
Collapse
Affiliation(s)
| | | | | | | | - S. V. Lapin
- Pavlov First Saint Petersburg State Medical University
| | - V. D. Nazarov
- Pavlov First Saint Petersburg State Medical University
| | | |
Collapse
|
20
|
Amini-Salehi E, Letafatkar N, Norouzi N, Joukar F, Habibi A, Javid M, Sattari N, Khorasani M, Farahmand A, Tavakoli S, Masoumzadeh B, Abbaspour E, Karimzad S, Ghadiri A, Maddineni G, Khosousi MJ, Faraji N, Keivanlou MH, Mahapatro A, Gaskarei MAK, Okhovat P, Bahrampourian A, Aleali MS, Mirdamadi A, Eslami N, Javid M, Javaheri N, Pra SV, Bakhsi A, Shafipour M, Vakilpour A, Ansar MM, Kanagala SG, Hashemi M, Ghazalgoo A, Kheirandish M, Porteghali P, Heidarzad F, Zeinali T, Ghanaei FM, Hassanipour S, Ulrich MT, Melson JE, Patel D, Nayak SS. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis comprising a Population of 78 million from 38 Countries. Arch Med Res 2024; 55:103043. [PMID: 39094335 DOI: 10.1016/j.arcmed.2024.103043] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a global health challenge, with a rising rate in line with other metabolic diseases. We aimed to assess the global prevalence of NAFLD in adult and pediatric populations. METHODS PubMed, Scopus and Web of Science databases were systematically searched up to May 2023. Heterogeneity was assessed using Cochran's Q test and I2 statistics, and random-effects model was used for meta-analysis. Analyses were performed using STATA version 18. RESULTS A total of 479 studies with 78,001,755 participants from 38 countries were finally included. The global prevalence of NAFLD was estimated to be 30.2% (95% CI: 28.7-31.7%). Regionally, the prevalence of NAFLD was as follows: Asia 30.9% (95% CI: 29.2-32.6%), Australia 16.1% (95% CI: 9.0-24.8%), Europe 30.2% (95% CI: 25.6-35.0%), North America 29% (95% CI: 25.8-32.3%), and South America 34% (95% CI: 16.9-53.5%). Countries with a higher human development index (HDI) had significantly lower prevalence of NAFLD (coefficient = -0.523, p = 0.005). Globally, the prevalence of NAFLD in men and women was 36.6% (95% CI: 34.7-38.4%) and 25.5% (95% CI: 23.9-27.1%), respectively. The prevalence of NAFLD in adults, adults with obesity, children, and children with obesity was 30.2% (95% CI: 28.8-31.7%), 57.5% (95% CI: 43.6-70.9%), 14.3% (95% CI: 10.3-18.8%), and 38.0% (95% CI: 31.5-44.7%), respectively. CONCLUSION The prevalence of NAFLD is remarkably high, particularly in countries with lower HDI. This substantial prevalence in both adults and children underscores the need for disease management protocols to reduce the burden.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mona Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrdad Khorasani
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Farahmand
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Shervin Tavakoli
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Behnaz Masoumzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Elaheh Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Radiology, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghadiri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gautam Maddineni
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Mohammad Javad Khosousi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Abinash Mahapatro
- Department of Internal Medicine, Hi-Tech Medical College and Hospital, Rourkela, Odisha, India
| | | | - Paria Okhovat
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Bahrampourian
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arian Mirdamadi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohamadreza Javid
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Naz Javaheri
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Arash Bakhsi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shafipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Azin Vakilpour
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Malek Moein Ansar
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Biochemistry and Medical Physics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohamad Hashemi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arezoo Ghazalgoo
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Kheirandish
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parham Porteghali
- Department of Internal Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Forough Heidarzad
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Taraneh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Michael T Ulrich
- Department of Internal Medicine, Riverside University Health System Medical Center, Moreno Valley, CA, USA
| | - Joshua E Melson
- Division of Gastroenterology, Department of Medicine, University of Arizona Medical Center-Banner Health, Tucson, AZ, USA
| | - Dhruvan Patel
- Division of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
21
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
22
|
Somabattini RA, Sherin S, Siva B, Chowdhury N, Nanjappan SK. Unravelling the complexities of non-alcoholic steatohepatitis: The role of metabolism, transporters, and herb-drug interactions. Life Sci 2024; 351:122806. [PMID: 38852799 DOI: 10.1016/j.lfs.2024.122806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a mainstream halting liver disease with high prevalence in North America, Europe, and other world regions. It is an advanced form of NAFLD caused by the amassing of fat in the liver and can progress to the more severe form known as non-alcoholic steatohepatitis (NASH). Until recently, there was no authorized pharmacotherapy reported for NASH, and to improve the patient's metabolic syndrome, the focus is mainly on lifestyle modification, weight loss, ensuring a healthy diet, and increased physical activity; however, the recent approval of Rezdiffra (Resmetirom) by the US FDA may change this narrative. As per the reported studies, there is an increased articulation of uptake and efflux transporters of the liver, including OATP and MRP, in NASH, leading to changes in the drug's pharmacokinetic properties. This increase leads to alterations in the pharmacokinetic properties of drugs. Furthermore, modifications in Cytochrome P450 (CYP) enzymes can have a significant impact on these properties. Xenobiotics are metabolized primarily in the liver and constitute liver enzymes and transporters. This review aims to delve into the role of metabolism, transport, and potential herb-drug interactions in the context of NASH.
Collapse
Affiliation(s)
- Ravi Adinarayan Somabattini
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Sahla Sherin
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Bhukya Siva
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Neelanjan Chowdhury
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, West Bengal, India.
| |
Collapse
|
23
|
Chang ML, Tai J, Cheng JS, Chen WT, Yang SS, Chiu CH, Chien RN. Factors associated with treatment responses to pioglitazone in patients with steatotic liver disease: A 3-year prospective cohort study. Diabetes Obes Metab 2024; 26:2969-2978. [PMID: 38685616 DOI: 10.1111/dom.15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
AIM The response rate to pioglitazone and the predictive factors for its effects on improving liver biochemistry in patients with steatotic liver disease (SLD) remain elusive, so we aimed to investigate these issues. METHODS A 3-year prospective cohort study of 126 Taiwanese patients with SLD treated with pioglitazone (15-30 mg/day) was conducted. Phospholipase domain-containing protein 3 I148M rs738409, methylenetetrahydrofolate reductase rs1801133, aldehyde dehydrogenase 2 (ALDH2) rs671 and lipoprotein lipase rs10099160 single nucleotide polymorphisms were assessed in the patients. RESULTS Of 126 patients, 78 (61.9%) were men, and the mean and median ages were 54.3 and 56.5 years, respectively. Pioglitazone responders were defined as those with decreased alanine aminotransferase (ALT) levels at 6 months post-treatment, and 105 (83.3%) patients were responders. Compared with non-responders, responders were more frequently women and had higher baseline ALT levels. The proportion of patients with the ALDH2 rs671 GG genotype was lower among responders (38.6% vs. 66.6%, p = .028). Female sex [odds ratio (OR): 4.514, p = .023] and baseline ALT level (OR: 1.015, p = .046; cut-off level: ≥82 U/L) were associated with pioglitazone response. Among responders, the liver biochemistry and homeostasis model assessment of insulin resistance improved from 6 to 24 months post-treatment. The total cholesterol levels decreased within 6 months, while increases in high-density lipoprotein cholesterol levels and decreases in triglyceride levels and fibrosis-4 scores were noted only at 24 months post-treatment. The 2-year cumulative incidences of cardiovascular events, cancers and hepatic events were similar between responders and non-responders. CONCLUSIONS Regarding liver biochemistry, over 80% of Taiwanese patients with SLD had a pioglitazone response, which was positively associated with female sex and baseline ALT levels. Insulin resistance improved as early as 6 months post-treatment, while liver fibrosis improvement was not observed until 24 months post-treatment. The link between the pioglitazone response and the ALDH2 genotype warrants further investigation.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jennifer Tai
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jur-Shan Cheng
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rong-Nan Chien
- Department of Medicine, College of Medicine, Chang Gung University at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
24
|
Bril F, Kalavalapalli S, Lomonaco R, Frye R, Godinez Leiva E, Cusi K. Insulin resistance is an integral feature of MASLD even in the presence of PNPLA3 variants. JHEP Rep 2024; 6:101092. [PMID: 39022386 PMCID: PMC11252529 DOI: 10.1016/j.jhepr.2024.101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
Background & Aims It has been postulated that carriers of PNPLA3 I148M (CG [Ile/Met] or GG [Met/Met]) develop metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance or metabolic syndrome. However, the relationship between insulin resistance and MASLD according to the PNPLA3 allele has not been carefully assessed. Methods A total of 204 participants were recruited and underwent PNPLA3 genotyping, an oral glucose tolerance test, liver proton magnetic resonance spectroscopy and percutaneous liver biopsy if diagnosed with MASLD. A subgroup of patients (n = 55) had an euglycemic hyperinsulinemic clamp with glucose tracer infusion. Results As expected, patients with the CG/GG genotype had worse intrahepatic triglyceride content and worse liver histology. However, regardless of PNPLA3 genotype, patients with a diagnosis of MASLD had severe whole-body insulin resistance (Matsuda index, an estimation of insulin resistance in glucose metabolic pathways) and fasting and postprandial adipose tissue insulin resistance (Adipo-IR index and free fatty acid suppression during the oral glucose tolerance test, respectively, as measures of insulin resistance in lipolytic metabolic pathways) compared to patients without MASLD. Moreover, for the same amount of liver fat accumulation, insulin resistance was similar in patients with genotypes CC vs. CG/GG. In multiple regression analyses, A1c and Adipo-IR were associated with the presence of MASLD and advanced liver fibrosis, independently of PNPLA3 genotype. Conclusions PNPLA3 variant carriers with MASLD are equally insulin resistant as non-carriers with MASLD at the level of the liver, muscle, and adipose tissue. This calls for reframing "PNPLA3 MASLD" as an insulin-resistant condition associated with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes, wherein early identification and aggressive intervention are warranted to reverse metabolic dysfunction and prevent disease progression. Impact and implications It has been proposed that the PNPLA3 G allele is associated with the presence of metabolic dysfunction-associated steatotic liver disease (MASLD) in the absence of insulin resistance. However, our results suggest that regardless of PNPLA3 alleles, the presence of insulin resistance is necessary for the development of MASLD. This calls for reframing patients with "PNPLA3 MASLD" not as insulin sensitive, but on the contrary, as an insulin-resistant population with increased hepatic susceptibility to metabolic insults, such as obesity or diabetes.
Collapse
Affiliation(s)
- Fernando Bril
- Division of Endocrinology, Diabetes and Metabolism, University of Alabama at Birmingham. 510 20 Street South, FOT 825A, 35233, Birmingham, AL, USA
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Srilaxmi Kalavalapalli
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Romina Lomonaco
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Reginald Frye
- Center for Pharmacogenomics, University of Florida, Gainesville, FL, USA; Currently at College of Pharmacy, University of Tennessee Health Science Center, USA
| | - Eddison Godinez Leiva
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, FL, USA. 1600 Archer Road, Room H2, 32610, Gainesville, FL, USA
| |
Collapse
|
25
|
Stine JG, Medic N, Pettersson B, Venerus M, Blau JE. The health care experience of adults with metabolic dysfunction-associated steatohepatitis and influence of PNPLA3: A qualitative study. Hepatol Commun 2024; 8:e0451. [PMID: 38780312 PMCID: PMC11124700 DOI: 10.1097/hc9.0000000000000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of metabolic dysfunction-associated steatotic liver disease, for which there is limited information about patient experience, including the patient journey. METHODS In this study, we conducted interviews with patients with MASH to qualitatively evaluate the patient journey and help elucidate the experiences of this patient population. We also investigated if the patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M variant (non-Hispanic) or being of Hispanic ethnicity may influence patient experiences because these 2 subgroups develop advanced liver disease more frequently than other patient groups. RESULTS One-to-one interviews were conducted with 28 adults (with PNPLA3 I148M genetic variant, n = 10; Hispanic, n = 8) living in the United States who had been diagnosed with MASH with liver fibrosis. Patients were asked open-ended questions about their experiences before, at, and after their diagnosis. The data collected found that patients experienced a long process of misdiagnoses before their diagnosis of MASH, a lack of clear information provided by clinicians, and limited accessibility to support groups. Hispanic patients reported "impact on family/friends" (75%) and "fear of disease progression" (75%) more frequently than the other patient cohorts interviewed. This is the first report of "fear of progression" in patients with MASH. No patients who were White and had the PNPLA3 I148M variant reported nausea/vomiting, in contrast to other patient cohorts. CONCLUSIONS This qualitative study identified key aspects of the patient journey that are important for clinical providers and medical teams to recognize. We also propose a new algorithm that could be developed to help screen relatives of patients who are found to carry the PNPLA3 I148M variant.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, The Pennsylvania State University Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Fatty Liver Program, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Liver Center, The Pennsylvania State University Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Cancer Institute, The Pennsylvania State University-Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Nenad Medic
- Patient Centered Science, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Billie Pettersson
- Patient Centered Science, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals Medical, AstraZeneca, Gothenburg, Sweden
| | | | - Jenny E. Blau
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
26
|
Lee Y, Cho EJ, Choe EK, Kwak MS, Yang JI, Oh SW, Yim JY, Chung GE. Genome-wide association study of metabolic dysfunction-associated fatty liver disease in a Korean population. Sci Rep 2024; 14:9753. [PMID: 38679617 PMCID: PMC11056367 DOI: 10.1038/s41598-024-60152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Genome-wide association studies have identified several genetic variants associated with nonalcoholic fatty liver disease. To emphasize metabolic abnormalities in fatty liver, metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been introduced; thus, we aimed to investigate single-nucleotide polymorphisms related to MAFLD and its subtypes. A genome-wide association study was performed to identify genetic factors related to MAFLD. We used a Korean population-based sample of 2282 subjects with MAFLD and a control group of 4669. We replicated the results in a validation sample which included 639 patients with MAFLD and 1578 controls. Additionally, we categorized participants into three groups, no MAFLD, metabolic dysfunction (MD)-MAFLD, and overweight/obese-MAFLD. After adjusting for age, sex, and principal component scores, rs738409 [risk allele G] and rs3810622 [risk allele T], located in the PNPLA3 gene, showed significant associations with MAFLD (P-values, discovery set = 1.60 × 10-15 and 4.84 × 10-10; odds ratios, 1.365 and 1.284, validation set = 1.39 × 10-4, and 7.15 × 10-4, odds ratios, 1.299 and 1.264, respectively). An additional SNP rs59148799 [risk allele G] located in the GATAD2A gene showed a significant association with MAFLD (P-values, discovery set = 2.08 × 10-8 and validation set = 0.034, odds ratios, 1.387 and 1.250). rs738409 was significantly associated with MAFLD subtypes ([overweight/obese-MAFLD; odds ratio (95% confidence interval), P-values, 1.515 (1.351-1.700), 1.43 × 10-12 and MD-MAFLD: 1.300 (1.191-1.416), 2.90 × 10-9]. There was a significant relationship between rs3810622 and overweight/obese-MAFLD and MD-MAFLD [odds ratios (95% confidence interval), P-values, 1.418 (1.258, 1.600), 1.21 × 10-8 and 1.225 (1.122, 1.340), 7.06 × 10-6, respectively]; the statistical significance remained in the validation set. PNPLA3 was significantly associated with MAFLD and MAFLD subtypes in the Korean population. These results indicate that genetic factors play an important role in the pathogenesis of MAFLD.
Collapse
Affiliation(s)
- Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
- Department of Applied Statistics, Chung-Ang University, Seoul, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Kyung Choe
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Min-Sun Kwak
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Jong In Yang
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Seung-Won Oh
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
- Department of Family Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Yoon Yim
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Goh Eun Chung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Iwaki M, Fujii H, Hayashi H, Toyoda H, Oeda S, Hyogo H, Kawanaka M, Morishita A, Munekage K, Kawata K, Tsutsumi T, Sawada K, Maeshiro T, Tobita H, Yoshida Y, Naito M, Araki A, Arakaki S, Kawaguchi T, Noritake H, Ono M, Masaki T, Yasuda S, Tomita E, Yoneda M, Tokushige A, Kamada Y, Takahashi H, Ueda S, Aishima S, Sumida Y, Nakajima A, Okanoue T, Japan Study Group of Nonalcoholic Fatty Liver Disease (JSG-NAFLD). Prognosis of biopsy-confirmed metabolic dysfunction- associated steatotic liver disease: A sub-analysis of the CLIONE study. Clin Mol Hepatol 2024; 30:225-234. [PMID: 38263684 PMCID: PMC11016478 DOI: 10.3350/cmh.2023.0515] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) was recently proposed as an alternative disease concept to nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the prognosis of patients with biopsy-confirmed MASLD using data from a multicenter study. METHODS This was a sub-analysis of the Clinical Outcome Nonalcoholic Fatty Liver Disease (CLIONE) study that included 1,398 patients with NAFLD. Liver biopsy specimens were pathologically diagnosed and histologically scored using the NASH Clinical Research Network system, the FLIP algorithm, and the SAF score. Patients who met at least one cardiometabolic criterion were diagnosed with MASLD. RESULTS Approximately 99% of cases (n=1,381) were classified as MASLD. Patients with no cardiometabolic risk (n=17) had a significantly lower BMI than patients with MASLD (20.9 kg/m2 vs. 28.0 kg/m2, P<0.001), in addition to significantly lower levels of inflammation, ballooning, NAFLD activity score, and fibrosis stage based on liver histology. These 17 patients had a median follow-up of 5.9 years, equivalent to 115 person-years, with no deaths, liver-related events, cardiovascular events, or extrahepatic cancers. The results showed that the prognosis for pure MASLD was similar to that for the original CLIONE cohort, with 47 deaths and one patient who underwent orthotopic liver transplantation. The leading cause of death was extrahepatic cancer (n=10), while the leading causes of liver-related death were liver failure (n=9), hepatocellular carcinoma (n=8), and cholangiocarcinoma (n=4). CONCLUSION Approximately 99% of NAFLD cases were considered MASLD based on the 2023 liver disease nomenclature. The NAFLD-only group, which is not encompassed by MASLD, had a relatively mild histopathologic severity and a favorable prognosis. Consequently, the prognosis of MASLD is similar to that previously reported for NAFLD.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hideki Hayashi
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoshi Oeda
- Liver Center and Department of Laboratory Medicine, Saga University Hospital, Saga, Japan
| | | | - Miwa Kawanaka
- Department of General Internal Medicine2, Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kensuke Munekage
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Gastroenterology, Kochi Prefectural Hata Kenmin Hospital, Kochi, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Koji Sawada
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuji Maeshiro
- Department of Gastroenterology, Urasoe General Hospital, Okinawa, Japan
| | - Hiroshi Tobita
- Department of Hepatology, Shimane University Hospital, Shimane, Japan
| | - Yuichi Yoshida
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
| | - Masafumi Naito
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
| | - Asuka Araki
- Division of Pathology, Shimane University Hospital, Shimane, Japan
| | - Shingo Arakaki
- Department of Gastroenterology, Urasoe General Hospital, Okinawa, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hidenao Noritake
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masafumi Ono
- Division of Innovative Medicine for Hepatobiliary & Pancreatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Eiichi Tomita
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihiro Tokushige
- Department of Clinical Pharmacology and Therapeutics School of Medicine University of the Ryukyus, Okinawa, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University, Graduate School of Medicine, Osaka, Japan
| | | | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics School of Medicine University of the Ryukyus, Okinawa, Japan
| | - Shinichi Aishima
- Department of Scientific Pathology Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshio Sumida
- Graduate School of Healthcare Management, International University of Healthcare and Welfare, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Japan Study Group of Nonalcoholic Fatty Liver Disease (JSG-NAFLD)
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
- Liver Center and Department of Laboratory Medicine, Saga University Hospital, Saga, Japan
- Hyogo Life Care Clinic Hiroshima, Hiroshima, Japan
- Department of General Internal Medicine2, Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Gastroenterology, Kochi Prefectural Hata Kenmin Hospital, Kochi, Japan
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Shizuoka, Japan
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
- Department of Gastroenterology, Urasoe General Hospital, Okinawa, Japan
- Department of Hepatology, Shimane University Hospital, Shimane, Japan
- Department of Gastroenterology and Hepatology, Suita Municipal Hospital, Osaka, Japan
- Division of Pathology, Shimane University Hospital, Shimane, Japan
- Division of Innovative Medicine for Hepatobiliary & Pancreatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Clinical Pharmacology and Therapeutics School of Medicine University of the Ryukyus, Okinawa, Japan
- Department of Advanced Metabolic Hepatology, Osaka University, Graduate School of Medicine, Osaka, Japan
- Liver Center, Saga University Hospital, Saga, Japan
- Department of Scientific Pathology Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Graduate School of Healthcare Management, International University of Healthcare and Welfare, Tokyo, Japan
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| |
Collapse
|
28
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
29
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|
30
|
Wei J, Wu BJ, Daoud SS. Whole-Exome Sequencing (WES) Reveals Novel Sex-Specific Gene Variants in Non-Alcoholic Steatohepatitis (MASH). Genes (Basel) 2024; 15:357. [PMID: 38540416 PMCID: PMC10969913 DOI: 10.3390/genes15030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH, also known as MASH) is a severe form of non-alcoholic fatty liver disease (NAFLD, also known as MASLD). Emerging data indicate that the progression of the disease to MASH is higher in postmenopausal women and that genetic susceptibility increases the risk of MASH-related cirrhosis. This study aimed to investigate the association between genetic polymorphisms in MASH and sexual dimorphism. We applied whole-exome sequencing (WES) to identify gene variants in 8 age-adjusted matched pairs of livers from both male and female patients. Sequencing alignment, variant calling, and annotation were performed using standard methods. Polymerase chain reaction (PCR) coupled with Sanger sequencing and immunoblot analysis were used to validate specific gene variants. cBioPortal and Gene Set Enrichment Analysis (GSEA) were used for actionable target analysis. We identified 148,881 gene variants, representing 57,121 and 50,150 variants in the female and male cohorts, respectively, of which 251 were highly significant and MASH sex-specific (p < 0.0286). Polymorphisms in CAPN14, SLC37A3, BAZ1A, SRP54, MYH11, ABCC1, and RNFT1 were highly expressed in male liver samples. In female samples, Polymorphisms in RGSL1, SLC17A2, HFE, NLRC5, ACTN4, SBF1, and ALPK2 were identified. A heterozygous variant 1151G>T located on 18q21.32 for ALPK2 (rs3809983) was validated by Sanger sequencing and expressed only in female samples. Immunoblot analysis confirmed that the protein level of β-catenin in female samples was 2-fold higher than normal, whereas ALPK2 expression was 0.5-fold lower than normal. No changes in the protein levels of either ALPK2 or β-catenin were observed in male samples. Our study suggests that the perturbation of canonical Wnt/β-catenin signaling observed in postmenopausal women with MASH could be the result of polymorphisms in ALPK2.
Collapse
Affiliation(s)
| | | | - Sayed S. Daoud
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University Health Sciences, Spokane, WA 99202, USA; (J.W.); (B.J.W.)
| |
Collapse
|
31
|
Tai J, Hsu C, Chen W, Yang S, Chiu C, Chien R, Chang M. Association of liver fibrosis with extrahepatic cancer in steatotic liver disease patients with PNPLA3 I148M GG genotype. Cancer Sci 2024; 115:564-574. [PMID: 38083881 PMCID: PMC10859614 DOI: 10.1111/cas.16042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/13/2024] Open
Abstract
The impacts of patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M-rs738409, methylenetetrahydrofolate reductase (MTHFR) Ala222Val-rs1801133, and aldehyde dehydrogenase 2 (ALDH2) Glu504Lys-rs671 on the outcomes of Taiwanese patients with steatotic liver disease (SLD) have remained elusive. An 8-year prospective cohort study of patients with (n = 546) and without (n = 580) SLD (controls) was undertaken in a Taiwanese tertiary care center. The 546 SLD patients comprised 306 (56.0%) men and 240 (44.0%) women with mean ages of 53.3 and 56.4 years, respectively. Compared with the controls, SLD patients had an increased frequency of the PNPLA3 I148M-rs738409 GG genotype (25.5 vs. 5.9%, p = 0.001). Among the SLD patients, 236 (43.1%) suffered cardiovascular events, 52 (9.5%) showed extrahepatic cancers, 13 (2.38%) experienced hepatic events, including hepatocellular carcinoma (n = 3, 0.5%) and liver cirrhosis (n = 8, 1.47%), and none died. The Fibrosis-4 (FIB-4) scores were associated with extrahepatic cancer (hazard ratio [HR] 1.325; 95% confidence interval [CI], 1.038-1.691) and cirrhosis development (HR 1.532; 95% CI, 1.055-2.224), and the PNPLA3 I148M-rs738409 G allele (β = 0.158, 95% CI, 0.054-0.325) was associated with the FIB-4 score. Stratified analyses showed that the impact of the FIB-4 score on extrahepatic cancer development was evident only in SLD patients with the PNPLA3 I148M-rs738409 GG genotype (HR 1.543; 95% CI, 1.195-1.993) and not in patients with the GC or CC genotype. Moreover, the ALDH2 Glu504Lys-rs671 G allele had a dose-dependent effect on alcoholism, and the MTHFR and ALDH2 genotypes were not significantly associated with SLD patient outcomes. In conclusion, special vigilance should be exercised for emerging extrahepatic cancer in SLD patients with the PNPLA3 I148M-rs738409 GG genotype and high FIB-4 scores.
Collapse
Affiliation(s)
- Jennifer Tai
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Chao‐Wei Hsu
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Wei‐Ting Chen
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Sien‐Sing Yang
- Liver Center, Cathay General Hospital Medical CenterTaipeiTaiwan
| | - Cheng‐Hsun Chiu
- Molecular Infectious Disease Research CenterChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
- Division of Pediatric Infectious Diseases, Department of PediatricsChang Gung Memorial Hospital at LinkouTaoyuanTaiwan
| | - Rong‐Nan Chien
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| | - Ming‐Ling Chang
- Department of Medicine, College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaiwan
| |
Collapse
|
32
|
Anstee QM, Neuschwander-Tetri BA, Wai-Sun Wong V, Abdelmalek MF, Rodriguez-Araujo G, Landgren H, Park GS, Bedossa P, Alkhouri N, Tacke F, Sanyal AJ. Cenicriviroc Lacked Efficacy to Treat Liver Fibrosis in Nonalcoholic Steatohepatitis: AURORA Phase III Randomized Study. Clin Gastroenterol Hepatol 2024; 22:124-134.e1. [PMID: 37061109 DOI: 10.1016/j.cgh.2023.04.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND AND AIMS Cenicriviroc (CVC) is a novel, orally administered, chemokine receptor type 2 and 5 antagonist that showed antifibrotic potential in preclinical and phase IIb studies of nonalcoholic steatohepatitis (NASH). Herein, we report efficacy and safety results from the phase III study. METHODS The AURORA (A Study for the Efficacy and Safety of CVC for the Treatment of Liver Fibrosis in Adults With NASH) study was a phase III, randomized, double-blind, placebo-controlled, 2-part study of patients with NASH and stage 2/3 liver fibrosis. Adults, 18-75 years of age, were randomized to CVC 150 mg or placebo once daily for 12 months (part 1) or 60 months (part 2). Liver biopsies were performed at screening, month 12, and early study discontinuation or termination. The primary efficacy endpoint was the proportion of patients with fibrosis improvement ≥1 stage without worsening of steatohepatitis at month 12 relative to screening. Adverse events were assessed throughout the study. RESULTS A total of 1778 patients were randomized and discontinued (part 1: n = 1293; part 2: n = 485). In part 1, at month 12, a similar proportion of patients receiving CVC or placebo achieved the primary endpoint (22.3% vs 25.5%; odds ratio, 0.84; 95% confidence interval, 0.63-1.10; P = .21) and complete resolution of steatohepatitis without worsening of fibrosis (23.0% vs 27.2%; P = .21). The safety profile was generally comparable across treatment groups. CONCLUSIONS This study did not demonstrate the efficacy of CVC for treating liver fibrosis assessed by histology in adults with NASH; however, CVC was safe and well tolerated in patients with NASH and liver fibrosis. (ClinicalTrials.gov, Number: NCT03028740).
Collapse
Affiliation(s)
- Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Saint Louis University, St. Louis, Missouri
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Manal F Abdelmalek
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Pierre Bedossa
- Department of Pathology, Hôpital Beaujon, Clichy, France
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
33
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
34
|
Suresh MG, Gogtay M, Singh Y, Yadukumar L, Mishra AK, Abraham GM. Case-control analysis of venous thromboembolism risk in non-alcoholic steatohepatitis diagnosed by transient elastography. World J Clin Cases 2023; 11:8126-8138. [PMID: 38130793 PMCID: PMC10731178 DOI: 10.12998/wjcc.v11.i34.8126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Studies have shown a strong association between non-alcoholic steatohepatitis (NASH) cirrhosis and portal vein thrombosis. Specifically, there is paucity of data on the association of NASH and venous thromboembolism (VTE), with one such study predicting a 2.5-fold increased risk for VTE compared to other liver diseases in hospitalized patients. The mechanism is believed to be a hepatocellular injury, which causes a chronic inflammatory state leading to the unregulated activation of procoagulant factors. There has been no prior analysis of the degree of steatosis and fibrosis (measured using transient elastography, commonly known as FibroScan) in NASH and its association with VTE. AIM To examine the association between the degree of hepatic steatosis and fibrosis, quantified by transient elastography, and the incidence of VTE in patients with NASH. METHODS In our case-control study, we included patients with a documented diagnosis of NASH. We excluded patients with inherited thrombophilia, hemoglobinopathy, malignancy, alcohol use disorder, autoimmune hepatitis, and primary biliary cirrhosis. The collected data included age, demographics, tobacco use, recreational drug use, medical history, and vibration controlled transient elastography scores. VTE-specific data included the location, type of anticoagulant, need for hospital stay, and history of VTE recurrence. Steatosis was categorized as S0-S1 (mild) and S2-S3 (moderate to severe) based on the controlled attenuation parameter score. Fibrosis was classified based on the kilopascal score and graded as F0-F1 (Metavir stage), F2, F3, and F4 (cirrhosis). χ2 and Mann-Whitney U tests were used for the qualitative and quantitative variable analyses, respectively. Furthermore, we performed a logistic regression using VTE as the dependent variable. RESULTS A total of 415 patients were analyzed, and 386 met the inclusion criteria. 51 and 335 patients were included in the VTE and non-VTE groups, respectively. Patients with VTE had a mean age of 60.63 years compared to 55.22 years in the non-VTE group (P < 0.014). Patients with VTE had a higher body mass index (31.14 kg/m² vs 29.30 kg/m²) and a higher prevalence of diabetes mellitus (29.4% vs 13.1%). The history of NASH was significantly higher in the VTE group (45.1% vs 30.4%, P < 0.037). Furthermore, moderate-to-severe steatosis was significantly higher in the VTE group (66.7% vs 47.2%, P < 0.009). Similarly, the F2-F4 fibrosis grade had a prevalence of 58.8% in the VTE group compared to 38.5% in the non-VTE group (P < 0.006). On logistic regression, using VTE as a dependent variable, diabetes mellitus had an odds ratio (OR) =1.702 (P < 0.015), and F2-F4 fibrosis grade had an OR = 1.5 (P < 0.033). CONCLUSION Our analysis shows that NASH is an independent risk factor for VTE, especially deep vein thrombosis. There was a statistically significant association between the incidence of VTE, moderate-to-severe steatosis, and fibrosis. All hospitalized patients should be considered for medical thromboprophylaxis, particularly those with NASH.
Collapse
Affiliation(s)
- Mithil Gowda Suresh
- Department of Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - Maya Gogtay
- Department of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Yuvaraj Singh
- Department of Gastroenterology and Hepatology, University of Massachusetts, Worcester, MA 01605, United States
| | - Lekha Yadukumar
- Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA 18505, United States
| | - Ajay Kumar Mishra
- Division of Cardiology, Saint Vincent Hospital, Worcester, MA 01608, United States
| | - George M Abraham
- Internal Medicine, Saint Vincent Hospital, Worcester, MA 01608, United States
| |
Collapse
|
35
|
Luukkonen PK, Porthan K, Ahlholm N, Rosqvist F, Dufour S, Zhang XM, Lehtimäki TE, Seppänen W, Orho-Melander M, Hodson L, Petersen KF, Shulman GI, Yki-Järvinen H. The PNPLA3 I148M variant increases ketogenesis and decreases hepatic de novo lipogenesis and mitochondrial function in humans. Cell Metab 2023; 35:1887-1896.e5. [PMID: 37909034 DOI: 10.1016/j.cmet.2023.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
The PNPLA3 I148M variant is the major genetic risk factor for all stages of fatty liver disease, but the underlying pathophysiology remains unclear. We studied the effect of this variant on hepatic metabolism in homozygous carriers and non-carriers under multiple physiological conditions with state-of-the-art stable isotope techniques. After an overnight fast, carriers had higher plasma β-hydroxybutyrate concentrations and lower hepatic de novo lipogenesis (DNL) compared to non-carriers. After a mixed meal, fatty acids were channeled toward ketogenesis in carriers, which was associated with an increase in hepatic mitochondrial redox state. During a ketogenic diet, carriers manifested increased rates of intrahepatic lipolysis, increased plasma β-hydroxybutyrate concentrations, and decreased rates of hepatic mitochondrial citrate synthase flux. These studies demonstrate that homozygous PNPLA3 I148M carriers have hepatic mitochondrial dysfunction leading to reduced DNL and channeling of carbons to ketogenesis. These findings have implications for understanding why the PNPLA3 variant predisposes to progressive liver disease.
Collapse
Affiliation(s)
- Panu K Luukkonen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| | - Kimmo Porthan
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Ahlholm
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Fredrik Rosqvist
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK; Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Sylvie Dufour
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Tiina E Lehtimäki
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wenla Seppänen
- Department of Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marju Orho-Melander
- Department of Clinical Sciences, Diabetes and Endocrinology, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | - Kitt Falk Petersen
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA; Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
36
|
Goble S, Akambase J, Prieto J, Balderramo D, Ferrer JD, Mattos AZ, Arrese M, Carrera E, Groothuismink ZMA, Oliveira J, Boonstra A, Debes JD. MBOAT7 rs641738 Variant Is Not Associated with an Increased Risk of Hepatocellular Carcinoma in a Latin American Cohort. Dig Dis Sci 2023; 68:4212-4220. [PMID: 37684433 PMCID: PMC10570183 DOI: 10.1007/s10620-023-08104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The rs641738 C > T single-nucleotide polymorphism of MBOAT7 has been associated with hepatocellular carcinoma (HCC) and nonalcoholic fatty liver disease (NAFLD). Latin Americans have high rates of HCC and NAFLD, but no assessment between MBOAT7 and HCC has been performed in this population. AIMS We provide the first assessment of the impact of MBOAT7 on HCC risk in Latin Americans. METHODS Patients were prospectively recruited into the ESCALON network, designed to collect samples from Latin American patients with HCC in 6 South American countries (Argentina, Ecuador, Brazil, Chile, Peru, and Colombia). A European cohort and the general Hispanic population of gnomAD database were included for comparison. Associations between HCC and MBOAT7 were evaluated using logistic regression. RESULTS In total, 310 cases of HCC and 493 cases of cirrhosis without HCC were assessed. The MBOAT7 TT genotype was not predictive of HCC in Latin Americans (TT vs CC OR adjusted = 1.15, 95% CI 0.66-2.01, p = 0.610) or Europeans (TT vs CC OR adjusted = 1.20, 95% CI 0.59-2.43, p = 0.621). No significant association was noted on subgroup analysis for NAFLD, viral hepatitis, or alcohol-related liver disease. The TT genotype was increased in the NAFLD-cirrhosis cohort of Latin Americans compared to a non-cirrhotic NAFLD cohort (TT vs CC + CT OR = 2.75, 95% CI 1.10-6.87, p = 0.031). CONCLUSION The rs631738 C > T allele of MBOAT7 was not associated with increased risk of HCC in Latin Americans or Europeans. An increase in the risk of cirrhosis was noted with the TT genotype in Latin Americans with NAFLD.
Collapse
Affiliation(s)
| | | | - Jhon Prieto
- Centro de Enfermedades Hepaticas y Digestives, Bogotá, Colombia
| | - Domingo Balderramo
- Department of Gastroenterology, Hospital Privado Universitario de Córdoba, Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
| | | | - Angelo Z Mattos
- Graduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Enrique Carrera
- Departamento de Gastroenterologia y Hepatologia, Hospital Eugenio Espejo, Quito, Ecuador
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jeffrey Oliveira
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jose D Debes
- Hennepin Healthcare, Minneapolis, MN, USA.
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Medicine, University of Minnesota, Mayo Memorial Building, MMC 250, 420 Delaware Street S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Upadhyay KK, Du X, Chen Y, Buscher B, Chen VL, Oliveri A, Zhao R, Speliotes EK, Brady GF. A common variant that alters SUN1 degradation associates with hepatic steatosis and metabolic traits in multiple cohorts. J Hepatol 2023; 79:1226-1235. [PMID: 37567366 PMCID: PMC10618955 DOI: 10.1016/j.jhep.2023.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD), and its progressive form steatohepatitis (NASH), represent a genetically and phenotypically diverse entity for which there is no approved therapy, making it imperative to define the spectrum of pathways contributing to its pathogenesis. Rare variants in genes encoding nuclear envelope proteins cause lipodystrophy with early-onset NAFLD/NASH; we hypothesized that common variants in nuclear envelope-related genes might also contribute to hepatic steatosis and NAFLD. METHODS Using hepatic steatosis as the outcome of interest, we performed an association meta-analysis of nuclear envelope-related coding variants in three large discovery cohorts (N >120,000 participants), followed by phenotype association studies in large validation cohorts (N >600,000) and functional testing of the top steatosis-associated variant in cell culture. RESULTS A common protein-coding variant, rs6461378 (SUN1 H118Y), was the top steatosis-associated variant in our association meta-analysis (p <0.001). In ancestrally distinct validation cohorts, rs6461378 associated with histologic NAFLD and with NAFLD-related metabolic traits including increased serum fatty acids, type 2 diabetes, hypertension, cardiovascular disease, and decreased HDL. SUN1 H118Y was subject to increased proteasomal degradation relative to wild-type SUN1 in cells, and SUN1 H118Y-expressing cells exhibited insulin resistance and increased lipid accumulation. CONCLUSIONS Collectively, these data support a potential causal role for the common SUN1 variant rs6461378 in NAFLD and metabolic disease. IMPACT AND IMPLICATIONS Non-alcoholic fatty liver disease (NAFLD), with an estimated global prevalence of nearly 30%, is a growing cause of morbidity and mortality for which there is no approved pharmacologic therapy. Our data provide a rationale for broadening current concepts of NAFLD genetics and pathophysiology to include the nuclear envelope, and particularly Sad1 and UNC84 domain containing 1 (SUN1), as novel contributors to this common liver disease. Furthermore, if future studies confirm causality of the common SUN1 H118Y variant, it has the potential to become a broadly relevant therapeutic target in NAFLD and metabolic disease.
Collapse
Affiliation(s)
- Kapil K Upadhyay
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Brandon Buscher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Vincent L Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA
| | - Raymond Zhao
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Graham F Brady
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
38
|
Perez-Diaz-Del-Campo N, Dileo E, Castelnuovo G, Nicolosi A, Guariglia M, Caviglia GP, Rosso C, Armandi A, Bugianesi E. A nutrigenetic precision approach for the management of non-alcoholic fatty liver disease. Clin Nutr 2023; 42:2181-2187. [PMID: 37788561 DOI: 10.1016/j.clnu.2023.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND & AIMS The Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 single nucleotide polymorphism (SNP) is one of the major genetic determinant of non-alcoholic fatty liver disease (NAFLD) and is strongly regulated by changes in energy balance and dietary factors. We aimed to investigate the association between the PNPLA3 rs738409 SNP, nutrient intake and NAFLD severity. METHOD PNPLA3-rs738409 SNP was genotyped in 181 patients with NAFLD who completed the EPIC Food Frequency Questionnaire. Liver steatosis was evaluated by Controlled Attenuation Parameter (CAP) (Fibroscan®530, Echosens). According to the established cut-off, a CAP value ≥ 300 dB/m was used to identify severe steatosis (S3). An independent group of 46 biopsy-proven NAFLD subjects was used as validation cohort. RESULTS Overall, median age was 53 years (range 44; 62) and 60.2% of patients were male. Most subjects (56.3%) had S3 and showed increased liver stiffness (p < 0.001), AST (p = 0.003) and ALT levels (p < 0.001) compared to those with CAP<300 dB/m. At logistic regression analyses we found that the interaction between carbohydrates intake and the carriers of the PNPLA3 G risk allele was significantly associated with S3 (p = 0.001). The same result was confirmed in the validation cohort, were the interaction between high carbohydrate intake (48%) and PNPLA3 SNP was significantly associated with steatosis ≥33% (p = 0.038). CONCLUSION The intake of greater than or equal to 48% carbohydrate in NAFLD patients carriers of the CG/GG allele of PNPLA3 rs738409 may increase the risk of significant steatosis.
Collapse
Affiliation(s)
| | - Eleonora Dileo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Aurora Nicolosi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marta Guariglia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Metabolic Liver Disease Research Program, I. Department of Medicine, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Gastroenterology Unit, Città della Salute e della Scienza-Molinette Hospital, 10126 Turin, Italy.
| |
Collapse
|
39
|
Chen X, Zhao Y, Zhang R, Zhao Y, Dai L. The effect of vitamin D supplementation on some metabolic parameters in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of 8 RCTs. Medicine (Baltimore) 2023; 102:e35717. [PMID: 37861495 PMCID: PMC10589544 DOI: 10.1097/md.0000000000035717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND To systematically evaluate the effects of vitamin D supplementation in patients with nonalcoholic fatty liver disease (NAFLD). METHODS National Library of Medicine, Cochrane Library, Elsevier, China National Knowledge Infrastructure, Web of Science, WANFANG databases, and Google Scholar were retrieved to collect relevant randomized controlled trials, which are published from the earliest records the time the database was created to April 2023. Meta-analysis was conducted by using Review Manager 5.4 software after evaluating in terms of inclusion and exclusion criteria. The outcome indicators include 25-hydroxyvitamin D [25(OH)D] levels, insulin resistance index (homeostasis model assessment of insulin resistance), fasting blood glucose, and fasting insulin levels (FINS). RESULTS Eight randomized controlled trials with a total of 657 patients are included. Vitamin D supplementation increased 25(OH)D levels significantly (mean difference [MD] = 2.01, 95% confidence intervals [CI]: 0.94 to 3.08, P < .05) and vitamin D supplementation had a significant effect on insulin resistance index (MD = -0.54, 95% CI: -1.28 to 0.20, P = .16), fasting glucose (MD = -0.59, 95% CI: -1.50 to 0.32, P = .20), and FINS levels (MD = -0.30, 95% CI: -0.77 to 0.17, P = .21) had no significant effect. CONCLUSION Vitamin D supplementation improves 25(OH)D levels in patients with nonalcoholic fatty liver disease, but there is no effect on homeostasis model assessment of insulin resistance, fasting blood glucose, or FINS.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Ye Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Ran Zhang
- School of Architecture & Art Design, Hebei University of Technology, Tianjin, China
| | - Yan Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Liheng Dai
- Department of Internal Medicine, Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| |
Collapse
|
40
|
Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023; 11:2809. [PMID: 37893185 PMCID: PMC10604560 DOI: 10.3390/biomedicines11102809] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in the absence of inflammation is relatively benign, but the disease can progress into more severe forms like non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. NAFLD onset and progression are complex, as it is affected by many risk factors. The interaction between genetic predisposition and other factors partially explains the large variability of NAFLD phenotype and natural history. Numerous genes and variants have been identified through large-scale genome-wide association studies (GWAS) that are associated with NAFLD and one or more subtypes of the disease. Among them, the largest effect size and most consistent association have been patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) genes. Extensive in vitro and in vivo studies have been conducted on these variants to validate these associations. The focus of this review is to highlight the genetics underpinning the molecular mechanisms driving the onset and progression of NAFLD and how they could potentially be used to improve genetic-based diagnostic testing of the disease and develop personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Gary Huang
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Metallogenomics Laboratory, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Elizabeth E. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Tony Rahman
- Department of Gastroenterology and Hepatology, Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Paul J. Clark
- Mater Adult Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - V. Nathan Subramaniam
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
41
|
Hartmann P, Zhang X, Loomba R, Schnabl B. Global and national prevalence of nonalcoholic fatty liver disease in adolescents: An analysis of the global burden of disease study 2019. Hepatology 2023; 78:1168-1181. [PMID: 37021791 PMCID: PMC10521800 DOI: 10.1097/hep.0000000000000383] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/18/2023] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND AND AIMS NAFLD in adolescents is an increasing health crisis worldwide, but its exact global, continental, and national prevalence, its relationship with other metabolic conditions, and the human development index (HDI) globally are not known. APPROACH AND RESULTS We analyzed data from the Global Burden of Disease Study 2019 to compare global, continental, and national prevalence rates of adolescent NAFLD and associations with other metabolic conditions and HDI. The global NAFLD prevalence in adolescents increased from 3.73% in 1990 to 4.71% in 2019 (a relative increase of 26.27%). The prevalence for the male and female populations was 5.84% and 3.52% in 2019, respectively. The Oceanian and North American continents had the highest adolescent NAFLD prevalence (median: 6.54% and 5.64%, respectively), whereas Europe had the lowest prevalence (median: 3.98%). South America and North America had the highest relative increase in adolescent NAFLD prevalence from 1990 to 2019 (median: 39.25% and 36.87%, respectively). High body mass index and type 2 diabetes mellitus increased significantly in adolescents worldwide. However, only high body mass index and not type 2 diabetes mellitus correlated with NAFLD prevalence in adolescents globally. Countries with a higher HDI had larger increases in adolescent NAFLD prevalence from 1990 to 2019 although countries with the highest HDI (HDI: > 0.9) had the lowest NAFLD prevalence in 2019. CONCLUSIONS NAFLD in adolescents is an increasing health problem on all continents. Improving environmental factors, including lifestyle but also healthcare policies, can help to prevent NAFLD from developing in children and adolescents and help to improve outcomes in children and adolescents with NAFLD.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Rohit Loomba
- Department of Medicine, NAFLD Research Center, University of California at San Diego, La Jolla, California, USA
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California at San Diego, La Jolla, California, USA
| | - Bernd Schnabl
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
42
|
Lauschke VM. Practice guidance documents for the diagnosis and management of non-alcoholic fatty liver disease-recent updates and open questions. Hepatobiliary Surg Nutr 2023; 12:780-784. [PMID: 37886211 PMCID: PMC10598308 DOI: 10.21037/hbsn-23-376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 10/28/2023]
Affiliation(s)
- Volker M. Lauschke
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Roderburg C, Krieg S, Krieg A, Vaghiri S, Mohr R, Konrad M, Luedde M, Luedde T, Kostev K, Loosen SH. Non-Alcoholic Fatty Liver Disease (NAFLD) and risk of new-onset heart failure: a retrospective analysis of 173,966 patients. Clin Res Cardiol 2023; 112:1446-1453. [PMID: 37410163 PMCID: PMC10562311 DOI: 10.1007/s00392-023-02250-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) represents the leading cause of chronic liver disease. Its high mortality and morbidity are mainly caused by non-hepatic comorbidities and their clinical complications. Accumulating evidence suggests an association between NAFLD and heart failure (HF), but large-scale data analyses from Germany are scarce. METHODS Using the Disease Analyzer database (IQVIA), this analysis retrospectively evaluated two cohorts of outpatients with and without NAFLD with respect to the cumulative incidence of HF as the primary outcome between January 2005 and December 2020. Cohorts were propensity score matched for sex, age, index year, yearly consultation frequency, and known risk factors for HF. RESULTS A total of 173,966 patients were included in the analysis. Within 10 years of the index date, 13.2% vs. 10.0% of patients with and without NAFLD were newly diagnosed with HF (p < 0.001). This finding was supported by univariate Cox regression analysis in which NAFLD was found to be significantly associated with subsequent HF (Hazard Ratio (HR) 1.34, 95% Confidence Interval (CI) 1.28-1.39, p < 0.001). The association between NAFLD and HF was observed across all analysed age groups and as comparable between both men (HR 1.30, 95% CI 1.23-1.38; p < 0.001) and women (HR: 1.37, 95% CI 1.29-1.45; p < 0.001). CONCLUSION NAFLD is significantly associated with an increased cumulative incidence of HF, which, given its rapidly increasing global prevalence, could be crucial to further reduce its high mortality and morbidity. We recommend risk stratification within a multidisciplinary approach for NAFLD patients, including systematic prevention or early detection strategies for HF.
Collapse
Affiliation(s)
- Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Sarah Krieg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Sascha Vaghiri
- Department of Surgery (A), University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Marcel Konrad
- FOM University of Applied, Sciences for Economics and Management, 60549, Frankfurt Am Main, Germany
| | - Mark Luedde
- Christian-Albrechts-University of Kiel, 24118, Kiel, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany
| | | | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty of Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
44
|
Lindén D, Romeo S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J Hepatol 2023; 79:1056-1064. [PMID: 37207913 DOI: 10.1016/j.jhep.2023.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
The identification of genetic variants associated with fatty liver disease (FLD) from genome-wide association studies started in 2008 when single nucleotide polymorphisms in PNPLA3, the gene encoding patatin-like phospholipase domain-containing 3, were found to be associated with altered hepatic fat content. Since then, several genetic variants associated with protection from, or an increased risk of, FLD have been identified. The identification of these variants has provided insight into the metabolic pathways that cause FLD and enabled the identification of potential therapeutic targets. In this mini-review, we will examine the therapeutic opportunities derived from genetically validated targets in FLD, including oligonucleotide-based therapies targeting PNPLA3 and HSD17B13 that are currently being evaluated in clinical trials for the treatment of NASH (non-alcoholic steatohepatitis).
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
45
|
Zhang T, Nie Y, Wang J. The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Life Sci 2023; 329:121943. [PMID: 37454757 DOI: 10.1016/j.lfs.2023.121943] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, ranging from liver steatosis to nonalcoholic steatohepatitis, which ultimately progresses to fibrosis, cirrhosis, and hepatocellular carcinoma. Individuals with NAFLD have a higher risk of developing cardiovascular and extrahepatic cancers. Despite the great progress being made in understanding the pathogenesis and the introduction of new pharmacological targets for NAFLD, no drug or intervention has been accepted for its management. Recent evidence suggests that NAFLD may be a mitochondrial disease, as mitochondrial dysfunction is involved in the pathological processes that lead to NAFLD. In this review, we describe the recent advances in our understanding of the mechanisms associated with mitochondrial dysfunction in NAFLD progression. Moreover, we discuss recent advances in the efficacy of mitochondria-targeted compounds (e.g., Mito-Q, MitoVit-E, MitoTEMPO, SS-31, mitochondrial uncouplers, and mitochondrial pyruvate carrier inhibitors) for treating NAFLD. Furthermore, we present some medications currently being tested in clinical trials for NAFLD treatment, such as exercise, mesenchymal stem cells, bile acids and their analogs, and antidiabetic drugs, with a focus on their efficacy in improving mitochondrial function. Based on this evidence, further investigations into the development of mitochondria-based agents may provide new and promising alternatives for NAFLD management.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yingli Nie
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
46
|
Li Y, Mo N, Yang D, Lin Q, Huang W, Wang R. Predictive value of DNA methylation in the efficacy of chemotherapy for gastric cancer. Front Oncol 2023; 13:1238310. [PMID: 37771430 PMCID: PMC10523571 DOI: 10.3389/fonc.2023.1238310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common causes of cancer-related death. Drug resistance in chemotherapy often occurs in patients with GC, leading to tumor recurrence and poor survival. DNA methylation is closely related to the development of cancer. Methods To investigate the role of DNA methylation in chemotherapy resistance in GC patients, we conducted a comprehensive analysis using DNA methylation data and survival information obtained from The Cancer Genome Atlas. Univariate Cox analysis was performed to screen for differential DNA methylation of chemotherapy response in patients who did and did not receive chemotherapy. Multivariate Cox analysis was then performed to identify the independent prognostic genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to explore the biological function of the signature genes. Results Patients receiving adjuvant chemotherapy for GC survived longer. 308 differentially methylated genes were demonstrated to be associated with prognosis. Six genes were optimally chosed for establisehing the risk model, including C6orf222, CCNL1, CREBZF, GCKR, TFCP2, and VIPR2. It was constructed based on the DNA methylation levels of these six genes: risk score = 0.47123374*C6orf222 + 9.53554803*CCNL1 + 10.40234138* CREBZF + 0.07611856* GCKR + 18.87661557*TFCP2 - 0.46396254* VIPR2. According to the risk score, patients receiving chemotherapy were divided into high- and low-risk groups, and the prognosis of the two groups was compared. The high-risk group had a shorter survival; however, this association was not present in patients without chemotherapy. The accuracy and predictive efficacy of the risk score in predicting the 1-, 3-, and 5-year survival of patients was evaluated with the receiver operating characteristic curve. In patients receiving chemotherapy, the area under the curve of the risk score for 1-, 3-, and 5-year survival was 0.841, 0.72, and 0.734, respectively. In patients who did not receive chemotherapy, the area under the curve was 0.406, 0.585, and 0.585, respectively. A nomogram model was constructed based on the risk score and clinical indicators. The model showed good consistency in the predicted probabilities and actual probabilities. Gene Ontology functional enrichment of these candidate methylated genes showed the following molecular functions: RNA binding, protein binding, mRNA binding, and nucleic acid binding; that they were mediated mainly through the following cell components: nuclear speck, nucleoplasm, nucleus, catalytic step 2 spliceosome, and the transcription factor AP-1 complex; and that they were involved in the following biological processes: mRNA processing, mRNA splicing, and RNA polymerase II promoter transcription. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment results revealed that the signaling pathways mainly enriched were transcriptional misregulation in cancer, spliceosome, and the IL-17 signaling pathway. Conclusion Our work identifies a six DNA methylated expression signature as a promising biomarker of chemo-resistance in GC, which provides new insights into the development of new strategies to overcome chemo-resistance in GC.
Collapse
Affiliation(s)
- Ye Li
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ning Mo
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dong Yang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - QiuLu Lin
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - WenFeng Huang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
47
|
Shi F, Zhao M, Zheng S, Zheng L, Wang H. Advances in genetic variation in metabolism-related fatty liver disease. Front Genet 2023; 14:1213916. [PMID: 37753315 PMCID: PMC10518415 DOI: 10.3389/fgene.2023.1213916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is the most common form of chronic liver disease in the world. Its pathogenesis is influenced by both environmental and genetic factors. With the upgrading of gene screening methods and the development of human genome project, whole genome scanning has been widely used to screen genes related to MAFLD, and more and more genetic variation factors related to MAFLD susceptibility have been discovered. There are genetic variants that are highly correlated with the occurrence and development of MAFLD, and there are genetic variants that are protective of MAFLD. These genetic variants affect the development of MAFLD by influencing lipid metabolism and insulin resistance. Therefore, in-depth analysis of different mechanisms of genetic variation and targeting of specific genetic variation genes may provide a new idea for the early prediction and diagnosis of diseases and individualized precision therapy, which may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Fan Shi
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
48
|
Chaudhry A, Noor J, Batool S, Fatima G, Noor R. Advancements in Diagnostic and Therapeutic Interventions of Non-alcoholic Fatty Liver Disease: A Literature Review. Cureus 2023; 15:e44924. [PMID: 37814734 PMCID: PMC10560588 DOI: 10.7759/cureus.44924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common diseases of the liver globally. Non-alcoholic steatohepatitis (NASH) has a complicated pathophysiology which includes lipid buildup, oxidative stress, endoplasmic reticulum stress, and lipotoxicity. Recently, there has been tremendous improvement in understanding of NASH pathogenesis due to advancements in the scientific field. It is being investigated how non-invasive circulating and imaging biomarkers can help in NAFLD and NASH diagnosis and monitoring the progress. Multiple medications are now undergoing clinical trials for the treatment of NASH, and lifestyle changes have been acknowledged as one of the main treatment methods. The purpose of this review article is to discuss the incidence of NAFLD globally, management issues with NASH, and its relation to the metabolic syndrome. It explains pathophysiology as well as therapeutic strategies using natural items, dietary changes, and pharmaceutical treatments. While emphasizing the necessity for surrogate endpoints to facilitate medication development for NASH, the study also considers the potential of non-invasive imaging biomarkers including magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE).
Collapse
Affiliation(s)
| | - Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| | - Ghulam Fatima
- Internal Medicine, Medical Unit, Abbasi Shaheed Hospital, Karachi, PAK
| | - Riwad Noor
- Public Health, Nishtar Hospital, Multan, PAK
| |
Collapse
|
49
|
Luo K, Chen Y, Fang S, Wang S, Wu Z, Li H. Study on inflammation and fibrogenesis in MAFLD from 2000 to 2022: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1231520. [PMID: 37720529 PMCID: PMC10500306 DOI: 10.3389/fendo.2023.1231520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic inflammation and fibrosis are significant factors in the pathogenesis of metabolic-associated fatty liver disease (MAFLD). In this study, we conducted a bibliometric analysis of publications on inflammation and fibrogenesis in MAFLD, with a focus on reporting publication trends. Our findings indicate that the USA and China are the most productive countries in the field, with the University of California San Diego being the most productive institution. Over the past 23 years, Prof. Diehl AM has published 25 articles that significantly contributed to the research community. Notably, the research focus of the field has shifted from morbid obesity and adiponectin to metabolic syndrome, genetics, and microbiome. Our study provides a comprehensive and objective summary of the historical characteristics of research on inflammation and fibrogenesis in MAFLD, which will be of interest to scientific researchers in this field.
Collapse
Affiliation(s)
- Kuanhong Luo
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuzheng Fang
- College of Art and Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Siqi Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixin Wu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|