1
|
Hussain S, Mohd Fezal NS, Flanagan S. A Focal Form of Diazoxide-resistant Congenital Hyperinsulinism with Good Response to Long-acting Somatostatin. J ASEAN Fed Endocr Soc 2024; 39:108-111. [PMID: 39620188 PMCID: PMC11604472 DOI: 10.15605/jafes.039.02.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/03/2023] [Indexed: 01/04/2025] Open
Abstract
A four-year-old female who was born term via spontaneous vaginal delivery (SVD) with a birth weight of 3.4 kg had an onset of persistent hypoglycaemia at the 6th hour of life. She was diagnosed with congenital hyperinsulinism based on high glucose load, negative ketone and a good response to glucagon. Genetic workup revealed the presence of ATP Binding Cassette Subfamily C Member 8 (ABCC8 genes) mutation which indicated a focal form of congenital hyperinsulinism. She was resistant to the standard dose of oral diazoxide but responded to subcutaneous somatostatin. At the age of 3 years and 6 months, multiple daily injections of somatostatin were replaced with a long-acting monthly somatostatin analogue. With the present treatment, she had better glycaemic control, normal growth and was able to stop tube feeding.
Collapse
Affiliation(s)
- Suhaimi Hussain
- Department of Pediatrics, Hospital Universiti Sains Malaysia, Kota Bharu Kelantan, Malaysia
| | | | | |
Collapse
|
2
|
Peterson SM, Juliana CA, Hu CF, Chai J, Holliday C, Chan KY, Lujan Hernandez AG, Challocombe Z, Wang L, Han Z, Haas N, Stafford R, Axelrod F, Yuan TZ, De León DD, Sato AK. Optimization of a Glucagon-Like Peptide 1 Receptor Antagonist Antibody for Treatment of Hyperinsulinism. Diabetes 2023; 72:1320-1329. [PMID: 37358194 PMCID: PMC10450825 DOI: 10.2337/db22-1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic β-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the β-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S. Food and Drug Administration-approved medical therapy and require pancreatectomy. The glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin-(9-39) is an effective therapeutic agent that inhibits insulin secretion in both HI and acquired hyperinsulinism. Previously, we identified a highly potent antagonist antibody, TB-001-003, which was derived from our synthetic antibody libraries that were designed to target G protein-coupled receptors. Here, we designed a combinatorial variant antibody library to optimize the activity of TB-001-003 against GLP-1R and performed phage display on cells overexpressing GLP-1R. One antagonist, TB-222-023, is more potent than exendin-(9-39), also known as avexitide. TB-222-023 effectively decreased insulin secretion in primary isolated pancreatic islets from a mouse model of hyperinsulinism, Sur1-/- mice, and in islets from an infant with HI, and increased plasma glucose levels and decreased the insulin to glucose ratio in Sur1-/- mice. These findings demonstrate that targeting GLP-1R with an antibody antagonist is an effective and innovative strategy for treatment of hyperinsulinism. ARTICLE HIGHLIGHTS Patients with the most common and severe form of diazoxide-unresponsive congenital hyperinsulinism (HI) require a pancreatectomy. Other second-line therapies are limited in their use because of severe side effects and short half-lives. Therefore, there is a critical need for better therapies. Studies with the glucagon-like peptide 1 receptor (GLP-1R) antagonist, avexitide (exendin-(9-39)), have demonstrated that GLP-1R antagonism is effective at lowering insulin secretion and increasing plasma glucose levels. We have optimized a GLP-1R antagonist antibody with more potent blocking of GLP-1R than avexitide. This antibody therapy is a potential novel and effective treatment for HI.
Collapse
Affiliation(s)
| | - Christine A. Juliana
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Jinghua Chai
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | | | - Linya Wang
- Twist Bioscience, South San Francisco, CA
| | - Zhen Han
- Twist Bioscience, South San Francisco, CA
| | | | | | | | | | - Diva D. De León
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
3
|
Quarta A, Iannucci D, Guarino M, Blasetti A, Chiarelli F. Hypoglycemia in Children: Major Endocrine-Metabolic Causes and Novel Therapeutic Perspectives. Nutrients 2023; 15:3544. [PMID: 37630734 PMCID: PMC10459037 DOI: 10.3390/nu15163544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Hypoglycemia is due to defects in the metabolic systems involved in the transition from the fed to the fasting state or in the hormone control of these systems. In children, hypoglycemia is considered a metabolic-endocrine emergency, because it may lead to brain injury, permanent neurological sequelae and, in rare cases, death. Symptoms are nonspecific, particularly in infants and young children. Diagnosis is based on laboratory investigations during a hypoglycemic event, but it may also require biochemical tests between episodes, dynamic endocrine tests and molecular genetics. This narrative review presents the age-related definitions of hypoglycemia, its pathophysiology and main causes, and discusses the current diagnostic and modern therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti—Pescara, Gabriele D’Annunzio, 66100 Chieti, Italy; (A.Q.); (D.I.); (M.G.); (A.B.)
| |
Collapse
|
4
|
de Laat MA, Fitzgerald DM, Harris PA, Bailey SR. A glucagon-like peptide-1 receptor antagonist reduces the insulin response to a glycemic meal in ponies. J Anim Sci 2023; 101:skad389. [PMID: 38066683 PMCID: PMC10724109 DOI: 10.1093/jas/skad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
High plasma concentrations of insulin can cause acute laminitis. Ponies and horses with insulin dysregulation (ID) exhibit marked hyperinsulinemia in response to dietary hydrolyzable carbohydrates. Glucagon-like peptide-1 (GLP-1), an incretin hormone released from the gastrointestinal tract, enhances insulin release, and is increased postprandially in ponies with ID. The aim of this study was to determine whether blocking the GLP-1 receptor reduces the insulin response to a high glycemic meal. Five adult ponies were adapted to a cereal meal and then given two feed challenges 24 h apart of a meal containing 3 g/kg BW micronized maize. Using a randomized cross-over design all ponies received both treatments, where one of the feeds was preceded by the IV administration of a GLP-1 receptor blocking peptide, Exendin-3 (9-39) amide (80 µg/kg), and the other feed by a sham treatment of peptide diluent only. Blood samples were taken before feeding and peptide administration, and then at 30-min intervals via a jugular catheter for 6 h for the measurement of insulin, glucose, and active GLP-1. The peptide and meal challenge caused no adverse effects, and the change in plasma glucose in response to the meal was not affected (P = 0.36) by treatment: peak concentration 9.24 ± 1.22 and 9.14 ± 1.08 mmol/L without and with the antagonist, respectively. Similarly, there was no effect (P = 0.35) on plasma active GLP-1 concentrations: peak concentration 14.3 ± 1.36 pM and 13.7 ± 1.97 pM without and with the antagonist, respectively. However, the antagonist caused a significant decrease in the area under the curve for insulin (P = 0.04), and weak evidence (P = 0.06) of a reduction in peak insulin concentration (456 ± 147 μIU/mL and 370 ± 146 μIU/mL without and with the antagonist, respectively). The lower overall insulin response to the maize meal after treatment with the antagonist demonstrates that blocking the GLP-1 receptor partially reduced insulin production in response to a high starch, high glycemic index, diet. Using a different methodological approach to published studies, this study also confirmed that GLP-1 does contribute to the excessive insulin production in ponies with ID.
Collapse
Affiliation(s)
- Melody A de Laat
- Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Patricia A Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, UK
| | - Simon R Bailey
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Stefanovski D, Vajravelu ME, Givler S, De León DD. Exendin-(9-39) Effects on Glucose and Insulin in Children With Congenital Hyperinsulinism During Fasting and During a Meal and a Protein Challenge. Diabetes Care 2022; 45:1381-1390. [PMID: 35416981 PMCID: PMC9210867 DOI: 10.2337/dc21-2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether exendin-(9-39) will increase fasting and postprandial plasma glucose and decrease the incidence of hypoglycemia in children with hyperinsulinism (HI). RESEARCH DESIGN AND METHODS This was an open-label, four-period crossover study. In periods 1 and 2, the effect of three different dosing regimens of exendin-(9-39) (group 1, 0.28 mg/kg; group 2, 0.44 mg/kg; group 3, 0.6 mg/kg) versus vehicle on fasting glucose was assessed in 16 children with HI. In periods 3 and 4, a subset of eight subjects received either vehicle or exendin-(9-39) (0.6 mg/kg) during a mixed-meal tolerance test (MMTT) and an oral protein tolerance test (OPTT). RESULTS Treatment group 2 showed 20% (P = 0.037) increase in the area under the curve (AUC) of fasting glucose. A significant increase in AUC of glucose was also observed during the MMTT and OPTT; treatment with exendin-(9-39) resulted in 28% (P ≤ 0.001) and 30% (P = 0.01) increase in AUC of glucose, respectively. Fasting AUC of insulin decreased by 57% (P = 0.009) in group 3. In contrast, AUC of insulin was unchanged during the MMTT and almost twofold higher (P = 0.004) during the OPTT with exendin-(9-39) treatment. In comparison with vehicle, infusion of exendin-(9-39) resulted in significant reduction in likelihood of hypoglycemia in group 2, by 76% (P = 0.009), and in group 3, by 84% (P = 0.014). Administration of exendin-(9-39) during the OPTT resulted in 82% (P = 0.007) reduction in the likelihood of hypoglycemia. CONCLUSIONS These results support a therapeutic potential of exendin-(9-39) to prevent fasting and protein-induced hypoglycemia in children with HI.
Collapse
Affiliation(s)
- Darko Stefanovski
- School of Veterinarian Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary E Vajravelu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie Givler
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Diva D De León
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Osmanovic Barilar J, Knezovic A, Homolak J, Babic Perhoc A, Salkovic-Petrisic M. Divergent Effect of Central Incretin Receptors Inhibition in a Rat Model of Sporadic Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23010548. [PMID: 35008973 PMCID: PMC8745186 DOI: 10.3390/ijms23010548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
The incretin system is an emerging new field that might provide valuable contributions to the research of both the pathophysiology and therapeutic strategies in the treatment of diabetes, obesity, and neurodegenerative disorders. This study aimed to explore the roles of central glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) on cell metabolism and energy in the brain, as well as on the levels of these incretins, insulin, and glucose via inhibition of the central incretin receptors following intracerebroventricular administration of the respective antagonists in healthy rats and a streptozotocin-induced rat model of sporadic Alzheimer's disease (sAD). Chemical ablation of the central GIP receptor (GIPR) or GLP-1 receptor (GLP-1R) in healthy and diseased animals indicated a region-dependent role of incretins in brain cell energy and metabolism and central incretin-dependent modulation of peripheral hormone secretion, markedly after GIPR inhibition, as well as a dysregulation of the GLP-1 system in experimental sAD.
Collapse
Affiliation(s)
- Jelena Osmanovic Barilar
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.O.B.); (J.H.); (A.B.P.); (M.S.-P.)
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.O.B.); (J.H.); (A.B.P.); (M.S.-P.)
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +38-514-566-832
| | - Jan Homolak
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.O.B.); (J.H.); (A.B.P.); (M.S.-P.)
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ana Babic Perhoc
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.O.B.); (J.H.); (A.B.P.); (M.S.-P.)
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.O.B.); (J.H.); (A.B.P.); (M.S.-P.)
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Danowitz M, De Leon DD. The Role of GLP-1 Signaling in Hypoglycemia due to Hyperinsulinism. Front Endocrinol (Lausanne) 2022; 13:863184. [PMID: 35399928 PMCID: PMC8987579 DOI: 10.3389/fendo.2022.863184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023] Open
Abstract
Incretin hormones play an important role in the regulation of glucose homeostasis through their actions on the beta cells and other tissues. Glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are the two main incretins and are secreted by enteroendocrine L- and K-cells, respectively. New evidence suggests that incretin hormones, particularly GLP-1, play a role in the pathophysiology of hyperinsulinemic hypoglycemia. In individuals with acquired hyperinsulinemic hypoglycemia after gastrointestinal surgery, including Nissen fundoplication and gastric bypass surgery, the incretin response to a meal is markedly increased and antagonism of the GLP-1 receptor prevents the hyperinsulinemic response. In individuals with congenital hyperinsulinism due to inactivating mutations in the genes encoding the beta cell KATP channels, the GLP-1 receptor antagonist, exendin-(9-39), increases fasting plasma glucose and prevents protein-induced hypoglycemia. Studies in human and mouse islets lacking functional KATP channels have demonstrated that the effect on plasma glucose is at least in part mediated by inhibition of insulin secretion resulting from lower cytoplasmic cAMP levels. The understanding of the role of incretin hormones in the pathophysiology of hyperinsulinemic hypoglycemia is important for the exploration of the GLP-1 receptor as a therapeutic target for these conditions. In this article, we will review incretin physiology and evidence supporting a role of the incretin hormones in the pathophysiology of hyperinsulinemic hypoglycemia, as well as results from proof-of concept studies exploring a therapeutic approach targeting the GLP-1 receptor to treat hyperinsulinemic hypoglycemia.
Collapse
Affiliation(s)
- Melinda Danowitz
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Diva D. De Leon,
| |
Collapse
|
8
|
Gasbjerg LS, Bari EJ, Christensen M, Knop FK. Exendin(9-39)NH 2 : Recommendations for clinical use based on a systematic literature review. Diabetes Obes Metab 2021; 23:2419-2436. [PMID: 34351033 DOI: 10.1111/dom.14507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
AIM To present an overview of exendin(9-39)NH2 usage as a scientific tool in humans and provide recommendations for dosage and infusion regimes. METHODS We systematically searched the literature on exendin(9-39)NH2 and included for review 44 clinical studies reporting use of exendin(9-39)NH2 in humans. RESULTS Exendin(9-39)NH2 binds to the orthosteric binding site of the glucagon-like peptide-1 (GLP-1) receptor with high affinity. The plasma elimination half-life of exendin(9-39)NH2 after intravenous administration is ~30 minutes, requiring ~2.5 hours of constant infusion before steady-state plasma concentrations can be expected. Studies utilizing infusions with exendin(9-39)NH2 in humans have applied varying regimens (priming with a bolus or constant infusion) and dosages (continuous infusion rate range 30-900 pmol/kg/min) with subsequent differences in effects. Administration of exendin(9-39)NH2 in healthy individuals, patients with diabetes, obese patients, and patients who have undergone bariatric surgery significantly increases fasting and postprandial levels of glucose and glucagon, but has inconsistent effects on circulating concentrations of insulin and C-peptide, gastric emptying, appetite sensations, and food intake. Importantly, exendin(9-39)NH2 induces secretion of all L cell products (ie, in addition to GLP-1, also peptide YY, glucagon-like peptide-2, oxyntomodulin, and glicentin) complicating use of exendin(9-39)NH2 as a tool to study the isolated effect of GLP-1. CONCLUSIONS Exendin(9-39)NH2 is selective for the GLP-1 receptor, with numerous and complex whole-body effects. To obtain GLP-1 receptor blockade in humans, we recommend an initial high-dose infusion, followed by a continuous infusion rate aiming at a ratio of exendin(9-39)NH2 to GLP-1 of 2000:1. Highlights Exendin(9-39)NH2 is a competitive antagonist of the human GLP-1 receptor. Exendin(9-39)NH2 has been used as a tool to delineate human GLP-1 physiology since 1998. Exendin(9-39)NH2 induces secretion of GLP-1 and other L cell products. Reported effects of exendin(9-39)NH2 on insulin levels and food intake are inconsistent. Here, we provide recommendations for the use of exendin(9-39)NH2 in clinical studies.
Collapse
Affiliation(s)
- Laerke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Johanning Bari
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| |
Collapse
|
9
|
Liu Q, Garg P, Hasdemir B, Wang L, Tuscano E, Sever E, Keane E, Hernandez AGL, Yuan TZ, Kwan E, Lai J, Szot G, Paruthiyil S, Axelrod F, K. Sato A. Functional GLP-1R antibodies identified from a synthetic GPCR-focused library demonstrate potent blood glucose control. MAbs 2021; 13:1893425. [PMID: 33706686 PMCID: PMC7971233 DOI: 10.1080/19420862.2021.1893425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a group of seven-transmembrane receptor proteins that have proven to be successful drug targets. Antibodies are becoming an increasingly promising modality to target these receptors due to their unique properties, such as exquisite specificity, long half-life, and fewer side effects, and their improved pharmacokinetic and pharmacodynamic profiles compared to peptides and small molecules, which results from their more favorable biodistribution. To date, there are only two US Food and Drug Administration-approved GPCR antibody drugs, namely erenumab and mogamulizumab, and this highlights the challenges encountered in identifying functional antibodies against GPCRs. Utilizing Twist's precision DNA writing technologies, we have created a GPCR-focused phage display library with 1 × 1010 diversity. Specifically, we mined endogenous GPCR binding ligand and peptide sequences and incorporated these binding motifs into the heavy chain complementarity-determining region 3 in a synthetic antibody library. Glucagon-like peptide-1 receptor (GLP-1 R) is a class B GPCR that acts as the receptor for the incretin GLP-1, which is released to regulate insulin levels in response to food intake. GLP-1 R agonists have been widely used to increase insulin secretion to lower blood glucose levels for the treatment of type 1 and type 2 diabetes, whereas GLP-1 R antagonists have applications in the treatment of severe hypoglycemia associated with bariatric surgery and hyperinsulinomic hypoglycemia. Here we present the discovery and creation of both antagonistic and agonistic GLP-1 R antibodies by panning this GPCR-focused phage display library on a GLP-1 R-overexpressing Chinese hamster ovary cell line and demonstrate their in vitro and in vivo functional activity.
Collapse
Affiliation(s)
- Qiang Liu
- Twist Biopharma, South San Francisco, CA, USA
| | - Pankaj Garg
- Twist Biopharma, South San Francisco, CA, USA
- Alamar Biosciences, Fremont, CA, USA
| | - Burcu Hasdemir
- Twist Biopharma, South San Francisco, CA, USA
- Catalyst Biosciences, South San Francisco, CA, USA
| | - Linya Wang
- Twist Biopharma, South San Francisco, CA, USA
| | | | - Emily Sever
- Twist Biopharma, South San Francisco, CA, USA
| | - Erica Keane
- Twist Biopharma, South San Francisco, CA, USA
| | | | - Tom Z. Yuan
- Twist Biopharma, South San Francisco, CA, USA
| | - Eric Kwan
- Twist Biopharma, South San Francisco, CA, USA
| | - Joyce Lai
- Twist Biopharma, South San Francisco, CA, USA
| | - Greg Szot
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
10
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
11
|
Hecht M, Veigure R, Couchman L, S Barker CI, Standing JF, Takkis K, Evard H, Johnston A, Herodes K, Leito I, Kipper K. Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate. Bioanalysis 2018; 10:1229-1248. [PMID: 30033744 DOI: 10.4155/bio-2018-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research.
Collapse
Affiliation(s)
- Max Hecht
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rūta Veigure
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Lewis Couchman
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, SW17 0RE, UK
| | - Joseph F Standing
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kalev Takkis
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Hanno Evard
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Atholl Johnston
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Clinical Pharmacology, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Koit Herodes
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Ivo Leito
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Karin Kipper
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
12
|
Ng CM, Tang F, Seeholzer SH, Zou Y, De León DD. Population pharmacokinetics of exendin-(9-39) and clinical dose selection in patients with congenital hyperinsulinism. Br J Clin Pharmacol 2017; 84:520-532. [PMID: 29077992 DOI: 10.1111/bcp.13463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/06/2017] [Accepted: 10/23/2017] [Indexed: 12/01/2022] Open
Abstract
AIMS Congenital hyperinsulinism (HI) is the most common cause of persistent hypoglycaemia in infants and children. Exendin-(9-39), an inverse glucagon-like peptide 1 (GLP-1) agonist, is a novel therapeutic agent for HI that has demonstrated glucose-raising effect. We report the first population pharmacokinetic (PopPK) model of the exendin-(9-39) in patients with HI and propose the optimal dosing regimen for future clinical trials in neonates with HI. METHODS A total of 182 pharmacokinetic (PK) observations from 26 subjects in three clinical studies were included for constructing the PopPK model using first order conditional estimation (FOCE) with interaction method in nonlinear mixed-effects modelling (NONMEM). Exposure metrics (area under the curve [AUC] and maximum plasma concentration [Cmax ]) at no observed adverse effect levels (NOAELs) in rats and dogs were determined in toxicology studies. RESULTS Observed concentration-time profiles of exendin-(9-39) were described by a linear two-compartmental PK model. Following allometric scaling of PK parameters, age and creatinine clearance did not significantly affect clearance. The calculated clearance and elimination half-life for adult subjects with median weight of 69 kg were 11.8 l h-1 and 1.81 h, respectively. The maximum recommended starting dose determined from modelling and simulation based on the AUC0-last at the NOAEL and predicted AUC0-inf using the PopPK model was 27 mg kg-1 day-1 intravenously. CONCLUSIONS This is the first study to investigate the PopPK of exendin-(9-39) in humans. The final PopPK model was successfully used with preclinical toxicology findings to propose the optimal dosing regimen of exendin-(9-39) for clinical studies in neonates with HI, allowing for a more targeted dosing approach to achieve desired glycaemic response.
Collapse
Affiliation(s)
- Chee M Ng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Fei Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | | | - Yixuan Zou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Diva D De León
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Abstract
Pancreatic β-cells are finely tuned to secrete insulin so that plasma glucose levels are maintained within a narrow physiological range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is the inappropriate secretion of insulin in the presence of low plasma glucose levels and leads to severe and persistent hypoglycaemia in neonates and children. Mutations in 12 different key genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A, HNF1A, HK1, PGM1 and PMM2) that are involved in the regulation of insulin secretion from pancreatic β-cells have been described to be responsible for the underlying molecular mechanisms leading to congenital HH. In HH due to the inhibitory effect of insulin on lipolysis and ketogenesis there is suppressed ketone body formation in the presence of hypoglycaemia thus leading to increased risk of hypoglycaemic brain injury. Therefore, a prompt diagnosis and immediate management of HH is essential to avoid hypoglycaemic brain injury and long-term neurological complications in children. Advances in molecular genetics, imaging techniques (18F-DOPA positron emission tomography/computed tomography scanning), medical therapy and surgical advances (laparoscopic and open pancreatectomy) have changed the management and improved the outcome of patients with HH. This review article provides an overview to the background, clinical presentation, diagnosis, molecular genetics and therapy in children with different forms of HH.
Collapse
Affiliation(s)
- Hüseyin Demirbilek
- Hacettepe University Faculty of Medicine, Department of Paediatric Endocrinology, Ankara, Turkey
| | - Khalid Hussain
- Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar
,* Address for Correspondence: Sidra Medical and Research Center, Clinic of Paediatric Medicine, Doha, Qatar Phone: +974-30322007 E-mail:
| |
Collapse
|