1
|
Ahmed AB, Abdelrahman MM, Edrees FH. Eco-sustainable chromatographic method for the determination of favipiravir and nitazoxanide for COVID-19: application to human plasma. BMC Chem 2025; 19:11. [PMID: 39789629 PMCID: PMC11714856 DOI: 10.1186/s13065-024-01364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19), an extremely contagious illness, has posed enormous challenges to healthcare systems around the world. Although the evidence on COVID-19 management is growing, antiviral medication is still the first line of treatment. Therefore, it is critical that effective, safe, and tolerable antivirals be available to treat early COVID-19 and stop its progression. Recently, favipiravir (FAV) has received FDA approval as safe and effective antiviral medication for COVID-19 management. Nitazoxanide (NTZ) also possesses antiviral and immunomodulating activities. Moreover, FAV and NTZ in combination are clinically used in COVID-19 treatment with reported safety, synergistic antiviral and immunomodulating effects. Despite the availability of various clinical studies on both FAV and NTZ, no existing analytical application for the simultaneous estimation of FAV and NTZ exists. As a result, the current work goal is to establish a green HPLC method for their analysis and implementation to human plasma. The developed method utilizes isocratic elution with 0.1% aqueous formic acid: ethanol (55:45, v/v) and dantrolene as internal standard. The bioanalytical validation parameters passed the FDA acceptance criteria. NEMI, eco scale, AGREE and ComplexGAPI approaches were used for qualitative and quantitative evaluation of the method's greenness.
Collapse
Affiliation(s)
- Amal B Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University (NUB), Sharq El-Nile, Beni-Suef, 62511, Egypt.
| | - Maha M Abdelrahman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St, Beni-Suef, 62514, Egypt
| | - Fadwa H Edrees
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nile Valley University (NVU), El Fayoum, 63518, Egypt
| |
Collapse
|
2
|
Bähr S, Rue RW, Smith CJ, Evans JF, Köster H, Krymskaya VP, Pleimes D. Repurposing Nitazoxanide for Potential Treatment of Rare Disease Lymphangioleiomyomatosis. Biomolecules 2024; 14:1236. [PMID: 39456169 PMCID: PMC11506457 DOI: 10.3390/biom14101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare genetic lung disease. Unfortunately, treatment with the mTORC1 inhibitor Rapamycin only slows disease progression, and incomplete responses are common. Thus, there remains an urgent need to identify new targets for the development of curative LAM treatments. Nitazoxanide (NTZ) is an orally bioavailable antiprotozoal small molecule drug approved for the treatment of diarrhea caused by Giardia lamblia or Cryptosporidium parvum in children and adults, with a demonstrated mTORC1 inhibitory effect in several human cell lines. NTZ's excellent safety profile characterized by its more than 20 years of clinical use makes it a promising candidate for repurposing. Our rationale for this study was to further investigate NTZ's effect using in vitro and in vivo LAM models and to elucidate the underlying molecular mechanism beyond mTORC1 inhibition. For this purpose, we investigated cell proliferation, cell viability, and changes in protein phosphorylation and expression in primary human cell cultures derived from LAM lung samples before translating our results into a syngeneic mouse model utilizing Tsc2-null cells. NTZ reduced cell growth for all tested cell lines at a dose of about 30 µM. Lower doses than that had no effect on cell viability, but doses above 45 µM lowered the viability by about 10 to 15% compared to control. Interestingly, our western blot revealed no inhibition of mTORC1 and only a mild effect on active ß-Catenin. Instead, NTZ had a pronounced effect on reducing pAkt. In the mouse model, prophylactic NTZ treatment via the intraperitoneal and oral routes had some effects on reducing lung lesions and improving body weight retention, but the results remain inconclusive.
Collapse
Affiliation(s)
- Stella Bähr
- Faculty of Engineering Sciences, Heidelberg University, 69120 Heidelberg, Germany
- Biosputnik LLC., New York, NY 10002, USA
| | - Ryan W. Rue
- Biosputnik LLC., New York, NY 10002, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carly J. Smith
- Biosputnik LLC., New York, NY 10002, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jillian F. Evans
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hubert Köster
- Emeritus Professor of Organic Chemistry and Biochemistry, University Hamburg, 20148 Hamburg, Germany
| | - Vera P. Krymskaya
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
3
|
Hanioka N, Isobe T, Saito K, Nagaoka K, Mori Y, Jinno H, Ohkawara S, Tanaka-Kagawa T. Glucuronidation of tizoxanide, an active metabolite of nitazoxanide, in liver and small intestine: Species differences in humans, monkeys, dogs, rats, and mice and responsible UDP-glucuronosyltransferase isoforms in humans. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109962. [PMID: 38889874 DOI: 10.1016/j.cbpc.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Tizoxanide (TZX) is an active metabolite of nitazoxanide (NTZ) originally developed as an antiparasitic agent, and is predominantly metabolized into TZX glucuronide. In the present study, TZX glucuronidation by the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice, and recombinant human UDP-glucuronosyltransferase (UGT) were examined. The kinetics of TZX glucuronidation by the liver and intestinal microsomes followed the Michaelis-Menten or biphasic model, with species-specific variations in the intrinsic clearance (CLint). Rats and mice exhibited the highest CLint values for liver microsomes, while mice and rats were the highest for intestinal microsomes. Among human UGTs, UGT1A1 and UGT1A8 demonstrated significant glucuronidation activity. Estradiol and emodin inhibited TZX glucuronidation activities in the human liver and intestinal microsomes in a dose-dependent manner, with emodin showing stronger inhibition in the intestinal microsomes. These results suggest that the roles of UGT enzymes in TZX glucuronidation in the liver and small intestine differ extensively across species and that UGT1A1 and/or UGT1A8 mainly contribute to the metabolism and elimination of TZX in humans. This study presents the relevant and novel-appreciative report on TZX metabolism catalyzed by UGT enzymes, which may aid in the assessment of the antiparasitic, antibacterial, and antiviral activities of NTZ for the treatment of various infections.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan.
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Kenjiro Nagaoka
- College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Yoko Mori
- Division of Environmental Chemistry, Ntional Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| | - Toshiko Tanaka-Kagawa
- Department of Health Pharmacy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066, Japan
| |
Collapse
|
4
|
Clark JJ, Penrice-Randal R, Sharma P, Dong X, Pennington SH, Marriott AE, Colombo S, Davidson A, Kavanagh Williamson M, Matthews DA, Turtle L, Prince T, Hughes GL, Patterson EI, Shawli G, Mega DF, Subramaniam K, Sharp J, Turner JD, Biagini GA, Owen A, Kipar A, Hiscox JA, Stewart JP. Sequential Infection with Influenza A Virus Followed by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Leads to More Severe Disease and Encephalitis in a Mouse Model of COVID-19. Viruses 2024; 16:863. [PMID: 38932155 PMCID: PMC11209060 DOI: 10.3390/v16060863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2. The coalescence of SARS-CoV-2 with seasonal respiratory viruses, particularly influenza viruses, is a global health concern. To understand this, transgenic mice expressing the human ACE2 receptor (K18-hACE2) were infected with influenza A virus (IAV) followed by SARS-CoV-2 and the host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 alone. The sequentially infected mice showed reduced SARS-CoV-2 RNA synthesis, yet exhibited more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to the singly infected or control mice. Sequential infection also exacerbated the extrapulmonary encephalitic manifestations associated with SARS-CoV-2 infection. Conversely, prior infection with a commercially available, multivalent live-attenuated influenza vaccine (Fluenz Tetra) elicited the same reduction in SARS-CoV-2 RNA synthesis, albeit without the associated increase in disease severity. This suggests that the innate immune response stimulated by IAV inhibits SARS-CoV-2. Interestingly, infection with an attenuated, apathogenic influenza vaccine does not result in an aberrant immune response and enhanced disease severity. Taken together, the data suggest coinfection ('twinfection') is deleterious and mitigation steps should be instituted as part of the comprehensive public health and management strategy of COVID-19.
Collapse
Affiliation(s)
- Jordan J. Clark
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Rebekah Penrice-Randal
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Xiaofeng Dong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Shaun H. Pennington
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Amy E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Stefano Colombo
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1QU, UK; (A.D.); (D.A.M.)
| | - Lance Turtle
- Department of Clinical Infection Microbiology and Immunology and NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Tropical & Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool L7 8YE, UK
| | - Tessa Prince
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Edward I. Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.)
| | - Ghada Shawli
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Daniele F. Mega
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Krishanthi Subramaniam
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
| | - Jo Sharp
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Joseph D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Giancarlo A. Biagini
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (J.D.T.)
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK; (J.S.); (A.O.)
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zürich, Switzerland
| | - Julian A. Hiscox
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK (R.P.-R.); (P.S.); (T.P.); (G.S.); (A.K.)
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Infectious Disease, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
|
6
|
Xu M, Yao Z, Kong J, Tang M, Liu Q, Zhang X, Shi S, Zheng X, Cao J, Zhou T, Wang Z. Antiparasitic nitazoxanide potentiates colistin against colistin-resistant Acinetobacter baumannii and Escherichia coli in vitro and in vivo. Microbiol Spectr 2024; 12:e0229523. [PMID: 38032179 PMCID: PMC10783142 DOI: 10.1128/spectrum.02295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.
Collapse
Affiliation(s)
- Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Shiyi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| |
Collapse
|
7
|
Box HJ, Sharp J, Pennington SH, Kijak E, Tatham L, Caygill CH, Lopeman RC, Jeffreys LN, Herriott J, Neary M, Valentijn A, Pertinez H, Curley P, Arshad U, Rajoli RKR, Jochmans D, Vangeel L, Neyts J, Chatelain E, Escudié F, Scandale I, Rannard S, Stewart JP, Biagini GA, Owen A. Lack of antiviral activity of probenecid in vitro and in Syrian golden hamsters. J Antimicrob Chemother 2024; 79:172-178. [PMID: 37995258 PMCID: PMC10761260 DOI: 10.1093/jac/dkad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES Antiviral interventions are required to complement vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data to support candidate plausibility are required. This work sought to further investigate the putative antiviral activity of probenecid against SARS-CoV-2. METHODS Vero E6 cells were preincubated with probenecid, or control media for 2 h before infection (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020). Probenecid or control media was reapplied, plates reincubated and cytopathic activity quantified by spectrophotometry after 48 h. In vitro human airway epithelial cell (HAEC) assays were performed for probenecid against SARS-CoV-2-VoC-B.1.1.7 (hCoV-19/Belgium/rega-12211513/2020; EPI_ISL_791333, 2020-12-21) using an optimized cell model for antiviral testing. Syrian golden hamsters were intranasally inoculated (SARS-CoV-2 Delta B.1.617.2) 24 h prior to treatment with probenecid or vehicle for four twice-daily doses. RESULTS No observable antiviral activity for probenecid was evident in Vero E6 or HAEC assays. No reduction in total or subgenomic RNA was observed in terminal lung samples (P > 0.05) from hamsters. Body weight of uninfected hamsters remained stable whereas both probenecid- and vehicle-treated infected hamsters lost body weight (P > 0.5). CONCLUSIONS These data do not support probenecid as a SARS-CoV-2 antiviral drug.
Collapse
Affiliation(s)
- Helen J Box
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Claire H Caygill
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Rose C Lopeman
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Rajith K R Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000, Leuven, Belgium and the Global Virus Network (GVN), Baltimore, MD, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases initiative (DNDi), Research and Development, 1202, Geneva, Switzerland
| | - Steve Rannard
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
- Department of Chemistry, University of Liverpool,Liverpool L7 3NY, UK
| | - James P Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool L7 3NY, UK
| |
Collapse
|
8
|
Jeong HC, Chae YJ, Shin KH. Predicting the systemic exposure and lung concentration of nafamostat using physiologically-based pharmacokinetic modeling. Transl Clin Pharmacol 2022; 30:201-211. [PMID: 36632076 PMCID: PMC9810492 DOI: 10.12793/tcp.2022.30.e20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Nafamostat has been actively studied for its neuroprotective activity and effect on various indications, such as coronavirus disease 2019 (COVID-19). Nafamostat has low water solubility at a specific pH and is rapidly metabolized in the blood. Therefore, it is administered only intravenously, and its distribution is not well known. The main purposes of this study are to predict and evaluate the pharmacokinetic (PK) profiles of nafamostat in a virtual healthy population under various dosing regimens. The most important parameters were assessed using a physiologically based pharmacokinetic (PBPK) approach and global sensitivity analysis with the Sobol sensitivity analysis. A PBPK model was constructed using the SimCYP® simulator. Data regarding the in vitro metabolism and clinical studies were extracted from the literature to assess the predicted results. The model was verified using the arithmetic mean maximum concentration (Cmax), the area under the curve from 0 to the last time point (AUC0-t), and AUC from 0 to infinity (AUC0-∞) ratio (predicted/observed), which were included in the 2-fold range. The simulation results suggested that the 2 dosing regimens for the treatment of COVID-19 used in the case reports could maintain the proposed effective concentration for inhibiting severe acute respiratory syndrome coronavirus 2 entry into the plasma and lung tissue. Global sensitivity analysis indicated that hematocrit, plasma half-life, and microsomal protein levels significantly influenced the systematic exposure prediction of nafamostat. Therefore, the PBPK modeling approach is valuable in predicting the PK profile and designing an appropriate dosage regimen.
Collapse
Affiliation(s)
- Hyeon-Cheol Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| | - Yoon-Jee Chae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Woosuk University, Wanju 55338, Korea
| | - Kwang-Hee Shin
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
9
|
Petrucci G, Giaretta A, Ranalli P, Cavalca V, Dragani A, Porro B, Hatem D, Habib A, Tremoli E, Patrono C, Rocca B. Platelet thromboxane inhibition by low-dose aspirin in polycythemia vera: Ex vivo and in vivo measurements and in silico simulation. Clin Transl Sci 2022; 15:2958-2970. [PMID: 36200184 PMCID: PMC9747129 DOI: 10.1111/cts.13415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
Low-dose aspirin is currently recommended for patients with polycythemia vera (PV), a myeloproliferative neoplasm with increased risk of arterial and venous thromboses. Based on aspirin pharmacodynamics in essential thrombocythemia, a twice-daily regimen is recommended for patients with PV deemed at particularly high thrombotic risk. We investigated the effects of low-dose aspirin on platelet cyclooxygenase activity and in vivo platelet activation in 49 patients with PV, as assessed by serum thromboxane (TX) B2 and urinary TXA2 /TXB2 metabolite (TXM) measurements, respectively. A previously described pharmacokinetic-pharmacodynamic in silico model was used to simulate the degree of platelet TXA2 inhibition by once-daily (q.d.) and twice-daily (b.i.d.) aspirin, and to predict the effect of missing an aspirin dose during q.d. and b.i.d. regimens. Serum TXB2 averaged 8.2 (1.6-54.7) ng/ml and significantly correlated with the platelet count (γ = 0.39) and urinary TXM (γ = 0.52) in multivariable analysis. One-third of aspirin-treated patients with PV displayed less-than-maximal platelet TXB2 inhibition, and were characterized by significantly higher platelet counts and platelet-count corrected serum TXB2 than those with adequate inhibition. Eight patients with PV were sampled again after 12 ± 4 months, and had reproducible serum TXB2 and urinary TXM values. The in silico model predicted complete inhibition of platelet-derived TXB2 by b.i.d. aspirin, a prediction verified in a patient with PV with the highest TXB2 value while on aspirin q.d. and treated short-term with a b.i.d. regimen. In conclusion, one in three patients with PV on low-dose aspirin display less-than-maximal inhibition of platelet TXA2 production. Serum TXB2 measurement can be a valuable option to guide precision dosing of antiplatelet therapy in patients with PV.
Collapse
Affiliation(s)
- Giovanna Petrucci
- Department of Safety and Bioethics, Section of PharmacologyCatholic University School of MedicineRomeItaly
| | | | - Paola Ranalli
- Department of HematologyS. Spirito HospitalPescaraItaly
| | | | | | | | - Duaa Hatem
- Department of Safety and Bioethics, Section of PharmacologyCatholic University School of MedicineRomeItaly
| | - Aida Habib
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| | | | - Carlo Patrono
- Department of Safety and Bioethics, Section of PharmacologyCatholic University School of MedicineRomeItaly
| | - Bianca Rocca
- Department of Safety and Bioethics, Section of PharmacologyCatholic University School of MedicineRomeItaly
| |
Collapse
|
10
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
11
|
Nandi S, Nayak BS, Khede MK, Saxena AK. Repurposing of Chemotherapeutics to Combat COVID-19. Curr Top Med Chem 2022; 22:2660-2694. [PMID: 36453483 DOI: 10.2174/1568026623666221130142517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a novel strain of SARS coronavirus. The COVID-19 disease caused by this virus was declared a pandemic by the World Health Organization (WHO). SARS-CoV-2 mainly spreads through droplets sprayed by coughs or sneezes of the infected to a healthy person within the vicinity of 6 feet. It also spreads through asymptomatic carriers and has negative impact on the global economy, security and lives of people since 2019. Numerous lives have been lost to this viral infection; hence there is an emergency to build up a potent measure to combat SARS-CoV-2. In view of the non-availability of any drugs or vaccines at the time of its eruption, the existing antivirals, antibacterials, antimalarials, mucolytic agents and antipyretic paracetamol were used to treat the COVID-19 patients. Still there are no specific small molecule chemotherapeutics available to combat COVID-19 except for a few vaccines approved for emergency use only. Thus, the repurposing of chemotherapeutics with the potential to treat COVID-19 infected people is being used. The antiviral activity for COVID-19 and biochemical mechanisms of the repurposed drugs are being explored by the biological assay screening and structure-based in silico docking simulations. The present study describes the various US-FDA approved chemotherapeutics repositioned to combat COVID-19 along with their screening for biological activity, pharmacokinetic and pharmacodynamic evaluation.
Collapse
Affiliation(s)
- Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| | - Bhabani Shankar Nayak
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Mayank Kumar Khede
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Anil Kumar Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
12
|
Abuelazm M, Ghanem A, Awad AK, Farahat RA, Labieb F, Katamesh BE, Abdelazeem B. The Effect of Nitazoxanide on the Clinical Outcomes in Patients with COVID-19: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig 2022; 42:1031-1047. [PMID: 36315350 PMCID: PMC9628625 DOI: 10.1007/s40261-022-01213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Nitazoxanide, a US Food and Drug Administration-approved antiparasitic agent, was reported to be effective in treating coronavirus disease 2019 (COVID-19). The lack of effective and precise treatments for COVID-19 infection earlier in the pandemic forced us to depend on symptomatic, empirical, and supportive therapy, which overburdened intensive care units and exhausted hospital resources. Therefore, the aim of this systematic review and meta-analysis was to assess the efficacy and safety of nitazoxanide for COVID-19 treatment. METHODS A systematic review and meta-analysis synthesizing relevant randomized controlled trials from six databases (MedRxiv, WOS, SCOPUS, EMBASE, PubMed, and CENTRAL) until 17 May 2022 was conducted. Risk ratio (RR) for dichotomous outcomes was used and data with a 95% confidence interval (CI) are presented. The protocol was registered in PROSPERO with ID: CRD42022334658. RESULTS Six randomized controlled trials with 1412 patients were included in the analysis. Nitazoxanide was effective in accelerating viral clearance compared with placebo (RR: 1.30 with 95% CI 1.08, 1.56, p = 0.006) and reducing oxygen requirements (RR: 0.48 with 95% CI 0.39, 0.59, p = 0.00001), but we found no difference between nitazoxanide and placebo in improving clinical resolution (RR: 1.01 with 95% CI 0.94, 1.08, p = 0.88), reducing the mortality rate (RR: 0.88 with 95% CI 0.4, 1.91, p = 0.74), and intensive care unit admission (RR: 0.69 with 95% CI 0.43, 1.13, p = 0.14). Moreover, nitazoxanide was as safe as placebo (RR: 0.9 with 95% CI 0.72, 1.12, p = 0.34). CONCLUSIONS Compared with placebo, nitazoxanide was effective in expediting viral clearance and decreasing oxygen requirements. However, there was no difference between nitazoxanide and placebo regarding clinical response, all-cause mortality, and intensive care unit admission. Therefore, more large-scale studies are still needed to ascertain the clinical applicability of nitazoxanide in COVID-19.
Collapse
Affiliation(s)
| | - Ahmed Ghanem
- Cardiology Department, The Lundquist Institute, Torrance, CA, USA
| | - Ahmed K Awad
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Fatma Labieb
- Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint, MI, USA
- Department of Internal Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Chandiwana N, Kruger C, Johnstone H, Chughlay MF, Ju C, Kim B, Dineka Y, Arbe-Barnes S, Miller R, Owen A, Hill A, Windgassen D, Abla N, Marrast AC, Duparc S, Francois Venter WD. Safety and efficacy of four drug regimens versus standard-of-care for the treatment of symptomatic outpatients with COVID-19: A randomised, open-label, multi-arm, phase 2 clinical trial. EBioMedicine 2022; 86:104322. [PMID: 36332361 PMCID: PMC9624152 DOI: 10.1016/j.ebiom.2022.104322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Background This exploratory study investigated four repurposed anti-infective drug regimens in outpatients with COVID-19. Methods This phase 2, single centre, randomised, open-label, clinical trial was conducted in South Africa between 3rd September 2020 and 23rd August 2021. Symptomatic outpatients aged 18–65 years, with RT-PCR confirmed SARS-CoV-2 infection were computer randomised (1:1:1:1:1) to standard-of-care (SOC) with paracetamol, or SOC plus artesunate-amodiaquine (ASAQ), pyronaridine-artesunate (PA), favipiravir plus nitazoxanide (FPV + NTZ), or sofosbuvir-daclatasvir (SOF-DCV). The primary endpoint was the incidence of viral clearance, i.e., the proportion of patients with a negative SARS-CoV-2 RT-PCR on day 7, compared to SOC using a log-binomial model in the modified intention-to-treat (mITT) population. Findings The mITT population included 186 patients: mean age (SD) 34.9 (10.3) years, body weight 78.2 (17.1) kg. Day 7 SARS-CoV-2 clearance rates (n/N; risk ratio [95% CI]) were: SOC 34.2% (13/38), ASAQ 38.5% (15/39; 0.80 [0.44, 1.47]), PA 30.3% (10/33; 0.69 [0.37, 1.29]), FPV + NTZ 27.0% (10/37; 0.60 [0.31, 1.18]) and SOF-DCV 23.5% (8/34; 0.47 [0.22, 1.00]). Three lower respiratory tract infections occurred (PA 6.1% [2/33]; SOF-DCV 2.9% [1/34]); two required hospitalisation (PA, SOF-DCV). There were no deaths. Adverse events occurred in 55.3% (105/190) of patients, including one serious adverse event (pancytopenia; FPV + NTZ). Interpretation There was no statistical difference in viral clearance for any regimen compared to SOC. All treatments were well tolerated. Funding 10.13039/501100004167Medicines for Malaria Venture, with funding from the UK Foreign, Commonwealth and Development Office, within the Covid-19 Therapeutics Accelerator in partnership with 10.13039/100004440Wellcome, the 10.13039/100000865Bill and Melinda Gates Foundation, and Mastercard.
Collapse
Affiliation(s)
- Nomathemba Chandiwana
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Corresponding author. Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Building C, Sunnyside Office Park, 32 Princess of Wales Terrace, Parktown, Johannesburg, South Africa
| | - Chelsea Kruger
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Chung Ju
- Shin Poong Pharm. Co. Ltd., Seoul, Republic of Korea,Graduate School of Clinical Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| | - Byungsu Kim
- Shin Poong Pharm. Co. Ltd., Seoul, Republic of Korea
| | - Yengiwe Dineka
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | - Andrew Hill
- Department of Molecular and Clinical Pharmacology, Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, United Kingdom
| | | | - Nada Abla
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | |
Collapse
|
14
|
Qandeel NA, El-Masry AA, Eid M, Moustafa MA, El-Shaheny R. Fast one-pot microwave-assisted green synthesis of highly fluorescent plant-inspired S,N-self-doped carbon quantum dots as a sensitive probe for the antiviral drug nitazoxanide and hemoglobin. Anal Chim Acta 2022; 1237:340592. [PMID: 36442950 DOI: 10.1016/j.aca.2022.340592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
|
15
|
Fowotade A, Bamidele F, Egbetola B, Fagbamigbe AF, Adeagbo BA, Adefuye BO, Olagunoye A, Ojo TO, Adebiyi AO, Olagunju OI, Ladipo OT, Akinloye A, Onayade A, Bolaji OO, Rannard S, Happi C, Owen A, Olagunju A. A randomized, open-label trial of combined nitazoxanide and atazanavir/ritonavir for mild to moderate COVID-19. Front Med (Lausanne) 2022; 9:956123. [PMID: 36160134 PMCID: PMC9493023 DOI: 10.3389/fmed.2022.956123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background The nitazoxanide plus atazanavir/ritonavir for COVID-19 (NACOVID) trial investigated the efficacy and safety of repurposed nitazoxanide combined with atazanavir/ritonavir for COVID-19. Methods This is a pilot, randomized, open-label multicenter trial conducted in Nigeria. Mild to moderate COVID-19 patients were randomly assigned to receive standard of care (SoC) or SoC plus a 14-day course of nitazoxanide (1,000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) and followed through day 28. Study endpoints included time to clinical improvement, SARS-CoV-2 viral load change, and time to complete symptom resolution. Safety and pharmacokinetics were also evaluated (ClinicalTrials.gov ID: NCT04459286). Results There was no difference in time to clinical improvement between the SoC (n = 26) and SoC plus intervention arms (n = 31; Cox proportional hazards regression analysis adjusted hazard ratio, aHR = 0.898, 95% CI: 0.492-1.638, p = 0.725). No difference was observed in the pattern of saliva SARS-CoV-2 viral load changes from days 2-28 in the 35% of patients with detectable virus at baseline (20/57) (aHR = 0.948, 95% CI: 0.341-2.636, p = 0.919). There was no significant difference in time to complete symptom resolution (aHR = 0.535, 95% CI: 0.251-1.140, p = 0.105). Atazanavir/ritonavir increased tizoxanide plasma exposure by 68% and median trough plasma concentration was 1,546 ng/ml (95% CI: 797-2,557), above its putative EC90 in 54% of patients. Tizoxanide was undetectable in saliva. Conclusion Nitazoxanide co-administered with atazanavir/ritonavir was safe but not better than standard of care in treating COVID-19. These findings should be interpreted in the context of incomplete enrollment (64%) and the limited number of patients with detectable SARS-CoV-2 in saliva at baseline in this trial. Clinical trial registration [https://clinicaltrials.gov/ct2/show/NCT04459286], identifier [NCT04459286].
Collapse
Affiliation(s)
- Adeola Fowotade
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria
| | - Folasade Bamidele
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria
| | | | - Adeniyi F. Fagbamigbe
- Department of Epidemiology and Medical Statistics, University of Ibadan, Ibadan, Nigeria
| | - Babatunde A. Adeagbo
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | | - Temitope O. Ojo
- Department of Community Health, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | | | - Omobolanle I. Olagunju
- Department of Surveillance and Epidemiology, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Abdulafeez Akinloye
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adedeji Onayade
- Department of Community Health, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Oluseye O. Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Christian Happi
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer’s University, Ede, Nigeria
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Adeniyi Olagunju
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Sokhela S, Bosch B, Hill A, Simmons B, Woods J, Johnstone H, Akpomiemie G, Ellis L, Owen A, Casas CP, Venter WDF. Randomized clinical trial of nitazoxanide or sofosbuvir/daclatasvir for the prevention of SARS-CoV-2 infection. J Antimicrob Chemother 2022; 77:2706-2712. [PMID: 35953881 PMCID: PMC9384711 DOI: 10.1093/jac/dkac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The COVER trial evaluated whether nitazoxanide or sofosbuvir/daclatasvir could lower the risk of SARS-CoV-2 infection. Nitazoxanide was selected given its favourable pharmacokinetics and in vitro antiviral effects against SARS-CoV-2. Sofosbuvir/daclatasvir had shown favourable results in early clinical trials. METHODS In this clinical trial in Johannesburg, South Africa, healthcare workers and others at high risk of infection were randomized to 24 weeks of either nitazoxanide or sofosbuvir/daclatasvir as prevention, or standard prevention advice only. Participants were evaluated every 4 weeks for COVID-19 symptoms and had antibody and PCR testing. The primary endpoint was positive SARS-CoV-2 PCR and/or serology ≥7 days after randomization, regardless of symptoms. A Poisson regression model was used to estimate the incidence rate ratios of confirmed SARS-CoV-2 between each experimental arm and control. RESULTS Between December 2020 and January 2022, 828 participants were enrolled. COVID-19 infections were confirmed in 100 participants on nitazoxanide (2234 per 1000 person-years; 95% CI 1837-2718), 87 on sofosbuvir/daclatasvir (2125 per 1000 person-years; 95% CI 1722-2622) and 111 in the control arm (1849 per 1000 person-years; 95% CI 1535-2227). There were no significant differences in the primary endpoint between the treatment arms, and the results met the criteria for futility. In the safety analysis, the frequency of grade 3 or 4 adverse events was low and similar across arms. CONCLUSIONS In this randomized trial, nitazoxanide and sofosbuvir/daclatasvir had no significant preventative effect on infection with SARS-CoV-2 among healthcare workers and others at high risk of infection.
Collapse
Affiliation(s)
- Simiso Sokhela
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwyn Bosch
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew Hill
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Bryony Simmons
- LSE Health, London School of Economics & Political Science, London, UK
| | - Joana Woods
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Godspower Akpomiemie
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leah Ellis
- Imperial College London, School of Public Health, London, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Carmen Perez Casas
- Unitaid, Global Health Campus, Chem. du Pommier 40, 1218 Le Grand-Saconnex, Switzerland
| | | |
Collapse
|
17
|
Assmus F, Driouich JS, Abdelnabi R, Vangeel L, Touret F, Adehin A, Chotsiri P, Cochin M, Foo CS, Jochmans D, Kim S, Luciani L, Moureau G, Park S, Pétit PR, Shum D, Wattanakul T, Weynand B, Fraisse L, Ioset JR, Mowbray CE, Owen A, Hoglund RM, Tarning J, de Lamballerie X, Nougairède A, Neyts J, Sjö P, Escudié F, Scandale I, Chatelain E. Need for a Standardized Translational Drug Development Platform: Lessons Learned from the Repurposing of Drugs for COVID-19. Microorganisms 2022; 10:1639. [PMID: 36014057 PMCID: PMC9460261 DOI: 10.3390/microorganisms10081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.
Collapse
Affiliation(s)
- Frauke Assmus
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Touret
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Ayorinde Adehin
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maxime Cochin
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Caroline S. Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Seungtaek Kim
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Léa Luciani
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Grégory Moureau
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Soonju Park
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Paul-Rémi Pétit
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - David Shum
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Birgit Weynand
- Departmet of Imaging and Pathology, Katholieke Universiteit Leuven, Translational Cell and Tissue Research, 3000 Leuven, Belgium
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Jean-Robert Ioset
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Charles E. Mowbray
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Andrew Owen
- Centre for Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 7ZX, UK
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| |
Collapse
|
18
|
Driouich JS, Cochin M, Touret F, Petit PR, Gilles M, Moureau G, Barthélémy K, Laprie C, Wattanakul T, Chotsiri P, Hoglund RM, Tarning J, Fraisse L, Sjö P, Mowbray CE, Escudié F, Scandale I, Chatelain E, de Lamballerie X, Solas C, Nougairède A. Pre-clinical evaluation of antiviral activity of nitazoxanide against SARS-CoV-2. EBioMedicine 2022; 82:104148. [PMID: 35834886 PMCID: PMC9271885 DOI: 10.1016/j.ebiom.2022.104148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background To address the emergence of SARS-CoV-2, multiple clinical trials in humans were rapidly started, including those involving an oral treatment by nitazoxanide, despite no or limited pre-clinical evidence of antiviral efficacy. Methods In this work, we present a complete pre-clinical evaluation of the antiviral activity of nitazoxanide against SARS-CoV-2. Findings First, we confirmed the in vitro efficacy of nitazoxanide and tizoxanide (its active metabolite) against SARS-CoV-2. Then, we demonstrated nitazoxanide activity in a reconstructed bronchial human airway epithelium model. In a SARS-CoV-2 virus challenge model in hamsters, oral and intranasal treatment with nitazoxanide failed to impair viral replication in commonly affected organs. We hypothesized that this could be due to insufficient diffusion of the drug into organs of interest. Indeed, our pharmacokinetic study confirmed that concentrations of tizoxanide in organs of interest were always below the in vitro EC50. Interpretation These preclinical results suggest, if directly applicable to humans, that the standard formulation and dosage of nitazoxanide is not effective in providing antiviral therapy for Covid-19. Funding This work was supported by the Fondation de France “call FLASH COVID-19”, project TAMAC, by “Institut national de la santé et de la recherche médicale” through the REACTing (REsearch and ACTion targeting emerging infectious diseases), by REACTING/ANRS MIE under the agreement No. 21180 (‘Activité des molécules antivirales dans le modèle hamster’), by European Virus Archive Global (EVA 213 GLOBAL) funded by the European Union's Horizon 2020 research and innovation program under grant agreement No. 871029 and DNDi under support by the Wellcome Trust Grant ref: 222489/Z/21/Z through the COVID-19 Therapeutics Accelerator”.
Collapse
Affiliation(s)
- Jean-Sélim Driouich
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France.
| | - Maxime Cochin
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| | - Paul-Rémi Petit
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| | - Magali Gilles
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| | - Grégory Moureau
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| | - Karine Barthélémy
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| | | | - Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Laurent Fraisse
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Peter Sjö
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | | | - Fanny Escudié
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| | - Caroline Solas
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France; APHM, Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille University -IRD 190-Inserm 1207), Marseille, France
| |
Collapse
|
19
|
Developing New Treatments for COVID-19 through Dual-Action Antiviral/Anti-Inflammatory Small Molecules and Physiologically Based Pharmacokinetic Modeling. Int J Mol Sci 2022; 23:ijms23148006. [PMID: 35887353 PMCID: PMC9325261 DOI: 10.3390/ijms23148006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Broad-spectrum antiviral agents that are effective against many viruses are difficult to develop, as the key molecules, as well as the biochemical pathways by which they cause infection, differ largely from one virus to another. This was more strongly highlighted by the COVID-19 pandemic, which found health systems all over the world largely unprepared and proved that the existing armamentarium of antiviral agents is not sufficient to address viral threats with pandemic potential. The clinical protocols for the treatment of COVID-19 are currently based on the use of inhibitors of the inflammatory cascade (dexamethasone, baricitinib), or inhibitors of the cytopathic effect of the virus (monoclonal antibodies, molnupiravir or nirmatrelvir/ritonavir), using different agents. There is a critical need for an expanded armamentarium of orally bioavailable small-molecular medicinal agents, including those that possess dual antiviral and anti-inflammatory (AAI) activity that would be readily available for the early treatment of mild to moderate COVID-19 in high-risk patients. A multidisciplinary approach that involves the use of in silico screening tools to identify potential drug targets of an emerging pathogen, as well as in vitro and in vivo models for the determination of a candidate drug’s efficacy and safety, are necessary for the rapid and successful development of antiviral agents with potentially dual AAI activity. Characterization of candidate AAI molecules with physiologically based pharmacokinetics (PBPK) modeling would provide critical data for the accurate dosing of new therapeutic agents against COVID-19. This review analyzes the dual mechanisms of AAI agents with potential anti-SARS-CoV-2 activity and discusses the principles of PBPK modeling as a conceptual guide to develop new pharmacological modalities for the treatment of COVID-19.
Collapse
|
20
|
Seehusen F, Clark JJ, Sharma P, Bentley EG, Kirby A, Subramaniam K, Wunderlin-Giuliani S, Hughes GL, Patterson EI, Michael BD, Owen A, Hiscox JA, Stewart JP, Kipar A. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022; 14:1020. [PMID: 35632761 PMCID: PMC9146514 DOI: 10.3390/v14051020] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) not only affects the respiratory tract but also causes neurological symptoms such as loss of smell and taste, headache, fatigue or severe cerebrovascular complications. Using transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2), we investigated the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with SARS-CoV-2 variants, as well as after prior influenza A virus infection. Apart from Omicron, we found all variants to frequently spread to and within the CNS. Infection was restricted to neurons and appeared to spread from the olfactory bulb mainly in basally oriented regions in the brain and into the spinal cord, independent of ACE2 expression and without evidence of neuronal cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed, accompanied by apoptotic death of endothelial, microglial and immune cells, without their apparent infection. Microgliosis and immune cell apoptosis indicate a potential role of microglia for pathogenesis and viral effect in COVID-19 and the possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates and broadly support the investigation of agents with adequate penetration into relevant regions of the CNS.
Collapse
Affiliation(s)
- Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (F.S.); (S.W.-G.)
| | - Jordan J. Clark
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Parul Sharma
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Eleanor G. Bentley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Adam Kirby
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Krishanthi Subramaniam
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Sabina Wunderlin-Giuliani
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (F.S.); (S.W.-G.)
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.); (E.I.P.)
| | - Edward I. Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (G.L.H.); (E.I.P.)
| | - Benedict D. Michael
- Department of Clinical Infection Microbiology and Immunology and NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK;
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool L9 7AL, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L3 3NY, UK;
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (F.S.); (S.W.-G.)
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (J.J.C.); (P.S.); (E.G.B.); (A.K.); (K.S.); (J.A.H.); (J.P.S.)
| |
Collapse
|
21
|
Panahi Y, Dadkhah M, Talei S, Gharari Z, Asghariazar V, Abdolmaleki A, Matin S, Molaei S. Can anti-parasitic drugs help control COVID-19? Future Virol 2022. [PMID: 35359702 PMCID: PMC8940209 DOI: 10.2217/fvl-2021-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Novel COVID-19 is a public health emergency that poses a serious threat to people worldwide. Given the virus spreading so quickly, novel antiviral medications are desperately needed. Repurposing existing drugs is the first strategy. Anti-parasitic drugs were among the first to be considered as a potential treatment option for this disease. Even though many papers have discussed the efficacy of various anti-parasitic drugs in treating COVID-19 separately, so far, no single study comprehensively discussed these drugs. This study reviews some anti-parasitic recommended drugs to treat COVID-19, in terms of function and in vitro as well as clinical results. Finally, we briefly review the advanced techniques, such as artificial intelligence, that have been used to find effective drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Yasin Panahi
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Gharari
- Department of Biotechnology, Faculty of Biological Sciences, Al-Zahra University, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.,Bio Science & Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran
| | - Somayeh Matin
- Department of Internal Medicine, Imam Khomeini Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
22
|
Box H, Pennington SH, Kijak E, Tatham L, Caygill CH, Lopeman RC, Jeffreys LN, Herriott J, Sharp J, Neary M, Valentijn A, Pertinez H, Curley P, Arshad U, Rajoli RKR, Rannard S, Stewart JP, Biagini GA, Owen A. Lack of antiviral activity of probenecid in Vero E6 cells and Syrian golden hamsters: a need for better understanding of inter-lab differences in preclinical assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.03.482788. [PMID: 35262084 PMCID: PMC8902890 DOI: 10.1101/2022.03.03.482788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Antiviral interventions are urgently required to support vaccination programmes and reduce the global burden of COVID-19. Prior to initiation of large-scale clinical trials, robust preclinical data in support of candidate plausibility are required. The speed at which preclinical models have been developed during the pandemic are unprecedented but there is a vital need for standardisation and assessment of the Critical Quality Attributes. This work provides cross-validation for the recent report demonstrating potent antiviral activity of probenecid against SARS-CoV-2 in preclinical models (1). Vero E6 cells were pre-incubated with probenecid, across a 7-point concentration range, or control media for 2 hours before infection with SARS-CoV-2 (SARS-CoV-2/Human/Liverpool/REMRQ0001/2020, Pango B; MOI 0.05). Probenecid or control media was then reapplied and plates incubated for 48 hours. Cells were fixed with 4% v/v paraformaldehyde, stained with crystal violet and cytopathic activity quantified by spectrophotometry at 590 nm. Syrian golden hamsters (n=5 per group) were intranasally inoculated with virus (SARS-CoV-2 Delta variant B.1.617.2; 103 PFU/hamster) for 24 hours prior to treatment. Hamsters were treated with probenecid or vehicle for 4 doses. Hamsters were ethically euthanised before quantification of total and sub-genomic pulmonary viral RNAs. No inhibition of cytopathic activity was observed for probenecid at any concentration in Vero E6 cells. Furthermore, no reduction in either total or subgenomic RNA was observed in terminal lung samples from hamsters on day 3 (P > 0.05). Body weight of uninfected hamsters remained stable throughout the course of the experiment whereas both probenecid- (6 - 9% over 3 days) and vehicle-treated (5 - 10% over 3 days) infected hamsters lost body weight which was comparable in magnitude (P > 0.5). The presented data do not support probenecid as a SARS-CoV-2 antiviral. These data do not support use of probenecid in COVID-19 and further analysis is required prior to initiation of clinical trials to investigate the potential utility of this drug.
Collapse
Affiliation(s)
- Helen Box
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Shaun H Pennington
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Claire H Caygill
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Rose C Lopeman
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Laura N Jeffreys
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Rajith KR Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| |
Collapse
|
23
|
Walker LE, FitzGerald R, Saunders G, Lyon R, Fisher M, Martin K, Eberhart I, Woods C, Ewings S, Hale C, Rajoli RKR, Else L, Dilly‐Penchala S, Amara A, Lalloo DG, Jacobs M, Pertinez H, Hatchard P, Waugh R, Lawrence M, Johnson L, Fines K, Reynolds H, Rowland T, Crook R, Okenyi E, Byrne K, Mozgunov P, Jaki T, Khoo S, Owen A, Griffiths G, Fletcher TE. An Open Label, Adaptive, Phase 1 Trial of High-Dose Oral Nitazoxanide in Healthy Volunteers: An Antiviral Candidate for SARS-CoV-2. Clin Pharmacol Ther 2022; 111:585-594. [PMID: 34699618 PMCID: PMC8653087 DOI: 10.1002/cpt.2463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/16/2021] [Indexed: 12/18/2022]
Abstract
Repurposing approved drugs may rapidly establish effective interventions during a public health crisis. This has yielded immunomodulatory treatments for severe coronavirus disease 2019 (COVID-19), but repurposed antivirals have not been successful to date because of redundancy of the target in vivo or suboptimal exposures at studied doses. Nitazoxanide is a US Food and Drug Administration (FDA) approved antiparasitic medicine, that physiologically-based pharmacokinetic (PBPK) modeling has indicated may provide antiviral concentrations across the dosing interval, when repurposed at higher than approved doses. Within the AGILE trial platform (NCT04746183) an open label, adaptive, phase I trial in healthy adult participants was undertaken with high-dose nitazoxanide. Participants received 1,500 mg nitazoxanide orally twice-daily with food for 7 days. Primary outcomes were safety, tolerability, optimum dose, and schedule. Intensive pharmacokinetic (PK) sampling was undertaken day 1 and 5 with minimum concentration (Cmin ) sampling on days 3 and 7. Fourteen healthy participants were enrolled between February 18 and May 11, 2021. All 14 doses were completed by 10 of 14 participants. Nitazoxanide was safe and with no significant adverse events. Moderate gastrointestinal disturbance (loose stools or diarrhea) occurred in 8 participants (57.1%), with urine and sclera discoloration in 12 (85.7%) and 9 (64.3%) participants, respectively, without clinically significant bilirubin elevation. This was self-limiting and resolved upon drug discontinuation. PBPK predictions were confirmed on day 1 but with underprediction at day 5. Median Cmin was above the in vitro target concentration on the first dose and maintained throughout. Nitazoxanide administered at 1,500 mg b.i.d. with food was safe with acceptable tolerability a phase Ib/IIa study is now being initiated in patients with COVID-19.
Collapse
Affiliation(s)
- Lauren E. Walker
- University of LiverpoolLiverpoolUK
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | | | - Geoffrey Saunders
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Rebecca Lyon
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | - Michael Fisher
- University of LiverpoolLiverpoolUK
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | - Karen Martin
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Izabela Eberhart
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Christie Woods
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | - Sean Ewings
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Colin Hale
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | | | | | | | | | | | | | | | - Parys Hatchard
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Robert Waugh
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Megan Lawrence
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Lucy Johnson
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Keira Fines
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | | | - Timothy Rowland
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | - Rebecca Crook
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | - Emmanuel Okenyi
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
| | - Kelly Byrne
- Liverpool School of Tropical MedicineLiverpoolUK
| | - Pavel Mozgunov
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | - Thomas Jaki
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
| | | | | | - Gareth Griffiths
- Southampton Clinical Trials UnitUniversity of SouthamptonSouthamptonUK
| | - Thomas E. Fletcher
- Liverpool University Hospitals NHS Foundation TrustLiverpoolUK
- Liverpool School of Tropical MedicineLiverpoolUK
| | | |
Collapse
|
24
|
Li F, Jiang M, Ma M, Chen X, Zhang Y, Zhang Y, Yu Y, Cui Y, Chen J, Zhao H, Sun Z, Dong D. Anthelmintics nitazoxanide protects against experimental hyperlipidemia and hepatic steatosis in hamsters and mice. Acta Pharm Sin B 2022; 12:1322-1338. [PMID: 35530137 PMCID: PMC9069401 DOI: 10.1016/j.apsb.2021.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 08/27/2021] [Indexed: 01/16/2023] Open
Abstract
Lipid metabolism disorders contribute to hyperlipidemia and hepatic steatosis. It is ideal to develop drugs simultaneous improving both hyperlipidemia and hepatic steatosis. Nitazoxanide is an FDA-approved oral antiprotozoal drug with excellent pharmacokinetic and safety profile. We found that nitazoxanide and its metabolite tizoxanide induced mild mitochondrial uncoupling and subsequently activated AMPK in HepG2 cells. Gavage administration of nitazoxanide inhibited high-fat diet (HFD)-induced increases of liver weight, blood and liver lipids, and ameliorated HFD-induced renal lipid accumulation in hamsters. Nitazoxanide significantly improved HFD-induced histopathologic changes of hamster livers. In the hamsters with pre-existing hyperlipidemia and hepatic steatosis, nitazoxanide also showed therapeutic effect. Gavage administration of nitazoxanide improved HFD-induced hepatic steatosis in C57BL/6J mice and western diet (WD)-induced hepatic steatosis in Apoe -/- mice. The present study suggests that repurposing nitazoxanide as a drug for hyperlipidemia and hepatic steatosis treatment is promising.
Collapse
Affiliation(s)
- Fengfeng Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Man Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Minghui Ma
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Xuyang Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yidan Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yixin Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yuanyuan Yu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Yunfeng Cui
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Jiahui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Hui Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
| | - Zhijie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| | - Deli Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150086, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150086, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
25
|
Fenton C, Keam SJ. Emerging small molecule antivirals may fit neatly into COVID-19 treatment. DRUGS & THERAPY PERSPECTIVES 2022; 38:112-126. [PMID: 35250258 PMCID: PMC8882464 DOI: 10.1007/s40267-022-00897-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Numerous treatments exist for COVID-19, the illness caused by SARS-CoV-2 virus, although most are not well established; among these are several small molecule antiviral agents. Intravenous remdesivir is an established treatment worldwide for inpatients and in some countries is also available for use in non-hospitalised high risk patients to prevent progression to severe disease and hospitalization. Oral molnupiravir and oral nirmatrelvir-ritonavir are also available in several countries to prevent progression to severe disease and hospitalization for high-risk outpatients. Many other antiviral small molecules that may have therapeutic potential are under investigation in clinical trials. This article provides a summary of key molecular targets, pharmacology and preliminary data on the efficacy and safety of small molecule antiviral agents being investigated for the treatment of COVID-19.
Collapse
Affiliation(s)
- Caroline Fenton
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754 New Zealand
| | - Susan J. Keam
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754 New Zealand
| |
Collapse
|
26
|
Wang Z, Yang L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: Strategies, benefits, and challenges. J Med Virol 2021; 94:1373-1390. [PMID: 34897729 DOI: 10.1002/jmv.27517] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
In this era, broad-spectrum prodrugs with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities are gaining considerable attention owing to their potential clinical benefits and role in combating the fast-spreading coronavirus disease 2019 (COVID-19) pandemic. The last 2 years have seen a surge of reports on various broad-spectrum prodrugs against SARS-CoV-2, and in in vitro studies, animal models, and clinical practice. Currently, only remdesivir (with many controversies and limitations) has been approved by the U.S. FDA for the treatment of SARS-CoV-2 infection, and additional potent anti-SARS-CoV-2 drugs are urgently required to enrich the defense arsenals. The world has ubiquitously grappled with the COVID-19 pandemic, and the availability of broad-spectrum prodrugs provides great hope for us to subdue this global threat. This article reviews promising treatment strategies, antiviral mechanisms, potential benefits, and daunting clinical challenges of anti-SARS-CoV-2 agents to provide some important guidance for future clinical treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, P. R. China
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China
| |
Collapse
|
27
|
Griffiths GO, FitzGerald R, Jaki T, Corkhill A, Reynolds H, Ewings S, Condie S, Tilt E, Johnson L, Radford M, Simpson C, Saunders G, Yeats S, Mozgunov P, Tansley-Hancock O, Martin K, Downs N, Eberhart I, Martin JWB, Goncalves C, Song A, Fletcher T, Byrne K, Lalloo DG, Owen A, Jacobs M, Walker L, Lyon R, Woods C, Gibney J, Chiong J, Chandiwana N, Jacob S, Lamorde M, Orrell C, Pirmohamed M, Khoo S. AGILE: a seamless phase I/IIa platform for the rapid evaluation of candidates for COVID-19 treatment: an update to the structured summary of a study protocol for a randomised platform trial letter. Trials 2021; 22:487. [PMID: 34311777 PMCID: PMC8311065 DOI: 10.1186/s13063-021-05458-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is an urgent unmet clinical need for the identification of novel therapeutics for the treatment of COVID-19. A number of COVID-19 late phase trial platforms have been developed to investigate (often repurposed) drugs both in the UK and globally (e.g. RECOVERY led by the University of Oxford and SOLIDARITY led by WHO). There is a pressing need to investigate novel candidates within early phase trial platforms, from which promising candidates can feed into established later phase platforms. AGILE grew from a UK-wide collaboration to undertake early stage clinical evaluation of candidates for SARS-CoV-2 infection to accelerate national and global healthcare interventions. METHODS/DESIGN AGILE is a seamless phase I/IIa platform study to establish the optimum dose, determine the activity and safety of each candidate and recommend whether it should be evaluated further. Each candidate is evaluated in its own trial, either as an open label single arm healthy volunteer study or in patients, randomising between candidate and control usually in a 2:1 allocation in favour of the candidate. Each dose is assessed sequentially for safety usually in cohorts of 6 patients. Once a phase II dose has been identified, efficacy is assessed by seamlessly expanding into a larger cohort. AGILE is completely flexible in that the core design in the master protocol can be adapted for each candidate based on prior knowledge of the candidate (i.e. population, primary endpoint and sample size can be amended). This information is detailed in each candidate specific trial protocol of the master protocol. DISCUSSION Few approved treatments for COVID-19 are available such as dexamethasone, remdesivir and tocilizumab in hospitalised patients. The AGILE platform aims to rapidly identify new efficacious and safe treatments to help end the current global COVID-19 pandemic. We currently have three candidate specific trials within this platform study that are open to recruitment. TRIAL REGISTRATION EudraCT Number: 2020-001860-27 14 March 2020 ClinicalTrials.gov Identifier: NCT04746183 19 February 2021 ISRCTN reference: 27106947.
Collapse
Affiliation(s)
- Gareth O. Griffiths
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Richard FitzGerald
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Thomas Jaki
- Lancaster University, Lancaster UK and MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Andrea Corkhill
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | | | - Sean Ewings
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Susannah Condie
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Emma Tilt
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Lucy Johnson
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Mike Radford
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Catherine Simpson
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Geoffrey Saunders
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Sara Yeats
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Pavel Mozgunov
- Lancaster University, Lancaster UK and MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Olana Tansley-Hancock
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Karen Martin
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Nichola Downs
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Izabela Eberhart
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Jonathan W. B. Martin
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Cristiana Goncalves
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Anna Song
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
| | - Tom Fletcher
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Byrne
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | - Lauren Walker
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Rebecca Lyon
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Christie Woods
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Jennifer Gibney
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Justin Chiong
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | | | - Shevin Jacob
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Catherine Orrell
- Desmond Tutu Health Foundation, University of Cape Town, Cape Town, South Africa
| | - Munir Pirmohamed
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | - Saye Khoo
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | - on behalf of the AGILE investigators
- Southampton Clinical Trials Unit, University of Southampton, Southampton, Hampshire, UK
- NIHR Royal Liverpool and Broadgreen CRF, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- Lancaster University, Lancaster UK and MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- University of Liverpool, Liverpool, UK
- Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Free London NHS Foundation Trust, London, UK
- University of the Witwatersrand, Johannesburg, South Africa
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Desmond Tutu Health Foundation, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
28
|
Bestetti RB, Furlan-Daniel R, Silva VMR. Pharmacological Treatment of Patients with Mild to Moderate COVID-19: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7212. [PMID: 34281149 PMCID: PMC8297311 DOI: 10.3390/ijerph18137212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023]
Abstract
Mild to moderate COVID-19 can be found in about 80% of patients. Although mortality is low, mild to moderate COVID-19 may progress to severe or even critical stages in about one week. This poses a substantial burden on the health care system, and ultimately culminates in death or incapacitation and hospitalization. Therefore, pharmacological treatment is paramount for patients with this condition, especially those with recognized risk factors to disease progression. We conducted a comprehensive review in the medical literature searching for randomized studies carried out in patients with mild to moderate COVID-19. A total of 14 randomized studies were identified, enrolling a total of 6848 patients. Nine studies (64%) were randomized, placebo-controlled trials, whereas five were open-label randomized trials (35%). We observed that Bamlanivimab and nitazoxanide reduced viral load, whereas ivermectin may have shortened time to viral clearance; Interferon Beta-1 reduced time to viral clearance and vitamin D reduced viral load; Favirapir, peginterferon, and levamisole improved clinical symptoms, whereas fluvoxamine halted disease progression; inhaled budesonide reduced the number of hospitalizations and visits to emergency departments; colchicine reduced the number of deaths and hospitalizations. Collectively, therefore, these findings show that treatment of early COVID-19 may be associated with reduced viral load, thus potentially decreasing disease spread in the community. Moreover, treatment of patients with mild to moderate COVID-19 may also be associated with improved clinical symptoms, hospitalization, and disease progression. We suggest that colchicine, inhaled budesonide, and nitazoxanide, along with nonpharmacological measures, based on efficacy and costs, may be used to mitigate the effects of the COVID-19 pandemic in middle-income countries.
Collapse
Affiliation(s)
- Reinaldo B. Bestetti
- Department of Medicine, University of Ribeirão Preto, 2201 Costabile Romano, Ribeirão Preto 14096-385, Brazil; (R.F.-D.); (V.M.R.S.)
| | | | | |
Collapse
|
29
|
Ben-Zuk N, Dechtman ID, Henn I, Weiss L, Afriat A, Krasner E, Gal Y. Potential Prophylactic Treatments for COVID-19. Viruses 2021; 13:1292. [PMID: 34372498 PMCID: PMC8310088 DOI: 10.3390/v13071292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization declared the SARS-CoV-2 outbreak a Public Health Emergency of International Concern at the end of January 2020 and a pandemic two months later. The virus primarily spreads between humans via respiratory droplets, and is the causative agent of Coronavirus Disease 2019 (COVID-19), which can vary in severity, from asymptomatic or mild disease (the vast majority of the cases) to respiratory failure, multi-organ failure, and death. Recently, several vaccines were approved for emergency use against SARS-CoV-2. However, their worldwide availability is acutely limited, and therefore, SARS-CoV-2 is still expected to cause significant morbidity and mortality in the upcoming year. Hence, additional countermeasures are needed, particularly pharmaceutical drugs that are widely accessible, safe, scalable, and affordable. In this comprehensive review, we target the prophylactic arena, focusing on small-molecule candidates. In order to consolidate a potential list of such medications, which were categorized as either antivirals, repurposed drugs, or miscellaneous, a thorough screening for relevant clinical trials was conducted. A brief molecular and/or clinical background is provided for each potential drug, rationalizing its prophylactic use as an antiviral or inflammatory modulator. Drug safety profiles are discussed, and current medical indications and research status regarding their relevance to COVID-19 are shortly reviewed. In the near future, a significant body of information regarding the effectiveness of drugs being clinically studied for COVID-19 is expected to accumulate, in addition to information regarding the efficacy of prophylactic treatments.
Collapse
Affiliation(s)
- Noam Ben-Zuk
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Ido-David Dechtman
- The Israel Defense Force Medical Corps, Tel Hashomer, Military Post 02149, Israel;
- Pulmonology Department, Edith Wolfson Medical Center, 62 Halochamim Street, Holon 5822012, Israel
| | - Itai Henn
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Libby Weiss
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Amichay Afriat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Esther Krasner
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
| | - Yoav Gal
- Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel-Aviv 61909, Israel; (N.B.-Z.); (I.H.); (L.W.)
- Israel Institute for Biological Research, Ness-Ziona 76100, Israel
| |
Collapse
|
30
|
Blum VF, Cimerman S, Hunter JR, Tierno P, Lacerda A, Soeiro A, Cardoso F, Bellei NC, Maricato J, Mantovani N, Vassao M, Dias D, Galinskas J, Janini LMR, Santos-Oliveira JR, Da-Cruz AM, Diaz RS. Nitazoxanide superiority to placebo to treat moderate COVID-19 - A Pilot prove of concept randomized double-blind clinical trial. EClinicalMedicine 2021; 37:100981. [PMID: 34222847 PMCID: PMC8235996 DOI: 10.1016/j.eclinm.2021.100981] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The absence of specific antivirals to treat COVID-19 leads to the repositioning of candidates' drugs. Nitazoxanide (NTZ) has a broad antiviral effect. METHODS This was a randomized, double-blind pilot clinical trial comparing NTZ 600 mg BID versus Placebo for seven days among 50 individuals (25 each arm) with SARS-COV-2 RT-PCR+ (PCR) that were hospitalized with mild respiratory insufficiency from May 20th, 2020, to September 21st, 2020 (ClinicalTrials.gov NCT04348409). Clinical and virologic endpoints and inflammatory biomarkers were evaluated. A five-point scale for disease severity (SSD) was used. FINDINGS Two patients died in the NTZ arm compared to 6 in the placebo arm (p = 0.564). NTZ was superior to placebo when considering SSD (p < 0001), the mean time for hospital discharge (6.6 vs. 14 days, p = 0.021), and negative PCR at day 21 (p = 0.035), whereas the placebo group presented more adverse events (p = 0.04). Among adverse events likely related to the study drug, 14 were detected in the NTZ group and 22 in placebo (p = 0.24). Among the 30 adverse events unlikely related, 21 occurred in the placebo group (p = 0.04). A decrease from baseline was higher in the NTZ group for d-Dimer (p = 0.001), US-RCP (p < 0.002), TNF (p < 0.038), IL-6 (p < 0.001), IL-8 (p = 0.014), HLA DR. on CD4+ T lymphocytes (p < 0.05), CD38 in CD4+ and CD8+ T (both p < 0.05), and CD38 and HLA-DR. on CD4+ (p < 0.01). INTERPRETATION Compared to placebo in clinical and virologic outcomes and improvement of inflammatory outcomes, the superiority of NTZ warrants further investigation of this drug for moderate COVID-19 in larger clinical trials. A higher incidence of adverse events in the placebo arm might be attributed to COVID-19 related symptoms.
Collapse
Affiliation(s)
| | | | | | - Paulo Tierno
- Hospital Municipal Dr. Francisco Moran (Barueri), Rua Ângela Mirella, Brazil
| | | | | | | | | | | | | | | | - Danilo Dias
- Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alda Maria Da-Cruz
- Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil (Laboratório Interdisciplinar de Pesquisa Médicas, Instituto Oswaldo Cruz (FIOCRUZ), Brazil
| | | |
Collapse
|
31
|
Stachulski AV, Taujanskas J, Pate SL, Rajoli RKR, Aljayyoussi G, Pennington SH, Ward SA, Hong WD, Biagini GA, Owen A, Nixon GL, Leung SC, O’Neill PM. Therapeutic Potential of Nitazoxanide: An Appropriate Choice for Repurposing versus SARS-CoV-2? ACS Infect Dis 2021; 7:1317-1331. [PMID: 33352056 PMCID: PMC7771247 DOI: 10.1021/acsinfecdis.0c00478] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/16/2022]
Abstract
The rapidly growing COVID-19 pandemic is the most serious global health crisis since the "Spanish flu" of 1918. There is currently no proven effective drug treatment or prophylaxis for this coronavirus infection. While developing safe and effective vaccines is one of the key focuses, a number of existing antiviral drugs are being evaluated for their potency and efficiency against SARS-CoV-2 in vitro and in the clinic. Here, we review the significant potential of nitazoxanide (NTZ) as an antiviral agent that can be repurposed as a treatment for COVID-19. Originally, NTZ was developed as an antiparasitic agent especially against Cryptosporidium spp.; it was later shown to possess potent activity against a broad range of both RNA and DNA viruses, including influenza A, hepatitis B and C, and coronaviruses. Recent in vitro assessment of NTZ has confirmed its promising activity against SARS-CoV-2 with an EC50 of 2.12 μM. Here we examine its drug properties, antiviral activity against different viruses, clinical trials outcomes, and mechanisms of antiviral action from the literature in order to highlight the therapeutic potential for the treatment of COVID-19. Furthermore, in preliminary PK/PD analyses using clinical data reported in the literature, comparison of simulated TIZ (active metabolite of NTZ) exposures at two doses with the in vitro potency of NTZ against SARS-CoV-2 gives further support for drug repurposing with potential in combination chemotherapy approaches. The review concludes with details of second generation thiazolides under development that could lead to improved antiviral therapies for future indications.
Collapse
Affiliation(s)
| | - Joshua Taujanskas
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Sophie L. Pate
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Rajith K. R. Rajoli
- Department of Molecular and Clinical Pharmacology,
Materials Innovation Factory, University of Liverpool,
Liverpool L7 3NY, U.K.
| | - Ghaith Aljayyoussi
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Shaun H. Pennington
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Stephen A. Ward
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Weiqian David Hong
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Giancarlo A. Biagini
- Centre for Drugs and Diagnostics, Department of Tropical
Disease Biology, Liverpool School of Tropical Medicine,
Liverpool L3 5QA, U.K.
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology,
Materials Innovation Factory, University of Liverpool,
Liverpool L7 3NY, U.K.
| | - Gemma L. Nixon
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Suet C. Leung
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| | - Paul M. O’Neill
- Department of Chemistry, University of
Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
32
|
Neary M, Arshad U, Tatham L, Pertinez H, Box H, Rajoli RK, Valentijn A, Sharp J, Rannard SP, Biagini GA, Curley P, Owen A. Quantitation of tizoxanide in multiple matrices to support cell culture, animal and human research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.27.445500. [PMID: 34075381 PMCID: PMC8168394 DOI: 10.1101/2021.05.27.445500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Currently nitazoxanide is being assessed as a candidate therapeutic for SARS-CoV-2. Unlike many other candidates being investigated, tizoxanide (the active metabolite of nitazoxanide) plasma concentrations achieve antiviral levels after administration of the approved dose, although higher doses are expected to be needed to maintain these concentrations across the dosing interval in the majority of patients. Here an LC-MS/MS assay is described that has been validated in accordance with Food and Drug Administration (FDA) guidelines. Fundamental parameters have been evaluated, and these included accuracy, precision and sensitivity. The assay was validated for human plasma, mouse plasma and Dulbeccos Modified Eagles Medium (DMEM) containing varying concentrations of Foetal Bovine Serum (FBS). Matrix effects are a well-documented source of concern for chromatographic analysis, with the potential to impact various stages of the analytical process, including suppression or enhancement of ionisation. Therefore, a robustly validated LC-MS/MS analytical method is presented capable of quantifying tizoxanide in multiple matrices with minimal impact of matrix effects. The validated assay presented here was linear from 15.6ng/mL to 1000ng/mL. Accuracy and precision ranged between 102.2% and 113.5%, 100.1% and 105.4%, respectively. The presented assay here has applications in both pre-clinical and clinical research and may be used to facilitate further investigations into the application of nitazoxanide against SARS-CoV-2.
Collapse
Affiliation(s)
- Megan Neary
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Helen Box
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Rajith Kr Rajoli
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool, Liverpool, L69 3BX, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool, Liverpool, L7 3NY, UK
| |
Collapse
|
33
|
Enríquez López KY, Meneses Calderón J, de la Cruz Ávila L, López Esquivel MÁ, Meneses Figueroa J, Vargas Contreras MJ, Anaya Herrera J, Sotelo Martínez OR, Mendoza López JA, Mendieta Zerón H. Evolution of COVID-19 Pregnancies Treated With Nitazoxanide in a Third-Level Hospital. Cureus 2021; 13:e15002. [PMID: 34131543 PMCID: PMC8196550 DOI: 10.7759/cureus.15002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Nitazoxanide shows adequate in vitro activity against coronavirus. The aim of this study was to describe the behavior of coronavirus disease 2019 (COVID-19) in pregnant women treated with nitazoxanide. Methodology This cross-sectional study included the files of COVID-19 positive pregnant women treated with nitazoxanide 500 mg every 6 hours, levofloxacin every 12 hours, and clarithromycin 500 mg every 12 hours. Results The data of 51 women (mean age: 27.4 ± 7.2 years) were analyzed. Eleven (21.56%) patients had to receive medical attention in the intensive care unit. There were 22 (43.13%) preterm deliveries, 21 by cesarean and one by vaginal delivery. The medical attention of this population was as follows: 31 cesareans, five vaginal deliveries, nine still pregnant, two requiring manual vacuum aspiration, two ectopic pregnancies, one requiring curettage, and one requiring hysterotomy. There were seven (13.72%) cases of preeclampsia, and there were two (3.92%) deaths. Conclusion Nitazoxanide prescription could be an option against COVID-19 in pregnancy due to its safety profile.
Collapse
Affiliation(s)
| | - José Meneses Calderón
- Department of Research, "Mónica Pretelini Sáenz" Maternal-Perinatal Hospital, Toluca, MEX
| | | | | | - Jazmín Meneses Figueroa
- Laboratory of Genetics, Faculty of Medicine, Autonomous University of the State of Mexico, Toluca, MEX
| | | | - José Anaya Herrera
- Department of Obstetrics and Gynaecology, "Mónica Pretelini Sáenz" Maternal-Perinatal Hospital, Toluca, MEX
| | | | | | - Hugo Mendieta Zerón
- Faculty of Medicine, Autonomous University of the State of Mexico, Toluca, MEX
| |
Collapse
|
34
|
Al-Hatamleh MAI, Hatmal MM, Alshaer W, Rahman ENSEA, Mohd-Zahid MH, Alhaj-Qasem DM, Yean CY, Alias IZ, Jaafar J, Ferji K, Six JL, Uskoković V, Yabu H, Mohamud R. COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. Eur J Pharmacol 2021; 896:173930. [PMID: 33545157 PMCID: PMC7857087 DOI: 10.1016/j.ejphar.2021.173930] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.
Collapse
Affiliation(s)
- Mohammad A I Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman, 11942, Jordan
| | - Engku Nur Syafirah E A Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Manali Haniti Mohd-Zahid
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | | | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Iskandar Z Alias
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, F-5400, Nancy, France
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-5400, Nancy, France
| | | | - Hiroshi Yabu
- WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1, Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia; Hospital Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
| |
Collapse
|
35
|
Rajoli RKR, Pertinez H, Arshad U, Box H, Tatham L, Curley P, Neary M, Sharp J, Liptrott NJ, Valentijn A, David C, Rannard SP, Aljayyoussi G, Pennington SH, Hill A, Boffito M, Ward SA, Khoo SH, Bray PG, O'Neill PM, Hong WD, Biagini GA, Owen A. Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis. Br J Clin Pharmacol 2021; 87:2078-2088. [PMID: 33085781 PMCID: PMC8056737 DOI: 10.1111/bcp.14619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug, has been shown to exhibit in vitro activity against SARS-CoV-2. The present study used physiologically based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS-CoV-2 EC90 . METHODS A whole-body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500 and 4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. RESULTS The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID and 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12 hours post dose was estimated. CONCLUSION The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS-CoV-2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial.
Collapse
Affiliation(s)
- Rajith K. R. Rajoli
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Henry Pertinez
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Usman Arshad
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Helen Box
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Lee Tatham
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Paul Curley
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Megan Neary
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Joanne Sharp
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Neill J. Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Anthony Valentijn
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Christopher David
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | | | - Ghaith Aljayyoussi
- Centre for Drugs and Diagnostics, and Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Shaun H. Pennington
- Centre for Drugs and Diagnostics, and Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Andrew Hill
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Marta Boffito
- Chelsea and Westminster NHS Foundation Trust and St Stephen's AIDS Trust 4th FloorChelsea and Westminster HospitalLondonUK
- Jefferiss Research Trust Laboratories, Department of MedicineImperial CollegeLondonUK
| | - Steve A. Ward
- Centre for Drugs and Diagnostics, and Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Saye H. Khoo
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | | | | | - W. David Hong
- Department of ChemistryUniversity of LiverpoolLiverpoolUK
| | - Giancarlo A. Biagini
- Centre for Drugs and Diagnostics, and Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
36
|
Kern C, Schöning V, Chaccour C, Hammann F. Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing. Front Pharmacol 2021; 12:625678. [PMID: 33776767 PMCID: PMC7988345 DOI: 10.3389/fphar.2021.625678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
Several repurposed drugs are currently under investigation in the fight against coronavirus disease 2019 (COVID-19). Candidates are often selected solely by their effective concentrations in vitro, an approach that has largely not lived up to expectations in COVID-19. Cell lines used in in vitro experiments are not necessarily representative of lung tissue. Yet, even if the proposed mode of action is indeed true, viral dynamics in vivo, host response, and concentration-time profiles must also be considered. Here we address the latter issue and describe a model of human SARS-CoV-2 viral kinetics with acquired immune response to investigate the dynamic impact of timing and dosing regimens of hydroxychloroquine, lopinavir/ritonavir, ivermectin, artemisinin, and nitazoxanide. We observed greatest benefits when treatments were given immediately at the time of diagnosis. Even interventions with minor antiviral effect may reduce host exposure if timed correctly. Ivermectin seems to be at least partially effective: given on positivity, peak viral load dropped by 0.3-0.6 log units and exposure by 8.8-22.3%. The other drugs had little to no appreciable effect. Given how well previous clinical trial results for hydroxychloroquine and lopinavir/ritonavir are explained by the models presented here, similar strategies should be considered in future drug candidate prioritization efforts.
Collapse
Affiliation(s)
- Charlotte Kern
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital (Bern University Hospital), University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Verena Schöning
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital (Bern University Hospital), University of Bern, Bern, Switzerland
| | - Carlos Chaccour
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Clínica Universidad de Navarra, Pamplona, Spain
- Ifakara Health Institute, Ifakara, Tanzania
| | - Felix Hammann
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital (Bern University Hospital), University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Shoaib MH, Ahmed FR, Sikandar M, Yousuf RI, Saleem MT. A Journey From SARS-CoV-2 to COVID-19 and Beyond: A Comprehensive Insight of Epidemiology, Diagnosis, Pathogenesis, and Overview of the Progress into Its Therapeutic Management. Front Pharmacol 2021; 12:576448. [PMID: 33732150 PMCID: PMC7957225 DOI: 10.3389/fphar.2021.576448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
The 2019 novel coronavirus (2019-nCoV), commonly known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19), was first revealed in late 2019 in Wuhan city, Hubei province, China. It was subsequently spread globally and thereby declared as a pandemic by WHO in March 2020. The disease causes severe acute respiratory illness and is highly contagious due to the fast-onward transmission. As of the mid of November 2020, the disease has affected 220 countries with more than 16 million active cases and 1.3 million deaths worldwide. Males, pregnant women, the elderly, immunosuppressed patients, and those with underlying medical conditions are more vulnerable to the disease than the general healthy population. Unfortunately, no definite treatment is available. Although remdesivir as an antiviral had been approved for use in those above 12 years of age and 40 kg weight group, it has been observed to be ineffective in large-scale SOLIDARITY trials by WHO. Moreover, dexamethasone has been found to increase the recovery rate of ventilated patients; oxygen and inhaled nitric oxide as a vasodilator have been given emergency expanded access. In addition, more than 57 clinical trials are being conducted for the development of the vaccines on various platforms. Two vaccines were found to be significantly promising in phase III results. It is concluded that till the approval of a specific treatment or development of a vaccine against this deadly disease, the preventive measures should be followed strictly to reduce the spread of the disease.
Collapse
Affiliation(s)
- Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
38
|
Bobrowski T, Chen L, Eastman RT, Itkin Z, Shinn P, Chen CZ, Guo H, Zheng W, Michael S, Simeonov A, Hall MD, Zakharov AV, Muratov EN. Synergistic and Antagonistic Drug Combinations against SARS-CoV-2. Mol Ther 2021; 29:873-885. [PMID: 33333292 PMCID: PMC7834738 DOI: 10.1016/j.ymthe.2020.12.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 01/15/2023] Open
Abstract
Antiviral drug development for coronavirus disease 2019 (COVID-19) is occurring at an unprecedented pace, yet there are still limited therapeutic options for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2, thus generating better antiviral efficacy. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Sixteen synergistic and eight antagonistic combinations were identified; among 16 synergistic cases, combinations of the US Food and Drug Administration (FDA)-approved drug nitazoxanide with remdesivir, amodiaquine, or umifenovir were most notable, all exhibiting significant synergy against SARS-CoV-2 in a cell model. However, the combination of remdesivir and lysosomotropic drugs, such as hydroxychloroquine, demonstrated strong antagonism. Overall, these results highlight the utility of drug repurposing and preclinical testing of drug combinations for discovering potential therapies to treat COVID-19.
Collapse
Affiliation(s)
- Tesia Bobrowski
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard T Eastman
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Zina Itkin
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Hui Guo
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Alexey V Zakharov
- National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, MD 20850, USA.
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Lokhande AS, Devarajan PV. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur J Pharmacol 2021; 891:173748. [PMID: 33227285 PMCID: PMC7678434 DOI: 10.1016/j.ejphar.2020.173748] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The global pandemic of Coronavirus Disease 2019 (COVID-19) has brought the world to a grinding halt. A major cause of concern is the respiratory distress associated mortality attributed to the cytokine storm. Despite myriad rapidly approved clinical trials with repurposed drugs, and time needed to develop a vaccine, accelerated search for repurposed therapeutics is still ongoing. In this review, we present Nitazoxanide a US-FDA approved antiprotozoal drug, as one such promising candidate. Nitazoxanide which is reported to exert broad-spectrum antiviral activity against various viral infections, revealed good in vitro activity against SARS-CoV-2 in cell culture assays, suggesting potential for repurposing in COVID-19. Furthermore, nitazoxanide displays the potential to boost host innate immune responses and thereby tackle the life-threatening cytokine storm. Possibilities of improving lung, as well as multiple organ damage and providing value addition to COVID-19 patients with comorbidities, are other important facets of the drug. The review juxtaposes the role of nitazoxanide in fighting COVID-19 pathogenesis at multiple levels highlighting the great promise the drug exhibits. The in silico data and in vitro efficacy in cell lines confirms the promise of nitazoxanide. Several approved clinical trials world over further substantiate leveraging nitazoxanide for COVID-19 therapy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
40
|
Villamagna AH, Gore SJ, Lewis JS, Doggett JS. The Need for Antiviral Drugs for Pandemic Coronaviruses From a Global Health Perspective. Front Med (Lausanne) 2020; 7:596587. [PMID: 33415116 PMCID: PMC7783399 DOI: 10.3389/fmed.2020.596587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Respiratory failure due to SARS-CoV-2 has caused widespread mortality, creating an urgent need for effective treatments and a long-term need for antivirals for future emergent coronaviruses. Pharmacotherapy for respiratory viruses has largely been unsuccessful with the exception of early treatment of influenza viruses, which shortens symptom duration and prevents infection in close contacts. Under the rapidly evolving circumstances of the COVID-19 pandemic, most clinical trials of experimental treatments in the United States have focused on later stages of the disease process. Worldwide, the clinical studies of the most impactful drugs, remdesivir and dexamethasone in ACTT-1, RECOVERY, and Solidarity, have studied hospitalized patients. Less than half of clinical trials in the U.S. have investigated oral agents, and the majority have taken place in hospitals at a disease stage where the viral load is already decreasing. The limited success of treatments for respiratory viruses and the viral dynamics of COVID-19 suggest that an antiviral therapy with the greatest impact against pandemic coronaviruses would be orally administered, well-tolerated, target a highly conserved viral protein or host-coronavirus interaction and could be used effectively throughout the world, including resource-poor settings. We examine the treatment of respiratory viral infections and current clinical trials for COVID-19 to provide a framework for effective antiviral therapy and prevention of future emergent coronaviruses and call attention to the need for continued preclinical drug discovery.
Collapse
Affiliation(s)
- Angela Holly Villamagna
- Division of Infectious Diseases, Oregon Health & Science University School of Medicine, Portland, OR, United States
| | - Sara J. Gore
- Division of Infectious Diseases, Oregon Health & Science University School of Medicine, Portland, OR, United States
| | - James S. Lewis
- Division of Infectious Diseases, Oregon Health & Science University School of Medicine, Portland, OR, United States
| | - J. Stone Doggett
- Division of Infectious Diseases, Oregon Health & Science University School of Medicine, Portland, OR, United States
- Department of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR, United States
| |
Collapse
|
41
|
Penman SL, Kiy RT, Jensen RL, Beoku‐Betts C, Alfirevic A, Back D, Khoo SH, Owen A, Pirmohamed M, Park BK, Meng X, Goldring CE, Chadwick AE. Safety perspectives on presently considered drugs for the treatment of COVID-19. Br J Pharmacol 2020; 177:4353-4374. [PMID: 32681537 PMCID: PMC7404855 DOI: 10.1111/bph.15204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Intense efforts are underway to evaluate potential therapeutic agents for the treatment of COVID-19. In order to respond quickly to the crisis, the repurposing of existing drugs is the primary pharmacological strategy. Despite the urgent clinical need for these therapies, it is imperative to consider potential safety issues. This is important due to the harm-benefit ratios that may be encountered when treating COVID-19, which can depend on the stage of the disease, when therapy is administered and underlying clinical factors in individual patients. Treatments are currently being trialled for a range of scenarios from prophylaxis (where benefit must greatly exceed risk) to severe life-threatening disease (where a degree of potential risk may be tolerated if it is exceeded by the potential benefit). In this perspective, we have reviewed some of the most widely researched repurposed agents in order to identify potential safety considerations using existing information in the context of COVID-19.
Collapse
Affiliation(s)
- Sophie L. Penman
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Robyn T. Kiy
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Rebecca L. Jensen
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | | | - Ana Alfirevic
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - David Back
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Saye H. Khoo
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Andrew Owen
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - B. Kevin Park
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Amy E. Chadwick
- MRC Centre for Drug Safety Science, Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| |
Collapse
|