1
|
Gür Maz T, Dahlke P, Gizem Ergül A, Olğaç A, Jordan PM, Çalışkan B, Werz O, Banoglu E. Novel 1,3,4-oxadiazole derivatives as highly potent microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors. Bioorg Chem 2024; 147:107383. [PMID: 38653151 DOI: 10.1016/j.bioorg.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.
Collapse
Affiliation(s)
- Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Azize Gizem Ergül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey.
| |
Collapse
|
2
|
Huang Q, Lai T, Wang Q, Luo L. mPGES-1 Inhibitor Discovery Based on Computer-Aided Screening: Pharmacophore Models, Molecular Docking, ADMET, and MD Simulations. Molecules 2023; 28:6059. [PMID: 37630311 PMCID: PMC10458489 DOI: 10.3390/molecules28166059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
mPGES-1 is an enzyme, which, when activated by inflammatory factors, can cause prostaglandin E synthesis. Traditional non-steroidal anti-inflammatory drugs are capable of inhibiting prostaglandin production, yet they can also cause gastrointestinal reactions and coagulation disorders. mPGES-1, the enzyme at the conclusion of prostaglandin production, does not cause any adverse reactions when inhibited. Numerous studies have demonstrated that mPGES-1 is more abundant in cancerous cells than in healthy cells, indicating that decreasing the expression of mPGES-1 could be a potential therapeutic strategy for cancer. Consequently, the invention of mPGES-1 inhibitors presents a fresh avenue for the treatment of inflammation and cancer. Incorporating a database of TCM compounds, we collected a batch of compounds that had an inhibitory effect on mPGES-1 and possessed IC50 value. Firstly, a pharmacophore model was constructed, and the TCM database was screened, and the compounds with score cut-off values of more than 1 were retained. Then, the compounds retained after being screened via the pharmacodynamic model were screened for docking at the mPGES-1 binding site, followed by high-throughput virtual screening [HTVS] and standard precision [SP] and super-precision [XP] docking, and the compounds in the top 20% of the XP docking score were selected to calculate the total free binding energy of MM-GBSA. The best ten compounds were chosen by comparing their score against the reference ligand 4U9 and the MM-GBSA_dG_Bind score. ADMET analysis resulted in the selection of ten compounds, three of which had desirable medicinal properties. Finally, the binding energy of the target protein mPGES-1 and the candidate ligand compound was analyzed using a 100 ns molecular dynamics simulation of the reference ligand 4U9 and three selected compounds. After a gradual screening study and analysis, we identified a structure that is superior to the reference ligand 4U9 in all aspects, namely compound 15643. Taken together, the results of this study reveal a structure that can be used to inhibit mPGES-1 compound 15643, thereby providing a new option for anti-inflammatory and anti-tumor drugs.
Collapse
Affiliation(s)
- Qiqi Huang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (Q.H.); (T.L.)
| | - Tianli Lai
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (Q.H.); (T.L.)
| | - Qu Wang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
3
|
Ma Q, Sun J, Wang H, Zhou C, Li C, Wu Y, Wen Y, Zhang X, Ren X, Guo Z, Gong L, Zhang W. Far upstream element-binding protein 1 confers lobaplatin resistance by transcriptionally activating PTGES and facilitating the arachidonic acid metabolic pathway in osteosarcoma. MedComm (Beijing) 2023; 4:e257. [PMID: 37180822 PMCID: PMC10170244 DOI: 10.1002/mco2.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 05/16/2023] Open
Abstract
Drug resistance is a major obstacle in cancer treatment and recurrence prevention and leads to poor outcomes in patients suffering from osteosarcoma. Clarification of the mechanism of drug resistance and exploration of effective strategies to overcome this obstacle could lead to clinical benefits for these patients. The expression of far upstream element-binding protein 1 (FUBP1) was found to be markedly elevated in osteosarcoma cell lines and clinical specimens compared with osteoblast cells and normal bone specimens. High expression of FUBP1 was correlated with a more aggressive phenotype and a poor prognosis in osteosarcoma patients. We found that overexpression of FUBP1 confers lobaplatin resistance, whereas the inhibition of FUBP1 sensitizes osteosarcoma cells to lobaplatin-induced cytotoxicity both in vivo and in vitro. Chromatin immunoprecipitation-seq and RNA-seq were performed to explore the potential mechanism. It was revealed that FUBP1 could regulate the transcription of prostaglandin E synthase (PTGES) and subsequently activate the arachidonic acid (AA) metabolic pathway, which leads to resistance to lobaplatin. Our investigation provides evidence that FUBP1 is a potential therapeutic target for osteosarcoma patients. Targeting FUBP1, its downstream target PTGES and the AA metabolic pathway may be promising strategies for sensitizing chemoresistant osteosarcoma cells to lobaplatin.
Collapse
Affiliation(s)
- Qiong Ma
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Jin Sun
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Huan Wang
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Chengpei Zhou
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Chenyu Li
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Yonghong Wu
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Yanhua Wen
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Xiaoyu Zhang
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Xingguang Ren
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Zheng Guo
- Orthopedic Oncology InstituteDepartment of Orthopedic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Li Gong
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
| | - Wei Zhang
- Department of PathologyTangdu HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
4
|
Stewart MJ, Weaver LM, Ding K, Kyomuhangi A, Loftin CD, Zheng F, Zhan CG. Analgesic effects of a highly selective mPGES-1 inhibitor. Sci Rep 2023; 13:3326. [PMID: 36849491 PMCID: PMC9971260 DOI: 10.1038/s41598-023-30164-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
The growing opioid use and overdose crisis in the US is closely related to the abuse of pain medications. Particularly for postoperative pain (POP), ~ 310 million major surgeries are performed globally per year. Most patients undergoing surgical procedures experience acute POP, and ~ 75% of those with POP report the severity as moderate, severe, or extreme. Opioid analgesics are the mainstay for POP management. It is highly desirable to develop a truly effective and safe non-opioid analgesic to treat POP and other forms of pain. Notably, microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1) was once proposed as a potentially promising target for a next generation of anti-inflammatory drugs based on studies in mPGES-1 knockouts. However, to the best of our knowledge, no studies have ever been reported to explore whether mPGES-1 is also a potential target for POP treatment. In this study, we demonstrate for the first time that a highly selective mPGES-1 inhibitor can effectively relieve POP as well as other forms of pain through blocking the PGE2 overproduction. All the data have consistently demonstrated that mPGES-1 is a truly promising target for treatment of POP as well as other forms of pain.
Collapse
Affiliation(s)
- Madeline J. Stewart
- grid.266539.d0000 0004 1936 8438Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA ,grid.266539.d0000 0004 1936 8438Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Lauren M. Weaver
- grid.266539.d0000 0004 1936 8438Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA ,grid.266539.d0000 0004 1936 8438Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Kai Ding
- grid.266539.d0000 0004 1936 8438Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Annet Kyomuhangi
- grid.266539.d0000 0004 1936 8438Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA ,grid.266539.d0000 0004 1936 8438Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Charles D. Loftin
- grid.266539.d0000 0004 1936 8438Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536 USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
5
|
Mikhail DS, El-Nassan HB, Mahmoud ST, Fahim SH. Nonacidic thiophene-based derivatives as potential analgesic and design, synthesis, biological evaluation, and metabolic stability study. Drug Dev Res 2022; 83:1739-1757. [PMID: 36074734 DOI: 10.1002/ddr.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Nonsteroidal anti-inflammatory drugs represent one of the most popularly used classes of drugs. However, their long-term administration is associated with various side effects including gastrointestinal ulceration. One of the major reasons of NSAIDs ulcerogenicity is direct damage of the epithelial lining cells by the acidic moieties present in many drugs. Another drawback for this acidic group is its rapid metabolism and clearance through Phase II conjugation. Three series of thiophene and thienopyrimidine derivatives were designed and synthesized as nonacidic anti-inflammatory agents. In vivo testing of their analgesic activity indicated that compounds 2b and 7a-d showed higher PI values than that of the positive control drugs, indomethacin and celecoxib. The latter compounds 2b and 7a-d were subjected to further anti-inflammatory activity testing where they showed comparable percentage edema inhibition to that of indomethacin and celecoxib. Compounds 2b, 7a, 7c, and 7d inhibited PGE2 synthesis by 61.10%-74.54% (71.47% for indomethacin, and 80.11% for celecoxib). The same compounds inhibited the expression of rat mPGES-1 and cPGES3 by 74%-83% (77% for indomethacin, and 82% for celecoxib) and 48%-70% (62% for indomethacin, and 70% for celecoxib), respectively. The stability of the most active compound 2b in Nonenzymatic gastrointestinal fluids and in human plasma was tested. Additionally, studying the metabolic stability of compound 2b in S9 rat liver fraction showed that it displayed a slow in vitro clearance with half-life time 1.5-fold longer than indomethacin. The metabolites of 2b were predicted via UPLC-MS/MS. In silico ADMET profiling study was also included.
Collapse
Affiliation(s)
- Demiana S Mikhail
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala B El-Nassan
- Department, of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Silveira TL, Pang LY, Di Domenico A, Veloso ES, Silva ILD, Puerto HLD, Ferreria E, Argyle DJ. COX-2 Silencing in Canine Malignant Melanoma Inhibits Malignant Behaviour. Front Vet Sci 2021; 8:633170. [PMID: 34513965 PMCID: PMC8427276 DOI: 10.3389/fvets.2021.633170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Metastatic melanoma is a very aggressive form of cancer in both humans and dogs. Dogs primarily develop oral melanoma of mucosal origin. Although oral melanoma in humans is rare, both diseases are highly aggressive with frequent metastases. This disease represents a “One Health” opportunity to improve molecular and mechanistic understanding of melanoma progression. Accumulating evidence suggests that cyclooxygenase-2 (COX-2) may play a critical role in the malignant behaviour of melanoma. In this study we analysed 85 histologically confirmed melanomas from canine patients and showed that COX-2 is overexpressed in both oral and cutaneous melanomas and that COX-2 expression correlates with established markers of poor prognosis. To determine the role of COX-2 in melanoma we developed two melanoma cell lines with stable integration of an inducible doxycycline-regulated expression vector containing a COX-2 targeted micro-RNA (miRNA). Using this system, we showed that cellular proliferation, migration and invasion are COX-2 dependent, establishing a direct relationship between COX-2 expression and malignant behaviour in canine melanoma. We have also developed a powerful molecular tool to aid further dissection of the mechanisms by which COX-2 regulates melanoma progression.
Collapse
Affiliation(s)
- Tatiany L Silveira
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra Di Domenico
- Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emerson S Veloso
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Istéfani L D Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen L Del Puerto
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Enio Ferreria
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Monteleone NJ, Lutz CS. miR-708-5p enhances erlotinib/paclitaxel efficacy and overcomes chemoresistance in lung cancer cells. Oncotarget 2020; 11:4699-4721. [PMID: 33473256 PMCID: PMC7771713 DOI: 10.18632/oncotarget.27840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is a collection of aggressive tumors generally not diagnosed until late-stage, resulting in high mortality rates. The vast majority of non-small cell lung cancer (NSCLC) patients undergo combinatory chemotherapeutic treatment, which initially reduces tumor growth, but frequently becomes ineffective due to toxicity and resistance. Researchers have identified multiple signaling pathways involved in lung cancer chemoresistance, including cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1) derived prostaglandin E2 (PGE2). While COX-2 inhibitors have shown promise in the clinic, their use is limited due to severe side effects. One novel approach to effectively suppress COX-2 signaling is through microRNA (miRNA). MiRNAs are small-noncoding RNAs commonly misexpressed in cancer. One tumor suppressive miRNA, miR-708-5p, has been shown to repress pro-resistant signaling pathways, including COX-2 and mPGES-1. Here, we demonstrate that chemotherapies reduce COX-2 expression, possibly through induction of miR-708-5p. Moreover, combination treatment of erlotinib (ERL) or paclitaxel (PAC) with miR-708-5p enhances COX-2 and mPGES-1 protein suppression. We also show that combination chemotherapeutic and miR-708-5p treatment intensifies the anti-proliferative and pro-apoptotic effects of ERL and PAC. We also created ERL and PAC resistant lung cancer cell lines, which have increased COX-2 expression and diminished miR-708-5p levels compared to naïve lung cancer cells. While ERL and PAC treatments do not alter resistant cell phenotype alone, combination treatment with miR-708-5p partially restores the chemotherapies' anti-proliferative effects and fully restores their pro-apoptotic qualities. These data suggest miR-708-5p may have potential combinatory therapeutic value to more efficaciously treat lung tumors while overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicholas J Monteleone
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical & Health Sciences, New Jersey Medical School, School of Graduate Studies, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Ho JD, Lee MR, Rauch CT, Aznavour K, Park JS, Luz JG, Antonysamy S, Condon B, Maletic M, Zhang A, Hickey MJ, Hughes NE, Chandrasekhar S, Sloan AV, Gooding K, Harvey A, Yu XP, Kahl SD, Norman BH. Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP). Biochim Biophys Acta Gen Subj 2020; 1865:129800. [PMID: 33246032 DOI: 10.1016/j.bbagen.2020.129800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Due to the importance of both prostaglandins (PGs) and leukotrienes (LTs) as pro-inflammatory mediators, and the potential for eicosanoid shunting in the presence of pathway target inhibitors, we have investigated an approach to inhibiting the formation of both PGs and LTs as part of a multi-targeted drug discovery effort. METHODS We generated ligand-protein X-ray crystal structures of known inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) and the 5-Lipoxygenase Activating Protein (FLAP), with their respective proteins, to understand the overlapping pharmacophores. We subsequently used molecular modeling and structure-based drug design (SBDD) to identify hybrid structures intended to inhibit both targets. RESULTS This work enabled the preparation of compounds 4 and 5, which showed potent in vitro inhibition of both targets. SIGNIFICANCE Our findings enhance the structural understanding of mPGES-1 and FLAP's unique ligand binding pockets and should accelerate the discovery of additional dual inhibitors for these two important integral membrane protein drug targets.
Collapse
Affiliation(s)
- Joseph D Ho
- Lilly Biotechnology Center, San Diego, CA 92121, USA.
| | - Matthew R Lee
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | | | - John G Luz
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | - Milan Maletic
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Aiping Zhang
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | | | - Ashley V Sloan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Karen Gooding
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Anita Harvey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Xiao-Peng Yu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Steven D Kahl
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Bryan H Norman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| |
Collapse
|
9
|
Kirkby NS, Raouf J, Ahmetaj-Shala B, Liu B, Mazi SI, Edin ML, Chambers MG, Korotkova M, Wang X, Wahli W, Zeldin DC, Nüsing R, Zhou Y, Jakobsson PJ, Mitchell JA. Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovasc Res 2020; 116:1972-1980. [PMID: 31688905 PMCID: PMC7519887 DOI: 10.1093/cvr/cvz290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/23/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023] Open
Abstract
AIMS Cardiovascular side effects caused by non-steroidal anti-inflammatory drugs (NSAIDs), which all inhibit cyclooxygenase (COX)-2, have prevented development of new drugs that target prostaglandins to treat inflammation and cancer. Microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors have efficacy in the NSAID arena but their cardiovascular safety is not known. Our previous work identified asymmetric dimethylarginine (ADMA), an inhibitor of endothelial nitric oxide synthase, as a potential biomarker of cardiovascular toxicity associated with blockade of COX-2. Here, we have used pharmacological tools and genetically modified mice to delineate mPGES-1 and COX-2 in the regulation of ADMA. METHODS AND RESULTS Inhibition of COX-2 but not mPGES-1 deletion resulted in increased plasma ADMA levels. mPGES-1 deletion but not COX-2 inhibition resulted in increased plasma prostacyclin levels. These differences were explained by distinct compartmentalization of COX-2 and mPGES-1 in the kidney. Data from prostanoid synthase/receptor knockout mice showed that the COX-2/ADMA axis is controlled by prostacyclin receptors (IP and PPARβ/δ) and the inhibitory PGE2 receptor EP4, but not other PGE2 receptors. CONCLUSION These data demonstrate that inhibition of mPGES-1 spares the renal COX-2/ADMA pathway and define mechanistically how COX-2 regulates ADMA.
Collapse
Affiliation(s)
- Nicholas S Kirkby
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Joan Raouf
- Unit of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Blerina Ahmetaj-Shala
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Bin Liu
- Cardiovascular Research Centre, Shantou University Medical College, Shantou, China
| | - Sarah I Mazi
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
- King Fahad Cardiac Center, King Saud University, Riyadh, Saudi Arabia
| | - Matthew L Edin
- National Institute for Environmental Health Sciences, Durham, NC, USA
| | | | - Marina Korotkova
- Unit of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Xiaomeng Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology & Research, Singapore, Singapore
- Department of Cell Biology, Institute of Ophthalmology, University College London, London, UK
- Singapore Eye Research Institute, Singapore, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Darryl C Zeldin
- National Institute for Environmental Health Sciences, Durham, NC, USA
| | - Rolf Nüsing
- Clinical Pharmacology and Pharmacotherapy Department, Goethe University, Frankfurt, Germany
| | - Yingbi Zhou
- Cardiovascular Research Centre, Shantou University Medical College, Shantou, China
| | - Per-Johan Jakobsson
- Unit of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Jane A Mitchell
- National Heart & Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
10
|
Tuure L, Pemmari A, Hämäläinen M, Moilanen T, Moilanen E. Regulation of gene expression by MF63, a selective inhibitor of microsomal PGE synthase 1 (mPGES1) in human osteoarthritic chondrocytes. Br J Pharmacol 2020; 177:4134-4146. [PMID: 32449517 PMCID: PMC7443472 DOI: 10.1111/bph.15142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/15/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose mPGES1 catalyses the production of PGE2, the most abundant prostanoid related to inflammation and pain in arthritis. mPGES1 is suggested to be a safer and more selective drug target in inflammatory conditions compared to the COX enzymes inhibited by NSAIDs. In the present study, we investigated the effects of the selective mPGES1 inhibitor MF63 on gene expression in primary human chondrocytes from patients with osteoarthritis (OA). Experimental Approach Chondrocytes were isolated from articular cartilage obtained from osteoarthritis patients undergoing knee replacement surgery. The effects of MF63 were studied in the primary chondrocytes with RNA‐sequencing based genome‐wide expression analysis. The main results were confirmed with qRT‐PCR and compared with the effects of the NSAID ibuprofen. Functional analysis was performed with the GO database and interactions between the genes were studied with STRING. Key Results MF63 enhanced the expression of multiple metallothionein 1 (MT1) isoforms as well as endogenous antagonists of IL‐1 and IL‐36. The expression of IL‐6, by contrast, was down‐regulated. These genes were also essential in functional and interaction network analyses. The effects of MF63 were consistent in qRT‐PCR analysis, whereas the effects of ibuprofen overlapped only partly with MF63. There were no evident findings of catabolic effects by MF63. Conclusion and Implications Metallothionein 1 has been suggested to have anti‐inflammatory and protective effects in cartilage. Up‐regulation of the antagonists of IL‐1 superfamily and down‐regulation of the pro‐inflammatory cytokine IL‐6 also support novel anti‐inflammatory and possibly disease‐modifying effects of mPGES1 inhibitors in arthritis.
Collapse
Affiliation(s)
- Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Teemu Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.,Coxa Hospital for Joint Replacement, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Di Francesco L, Bruno A, Ricciotti E, Tacconelli S, Dovizio M, Guillem-Llobat P, Alisi MA, Garrone B, Coletta I, Mangano G, Milanese C, FitzGerald GA, Patrignani P. Pharmacological Characterization of the Microsomal Prostaglandin E 2 Synthase-1 Inhibitor AF3485 In Vitro and In Vivo. Front Pharmacol 2020; 11:374. [PMID: 32317963 PMCID: PMC7147323 DOI: 10.3389/fphar.2020.00374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale The development of inhibitors of microsomal prostaglandin (PG)E2 synthase-1 (mPGES-1) was driven by the promise of attaining antiinflammatory agents with a safe cardiovascular profile because of the possible diversion of the accumulated substrate, PGH2, towards prostacyclin (PGI2). Objectives We studied the effect of the human mPGES-1 inhibitor, AF3485 (a benzamide derivative) on prostanoid biosynthesis in human whole blood in vitro. To characterize possible off-target effects of the compound, we evaluated: i)the impact of its administration on the systemic biosynthesis of prostanoids in a model of complete Freund's adjuvant (CFA)-induced monoarthritis in rats; ii) the effects on cyclooxygenase (COX)-2 expression and the biosynthesis of prostanoids in human monocytes and human umbilical vein endothelial cells (HUVECs) in vitro. Methods Prostanoids were assessed in different cellular models by immunoassays. The effect of the administration of AF3485 (30 and 100 mg/kg,i.p.) or celecoxib (20mg/kg, i.p.), for 3 days, on the urinary levels of enzymatic metabolites of prostanoids, PGE-M, PGI-M, and TX-M were assessed by LC-MS. Results In LPS-stimulated whole blood, AF3485 inhibited PGE2 biosynthesis, in a concentration-dependent fashion. At 100μM, PGE2 levels were reduced by 66.06 ± 3.30%, associated with a lower extent of TXB2 inhibition (40.56 ± 5.77%). AF3485 administration to CFA-treated rats significantly reduced PGE-M (P < 0.01) and TX-M (P < 0.05) similar to the selective COX-2 inhibitor, celecoxib. In contrast, AF3485 induced a significant (P < 0.05) increase of urinary PGI-M while it was reduced by celecoxib. In LPS-stimulated human monocytes, AF3485 inhibited PGE2 biosynthesis with an IC50 value of 3.03 µM (95% CI:0.5–8.75). At 1μM, AF3485 enhanced TXB2 while at higher concentrations, the drug caused a concentration-dependent inhibition of TXB2. At 100 μM, maximal inhibition of the two prostanoids was associated with the downregulation of COX-2 protein by 86%. These effects did not involve AMPK pathway activation, IkB stabilization, or PPARγ activation. In HUVEC, AF3485 at 100 μM caused a significant (P < 0.05) induction of COX-2 protein associated with enhanced PGI2 production. These effects were reversed by the PPARγ antagonist GW9662. Conclusions The inhibitor of human mPGES-1 AF3485 is a novel antiinflammatory compound which can also modulate COX-2 induction by inflammatory stimuli. The compound also induces endothelial COX-2-dependent PGI2 production via PPARγ activation, both in vitro and in vivo, which might translate into a protective effect for the cardiovascular system.
Collapse
Affiliation(s)
- Luigia Di Francesco
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | - Paloma Guillem-Llobat
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| | | | | | | | | | | | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, and Center for Advanced Studies and Technology (CAST), School of Medicine, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
12
|
Bülbül B, Küçükgüzel İ. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem 2020; 19:1205-1222. [PMID: 30827263 DOI: 10.2174/1871520619666190227174137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. OBJECTIVE It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. METHODS A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. RESULTS In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. CONCLUSION The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
13
|
Toda K, Ueyama M, Tanaka S, Tsukayama I, Mega T, Konoike Y, Tamenobu A, Bastian F, Akai I, Ito H, Kawakami Y, Takahashi Y, Suzuki-Yamamoto T. Ellagitannins from Punica granatum leaves suppress microsomal prostaglandin E synthase-1 expression and induce lung cancer cells to undergo apoptosis. Biosci Biotechnol Biochem 2019; 84:757-763. [PMID: 31868102 DOI: 10.1080/09168451.2019.1706442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Prostaglandin E2 (PGE2), which is a potent pro-inflammatory lipid mediator, is biosynthesized from arachidonic acid by cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1). Non-steroidal anti-inflammatory drugs (NSAIDs) are used clinically as COX inhibitors, but they have gastrointestinal and cardiovascular side-effects. Thus, the terminal enzyme mPGES-1 holds promise as the next therapeutic target. In this study, we found that the ellagitannins granatin A and granatin B isolated from pomegranate leaves, and geraniin, which is their structural analog, selectively suppressed mPGES-1 expression without affecting COX-2 in non-small cell lung carcinoma A549 cells. The ellagitannins also down-regulated tumor necrosis factor α, inducible nitric oxide synthase, and anti-apoptotic factor B-cell chronic lymphocytic leukemia/lymphoma 2, and induced A549 cells to undergo apoptosis. These findings indicate that the ellagitannins have anti-inflammatory and anti-carcinogenic effects, due to their specific suppression of mPGES-1.Abbreviations: Bcl-2: B-cell chronic lymphocytic leukemia/lymphoma 2; COX: cyclooxygenase; CRE: cAMP response element; DHHDP: dehydrohexahydroxydiphenoyl; Et2O: diethyl ether; EtOAc: ethyl acetate; GAPDH: glyceraldehyde 3-phosphate dehydrogenase; iNOS: inducible nitric oxide synthase; mPGES-1: microsomal prostaglandin E synthase-1; n-BuOH: water-saturated n-butanol; NSAIDs: non-steroidal anti-inflammatory drugs; NF-κB: nuclear factor-κB; PG: prostaglandin; TNF: tumor necrosis factor; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling.
Collapse
Affiliation(s)
- Keisuke Toda
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Mai Ueyama
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Shomu Tanaka
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Izumi Tsukayama
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Takuto Mega
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yuka Konoike
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Asako Tamenobu
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Februadi Bastian
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Iria Akai
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Hideyuki Ito
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | | |
Collapse
|
14
|
Delgado-Goñi T, Galobart TC, Wantuch S, Normantaite D, Leach MO, Whittaker SR, Beloueche-Babari M. Increased inflammatory lipid metabolism and anaplerotic mitochondrial activation follow acquired resistance to vemurafenib in BRAF-mutant melanoma cells. Br J Cancer 2019; 122:72-81. [PMID: 31819183 PMCID: PMC6964672 DOI: 10.1038/s41416-019-0628-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/05/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background BRAF inhibitors, such as vemurafenib, have shown efficacy in BRAF-mutant melanoma treatment but acquired-resistance invariably develops. Unveiling the potential vulnerabilities associated with vemurafenib resistance could provide rational strategies for combinatorial treatment. Methods This work investigates the metabolic characteristics and vulnerabilities of acquired resistance to vemurafenib in three generated BRAF-mutant human melanoma cell clones, analysing metabolic profiles, gene and protein expression in baseline and nutrient withdrawal conditions. Preclinical findings are correlated with gene expression analysis from publicly available clinical datasets. Results Two vemurafenib-resistant clones showed dependency on lipid metabolism and increased prostaglandin E2 synthesis and were more responsive to vemurafenib under EGFR inhibition, potentially implicating inflammatory lipid and EGFR signalling in ERK reactivation and vemurafenib resistance. The third resistant clone showed higher pyruvate-carboxylase (PC) activity indicating increased anaplerotic mitochondrial metabolism, concomitant with reduced GLUT-1, increased PC protein expression and survival advantage under nutrient-depleted conditions. Prostaglandin synthase (PTGES) expression was inversely correlated with melanoma patient survival. Increases in PC and PTGES gene expression were observed in some patients following progression on BRAF inhibitors. Conclusions Altogether, our data highlight heterogeneity in metabolic adaptations during acquired resistance to vemurafenib in BRAF-mutant melanoma, potentially uncovering key clinically-relevant mechanisms for combinatorial therapeutic targeting.
Collapse
Affiliation(s)
- Teresa Delgado-Goñi
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK. .,Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.
| | - Teresa Casals Galobart
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK
| | - Slawomir Wantuch
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK
| | - Deimante Normantaite
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK
| | - Martin O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK.
| | - Steven R Whittaker
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mounia Beloueche-Babari
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, UK.
| |
Collapse
|
15
|
Tuure L, Hämäläinen M, Nummenmaa E, Moilanen T, Moilanen E. Downregulation of microsomal prostaglandin E synthase-1 (mPGES-1) expression in chondrocytes is regulated by MAP kinase phosphatase-1 (MKP-1). Int Immunopharmacol 2019; 71:139-143. [DOI: 10.1016/j.intimp.2019.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/03/2023]
|
16
|
Schwarzbach SV, Melo CF, Xavier PLP, Roballo KC, Cordeiro YG, Ambrósio CE, Fukumasu H, Carregaro AB. Morphine, but not methadone, inhibits microsomal prostaglandin E synthase-1 and prostaglandin-endoperoxide synthase 2 in lipopolysaccharide-stimulated horse synoviocytes. Biochimie 2019; 160:28-33. [PMID: 30763639 DOI: 10.1016/j.biochi.2019.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/08/2019] [Indexed: 11/15/2022]
Abstract
Osteoarthritis (OA) is one of the main locomotor disorders in horses. Although nonsteroidal anti-inflammatory drugs are the first-line treatment for OA, opioids could also be used. In previous studies, opioids showed promising anti-inflammatory and analgesic effects. In this study, we aimed to investigate the effects of two opioids (morphine and methadone) against inflammation in lipopolysaccharide (LPS)-stimulated synoviocytes by analyzing microsomal prostaglandin E synthase-1 (mPGES-1) and prostaglandin-endoperoxide synthase 2 (PTGS2) expression. Synoviocytes were obtained from the joints at the distal limbs of dead animals. The cytotoxic effects of LPS, morphine, and methadone were investigated by using a cell viability assay with crystal violet dye. Synoviocytes were treated with LPS, LPS plus morphine, or LPS plus methadone for 3, 6, and 12 h, and mPGES-1 and PTGS2 expression was measured using real-time polymerase chain reaction. LPS, and morphine did not affect the viability of synoviocytes, even at high concentrations. LPS treatment increased mPGES-1 and PTGS2 expression, whereas morphine inhibited the increase in mPGES-1 and PTGS2 expression in LPS-stimulated synoviocytes. Methadone did not inhibit mPGES-1 or PTGS2 expression. These results suggest that morphine may exhibit anti-inflammatory effect; therefore, it might be beneficial for the treatment of OA.
Collapse
Affiliation(s)
- S V Schwarzbach
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - C F Melo
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - P L P Xavier
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - K C Roballo
- Innovative Therapies Group (GDTI), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Y G Cordeiro
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - C E Ambrósio
- Innovative Therapies Group (GDTI), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - H Fukumasu
- Laboratory of Comparative and Translational Oncology (LOCT), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - A B Carregaro
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil.
| |
Collapse
|
17
|
Ikeda-Matsuo Y, Miyata H, Mizoguchi T, Ohama E, Naito Y, Uematsu S, Akira S, Sasaki Y, Tanabe M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson's disease. Neurobiol Dis 2018; 124:81-92. [PMID: 30423474 DOI: 10.1016/j.nbd.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Although increased production of prostaglandin E2 (PGE2) has been implicated in tissue damage in several pathological settings, the role of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, in dopaminergic neurodegeneration remains unclear. Here we show that mPGES-1 is up-regulated in the dopaminergic neurons of the substantia nigra of postmortem brain tissue from PD patients and in neurotoxin 6-hydroxydopamine (6-OHDA)-induced PD mice. The expression of mPGES-1 was also up-regulated in cultured dopaminergic neurons stimulated with 6-OHDA. The genetic deletion of mPGES-1 not only abolished 6-OHDA-induced PGE2 production but also inhibited 6-OHDA-induced dopaminergic neurodegeneration both in vitro and in vivo. Nigrostriatal projections, striatal dopamine content, and neurological functions were significantly impaired by 6-OHDA administration in wild-type (WT) mice, but not in mPGES-1 knockout (KO) mice. Furthermore, in cultured primary mesencephalic neurons, addition of PGE2 to compensate for the deficiency of 6-OHDA-induced PGE2 production in mPGES-1 KO neurons recovered 6-OHDA toxicity to almost the same extent as that seen in WT neurons. These results suggest that induction of mPGES-1 enhances 6-OHDA-induced dopaminergic neuronal death through excessive PGE2 production. Thus, mPGES-1 may be a valuable therapeutic target for treatment of PD.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan.
| | - Hajime Miyata
- Department of Neuropathology, Research Institute for Brain and Blood Vessels - AKITA, Japan
| | - Tomoko Mizoguchi
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| | | | - Yasuhito Naito
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| | - Satoshi Uematsu
- Department of Mucosal Immunology, School of Medicine, Chiba University, Japan; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Japan
| | - Yasuharu Sasaki
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Japan
| |
Collapse
|
18
|
Tuure L, Hämäläinen M, Moilanen E. PDE4 inhibitor rolipram inhibits the expression of microsomal prostaglandin E synthase-1 by a mechanism dependent on MAP kinase phosphatase-1. Pharmacol Res Perspect 2018; 5. [PMID: 29226622 PMCID: PMC5723697 DOI: 10.1002/prp2.363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Phosphodiesterase‐4 (PDE4) inhibitors have recently been introduced to the treatment of COPD and psoriatic arthritis. Microsomal prostaglandin E synthase‐1 (mPGES‐1) is an inducible enzyme synthesizing PGE2, the most abundant prostanoid related to inflammation and inflammatory pain. mPGES‐1 is a potential drug target for novel anti‐inflammatory treatments aiming at an improved safety profile as compared to NSAIDs. Here we investigated the effect of the PDE4 inhibitor rolipram on the expression of mPGES‐1 in macrophages; and a potential mediator role in the process for MAP kinase phosphatase‐1 (MKP‐1) which is an endogenous factor limiting the activity of the proinflammatory MAP kinases p38 and JNK. The expression of mPGES‐1 was decreased, whereas that of MKP‐1 was enhanced by rolipram in wild‐type murine macrophages. Interestingly, rolipram did not reduce mPGES‐1 expression in peritoneal macrophages from MKP‐1‐deficient mice. A reduced phosphorylation of JNK, but not p38 MAP kinase, was specifically associated with the decreased expression of mPGES‐1. Accordingly, mPGES‐1 expression was suppressed by JNK but not p38 inhibitor. These findings underline the significance of the increased MKP‐1 expression and decreased JNK phosphorylation associated with the downregulated expression of mPGES‐1 by PDE4 inhibitors in inflammation.
Collapse
Affiliation(s)
- Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
19
|
Koeberle A, Werz O. Natural products as inhibitors of prostaglandin E 2 and pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis. Biotechnol Adv 2018; 36:1709-1723. [PMID: 29454981 DOI: 10.1016/j.biotechadv.2018.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostanoid formation and represent prevalent therapeutics for treatment of inflammatory disorders. However, NSAIDs are afflicted with severe side effects, which might be circumvented by more selective suppression of pro-inflammatory eicosanoid biosynthesis. This concept led to dual inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase that are crucial enzymes in the biosynthesis of pro-inflammatory prostaglandin E2 and leukotrienes. The potential of their dual inhibition in light of superior efficacy and safety is discussed. Focus is placed on natural products, for which direct inhibition of mPGES-1 and leukotriene biosynthesis has been confirmed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| |
Collapse
|
20
|
Abstract
Prostaglandin E2 (PGE2) has been thought to be an important mediator of inflammation in peripheral tissues, but recent studies clearly show the involvement of PGE2 in inflammatory brain diseases. In some animal models of brain disease, the genetic disruption and chemical inhibition of cyclooxygenase (COX)-2 resulted in the reduction of PGE2 and amelioration of symptoms, and it had been thought that PGE2 produced by COX-2 may be involved in the progression of injuries. However, COX-2 produces not only PGE2, but also some other prostanoids, and thus the protective effects of COX-2 inhibition, as well as severe side effects, may be caused by the inhibition of prostanoids other than PGE2. Therefore, to elucidate the role of PGE2, studies of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible terminal enzyme for PGE2 synthesis, have recently been an active area of research. Studies from mPGES-1 deficient mice provide compelling evidence for its role in a variety of inflammatory brain diseases, such as ischemic stroke, Alzheimer's disease and epilepsy, and clues for developing new therapeutic treatments for brain diseases by targeting mPGES-1. Considering that COX inhibitors may non-selectively suppress the production of many types of prostanoids that are essential for normal physiological functioning of the brain and peripheral tissues, as well as induce gastro-intestinal, renal and cardiovascular complications, mPGES-1 inhibitors are expected to be injury-selective and have fewer side-effects when treating human brain diseases. Thus, this paper focuses on recent studies that have demonstrated the involvement of mPGES-1 in pathological brain diseases.
Collapse
Affiliation(s)
- Yuri Ikeda-Matsuo
- Laboratory of Pharmacology, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University
| |
Collapse
|
21
|
Abstract
Fever depends on a complex physiologic response to infectious agents and other conditions. To alleviate fever, many medicinal agents have been developed over a century of trying to improve upon aspirin, which was determined to work by inhibiting prostaglandin synthesis. We present the process of fever induction through prostaglandin synthesis and discuss the development of pharmaceuticals that target enzymes and receptors involved in prostaglandin-mediated signal transduction, including prostaglandin H2 synthase (also known as cyclooxygenase), phospholipase A2, microsomal prostaglandin E2 synthase-1, EP receptors, and transient potential cation channel subfamily V member 1. Clinical use of established antipyretics will be discussed as well as medicinal agents under clinical trials and future research.
Collapse
Affiliation(s)
- Jonathan J Lee
- Biochemistry Department, Brigham Young University, Provo, UT, United States
| | - Daniel L Simmons
- Biochemistry Department, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
22
|
Tuure L, Hämäläinen M, Whittle BJ, Moilanen E. Microsomal Prostaglandin E Synthase-1 Expression in Inflammatory Conditions Is Downregulated by Dexamethasone: Seminal Role of the Regulatory Phosphatase MKP-1. Front Pharmacol 2017; 8:646. [PMID: 28983247 PMCID: PMC5613146 DOI: 10.3389/fphar.2017.00646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible enzyme situated downstream of cyclo-oxygenase-2, promoting the excessive PGE2 production in inflammation. Dexamethasone is known to suppress mPGES-1 but the mechanisms regulating mPGES-1 expression remain poorly known. MKP-1 is a phosphatase controlling the proinflammatory MAP kinase pathways p38 and JNK, thus limiting the inflammatory responses. We have now investigated the role of MKP-1 and MAP kinases p38 and JNK in the regulation of mPGES-1 expression by dexamethasone. Dexamethasone increased MKP-1 and decreased mPGES-1 expression in J774 macrophages and in peritoneal macrophages from wild-type but not from MKP-1 deficient mice. Dexamethasone also reduced p38 and JNK phosphorylation along with enhancement of MKP-1, while inhibition of JNK reduced mPGES-1 expression. These findings were also translated to in vivo conditions as dexamethasone downregulated mPGES-1 expression in paw inflammation in wild-type but not in MKP-1 deficient mice. In conclusion, dexamethasone was found to downregulate mPGES-1 expression through enhanced MKP-1 expression and reduced JNK phosphorylation in inflammatory conditions. The results extend the understanding on the regulation of mPGES-1 expression and highlight the potential of MKP-1 as an anti-inflammatory drug target.
Collapse
Affiliation(s)
- Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| | - Brendan J Whittle
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland.,William Harvey Research Institute, Barts and the London School of MedicineLondon, United Kingdom
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| |
Collapse
|
23
|
Mozos I, Malainer C, Horbańczuk J, Gug C, Stoian D, Luca CT, Atanasov AG. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Front Immunol 2017; 8:1058. [PMID: 28912780 PMCID: PMC5583158 DOI: 10.3389/fimmu.2017.01058] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 01/13/2023] Open
Abstract
Arterial stiffness predicts an increased risk of cardiovascular events. Inflammation plays a major role in large arteries stiffening, related to atherosclerosis, arteriosclerosis, endothelial dysfunction, smooth muscle cell migration, vascular calcification, increased activity of metalloproteinases, extracellular matrix degradation, oxidative stress, elastolysis, and degradation of collagen. The present paper reviews main mechanisms explaining the crosstalk between inflammation and arterial stiffness and the most common inflammatory markers associated with increased arterial stiffness, considering the most recent clinical and experimental studies. Diverse studies revealed significant correlations between the severity of arterial stiffness and inflammatory markers, such as white blood cell count, neutrophil/lymphocyte ratio, adhesion molecules, fibrinogen, C-reactive protein, cytokines, microRNAs, and cyclooxygenase-2, in patients with a broad variety of diseases, such as metabolic syndrome, diabetes, coronary heart disease, peripheral arterial disease, malignant and rheumatic disorders, polycystic kidney disease, renal transplant, familial Mediterranean fever, and oral infections, and in women with preeclampsia or after menopause. There is strong evidence that inflammation plays an important and, at least, partly reversible role in the development of arterial stiffness, and inflammatory markers may be useful additional tools in the assessment of the cardiovascular risk in clinical practice. Combined assessment of arterial stiffness and inflammatory markers may improve non-invasive assessment of cardiovascular risk, enabling selection of high-risk patients for prophylactic treatment or more regular medical examination. Development of future destiffening therapies may target pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ioana Mozos
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Jarosław Horbańczuk
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Cristina Gug
- Department of Microscopic Morphology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- 2nd Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Constantin Tudor Luca
- Department of Cardiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Psarra A, Nikolaou A, Kokotou MG, Limnios D, Kokotos G. Microsomal prostaglandin E2 synthase-1 inhibitors: a patent review. Expert Opin Ther Pat 2017. [DOI: 10.1080/13543776.2017.1344218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Maroula G Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Tacconelli S, Bruno A, Grande R, Ballerini P, Patrignani P. Nonsteroidal anti-inflammatory drugs and cardiovascular safety – translating pharmacological data into clinical readouts. Expert Opin Drug Saf 2017; 16:791-807. [PMID: 28569569 DOI: 10.1080/14740338.2017.1338272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| | - Rosalia Grande
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, ‘G.d’Annunzio’ University, Chieti, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| |
Collapse
|
26
|
Tricyclic 4,4-dimethyl-3,4-dihydrochromeno[3,4- d ]imidazole derivatives as microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors: SAR and in vivo efficacy in hyperalgesia pain model. Bioorg Med Chem Lett 2017; 27:2594-2601. [DOI: 10.1016/j.bmcl.2017.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 01/25/2023]
|
27
|
Dovizio M, Sacco A, Patrignani P. Curbing tumorigenesis and malignant progression through the pharmacological control of the wound healing process. Vascul Pharmacol 2017; 89:1-11. [PMID: 28089842 DOI: 10.1016/j.vph.2017.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
The prevention of cancer development and its progression is an urgent unmet medical need. Novel knowledge on the biology of cancer has evidenced that genetic changes occurring within cancer cells contribute, but are not sufficient, for tumor promotion and progression. The results of clinical studies and experimental animal models have suggested pursuing new avenues for the prevention of cancer development in the early stages, by using drugs that modulate platelet responses and those interfering with the synthesis and action of the mediators of inflammation. In fact, malignant tumors often develop at sites of chronic injury associated with platelet activation and chronic inflammation. In this review, we cover the evidence supporting this hypothesis and the rationale for the pharmacological treatment with antiplatelet agents, including low-dose aspirin, and antiinflammatory drugs to curb tumorigenesis and malignant progression. The evidence for a chemopreventive effect of low-dose aspirin against colorectal cancer (CRC) has been recently found appropriate by the U.S. Preventive Services Task Force, which recommends the use of the drug for primary prevention of cardiovascular disease and CRC.
Collapse
Affiliation(s)
- Melania Dovizio
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; CeSI-MeT (Centro Scienze dell'Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Chieti, Italy
| | - Angela Sacco
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; CeSI-MeT (Centro Scienze dell'Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Section of Cardiovascular and Pharmacological Sciences, Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; CeSI-MeT (Centro Scienze dell'Invecchiamento e Medicina Traslazionale), "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
28
|
Liu X, Wang D, Yu C, Li T, Liu J, Sun S. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front Microbiol 2016; 7:1925. [PMID: 27999568 PMCID: PMC5138225 DOI: 10.3389/fmicb.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022] Open
Abstract
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital Jinnan, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| |
Collapse
|
29
|
Discovery of 2-((2-chloro-6-fluorophenyl)amino)- N -(3-fluoro-5-(trifluoromethyl)phenyl)-1-methyl-7,8-dihydro-1 H -[1,4]dioxino[2′,3′:3,4]benzo[1,2- d ]imidazole-5-carboxamide as potent, selective and efficacious microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitor. Bioorg Med Chem Lett 2016; 26:5977-5984. [DOI: 10.1016/j.bmcl.2016.10.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
|
30
|
Cyclooxygenase-2: A Role in Cancer Stem Cell Survival and Repopulation of Cancer Cells during Therapy. Stem Cells Int 2016; 2016:2048731. [PMID: 27882058 PMCID: PMC5108861 DOI: 10.1155/2016/2048731] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an inducible form of the enzyme that catalyses the synthesis of prostanoids, including prostaglandin E2 (PGE2), a major mediator of inflammation and angiogenesis. COX-2 is overexpressed in cancer cells and is associated with progressive tumour growth, as well as resistance of cancer cells to conventional chemotherapy and radiotherapy. These therapies are often delivered in multiple doses, which are spaced out to allow the recovery of normal tissues between treatments. However, surviving cancer cells also proliferate during treatment intervals, leading to repopulation of the tumour and limiting the effectiveness of the treatment. Tumour cell repopulation is a major cause of treatment failure. The central dogma is that conventional chemotherapy and radiotherapy selects resistant cancer cells that are able to reinitiate tumour growth. However, there is compelling evidence of an active proliferative response, driven by increased COX-2 expression and downstream PGE2 release, which contribute to the repopulation of tumours and poor patient outcome. In this review, we will examine the evidence for a role of COX-2 in cancer stem cell biology and as a mediator of tumour repopulation that can be molecularly targeted to overcome resistance to therapy.
Collapse
|
31
|
Corso G, Alisi MA, Cazzolla N, Coletta I, Furlotti G, Garofalo B, Mangano G, Mancini F, Vitiello M, Ombrato R. A Novel Multi-step Virtual Screening for the Identification of Human and Mouse mPGES-1 Inhibitors. Mol Inform 2016; 35:358-68. [PMID: 27546040 DOI: 10.1002/minf.201600024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/21/2016] [Indexed: 11/06/2022]
Abstract
We present here the development of a novel virtual screening protocol combining Structure-based and Ligand-based drug design approaches for the identification of mouse mPGES-1 inhibitors. We used the existing 3D structural data of the murine enzyme to hypothesize the inhibitors binding mode, which was the starting point for docking simulations, shape screening, and pharmacophore hypothesis screening. The protocol allowed the identification of 16 mouse mPGES-1 inhibitors with low micromolar activity, which, notably, also inhibit the human enzyme in the same concentration range. The inhibitors predicted binding mode is expected to be the base for the rational drug design of new potent dual species inhibitors of human and murine mPGES-1.
Collapse
Affiliation(s)
- G Corso
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy .
| | - M A Alisi
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - N Cazzolla
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - I Coletta
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - G Furlotti
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - B Garofalo
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - G Mangano
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - F Mancini
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - M Vitiello
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| | - Rosella Ombrato
- Angelini Research Center, Angelini S.p.A. P.le della Stazione, snc, I-00071 S. Palomba - Pomezia (RM) -, Italy
| |
Collapse
|
32
|
Kats A, Norgård M, Wondimu Z, Koro C, Concha Quezada H, Andersson G, Yucel-Lindberg T. Aminothiazoles inhibit RANKL- and LPS-mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells. J Cell Mol Med 2016; 20:1128-38. [PMID: 26987561 PMCID: PMC4882984 DOI: 10.1111/jcmm.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023] Open
Abstract
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Zenebech Wondimu
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Catalin Koro
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hernán Concha Quezada
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
33
|
Chandrasekhar S, Harvey AK, Yu XP, Chambers MG, Oskins JL, Lin C, Seng TW, Thibodeaux SJ, Norman BH, Hughes NE, Schiffler MA, Fisher MJ. Identification and Characterization of Novel Microsomal Prostaglandin E Synthase-1 Inhibitors for Analgesia. J Pharmacol Exp Ther 2016; 356:635-44. [PMID: 26740668 DOI: 10.1124/jpet.115.228932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/05/2016] [Indexed: 03/08/2025] Open
Abstract
Prostaglandin (PG) E2 plays a critical role in eliciting inflammation. Nonsteroidal anti-inflammatory drugs and selective inhibitors of cyclooxygenase, which block PGE2 production, have been used as key agents in treating inflammation and pain associated with arthritis and other conditions. However, these agents have significant side effects such as gastrointestinal bleeding and myocardial infarction, since they also block the production of prostanoids that are critical for other normal physiologic functions. Microsomal prostaglandin E2 synthase-1 is a membrane-bound terminal enzyme in the prostanoid pathway, which acts downstream of cyclooxygenase 2 and is responsible for PGE2 production during inflammation. Thus, inhibition of this enzyme would be expected to block PGE2 production without inhibiting other prostanoids and would provide analgesic efficacy without the side effects. In this report, we describe novel microsomal prostaglandin E2 synthase-1 inhibitors that are potent in blocking PGE2 production and are efficacious in a guinea pig monoiodoacetate model of arthralgia. These molecules may be useful in treating the signs and symptoms associated with arthritis.
Collapse
Affiliation(s)
| | - Anita K Harvey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Xiao-Peng Yu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Mark G Chambers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Jennifer L Oskins
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Chaohua Lin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Thomas W Seng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Bryan H Norman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Norman E Hughes
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | | | - Matthew J Fisher
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
34
|
Koeberle A, Laufer SA, Werz O. Design and Development of Microsomal Prostaglandin E2 Synthase-1 Inhibitors: Challenges and Future Directions. J Med Chem 2016; 59:5970-86. [DOI: 10.1021/acs.jmedchem.5b01750] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andreas Koeberle
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical Chemistry, Pharmaceutical Institute, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Oliver Werz
- Chair
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Jena, Philosophenweg 14, 07743 Jena, Germany
| |
Collapse
|
35
|
Chiou SY, Ha CL, Wu PS, Yeh CL, Su YS, Li MP, Wu MJ. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria. Int J Mol Sci 2015; 16:29522-41. [PMID: 26690417 PMCID: PMC4691127 DOI: 10.3390/ijms161226184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/29/2015] [Accepted: 12/03/2015] [Indexed: 11/24/2022] Open
Abstract
Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E2 (PGE2) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.
Collapse
Affiliation(s)
- Shu-Yuan Chiou
- Crop Environment Section, Hualien District Agricultural Research and Extension Station, Hualien 973, Taiwan.
| | - Choi-Lan Ha
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Pei-Shan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Chiu-Ling Yeh
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Ying-Shan Su
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Man-Po Li
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| |
Collapse
|
36
|
Liu SZ, Jemiolo B, Lavin KM, Lester BE, Trappe SW, Trappe TA. Prostaglandin E2/cyclooxygenase pathway in human skeletal muscle: influence of muscle fiber type and age. J Appl Physiol (1985) 2015; 120:546-51. [PMID: 26607246 DOI: 10.1152/japplphysiol.00396.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/22/2015] [Indexed: 01/04/2023] Open
Abstract
Prostaglandin E2 (PGE2) produced by the cyclooxygenase (COX) pathway regulates skeletal muscle protein turnover and exercise training adaptations. The purpose of this study was twofold: 1) define the PGE2/COX pathway enzymes and receptors in human skeletal muscle, with a focus on type I and II muscle fibers; and 2) examine the influence of aging on this pathway. Muscle biopsies were obtained from the soleus (primarily type I fibers) and vastus lateralis (proportionally more type II fibers than soleus) of young men and women (n = 8; 26 ± 2 yr), and from the vastus lateralis of young (n = 8; 25 ± 1 yr) and old (n = 12; 79 ± 2 yr) men and women. PGE2/COX pathway proteins [COX enzymes (COX-1 and COX-2), PGE2 synthases (cPGES, mPGES-1, and mPGES-2), and PGE2 receptors (EP1, EP2, EP3, and EP4)] were quantified via Western blot. COX-1, cPGES, mPGES-2, and all four PGE2 receptors were detected in all skeletal muscle samples examined. COX-1 (P < 0.1) and mPGES-2 were ∼20% higher, while EP3 was 99% higher and EP4 57% lower in soleus compared with vastus lateralis (P < 0.05). Aging did not change the level of skeletal muscle COX-1, while cPGES increased 45% and EP1 (P < 0.1), EP3, and EP4 decreased ∼33% (P < 0.05). In summary, PGE2 production capacity and receptor levels are different in human skeletal muscles with markedly different type I and II muscle fiber composition. In aging skeletal muscle, PGE2 production capacity is elevated and receptor levels are downregulated. These findings have implications for understanding the regulation of skeletal muscle adaptations to exercise and aging by the PGE2/COX pathway and related inhibitors.
Collapse
Affiliation(s)
- Sophia Z Liu
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kaleen M Lavin
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bridget E Lester
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
37
|
Kim M, Lee S, Park EB, Kim KJ, Lee HH, Shin JS, Fischer K, Koeberle A, Werz O, Lee KT, Lee JY. Hit-to-lead optimization of phenylsulfonyl hydrazides for a potent suppressor of PGE2 production: Synthesis, biological activity, and molecular docking study. Bioorg Med Chem Lett 2015; 26:94-9. [PMID: 26602278 DOI: 10.1016/j.bmcl.2015.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/22/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022]
Abstract
Preliminary hit-to-lead optimization of a novel series of phenylsulfonyl hydrazide derivatives, which were derived from the high throughput screening hit compound 1 (IC50=5700nM against PGE2 production), for a potent suppressor of PGE2 production is described. Subsequent optimization led to the identification of the potent lead compound 8n with IC50 values of 4.5 and 6.9nM, respectively, against LPS-induced PGE2 production and NO production in RAW 264.7 macrophage cells. In addition, 8n was about 30- and >150-fold more potent against mPGES-1 enzyme in a cell-free assay (IC50=70nM) than MK-886 and hit compound 1, respectively. Molecular docking suggests that compound 8n could inhibit PGE2 production by blocking the PGH2 binding site of human mPGES-1 enzyme.
Collapse
Affiliation(s)
- Minju Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sunhoe Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun Beul Park
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kwang Jong Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hwi Ho Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Reactive Oxygen Species Medical Research Center, School of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
38
|
Abstract
Various clinical and epidemiologic studies show that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase inhibitors (COXIBs) help prevent cancer. Since eicosanoid metabolism is the main inhibitory targets of these drugs the resulting molecular and biological impact is generally accepted. As our knowledge base and technology progress we are learning that additional targets may be involved. This review attempts to summarize these new developments in the field.
Collapse
Affiliation(s)
- Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David G Menter
- The University of Texas MD Anderson Cancer Center, Division of Cancer Prevention and Population Sciences, Houston, TX, USA
| | - Ernest T Hawk
- The University of Texas MD Anderson Cancer Center, Division of Cancer Prevention and Population Sciences, Houston, TX, USA
| |
Collapse
|
39
|
Kaminska K, Szczylik C, Lian F, Czarnecka AM. The role of prostaglandin E2 in renal cell cancer development: future implications for prognosis and therapy. Future Oncol 2015; 10:2177-87. [PMID: 25471032 DOI: 10.2217/fon.14.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
COX-2 plays a crucial pathophysiological role in the development of renal cell cancer (RCC). Recently, it has been shown that COX-2 inhibition enhances the efficacy of immunotherapy and tyrosine kinase inhibitor-based treatment. At the same time, molecular analyses revealed particular contribution of a COX-2 product - prostaglandin E2 (PGE2) - in RCC development. PGE2 was shown to activate Akt/RGC2/RalA signaling cascade in RCC cells. It also demonstrated upregulation of the expression of HIF-1α and PI3K/Akt/mTOR signaling pathway. All together, these data suggest that targeted anti-PGE2 therapies may offer an interesting therapeutic option for RCC patients in the future.
Collapse
Affiliation(s)
- Katarzyna Kaminska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141 Warsaw, Poland
| | | | | | | |
Collapse
|
40
|
Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 2015; 98:1-15. [PMID: 26123522 DOI: 10.1016/j.bcp.2015.06.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Prostaglandin (PG)E2 encompasses crucial roles in pain, fever, inflammation and diseases with inflammatory component, such as cancer, but is also essential for gastric, renal, cardiovascular and immune homeostasis. Cyclooxygenases (COX) convert arachidonic acid to the intermediate PGH2 which is isomerized to PGE2 by at least three different PGE2 synthases. Inhibitors of COX - non-steroidal anti-inflammatory drugs (NSAIDs) - are currently the only available therapeutics that target PGE2 biosynthesis. Due to adverse effects of COX inhibitors on the cardiovascular system (COX-2-selective), stomach and kidney (COX-1/2-unselective), novel pharmacological strategies are in demand. The inducible microsomal PGE2 synthase (mPGES)-1 is considered mainly responsible for the excessive PGE2 synthesis during inflammation and was suggested as promising drug target for suppressing PGE2 biosynthesis. However, 15 years after intensive research on the biology and pharmacology of mPGES-1, the therapeutic value of mPGES-1 as drug target is still vague and mPGES-1 inhibitors did not enter the market so far. This commentary will first shed light on the structure, mechanism and regulation of mPGES-1 and will then discuss its biological function and the consequence of its inhibition for the dynamic network of eicosanoids. Moreover, we (i) present current strategies for interfering with mPGES-1-mediated PGE2 synthesis, (ii) summarize bioanalytical approaches for mPGES-1 drug discovery and (iii) describe preclinical test systems for the characterization of mPGES-1 inhibitors. The pharmacological potential of selective mPGES-1 inhibitor classes as well as dual mPGES-1/5-lipoxygenase inhibitors is reviewed and pitfalls in their development, including species discrepancies and loss of in vivo activity, are discussed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Oliver Werz
- Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
41
|
Duffy DM. Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway. Hum Reprod Update 2015; 21:652-70. [PMID: 26025453 DOI: 10.1093/humupd/dmv026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prostaglandin E2 (PGE2) is an essential intrafollicular regulator of ovulation. In contrast with the one-gene, one-protein concept for synthesis of peptide signaling molecules, production and metabolism of bioactive PGE2 requires controlled expression of many proteins, correct subcellular localization of enzymes, coordinated PGE2 synthesis and metabolism, and prostaglandin transport in and out of cells to facilitate PGE2 action and degradation. Elevated intrafollicular PGE2 is required for successful ovulation, so disruption of PGE2 synthesis, metabolism or transport may yield effective contraceptive strategies. METHODS This review summarizes case reports and studies on ovulation inhibition in women and macaques treated with cyclooxygenase inhibitors published from 1987 to 2014. These findings are discussed in the context of studies describing levels of mRNA, protein, and activity of prostaglandin synthesis and metabolic enzymes as well as prostaglandin transporters in ovarian cells. RESULTS The ovulatory surge of LH regulates the expression of each component of the PGE2 synthesis-metabolism-transport pathway within the ovulatory follicle. Data from primary ovarian cells and cancer cell lines suggest that enzymes and transporters can cooperate to optimize bioactive PGE2 levels. Elevated intrafollicular PGE2 mediates key ovulatory events including cumulus expansion, follicle rupture and oocyte release. Inhibitors of the prostaglandin-endoperoxide synthase 2 (PTGS2) enzyme (also known as cyclooxygenase-2 or COX2) reduce ovulation rates in women. Studies in macaques show that PTGS2 inhibitors can reduce the rates of cumulus expansion, oocyte release, follicle rupture, oocyte nuclear maturation and fertilization. A PTGS2 inhibitor reduced pregnancy rates in breeding macaques when administered to simulate emergency contraception. However, PTGS2 inhibition did not prevent pregnancy in monkeys when administered to simulate monthly contraceptive use. CONCLUSION PTGS2 inhibitors alone may be suitable for use as emergency contraceptives. However, drugs of this class are unlikely to be effective as monthly contraceptives. Inhibitors of additional PGE2 synthesis enzymes or modulation of PGE2 metabolism or transport also hold potential for reducing follicular PGE2 and preventing ovulation. Approaches which target multiple components of the PGE2 synthesis-metabolism-transport pathway may be required to effectively block ovulation and lead to the development of novel contraceptive options for women. Therapies which target PGE2 may also impact disorders of the uterus and could also have benefits for women's health in addition to contraception.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 Olney Road, Lewis Hall, Norfolk, VA 23507, USA
| |
Collapse
|
42
|
Luz JG, Antonysamy S, Kuklish SL, Condon B, Lee MR, Allison D, Yu XP, Chandrasekhar S, Backer R, Zhang A, Russell M, Chang SS, Harvey A, Sloan AV, Fisher MJ. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics. J Med Chem 2015; 58:4727-37. [DOI: 10.1021/acs.jmedchem.5b00330] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- John Gately Luz
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Stephen Antonysamy
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Steven L. Kuklish
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Bradley Condon
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Matthew R. Lee
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Dagart Allison
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Xiao-Peng Yu
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Srinivasan Chandrasekhar
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ryan Backer
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Aiping Zhang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Marijane Russell
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Shawn S. Chang
- Lilly Biotechnology Center San Diego, 10300 Campus Point Drive, Suite 200, San Diego, California 92121, United States
| | - Anita Harvey
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Ashley V. Sloan
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| | - Matthew J. Fisher
- Lilly Research
Laboratories, Lilly Corporate Center, 355 East Merrill Street, Indianapolis, Indiana 46285, United States
| |
Collapse
|
43
|
Patrignani P, Patrono C. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:422-32. [DOI: 10.1016/j.bbalip.2014.09.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022]
|
44
|
Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res 2015; 8:105-18. [PMID: 25759598 PMCID: PMC4346004 DOI: 10.2147/jpr.s75160] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), which act via inhibition of the cyclooxygenase (COX) isozymes, were discovered more than 100 years ago. They remain a key component of the pharmacological management of acute and chronic pain. The COX-1 and COX-2 isozymes have different biological functions; analgesic activity is primarily (although not exclusively) associated with inhibition of COX-2, while different side effects result from the inhibition of COX-1 and COX-2. All available NSAIDs, including acetaminophen and aspirin, are associated with potential side effects, particularly gastrointestinal and cardiovascular effects, related to their relative selectivity for COX-1 and COX-2. Since all NSAIDs exert their therapeutic activity through inhibition of the COX isozymes, strategies are needed to reduce the risks associated with NSAIDs while achieving sufficient pain relief. A better understanding of the inhibitory activity and COX-1/COX-2 selectivity of an NSAID at therapeutic doses, based on pharmacokinetic and pharmacodynamic properties (eg, inhibitory dose, absorption, plasma versus tissue distribution, and elimination), and the impact on drug tolerability and safety can guide the selection of appropriate NSAIDs for pain management. For example, many NSAIDs with moderate to high selectivity for COX-2 versus COX-1 can be administered at doses that maximize efficacy (~80% inhibition of COX-2) while minimizing COX-1 inhibition and associated side effects, such as gastrointestinal toxicity. Acidic NSAIDs with favorable tissue distribution and short plasma half-lives can additionally be dosed to provide near-constant analgesia while minimizing plasma concentrations to permit recovery of COX-mediated prostaglandin production in the vascular wall and other organs. Each patient’s clinical background, including gastrointestinal and cardiovascular risk factors, should be taken into account when selecting appropriate NSAIDs. New methods are emerging to assist clinicians in the selection of appropriate NSAIDs and their doses/schedules, such as biomarkers that may predict the response to NSAID treatment in individual patients.
Collapse
Affiliation(s)
- Kay Brune
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, Center of Excellence on Aging, G d'Annunzio University, Chieti, Italy
| |
Collapse
|
45
|
Chen Y, Liu H, Xu S, Wang T, Li W. Targeting microsomal prostaglandin E2synthase-1 (mPGES-1): the development of inhibitors as an alternative to non-steroidal anti-inflammatory drugs (NSAIDs). MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00278h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AA cascade and several key residues in the 3D structure of mPGES-1.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | | | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Tianlin Wang
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| |
Collapse
|
46
|
Tuure L, Hämäläinen M, Moilanen T, Moilanen E. Aurothiomalate inhibits the expression of mPGES-1 in primary human chondrocytes. Scand J Rheumatol 2014; 44:74-9. [PMID: 25314295 DOI: 10.3109/03009742.2014.927917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Microsomal prostaglandin E synthase-1 (mPGES-1) is a terminal enzyme in the production of prostaglandin E2 (PGE2) and its expression is upregulated during inflammation. mPGES-1 is considered as a potential drug target for the treatment of arthritis to reduce adverse effects related to the current non-steroidal anti-inflammatory drugs (NSAIDs). Our aim was to study the expression of mPGES-1 in primary human chondrocytes and whether the expression is affected by clinically used antirheumatic drugs. METHOD Primary human chondrocytes were isolated from cartilage samples obtained from patients undergoing total knee replacement surgery. Expression of mPGES-1 was studied by quantitative real-time polymerase chain reaction (PCR) and Western blot analysis. PGE2 levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS mPGES-1 expression in primary human chondrocytes was enhanced when the cells were exposed to interleukin-1β (IL-1β) and mPGES-1 protein levels continued to increase up to the 96-h follow-up. Aurothiomalate inhibited mPGES-1 expression and PGE2 production in a dose-dependent manner, as did the anti-inflammatory steroid dexamethasone. Other disease-modifying antirheumatic drugs (DMARDs) studied (sulfasalazine, methotrexate, and hydroxychloroquine) did not alter mPGES-1 expression. CONCLUSIONS The results introduce aurothiomalate as the first, and so far the only, DMARD found to be able to inhibit mPGES-1 expression. The effect is likely involved in the mechanisms of action of this gold-containing DMARD in rheumatic diseases. The results are implicated in the regulatory mechanisms of mPGES-1 expression, which are under intensive research.
Collapse
Affiliation(s)
- L Tuure
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital , Tampere , Finland
| | | | | | | |
Collapse
|
47
|
Banerjee A, Pawar MY, Patil S, Yadav PS, Kadam PA, Kattige VG, Deshpande DS, Pednekar PV, Pisat MK, Gharat LA. Development of 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as microsomal prostaglandin E2 synthase-1 inhibitors. Bioorg Med Chem Lett 2014; 24:4838-44. [DOI: 10.1016/j.bmcl.2014.08.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 08/26/2014] [Indexed: 02/06/2023]
|
48
|
Ikeda-Matsuo Y. [Role of prostaglandin E synthase and EP receptors in ischemic brain injury]. Nihon Yakurigaku Zasshi 2014; 144:110-114. [PMID: 25213610 DOI: 10.1254/fpj.144.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
49
|
Moilanen E. Two faces of inflammation: an immunopharmacological view. Basic Clin Pharmacol Toxicol 2014; 114:2-6. [PMID: 24286361 DOI: 10.1111/bcpt.12180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inflammation is a protective response intended to eliminate pathogens and other offending agents which have potential to cause cell injury, as well as malignant and necrotic cells. However, if the inflammatory response is dysregulated or inappropriately focused, it has considerable potential to cause harm and can lead to development of inflammatory diseases such as allergic and autoimmune diseases. Despite the recent success in cytokine-targeted therapies, for example by the use of specific biological drugs, there are still considerable unmet needs in the treatment of inflammatory diseases. Further, recent discoveries in many diseases in addition to the classical inflammatory diseases have revealed inflammation to be a major factor participating in the underlying pathophysiological processes, either through activation of inflammatory cells or through triggering of inflammatory signalling mechanisms in the tissue cells. Examples of such diseases and conditions are many cardiovascular, metabolic and degenerative diseases, as well as cancer, obesity and pain. This brings the immunopharmacological approach into a new perspective in the drug development in very wide therapeutic areas. Immunopharmacology investigates mechanisms of inflammation and potential molecules and targets to treat inflammatory diseases. The current issue of Basic and Clinical Pharmacology and Toxicology focuses on some of the novel inflammatory mechanisms with potential in anti-inflammatory drug development, including kinase pathways, TRP ion channels, eicosanoid system, obesity-related adipokines, autoantibodies against citrullinated proteins, eosinophils, platelets and pathways connecting nervous and immune systems. The MiniReviews are based on lectures given at the symposium "Novel Drugs and Drug Targets to Treat Inflammation" in Ylläs, Finland, in March 2013.
Collapse
Affiliation(s)
- Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
50
|
Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol 2014; 10:229-41. [DOI: 10.1038/nrrheum.2014.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|