1
|
Zhang Y, Bao WW, Ji W, Zhao Y, Jiang N, Chen J, Guo Y, Chen G, Guo Y, Dong G, Chen Y. Ozone concentration, physical activity, and emotional and behavioral problems in children and adolescents. ENVIRONMENTAL RESEARCH 2025; 267:120697. [PMID: 39732417 DOI: 10.1016/j.envres.2024.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND No prior study has examined the mutual association of long-term outdoor ozone (O3) concentration and physical activity (PA) with emotional and behavioral problems (EBPs) in children and adolescents. This study aims to investigate the association between long-term outdoor O3 concentration and the risk of EBPs in children and adolescents and further explore whether increased PA levels modify this association. METHODS Data were obtained from the 2020 wave follow-up examination of an ongoing prospective cohort study (COHERENCE project) in Guangzhou, China. A total of 419,033 children aged 6-17-year-old were included. Annual average outdoor O3 concentrations were obtained from the China High Air Pollutants (CHAP) dataset based on participants' residential addresses. PA levels were identified using the International Physical Activity Questionnaire Short Form (IPAQ). EBPs were assessed by the Chinese Parent-Report Strengths and Difficulties Questionnaire (SDQ-P). RESULTS Each interquartile range (IQR) increase in outdoor O3 concentration was associated with an increased odds ratio (OR) for abnormal emotional problems (OR: 1.024, 95% CI: 1.010-1.038), conduct problems (OR: 1.015, 95% CI: 1.002-1.029), peer relationship problems (OR: 1.029, 95% CI: 1.006-1.052), prosocial behavior (OR: 1.023, 95% CI: 1.012-1.034), total difficulties (OR: 1.024, 95% CI: 1.010-1.038), and internalizing behavior (OR: 1.039, 95% CI: 1.026-1.053), in fully adjusted models. The highest OR for abnormal EBPs was observed in children with low PA levels, in combination with high O3 concentration. CONCLUSION This study identified that long-term outdoor O3 concentration is associated with an increased risk of EBPs in children and adolescents, with higher PA levels attenuating these risks.
Collapse
Affiliation(s)
- Yushan Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Wen Bao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weidong Ji
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Zhao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute for Global Health, ISGlobal, Barcelona, Spain; Pompeu Fabra (UPF), Barcelona, Spain
| | - Nan Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaqi Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinhuan Guo
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yajun Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Benki-Nugent S, Were FH, Riederer AM, Gatari M, Karr CJ, Seto EY, Mutai BC, Wamithi S, Collett BR, Kinuthia J, Edemba PW, Richardson BA, McClelland RS, Larson TV, Marshall JD, Maleche-Obimbo E. Air pollution exposures in early life and brain development in children (ABC): protocol for a pregnancy cohort study. BMJ Paediatr Open 2025; 9:e002758. [PMID: 39922600 PMCID: PMC11808922 DOI: 10.1136/bmjpo-2024-002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/15/2025] [Indexed: 02/10/2025] Open
Abstract
INTRODUCTION Air pollution is linked with poor neurodevelopment in high-income countries. Comparable data are scant for low-income countries, where exposures are higher. Longitudinal pregnancy cohort studies are optimal for individual exposure assessment during critical windows of brain development and examination of neurodevelopment. This study aims to determine the association between prenatal ambient air pollutant exposure and neurodevelopment in children aged 12, 24 and 36 months through a collaborative, capacity-enriching research partnership. METHODS AND ANALYSIS This observational cohort study is based in Nairobi, Kenya. Eligibility criteria are singleton pregnancy, no severe pregnancy complications and maternal age 18 to 40 years. At entry, mothers (n=400) are administered surveys to characterise air pollution exposures reflecting household features and occupational activities and provide blood (for lead analysis) and urine specimens (for polycyclic aromatic hydrocarbon (PAH) metabolites). Mothers attend up to two additional antenatal study visits, with urine collection, and infants are followed through age 36 months for annual neurodevelopment and caregiving behaviour assessment, and child urine and blood collection. Primary outcomes are child motor skills, language and cognition at 12, 24 and 36 months, and executive function at 36 months. The primary exposure is urinary PAH metabolite concentrations. Additional exposure assessment in a subset of the cohort includes residential indoor and outdoor air monitoring for fine particulate matter (PM2.5), carbon monoxide (CO), ultrafine particles (UFP) and black carbon (BC). ETHICS AND DISSEMINATION This study was approved by the Kenyatta National Hospital - University of Nairobi Ethics and Research Committee, and the University of Washington Human Subjects Division. Results are shared at annual workshops.
Collapse
Affiliation(s)
- Sarah Benki-Nugent
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Faridah H Were
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| | - Anne M Riederer
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Michael Gatari
- Institute of Nuclear Sciences, University of Nairobi, Nairobi, Kenya
| | - C J Karr
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Edmund Yw Seto
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Beatrice C Mutai
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | | | - Brent R Collett
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Barbra A Richardson
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - R Scott McClelland
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Timothy V Larson
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Civil & Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Julian D Marshall
- Department of Civil & Environmental Engineering, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
3
|
Heo YJ, Lee YJ, Kim ST, Lee DW, Kim JI, Kim BN, Hong YC, Shin CH, Lee YA, Lim YH. Early life air pollution exposures and thyroid function in children: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125092. [PMID: 39383987 DOI: 10.1016/j.envpol.2024.125092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/15/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Studies on early life ambient air pollution exposures and childhood thyroid function are scarce. This study aimed to evaluate the relationships between early life fine particulate matter (≤2.5 μm; PM2.5) and nitrogen dioxide (NO2) exposures and thyroid function in children. We measured the levels of thyrotropin, triiodothyronine, and free thyroxine in children (n = 684) residing in a rural Korean area at age 2, 4, 6, or 8 years from 2012 to 2020 in the Environment and Development of Children cohort. The relationship between residential average exposure levels of PM2.5 and NO2 during pregnancy and 1-year average levels before visit and thyroid function during childhood were analyzed. Inverse association between increases of 10 μg/m3 in PM2.5 during the first trimester and thyrotropin levels at aged 4 (β, -0.12; 95% CI: -0.22, -0.02) and 6 years (β, -0.16; 95% CI: -0.26, -0.06) were observed. No association was found between PM2.5 exposure during the second and third trimester and childhood TSH levels. Childhood PM2.5 exposure was positively associated with thyrotropin rise at aged 4 (β, 0.2; 95% CI: 0.06, 0.35) and 6 years (β, 0.16; 95% CI: 0.02, 0.29) and inversely related with free thyroxine levels at aged 8 years (β, -0.04; 95% CI: -0.07, -0.01). No relationship between NO2 exposure and thyroid function was found. In conclusion, association between PM2.5 exposure and childhood thyrotropin levels varied depending on exposure timing. Early gestational exposure showed an inverse relationship, whereas childhood exposure were positively associated with childhood thyrotropin levels. The long-term effects of early life air pollution exposure and underlying mechanisms should be investigated in future studies.
Collapse
Affiliation(s)
- You Joung Heo
- Department of Pediatrics, Gwangmyeong Hospital, Chung-Ang University School of Medicine, Gwangmyeong, Republic of Korea.
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon Tae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, Republic of Korea
| | - Dong Wook Lee
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Bung Nyun Kim
- Department of Psychiatry, Seoul National niversity College of Medicine, Seoul, Republic of Korea
| | - Yun Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Youn Hee Lim
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
5
|
Kumar SH, Acharyya S, Chouksey A, Soni N, Nazeer N, Mishra PK. Air pollution-linked epigenetic modifications in placental DNA: Prognostic potential for identifying future foetal anomalies. Reprod Toxicol 2024; 129:108675. [PMID: 39074641 DOI: 10.1016/j.reprotox.2024.108675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Prenatal exposure to air pollution is a significant risk factor for the mother and the developing foetus. The accumulation of pollutants in the placenta can cause a self-cascade loop of pro-inflammatory cytokine responses and DNA double-strand breaks. Previous research has shown that airborne particulate matter can damage the epigenome and disturb mitochondrial machinery, ultimately impairing placental function. Mitochondria are essential for preserving cellular homeostasis, energy metabolism, redox equilibrium, and epigenetic reprogramming. As these organelles are subtle targets of environmental exposures, any disruption in the signaling pathways can result in epigenomic instability, which can impact gene expression and mitochondrial function. This, in turn, can lead to changes in DNA methylation, post-translational histone modifications, and aberrant expression of microRNAs in proliferating trophoblast cells. The placenta has two distinct layers, cytotrophoblasts, and syncytiotrophoblasts, each with its mitochondria, which play important roles in preeclampsia, gestational diabetes, and overall health. Foetal nucleic acids enter maternal circulation during placental development because of necrotic, apoptotic, and inflammatory mechanisms. These nucleic acids reflect normal or abnormal ongoing cellular changes during prenatal foetal development. Detecting cell-free DNA in the bloodstream can be a biomarker for predicting negative pregnancy-related outcomes and recognizing abnormalities in foetal growth. Hence, a thorough understanding of how air pollution induces epigenetic variations within the placenta could offer crucial insights into underlying mechanisms and prolonged repercussions on foetal development and susceptibility in later stages of life.
Collapse
Affiliation(s)
- Sruthy Hari Kumar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Sayanti Acharyya
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Apoorva Chouksey
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India.
| |
Collapse
|
6
|
Yan Y, Huang W, Lu X, Chen X, Shan Y, Luo X, Li Y, Yang X, Li C. Zinc oxide nanoparticles induces cell death and consequently leading to incomplete neural tube closure through oxidative stress during embryogenesis. Cell Biol Toxicol 2024; 40:51. [PMID: 38958792 PMCID: PMC11222284 DOI: 10.1007/s10565-024-09894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The implementation of Zinc oxide nanoparticles (ZnO NPs) raises concerns regarding their potential toxic effects on human health. Although more and more researches have confirmed the toxic effects of ZnO NPs, limited attention has been given to their impact on the early embryonic nervous system. This study aimed to explore the impact of exposure to ZnO NPs on early neurogenesis and explore its underlying mechanisms. We conducted experiments here to confirm the hypothesis that exposure to ZnO NPs causes neural tube defects in early embryonic development. We first used mouse and chicken embryos to confirm that ZnO NPs and the Zn2+ they release are able to penetrate the placental barrier, influence fetal growth and result in incomplete neural tube closure. Using SH-SY5Y cells, we determined that ZnO NPs-induced incomplete neural tube closure was caused by activation of various cell death modes, including ferroptosis, apoptosis and autophagy. Moreover, dissolved Zn2+ played a role in triggering widespread cell death. ZnO NPs were accumulated within mitochondria after entering cells, damaging mitochondrial function and resulting in the over production of reactive oxygen species, ultimately inducing cellular oxidative stress. The N-acetylcysteine (NAC) exhibits significant efficacy in mitigating cellular oxidative stress, thereby alleviating the cytotoxicity and neurotoxicity brought about by ZnO NPs. These findings indicated that the exposure of ZnO NPs in early embryonic development can induce cell death through oxidative stress, resulting in a reduced number of cells involved in early neural tube closure and ultimately resulting in incomplete neural tube closure during embryo development. The findings of this study could raise public awareness regarding the potential risks associated with the exposure and use of ZnO NPs in early pregnancy.
Collapse
Affiliation(s)
- Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Lu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyi Shan
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center of Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai, 200233, China
| | - Xin Luo
- Department of Urology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Xuesong Yang
- Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, 510632, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
7
|
Goodrich AJ, Kleeman MJ, Tancredi DJ, Ludeña YJ, Bennett DH, Hertz-Picciotto I, Schmidt RJ. Pre-pregnancy ozone and ultrafine particulate matter exposure during second year of life associated with decreased cognitive and adaptive functioning at aged 2-5 years. ENVIRONMENTAL RESEARCH 2024; 252:118854. [PMID: 38574983 PMCID: PMC11697945 DOI: 10.1016/j.envres.2024.118854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/17/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND This study sought to investigate the association of prenatal and early life exposure to a mixture of air pollutants on cognitive and adaptive outcomes separately in children with or without autism spectrum disorder (ASD). METHODS Utilizing data from the CHARGE case-control study (birth years: 2000-2016), we predicted daily air concentrations of NO2, O3, and particulate matter <0.1 μm (PM0.1), between 0.1 and 2.5 μm (PM0.1-2.5), and between 2.5 and 10 μm (PM2.5-10) using chemical transport models with ground-based monitor adjustments. Exposures were evaluated for pre-pregnancy, each trimester, and the first two years of life. Individual and combined effects of pollutants were assessed with Vineland Adaptive Behavior Scales (VABS) and Mullen Scales of Early Learning (MSEL), separately for children with ASD (n = 660) and children without ASD (typically developing (TD) and developmentally delayed (DD) combined; n = 753) using hierarchical Bayesian Kernel Machine Regression (BKMR) models with three groups: PM size fractions (PM0.1, PM0.1-2.5, PM2.5-10), NO2, and O3. RESULTS Pre-pregnancy Ozone was strongly negatively associated with all scores in the non-ASD group (group posterior inclusion probability (gPIP) = 0.83-1.00). The PM group during year 2 was also strongly negatively associated with all scores in the non-ASD group (gPIP = 0.59-0.93), with PM0.1 driving the group association (conditional PIP (cPIP) = 0.73-0.96). Weaker and less consistent associations were observed between PM0.1-2.5 during pre-pregnancy and ozone during year 1 and VABS scores in the ASD group. CONCLUSIONS These findings prompt further investigation into ozone and ultrafine PM as potential environmental risk factors for neurodevelopment.
Collapse
Affiliation(s)
- Amanda J Goodrich
- Department of Public Health Sciences, School of Medicine, University of California Davis, 128 Medical Sciences 1C, One Shields Ave, Sacramento, CA, USA.
| | - Michael J Kleeman
- Department of Civil and Environmental Engineering, University of California Davis, Sacramento, CA, USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | - Yunin J Ludeña
- Department of Public Health Sciences, School of Medicine, University of California Davis, 128 Medical Sciences 1C, One Shields Ave, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis, 128 Medical Sciences 1C, One Shields Ave, Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, 128 Medical Sciences 1C, One Shields Ave, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, 128 Medical Sciences 1C, One Shields Ave, Sacramento, CA, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
8
|
Tangviriyapaiboon D, Thaineua V, Sirithongthaworn S, Kanshana S, Damrongtamwattana S, Prasitwattanaseree S, Srikummoon P, Thongsak N, Thumronglaohapun S, Traisathit P. Factors Associated with Suspected Developmental Delay in Thai Children Born with Low Birth Weight or Asphyxia. Matern Child Health J 2024; 28:631-640. [PMID: 37938440 DOI: 10.1007/s10995-023-03814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES The aim of the study was to identify factors associated with a risk of suspected developmental delay (SDD) in high-risk children in Thailand. METHODS We used data on children enrolled for developmental delay (DD) screening across Thailand collected by the Rajanagarindra Institute of Child Development, Department of Mental Health, Ministry of Public Health, Thailand. Children who were under 5 years of age with a birth weight of fewer than 2500 g and/or birth asphyxia in Thailand with high risk of DD were assessed using the Developmental Assessment for Intervention Manual (DAIM) between August 2013 and November 2019 (N = 14,314). RESULTS The high-risk children who had a gestational age at birth of < 37 weeks (adjusted odds ratio = 1.54; 95% confidence interval = 1.39-1.70) and/or had a birth weight < 2500 g (1.22; 1.02-1.45), or had mothers who were not government officers (1.46; 1.11-1.93), had a low education level (1.36; 1.19-1.55), had a poor nutritional status (1.34; 1.09-1.65), and/or who were living in a high-altitude area (1.59; 1.32-1.91) were at a higher risk of SDD. CONCLUSIONS FOR PRACTICE Children with a low birth weight and/or asphyxia during birth had a high risk of DD. SDD monitoring of children by community health workers and/or by developing outreach strategies, especially in underserved regions, should be considered. In addition, developing policies and guidelines, and intervention for high-risk children ought to be conducted to reduce the subsequent problems caused by the late detection of DD.
Collapse
Affiliation(s)
- Duangkamol Tangviriyapaiboon
- Rajanagarindra Institute of Child Development, Chiang Mai, Thailand
- Department of Mental Health, Ministry of Public Health, Nonthaburi, Thailand
| | - Vallop Thaineua
- Department of Health, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Siripon Kanshana
- Department of Health, Ministry of Public Health, Nonthaburi, Thailand
| | | | | | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
9
|
Li K, Liang X, Liu X, Geng Y, Yan J, Tian L, Liu H, Lai W, Shi Y, Xi Z, Lin B. Early-life exposure to PM2.5 leads to ASD-like phenotype in male offspring rats through activation of PI3K-AKT signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116222. [PMID: 38503106 DOI: 10.1016/j.ecoenv.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Previous studies have shown that early-life exposure to fine particulate matter (PM2.5) is associated with an increasing risk of autism spectrum disorder (ASD), however, the specific sensitive period of ASD is unknown. Here, a model of dynamic whole-body concentrated PM2.5 exposure in pre- and early-postnatal male offspring rats (MORs) was established. And we found that early postnatal PM2.5 exposed rats showed more typical ASD behavioral characteristics than maternal pregnancy exposure rats, including poor social interaction, novelty avoidance and anxiety disorder. And more severe oxidative stress and inflammatory responses were observed in early postnatal PM2.5 exposed rats. Moreover, the expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN) was down-regulated and the ratios of p-PI3K/PI3K and p-AKT/AKT were up-regulated in early postnatal PM2.5 exposed rats. This study suggests that early postnatal exposure to PM2.5 is more susceptible to ASD-like phenotype in offspring than maternal pregnancy exposure and the activation of PI3K-AKT signaling pathway may represent underlying mechanisms.
Collapse
Affiliation(s)
- Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaotian Liang
- Yantai Center for Disease Control and Prevention, Yantai 264003, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yanpei Geng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Binzhou Medical College, Yantai 264000, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Wenqin Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Yantai Center for Disease Control and Prevention, Yantai 264003, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
10
|
Whitworth KW, Rector-Houze AM, Chen WJ, Ibarluzea J, Swartz M, Symanski E, Iniguez C, Lertxundi A, Valentin A, González-Safont L, Vrijheid M, Guxens M. Relation of prenatal and postnatal PM 2.5 exposure with cognitive and motor function among preschool-aged children. Int J Hyg Environ Health 2024; 256:114317. [PMID: 38171265 PMCID: PMC12070395 DOI: 10.1016/j.ijheh.2023.114317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The literature informing susceptible periods of exposure on children's neurodevelopment is limited. We evaluated the impacts of pre- and postnatal fine particulate matter (PM2.5) exposure on children's cognitive and motor function among 1303 mother-child pairs in the Spanish INMA (Environment and Childhood) Study. Random forest models with temporal back extrapolation were used to estimate daily residential PM2.5 exposures that we averaged across 1-week lags during the prenatal period and 4-week lags during the postnatal period. The McCarthy Scales of Children's Abilities (MSCA) were administered around 5 years to assess general cognitive index (GCI) and several subscales (verbal, perceptual-performance, memory, fine motor, gross motor). We applied distributed lag nonlinear models within the Bayesian hierarchical framework to explore periods of susceptibility to PM2.5 on each MSCA outcome. Effect estimates were calculated per 5 μg/m3 increase in PM2.5 and aggregated across adjacent statistically significant lags using cumulative β (βcum) and 95% Credible Intervals (95%CrI). We evaluated interactions between PM2.5 with fetal growth and child sex. We did not observe associations of PM2.5 exposure with lower GCI scores. We found a period of susceptibility to PM2.5 on fine motor scores in gestational weeks 1-9 (βcum = -2.55, 95%CrI = -3.53,-1.56) and on gross motor scores in weeks 7-17 (βcum = -2.27,95%CrI = -3.43,-1.11) though the individual lags for the latter were only borderline statistically significant. Exposure in gestational week 17 was weakly associated with verbal scores (βcum = -0.17, 95%CrI = -0.26,-0.09). In the postnatal period (from age 0.5-1.2 years), we observed a window of susceptibility to PM2.5 on lower perceptual-performance (β = -2.42, 95%CrI = -3.37,-1.46). Unexpected protective associations were observed for several outcomes with exposures in the later postnatal period. We observed no evidence of differences in susceptible periods by fetal growth or child sex. Preschool-aged children's motor function may be particularly susceptible to PM2.5 exposures experienced in utero whereas the first year of life was identified as a period of susceptibility to PM2.5 for children's perceptual-performance.
Collapse
Affiliation(s)
- Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Alison M Rector-Houze
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, 1200 Pressler St., Houston, TX, 77030, USA
| | - Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jesus Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, Donostia-San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, Av. Navarra, 4, 20013, Donostia-San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), Campus Gipuzkoa, Av. Tolosa, 70, 20018, Donostia-San Sebastian, Spain
| | - Michael Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, 1200 Pressler St., Houston, TX, 77030, USA
| | - Elaine Symanski
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Carmen Iniguez
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, Calle Dr Moliner, 50, 46100, València, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, Av. De Catalunya, 21, 46020, València, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, 20014, Donostia-San Sebastian, Spain; Department of Preventive Medicine and Public Health, Universidad del País Vasco (UPV/EHU), Barrio Sarriena, s/n, 48940, Leioa, Spain
| | - Antonia Valentin
- Barcelona Institute of Global Health (ISGlobal), C/del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Llucia González-Safont
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, Av. De Catalunya, 21, 46020, València, Spain; Nursing and Chiropody Faculty of Valencia University, Av. De Blasko Ibanez, 13, 46010, Valencia, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), C/del Dr. Aiguader, 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Placa de la Merce, 12, 08002, Barcelona, Spain
| | - Monica Guxens
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), C/del Dr. Aiguader, 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Placa de la Merce, 12, 08002, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre (Erasmus MC), Dr. Moleaterplein 40, 30115 GD, Rotterdam, Netherlands
| |
Collapse
|
11
|
Chen WJ, Rector-Houze AM, Guxens M, Iñiguez C, Swartz MD, Symanski E, Ibarluzea J, Valentin A, Lertxundi A, González-Safont L, Sunyer J, Whitworth KW. Susceptible windows of prenatal and postnatal fine particulate matter exposures and attention-deficit hyperactivity disorder symptoms in early childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168806. [PMID: 38016567 PMCID: PMC12040439 DOI: 10.1016/j.scitotenv.2023.168806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Few prior studies have explored windows of susceptibility to fine particulate matter (PM2.5) in both the prenatal and postnatal periods and children's attention-deficit/hyperactivity disorder (ADHD) symptoms. We analyzed data from 1416 mother-child pairs from the Spanish INMA (INfancia y Medio Ambiente) Study (2003-2008). Around 5 years of age, teachers reported the number of ADHD symptoms (i.e., inattention, hyperactivity/impulsivity) using the ADHD Diagnostic and Statistical Manual of Mental Disorders. Around 7 years of age, parents completed the Conners' Parent Rating Scales, from which we evaluated the ADHD index, cognitive problems/inattention, hyperactivity, and oppositional subscales, reported as age- and sex-standardized T-scores. Daily residential PM2.5 exposures were estimated using a two-stage random forest model with temporal back-extrapolation and averaged over 1-week periods in the prenatal period and 4-week periods in the postnatal period. We applied distributed lag non-linear models within the Bayesian hierarchical model framework to identify susceptible windows of prenatal or postnatal exposure to PM2.5 (per 5-μg/m3) for ADHD symptoms. Models were adjusted for relevant covariates, and cumulative effects were reported by aggregating risk ratios (RRcum) or effect estimates (βcum) across adjacent susceptible windows. A similar susceptible period of exposure to PM2.5 (1.2-2.9 and 0.9-2.7 years of age, respectively) was identified for hyperactivity/impulsivity symptoms assessed ~5 years (RRcum = 2.72, 95% credible interval [CrI] = 1.98, 3.74) and increased hyperactivity subscale ~7 years (βcum = 3.70, 95% CrI = 2.36, 5.03). We observed a susceptibility period to PM2.5 on risk of hyperactivity/impulsivity symptoms ~5 years in gestational weeks 16-22 (RRcum = 1.36, 95% CrI = 1.22, 1.52). No associations between PM2.5 exposure and other ADHD symptoms were observed. We report consistent evidence of toddlerhood as a susceptible window of PM2.5 exposure for hyperactivity in young children. Although mid-pregnancy was identified as a susceptible period of exposure on hyperactivity symptoms in preschool-aged children, this association was not observed at the time children were school-aged.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Alison M Rector-Houze
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Mònica Guxens
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre (Erasmus MC), Rotterdam, the Netherlands
| | - Carmen Iñiguez
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, València, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain
| | - Michael D Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Elaine Symanski
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Jesús Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Antonia Valentin
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Llúcia González-Safont
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain; Nursing and Chiropody Faculty of Valencia University, Valencia, Spain
| | - Jordi Sunyer
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Merced-Nieves FM, Eitenbichler S, Goldson B, Zhang X, Klein DN, Bosquet Enlow M, Curtin P, Wright RO, Wright RJ. Associations between a metal mixture and infant negative affectivity: Effect modification by prenatal cortisol and infant sex. Child Dev 2024; 95:e47-e59. [PMID: 37610319 PMCID: PMC10840921 DOI: 10.1111/cdev.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/17/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023]
Abstract
In-utero exposures interact in complex ways that influence neurodevelopment. Animal research demonstrates that fetal sex moderates the impact of joint exposure to metals and prenatal stress measures, including cortisol, on offspring socioemotional outcomes. Further research is needed in humans. We evaluated the joint association of prenatal exposures to a metal mixture and cortisol with infant negative affectivity, considering sex differences. Analyses included 226 (29% White, Non-Hispanic) mother-infant pairs with data on exposures and negative affectivity assessed using the Infant Behavior Questionnaire-Revised in 6-month-olds. Results showed that girls whose mothers had higher cortisol had significantly higher scores of Fear and Sadness with greater exposure to the mixture. Examining higher-order interactions may better elucidate the effects of prenatal exposure to metals and cortisol on socioemotional functioning.
Collapse
Affiliation(s)
- Francheska M Merced-Nieves
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Brandon Goldson
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, Stony Brook, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Basilio E, Zlatnik MG. Extreme weather-Wildfires & pregnancy. Semin Perinatol 2023; 47:151839. [PMID: 37863677 DOI: 10.1016/j.semperi.2023.151839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
As described in the previous chapter, Chapter 4: Air pollution and pregnancy, there is robust literature on the adverse health impacts of ambient air pollution on perinatal outcomes. With climate change contributing to more extreme weather patterns, wildfire events are becoming more intense and frequent. Wildfire smoke is a major contributor to poor air quality and data are beginning to emerge with respect to the negative impact on perinatal outcomes. The aim of this chapter is to provide an overview of the current literature on wildfire smoke exposure in pregnancy and associated adverse outcomes.
Collapse
Affiliation(s)
- Emilia Basilio
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco
| | - Marya G Zlatnik
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Western States Pediatric Environmental Health Specialty Unit, UCSF, University of California San Francisco.
| |
Collapse
|
14
|
Singh S A, Suresh S, Vellapandian C. Ozone-induced neurotoxicity: In vitro and in vivo evidence. Ageing Res Rev 2023; 91:102045. [PMID: 37652313 DOI: 10.1016/j.arr.2023.102045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Together with cities in higher-income nations, it is anticipated that the real global ozone is rising in densely populated areas of Asia and Africa. This review aims to discuss the possible neurotoxic pollutants and ozone-induced neurotoxicity: in vitro and in vivo, along with possible biomarkers to assess ozone-related oxidative stress. As a methodical and scientific strategy for hazard identification and risk characterization of human chemical exposures, toxicological risk assessment is increasingly being implemented. While traditional methods are followed by in vitro toxicology, cell culture techniques are being investigated in modern toxicology. In both human and rodent models, aging makes the olfactory circuitry vulnerable to spreading immunological responses from the periphery to the brain because it lacks the blood-brain barrier. The ozone toxicity is elusive as it shows ventral and dorsal root injury cases even in the milder dose. Its potential toxicity should be disclosed to understand further the clear mechanism insights of how it acts in cellular aspects. Human epidemiological research has confirmed the conclusions that prenatal and postnatal exposure to high levels of air pollution are linked to behavioral alterations in offspring. O3 also enhances blood circulation. It has antibacterial action, which may have an impact on the gut microbiota. It also activates immunological, anti-inflammatory, proteasome, and growth factor signaling Prolonged O3 exposure causes oxidative damage to plasma proteins and lipids and damages the structural and functional integrity of the mitochondria. Finally, various studies need to be conducted to identify the potential biomarkers associated with ozone and the brain.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur, Kancheepuram, Tamil Nadu, India.
| |
Collapse
|
15
|
Chiu YHM, Wilson A, Hsu HHL, Jamal H, Mathews N, Kloog I, Schwartz J, Bellinger DC, Xhani N, Wright RO, Coull BA, Wright RJ. Prenatal ambient air pollutant mixture exposure and neurodevelopment in urban children in the Northeastern United States. ENVIRONMENTAL RESEARCH 2023; 233:116394. [PMID: 37315758 PMCID: PMC10528414 DOI: 10.1016/j.envres.2023.116394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Studies of prenatal air pollution (AP) exposure on child neurodevelopment have mostly focused on a single pollutant. We leveraged daily exposure data and implemented novel data-driven statistical approaches to assess effects of prenatal exposure to a mixture of seven air pollutants on cognitive functioning in school-age children from an urban pregnancy cohort. METHODS Analyses included 236 children born at ≥37 weeks gestation. Maternal prenatal daily exposure levels for nitrogen dioxide (NO2), ozone (O3), and constituents of fine particles [elemental carbon (EC), organic carbon (OC), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+)] were estimated based on residential addresses using validated satellite-based hybrid models or global 3-D chemical-transport models. Children completed Wide Range Assessment of Memory and Learning (WRAML-2) and Conners' Continuous Performance Test (CPT-II) at 6.5 ± 0.9 years of age. Time-weighted levels for mixture pollutants were estimated using Bayesian Kernel Machine Regression Distributed Lag Models (BKMR-DLMs), with which we also explored the interactions in the exposure-response functions among pollutants. Resulting time-weighted exposure levels were used in Weighted Quantile Sum (WQS) regressions to examine AP mixture effects on outcomes, adjusted for maternal age, education, child sex, and prenatal temperature. RESULTS Mothers were primarily ethnic minorities (81% Hispanic and/or black) reporting ≤12 years of education (68%). Prenatal AP mixture (per unit increase in WQS estimated AP index) was associated with decreased WRAML-2 general memory (GM; β = -0.64, 95%CI = -1.40, 0.00) and memory-related attention/concentration (AC; β = -1.03, 95%CI = -1.78, -0.27) indices, indicating poorer memory functioning, as well as increased CPT-II omission errors (OE; β = 1.55, 95%CI = 0.34, 2.77), indicating increased attention problems. When stratified by sex, association with AC index was significant among girls, while association with OE was significant among boys. Traffic-related pollutants (NO2, OC, EC) and SO42- were major contributors to these associations. There was no significant evidence of interactions among mixture components. CONCLUSIONS Prenatal exposure to an AP mixture was associated with child neurocognitive outcomes in a sex- and domain-specific manner.
Collapse
Affiliation(s)
- Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harris Jamal
- Augusta University/University of Georgia Medical Partnership, Medical College of Georgia, Athens, GA, USA
| | - Nicole Mathews
- The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Bellinger
- Departments of Neurology and Psychiatry, Boston Children's Hospital, Boston, MA, USA; Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Naim Xhani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Ruiz-Sobremazas D, Rodulfo-Cárdenas R, Ruiz-Coca M, Morales-Navas M, Teresa Colomina M, López-Granero C, Sánchez-Santed F, Perez-Fernandez C. Uncovering the link between air pollution and neurodevelopmental alterations during pregnancy and early life exposure: A systematic review. Neurosci Biobehav Rev 2023; 152:105314. [PMID: 37442496 DOI: 10.1016/j.neubiorev.2023.105314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Air pollution plays, nowadays, a huge role in human's health and in the personal economy. Moreover, there has been a rise in the prevalence of neurodevelopmental disorders like the Autism Spectrum Disorder (ASD) in recent years. Current scientific studies have established a link between prenatal or perinatal exposure to environmental pollutants and ASD. This systematic review summarizes the current literature available about the relationship between exposure to air pollutants (particulate matter [PM], Second Organic Aerosols [SOA], Diesel Exhaust [DE], and Traffic Related Air Pollution [TRAP]) and neurodevelopmental disorders in preclinical models using rats and mice. The articles were selected and filtered using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, and bias-evaluated using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool. Overall, our findings suggest that air pollutants are associated with negative developmental outcomes characterized by ASD-like behaviors, abnormal biochemical patterns, and impaired achievement of developmental milestones in rodents. However, there is not sufficient information in certain domains to establish a clear relationship. Short phrases for indexing terms: Air pollution affects neurodevelopment; PM exposure modifies glutamate system; Prenatal exposure combined with postnatal affect more to behavioral / cognitive domain; Air pollution modifies social behavior in rodents; Cognitive deficits can be detected after gestational exposure to air pollution.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Rocío Rodulfo-Cárdenas
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | - Mario Ruiz-Coca
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | | | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain
| | - Cristian Perez-Fernandez
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120 Almeria, Spain.
| |
Collapse
|
17
|
Nazzari S, Cagliero L, Grumi S, Pisoni E, Mallucci G, Bergamaschi R, Maccarini J, Giorda R, Provenzi L. Prenatal exposure to environmental air pollution and psychosocial stress jointly contribute to the epigenetic regulation of the serotonin transporter gene in newborns. Mol Psychiatry 2023; 28:3503-3511. [PMID: 37542161 DOI: 10.1038/s41380-023-02206-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Antenatal exposures to maternal stress and to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) have been independently associated with developmental outcomes in early infancy and beyond. Knowledge about their joint impact, biological mechanisms of their effects and timing-effects, is still limited. Both PM2.5 and maternal stress exposure during pregnancy might result in altered patterns of DNA methylation in specific stress-related genes, such as the serotonin transporter gene (SLC6A4 DNAm), that might, in turn, influence infant development across several domains, including bio-behavioral, cognitive and socio-emotional domains. Here, we investigated the independent and interactive influence of variations in antenatal exposures to maternal pandemic-related stress (PRS) and PM2.5 on SLC6A4 DNAm levels in newborns. Mother-infant dyads (N = 307) were enrolled at delivery during the COVID-19 pandemic. Infants' methylation status was assessed in 13 CpG sites within the SLC6A4 gene's region (chr17:28562750-28562958) in buccal cells at birth and women retrospectively report on PRS. PM2.5 exposure throughout the entire gestation and at each gestational trimester was estimated using a spatiotemporal model based on residential address. Among several potentially confounding socio-demographic and health-related factors, infant's sex was significantly associated with infants' SLC6A4 DNAm levels, thus hierarchical regression models were adjusted for infant's sex. Higher levels of SLC6A4 DNAm at 6 CpG sites were found in newborns born to mothers reporting higher levels of antenatal PRS and greater PM2.5 exposure across gestation, while adjusting for infant's sex. These effects were especially evident when exposure to elevated PM2.5 occurred during the second trimester of pregnancy. Several important brain processes (e.g., synaptogenesis and myelination) occur during mid-pregnancy, potentially making the second trimester a sensitive time window for the effects of stress-related exposures. Understanding the interplay between environmental and individual-level stressors has important implications for the improvement of mother-infant health during and after the pandemic.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lucia Cagliero
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Pisoni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Giulia Mallucci
- Multiple Sclerosis Center, Neurocenter of South of Switzerland, EOC, Lugano, Switzerland
| | | | - Julia Maccarini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
18
|
Kaur S, Morales-Hidalgo P, Arija V, Canals J. Prenatal Exposure to Air Pollutants and Attentional Deficit Hyperactivity Disorder Development in Children: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085443. [PMID: 37107725 PMCID: PMC10138804 DOI: 10.3390/ijerph20085443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Up to 9.5% of the world's population is diagnosed with attention deficit/hyperactivity disorder (ADHD), making it one of the most common childhood disorders. Air pollutants could be considered an environmental risk condition for ADHD, but few studies have specifically investigated the effect of prenatal exposure. The current paper reviews the studies conducted on the association between prenatal air pollutants (PM, NOx, SO2, O3, CO and PAH) and ADHD development in children. From the 890 studies searched through PubMed, Google Scholar, Scopus, and Web of Science, 15 cohort studies met the inclusion criteria. NOS and WHO guidelines were used for quality and risk of bias assessment. The accumulative sample was 589,400 of children aged 3-15 years. Most studies reported an association between ADHD symptoms and prenatal PAH and PM exposure. Data available on NO2 and SO2 were inconsistent, whereas the effect of CO/O3 is barely investigated. We observed heterogeneity through an odd ratio forest plot, and discrepancies in methodologies across the studies. Eight of the fifteen studies were judged to be of moderate risk of bias in the outcome measurement. In a nutshell, future studies should aim to minimize heterogeneity and reduce bias by ensuring a more representative sample, standardizing exposure and outcome assessments.
Collapse
Affiliation(s)
- Sharanpreet Kaur
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Paula Morales-Hidalgo
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Psychology and Education Studies, Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43002 Reus, Spain
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Correspondence:
| |
Collapse
|
19
|
Song Y, Chen L, Bennett E, Wheeler AJ, Southam K, Yen S, Johnston F, Zosky GR. Can Maternal Exposure to Air Pollution Affect Post-Natal Liver Development? TOXICS 2023; 11:toxics11010061. [PMID: 36668787 PMCID: PMC9866810 DOI: 10.3390/toxics11010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/01/2023]
Abstract
Emerging evidence suggests that inhalation of particulate matter (PM) can have direct adverse effects on liver function. Early life is a time of particular vulnerability to the effects of air pollution. On that basis, we tested whether in utero exposure to residential PM has an impact on the developing liver. Pregnant mice (C57BL/6J) were intranasally administered 100 µg of PM sampled from residential roof spaces (~5 mg/kg) on gestational days 13.5, 15.5, and 17.5. The pups were euthanized at two weeks of age, and liver tissue was collected to analyse hepatic metabolism (glycogen storage and lipid level), cellular responses (oxidative stress, inflammation, and fibrosis), and genotoxicity using a range of biochemical assays, histological staining, ELISA, and qPCR. We did not observe pronounced effects of environmentally sampled PM on the developing liver when examining hepatic metabolism and cellular response. However, we did find evidence of liver genomic DNA damage in response to in utero exposure to PM. This effect varied depending on the PM sample. These data suggest that in utero exposure to real-world PM during mid-late pregnancy has limited impacts on post-natal liver development.
Collapse
Affiliation(s)
- Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Ling Chen
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Ellen Bennett
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Amanda J. Wheeler
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
- Commonwealth Scientific and Industrial Research Organisation, Aspendale, VIC 3195, Australia
| | - Katherine Southam
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Seiha Yen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Fay Johnston
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
| | - Graeme R. Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
20
|
Shang M, Tang M, Xue Y. Neurodevelopmental toxicity induced by airborne particulate matter. J Appl Toxicol 2023; 43:167-185. [PMID: 35995895 DOI: 10.1002/jat.4382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Airborne particulate matter (PM), the primary component associated with health risks in air pollution, can negatively impact human health. Studies have shown that PM can enter the brain by inhalation, but data on the exact quantity of particles that reach the brain are unknown. Particulate matter exposure can result in neurotoxicity. Exposure to PM poses a greater health risk to infants and children because their nervous systems are not fully developed. This review paper highlights the association between PM and neurodevelopmental toxicity (NDT). Exposure to PM can induce oxidative stress and inflammation, potentially resulting in blood-brain barrier damage and increased susceptibility to development of neurodevelopmental disorders (NDD), such as autism spectrum disorders and attention deficit disorders. In addition, human and animal exposure to PM can induce microglia activation and epigenetic alterations and alter the neurotransmitter levels, which may increase risks for development of NDD. However, the systematic comparisons of the effects of PM on NDD at different ages of exposure are deficient. The elucidation of PM exposure risks and NDT in children during the early developmental stages are of great importance. The synthesis of current research may help to identify markers and mechanisms of PM-induced neurodevelopmental toxicity, allowing for the development of strategies to prevent permanent damage of developing brain.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Li T, Yu Y, Sun Z, Duan J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part Fibre Toxicol 2022; 19:67. [PMID: 36447278 PMCID: PMC9707232 DOI: 10.1186/s12989-022-00507-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
The impacts of air pollution on public health have become a great concern worldwide. Ambient particulate matter (PM) is a major air pollution that comprises a heterogeneous mixture of different particle sizes and chemical components. The chemical composition and physicochemical properties of PM change with space and time, which may cause different impairments. However, the mechanisms of the adverse effects of PM on various systems have not been fully elucidated and systematically integrated. The Adverse Outcome Pathway (AOP) framework was used to comprehensively illustrate the molecular mechanism of adverse effects of PM and its components, so as to clarify the causal mechanistic relationships of PM-triggered toxicity on various systems. The main conclusions and new insights of the correlation between public health and PM were discussed, especially at low concentrations, which points out the direction for further research in the future. With the deepening of the study on its toxicity mechanism, it was found that PM can still induce adverse health effects with low-dose exposure. And the recommended Air Quality Guideline level of PM2.5 was adjusted to 5 μg/m3 by World Health Organization, which meant that deeper and more complex mechanisms needed to be explored. Traditionally, oxidative stress, inflammation, autophagy and apoptosis were considered the main mechanisms of harmful effects of PM. However, recent studies have identified several emerging mechanisms involved in the toxicity of PM, including pyroptosis, ferroptosis and epigenetic modifications. This review summarized the comprehensive evidence on the health effects of PM and the chemical components of it, as well as the combined toxicity of PM with other air pollutants. Based on the AOP Wiki and the mechanisms of PM-induced toxicity at different levels, we first constructed the PM-related AOP frameworks on various systems.
Collapse
Affiliation(s)
- Tianyu Li
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Yang Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Zhiwei Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| | - Junchao Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069 People’s Republic of China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069 People’s Republic of China
| |
Collapse
|
22
|
Liu B, Fang X, Strodl E, He G, Ruan Z, Wang X, Liu L, Chen W. Fetal Exposure to Air Pollution in Late Pregnancy Significantly Increases ADHD-Risk Behavior in Early Childhood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710482. [PMID: 36078201 PMCID: PMC9518584 DOI: 10.3390/ijerph191710482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Air pollution nowadays has seriously threatened the health of the Chinese population, especially in the vulnerable groups of fetuses, infants and toddlers. In particular, the effects of air pollution on children's neurobehavioral development have attracted widespread attention. Moreover, the early detection of a sensitive period is very important for the precise intervention of the disease. However, such studies focusing on hyperactive behaviors and susceptible window identification are currently lacking in China. OBJECTIVES The study aims to explore the correlation between air pollution exposure and hyperactive behaviors during the early life stage and attempt to identify whether a susceptible exposure window exists that is crucial for further precise intervention. METHODS Based on the Longhua Child Cohort Study, we collected the basic information and hyperactivity index of 26,052 children using a questionnaire conducted from 2015 to 2017, and the Conners' Parent Rating Scale-revised (CPRS-48) was used to assess hyperactive behaviors. Moreover, the data of air pollution concentration (PM10, PM2.5, NO2, CO, O3 and SO2) were collected from the monitoring station between 2011 to 2017, and a land-use random forest model was used to evaluate the exposure level of each subject. Furthermore, Distributed lag non-linear models (DLNMs) were applied for statistic analysis. RESULTS The risk of child hyperactivity was found to be positively associated with early life exposure to PM10, PM2.5 and NO2. In particular, for an increase of per 10 µg/m3 in PM10, PM2.5 and NO2 exposure concentration during early life, the risk of child hyperactivity increased significantly during the seventh month of pregnancy to the fourth month after birth, with the strongest association in the ninth month of pregnancy (PM10: OR = 1.043, 95% CI: 1.016-1.071; PM2.5: OR = 1.062, 95% CI: 1.024-1.102; NO2: OR = 1.043, 95% CI: 1.016-1.071). However, no significant associations among early life exposure to CO, O3 and SO2 and child hyperactive behaviors were observed. CONCLUSIONS Early life exposure to PM10, PM2.5 and NO2 is associated with an increased risk of child ADHD-like behaviors at the age around 3 years, and the late-prenatal and early postnatal periods might be the susceptible exposure windows.
Collapse
Affiliation(s)
- Binquan Liu
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210006, China
| | - Xinyu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
- Department of Public Health and Health Administration, Clincial College of Anhui Medical University, Hefei 230031, China
- Anhui Province Laboratory of Inflammation and Immune Mediated Disease, Hefei 230032, China
| | - Esben Strodl
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Guanhao He
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zengliang Ruan
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ximeng Wang
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li Liu
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqing Chen
- Department of Biostatistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Information Management, Xinhua College of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
23
|
Yadav A, Verhaegen S, Filis P, Domanska D, Lyle R, Sundaram AYM, Leithaug M, Østby GC, Aleksandersen M, Berntsen HF, Zimmer KE, Fowler PA, Paulsen RE, Ropstad E. Exposure to a human relevant mixture of persistent organic pollutants or to perfluorooctane sulfonic acid alone dysregulates the developing cerebellum of chicken embryo. ENVIRONMENT INTERNATIONAL 2022; 166:107379. [PMID: 35792514 DOI: 10.1016/j.envint.2022.107379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Prenatal exposure to persistent organic pollutants (POPs) is associated with neurodevelopmental disorders. In the present study, we explored whether a human-relevant POP mixture affects the development of chicken embryo cerebellum. We used a defined mixture of 29 POPs, with chemical composition and concentrations based on blood levels in the Scandinavian population. We also evaluated exposure to a prominent compound in the mixture, perfluorooctane sulfonic acid (PFOS), alone. Embryos (n = 7-9 per exposure group) were exposed by injection directly into the allantois at embryonic day 13 (E13). Cerebella were isolated at E17 and subjected to morphological, RNA-seq and shot-gun proteomics analyses. There was a reduction in thickness of the molecular layer of cerebellar cortex in both exposure scenarios. Exposure to the POP mixture significantly affected expression of 65 of 13,800 transcripts, and 43 of 2,568 proteins, when compared to solvent control. PFOS alone affected expression of 80 of 13,859 transcripts, and 69 of 2,555 proteins. Twenty-five genes and 15 proteins were common for both exposure groups. These findings point to alterations in molecular events linked to retinoid X receptor (RXR) signalling, neuronal cell proliferation and migration, cellular stress responses including unfolded protein response, lipid metabolism, and myelination. Exposure to the POP mixture increased methionine oxidation, whereas PFOS decreased oxidation. Several of the altered genes and proteins are involved in a wide variety of neurological disorders. We conclude that POP exposure can interfere with fundamental aspects of neurodevelopment, altering molecular pathways that are associated with adverse neurocognitive and behavioural outcomes.
Collapse
Affiliation(s)
- Ajay Yadav
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Diana Domanska
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, NO-0304, Oslo, Norway.
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
24
|
Gehring U, Gascon M. Invited Perspective: HEPA Filters-An Effective Way to Prevent Adverse Air Pollution Effects on Neurodevelopment? ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:61302. [PMID: 35748571 PMCID: PMC9229416 DOI: 10.1289/ehp11224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Mireia Gascon
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
25
|
Holme JA, Valen H, Brinchmann BC, Vist GE, Grimsrud TK, Becher R, Holme AM, Øvrevik J, Alexander J. Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE). Toxicology 2022; 473:153206. [PMID: 35550401 DOI: 10.1016/j.tox.2022.153206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Tobacco smoking and use of snus (smokeless tobacco) are associated with adverse effects on pregnancy and neonatal outcomes. Nicotine is considered a key toxicant involved in effects caused by both smoking and snus, while pyrolysis products including polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke represents the constituents most unequally divided between these two groups of tobacco products. The aim of this review was: i) to compare the impact, in terms of relative effect estimates, of cigarette smoking and use of Swedish snus on pregnancy outcomes using similar non-tobacco user controls, and ii) to examine whether exposure to PAHs from smoking could explain possible differences in impact on pregnancy outcomes. We systematically searched MEDLINE, Embase, PsycInfo, Web of Science and the Cochrane Database of Systematic Reviews up to October 2021 and identified studies reporting risks for adverse pregnancy and neonatal outcomes associated with snus use and with smoking relative to pregnant women with no use of tobacco. Both snus use and smoking were associated with increased risk of stillbirth, preterm birth, and oral cleft malformation, with comparable point estimates. These effects were likely due to comparable nicotine exposure. We also found striking differences. While both smoking and snus increased the risk of having small for gestational age (SGA) infants, risk from maternal smoking was markedly higher as was the reduction in birthweight. In contrast, the risk of preeclampsia (PE) was markedly lower in smokers than in controls, while snus use was associated with a slightly increased risk. We suggest that PAHs acting via AhR may explain the stronger effects of tobacco smoking on SGA and also to the apparent protective effect of cigarette smoking on PE. Possible mechanisms involved include: i) disrupted endocrine control of fetal development as well as placental development and function, and ii) stress adaption and immune suppression in placenta and mother.
Collapse
Affiliation(s)
- Jørn A Holme
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Håkon Valen
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Bendik C Brinchmann
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | - Rune Becher
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ane M Holme
- Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Johan Øvrevik
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jan Alexander
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
26
|
Rahman F, Coull BA, Carroll KN, Wilson A, Just AC, Kloog I, Zhang X, Wright RJ, Chiu YHM. Prenatal PM 2.5 exposure and infant temperament at age 6 months: Sensitive windows and sex-specific associations. ENVIRONMENTAL RESEARCH 2022; 206:112583. [PMID: 34922978 PMCID: PMC8810739 DOI: 10.1016/j.envres.2021.112583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Prenatal exposure to fine particulate matter with a diameter of ≤2.5 μm (PM2.5) has been linked to adverse neurodevelopmental outcomes in later childhood, while research on early infant behavior remains sparse. OBJECTIVES We examined associations between prenatal PM2.5 exposure and infant negative affectivity, a stable temperamental trait associated with longer-term behavioral and mental health outcomes. We also examined sex-specific effects. METHODS Analyses included 559 mother-infant pairs enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort. Daily PM2.5 exposure based on geocoded residential address during pregnancy was estimated using a satellite-based spatiotemporal model. Domains of negative affectivity (Sadness, Distress to Limitations, Fear, Falling Reactivity) were assessed using the Infant Behavior Questionnaire-Revised (IBQ-R) when infants were 6 months old. Subscale scores were calculated as the mean of item-specific responses; the global Negative Affectivity (NA) score was derived by averaging the mean of the four subscale scores. Bayesian distributed lag interaction models (BDLIMs) were used to identify sensitive windows for prenatal PM2.5 exposure on global NA and its subscales, and to examine effect modification by sex. RESULTS Mothers were primarily racial/ethnic minorities (38% Black, 37% Hispanic), 40% had ≤12 years of education; most did not smoke during pregnancy (87%). In the overall sample, BDLIMs revealed that increased PM2.5 at mid-pregnancy was associated with higher global NA, Sadness, and Fear scores, after adjusting for covariates (maternal age, education, race/ethnicity, sex). Among boys, increased PM2.5 at early pregnancy was associated with decreased Fear scores, while exposure during late pregnancy was associated with increased Fear scores (cumulative effect estimate = 0.57, 95% CI: 0.03-1.41). Among girls, increased PM2.5 during mid-pregnancy was associated with higher Fear scores (cumulative effect estimate = 0.82, 95% CI: 0.05-1.91). CONCLUSIONS Prenatal PM2.5 exposure was associated with negative affectivity at age 6 months, and the sensitive windows may vary by subdomains and infant sex.
Collapse
Affiliation(s)
- Fataha Rahman
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The City College of New York, New York, NY, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kecia N Carroll
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yueh-Hsiu Mathilda Chiu
- Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Capitanio JP, Del Rosso LA, Gee N, Lasley BL. Adverse biobehavioral effects in infants resulting from pregnant rhesus macaques' exposure to wildfire smoke. Nat Commun 2022; 13:1774. [PMID: 35365649 PMCID: PMC8975955 DOI: 10.1038/s41467-022-29436-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
As wildfires across the world increase in number, size, and intensity, exposure to wildfire smoke (WFS) is a growing health problem. To date, however, little is known for any species on what might be the behavioral or physiological consequences of prenatal exposure to WFS. Here we show that infant rhesus monkeys exposed to WFS in the first third of gestation (n = 52) from the Camp Fire (California, November, 2018) show greater inflammation, blunted cortisol, more passive behavior, and memory impairment compared to animals conceived after smoke had dissipated (n = 37). Parallel analyses, performed on a historical control cohort (n = 2490), did not support the alternative hypothesis that conception timing alone could explain the results. We conclude that WFS may have a teratogenic effect on the developing fetus and speculate on mechanisms by which WFS might affect neural development. Little is known about the consequences of prenatal exposure to wildfire smoke on biobehavioural outcomes. Here, the authors show that infant rhesus monkeys exposed early in gestation to wildfire smoke from the 2018 Camp Fire in California show more inflammation, blunted cortisol and altered behaviour outcomes compared to non-exposed animals.
Collapse
Affiliation(s)
- John P Capitanio
- California National Primate Research Center, University of California, Davis, CA, USA. .,Department of Psychology, University of California, Davis, CA, USA.
| | - Laura A Del Rosso
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Nancy Gee
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Bill L Lasley
- Center for Health and the Environment, University of California, Davis, CA, USA
| |
Collapse
|
28
|
Rana J, Luna-Gutiérrez P, Haque SE, Ignacio Nazif-Muñoz J, Mitra DK, Oulhote Y. Associations between household air pollution and early child development among children aged 36-59 months in Bangladesh. J Epidemiol Community Health 2022; 76:667-676. [PMID: 35332101 PMCID: PMC9209676 DOI: 10.1136/jech-2021-217554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
Abstract
Background Household air pollution (HAP) from solid fuel use (SFU) for cooking may impact child health in low-resources countries. This study examined the associations between HAP and early childhood development (ECD) outcomes among children under 5 years of age in Bangladesh and explored potential effect modification by sex and urbanicity. Methods The study sample consisted of 9395 children aged 36–59 months in the households from the Bangladesh Multiple Indicator Cluster Survey 2019. SFU and levels of exposure to SFU (unexposed, moderately exposed and highly exposed) were used as proxies of HAP exposure. We estimated the covariate-adjusted prevalence ratios (aPRs) and 95% CIs for the associations between HAP and ECD outcomes using multilevel mixed-effects Poisson regression models with a robust variance estimator. Results 81.4% of children were exposed to SFU, and the prevalence of developmental delay (in Early Childhood Development Index) was 25.3%. Children exposed to SFU were 1.47 times more likely to have developmental delays (95% CI: 1.25, 1.73; p<0.001) compared with children with no SFU exposure. SFU was significantly associated with developmental delay in socioemotional (aPR: 1.17; 95% CI: 1.01, 1.36; p=0.035) and learning-cognitive (aPR: 1.90; 95% CI: 1.39, 2.60; p<0.001) domains. Similarly, children moderately exposed and highly exposed to HAP had higher prevalence of developmental delays than unexposed children. We did not observe effect modification by sex or urbanicity. Conclusion Public health policies should promote the use of clean cooking fuels and cookstoves to reduce the high burden of HAP exposure in low-resource countries for helping younger children to meet their developmental milestones.
Collapse
Affiliation(s)
- Juwel Rana
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada .,Department of Public Health, School of Health and Life Sciences, North South University, Dhaka, Bangladesh.,Research and Innovation, South Asian Institute for Social Transformation, Dhaka, Bangladesh
| | | | - Syed Emdadul Haque
- UChicago Research Bangladesh, The University of Chicago, Chicago, Illinois, USA
| | - José Ignacio Nazif-Muñoz
- Programmes d'études et de recherche en toxicomanie, Faculté de Médecine et des Sciences de la Santé, Universite de Sherbrooke, Sherbrooke, Quebec, Canada.,Department of Environmental Health, T. H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
| | - Dipak Kumar Mitra
- Department of Public Health, School of Health and Life Sciences, North South University, Dhaka, Bangladesh
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
29
|
Gatti AM, Ristic M, Stanzani S, Lavezzi AM. Novel chemical-physical autopsy investigation in Sudden Infant Death and Sudden Intrauterine Unexplained Death Syndromes. Nanomedicine (Lond) 2022; 17:275-288. [PMID: 35133189 DOI: 10.2217/nnm-2021-0203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Verify the presence of inorganic nanoparticle entities in brain tissue samples from Sudden Infant Death Syndrome (SIDS)/Sudden Intrauterine Unexplained Death Syndrome (SIUDS) cases. The presence of inorganic debris could be a cofactor that compromises proper brain tissue functionality. Materials & methods: A novel autopsy approach that consists of neuropathological analysis procedures combined with energy dispersive spectroscopy/field emission gun environmental scanning electron microscopy investigations was implemented on 10 SIDS/SIUDS cases, whereas control samples were obtained from 10 cases of fetal/infant death from known cause. Results: Developmental abnormalities of the brain were associated with the presence of foreign bodies. Although nanoparticles were present as well in control samples, they were not associated with histological brain anomalies, as was the case in SIDS/SIUDS. Conclusion: Inorganic particles present in brain tissues demonstrate their ability to cross the hemato-encephalic barrier and to interact with tissues and cells in an unknown yet pathological fashion. This gives a rationale to consider them as co-factors of lethality.
Collapse
Affiliation(s)
| | | | | | - Anna M Lavezzi
- "Lino Rossi" Research Center for The Study & prevention of unexpected perinatal death & SIDS Department of Biomedical, Surgical & Dental Sciences, University of Milan, Italy
| |
Collapse
|
30
|
Yu T, Zhou L, Xu J, Kan H, Chen R, Chen S, Hua H, Liu Z, Yan C. Effects of prenatal exposures to air sulfur dioxide/nitrogen dioxide on toddler neurodevelopment and effect modification by ambient temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113118. [PMID: 34979314 DOI: 10.1016/j.ecoenv.2021.113118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Emerging evidence suggests that prenatal exposure to ambient SO2 or NO2 induces fetal brain-damage. However, effects of prenatal exposure to SO2 or NO2 on toddler neurodevelopment and the effect-modification by ambient temperature remain unclear. Therefore, a prospective birth-cohort study was conducted from 2010 to 2012 in Shanghai, and 225 mother-child pairs were followed-up from mid-to-late pregnancy until 24-36 months postpartum. During the whole pregnancy, daily SO2/NO2 and temperature levels were obtained for each woman. Gesell-Development-Schedule was used to assess toddler neurodevelopment in the domains of gross-motor, fine-motor, adaptive-behavior, language and social-behavior. Distributed-lag-nonlinear-models simultaneously accounting for exposure-response and lag-response associations were applied to assess the impacts of prenatal SO2/NO2 exposure on neurodevelopment. Each 10-μg/m3 increase in weekly average SO2 concentrations had adverse associations with gross-motor in gestational-weeks 1-6, with adaptive-behavior in weeks 26-30, and with language in weeks 30-36 (developmental-quotient changes: - 1.17% to - 0.12%, P-values < 0.05). Each 10-μg/m3 increase in weekly average NO2 concentrations had adverse associations with gross-motor in gestational-weeks 33-36, with fine-motor in weeks 26-36 and with social-behavior in weeks 31-36 (developmental-quotient changes: - 0.91% to - 0.20%, P-values < 0.05). The cumulative effects for the whole pregnancy showed that each 10-μg/m3 increase in SO2 induced significant deficits in gross-motor and adaptive-behavior (developmental-quotient changes: - 4.71% and - 4.06%, respectively, P < 0.05). We found prenatal cumulative SO2 exposure induced more deficits in low temperature in language and adaptive-behavior than in high/moderate temperature. Thus, prenatal ambient SO2/NO2 exposure in specific time-windows (1st and 3rd trimesters for SO2; 3rd trimester for NO2) could impair toddler neurodevelopment and low temperature may aggravate the SO2-induced neurotoxicity.
Collapse
Affiliation(s)
- Ting Yu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Leilei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Haidong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032 China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200032 China
| | - Renjie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032 China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200032 China
| | - Shuwen Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhiwei Liu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chonghuai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Child and Adolescent Healthcare, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| |
Collapse
|
31
|
Araya F, Stingone JA, Claudio L. Inequalities in Exposure to Ambient Air Neurotoxicants and Disparities in Markers of Neurodevelopment in Children by Maternal Nativity Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147512. [PMID: 34299963 PMCID: PMC8304619 DOI: 10.3390/ijerph18147512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
Exposure levels to environmental pollutants vary significantly among different populations. These inequities in exposure to hazardous air pollutants (HAP) among different populations can contribute to disparities in neurodevelopmental outcomes. The aim of this study was to determine if exposure to HAP varies by maternal nativity status, a demographic marker often overlooked in the study of health disparities. We also assessed if those inequalities in exposure levels are associated with neurodevelopmental measures in young children. To do this, we obtained data from the Early Childhood Longitudinal Study-Birth cohort (ECLS-B), a nationally representative sample of children born in the U.S. in the year 2001 (n = 4750). Bayley’s Short Form-Research Edition (BSF-R) was used to measure cognitive development at 2 years of age. Using residential location at nine months of age, participants were assigned exposures to ten HAPs identified as potentially neurotoxic. Linear regression models were used to assess the joint effect of maternal nativity status and HAP exposure on neurodevelopment. Results showed inequities in exposure levels to ten different HAPs among the populations, as approximately 32% of children of foreign-born mothers were exposed to high levels of HAPs, compared to 21% of children born to U.S.-born mothers. Adjusting for socioeconomic factors, both isophorone exposure (a marker of industrial pollution) (−0.04, 95% CI, −0.12, 0.04) and maternal nativity status (−0.17, 95% CI, −0.27, −0.06) were independently associated with lower standardized BSF-R mental scores in children. Interaction between nativity status and isophorone was not statistically significant, but the change in mental scores associated with isophorone exposure was greater in children of foreign-born mothers compared to children of U.S.-born mothers (−0.12, vs. −0.03, p = 0.2). In conclusion, exposure to HAPs within the highest quartile was more commonly found among children of foreign-born mothers as compared to children of US-born mothers, indicating inequities in pollutant exposure by nativity status within urban populations. Exposures associated with nativity status may negatively contribute to children’s neurodevelopment.
Collapse
|
32
|
Enkhbat U, Gombojav E, Banzrai C, Batsukh S, Boldbaatar B, Enkhtuya E, Ochir C, Bellinger DC, Lanphear BP, McCandless LC, Allen RW. Portable HEPA filter air cleaner use during pregnancy and children's behavior problem scores: a secondary analysis of the UGAAR randomized controlled trial. Environ Health 2021; 20:78. [PMID: 34225757 PMCID: PMC8258951 DOI: 10.1186/s12940-021-00763-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Developmental exposure to particulate matter (PM) air pollution may impair children's behaviors. Our objectives were to quantify the impact of reducing indoor PM using portable HEPA filter air cleaners during pregnancy on behavioral problems in children and to assess associations between indoor fine PM (PM2.5) concentrations during pregnancy and children's behavior. METHODS This is a secondary analysis of a single-blind parallel-group randomized controlled trial in which we randomly assigned 540 non-smoking pregnant women to receive 1 or 2 HEPA filter air cleaners or no air cleaners. We administered the Behavior Assessment System for Children (BASC-3) to caregivers when children were a mean age of 23 months, and again at a mean age of 48 months. Primary outcomes were the four BASC-3 composite scales: externalizing problems, internalizing problems, adaptive skills, and the behavioral symptoms index. We imputed missing data using multiple imputation with chained equations. The primary analysis was by intention-to-treat. In a secondary analysis, we evaluated associations between BASC-3 composite indices and modeled trimester-specific PM2.5 concentrations inside residences. RESULTS We enrolled participants at a median of 11 weeks gestation. After excluding miscarriages, still births and neonatal deaths, our analysis included 478 children (233 control and 245 intervention). We observed no differences in the mean BASC-3 scores between treatment groups. An interquartile increase (20.1 µg/m3) in first trimester PM2.5 concentration was associated with higher externalizing problem scores (2.4 units, 95% CI: 0.7, 4.1), higher internalizing problem scores (2.4 units, 95% CI: 0.7, 4.0), lower adaptive skills scores (-1.5 units, 95% CI: -3.0, 0.0), and higher behavior symptoms index scores (2.3 units, 95% CI: 0.7, 3.9). Third trimester PM2.5 concentrations were also associated with some behavioral indices at age 4, but effect estimates were smaller. No significant associations were observed with PM2.5 concentrations during the second trimester or for any of the BASC indices when children were 2 years old. CONCLUSION We found no benefit of reducing indoor particulate air pollution during pregnancy on parent-reported behaviors in children. Associations between indoor PM2.5 concentrations in the first trimester and behavioral scores among 4-year old children suggest that it may be necessary to intervene early in pregnancy to protect children, but these exploratory findings should be interpreted cautiously. TRIAL REGISTRATION ClinicalTrials.gov: NCT01741051.
Collapse
Affiliation(s)
- Undarmaa Enkhbat
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Chimeglkham Banzrai
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sarangerel Batsukh
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Enkhtuul Enkhtuya
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Chimedsuren Ochir
- School of Graduate Studies, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | | | - Ryan W. Allen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
33
|
Song Y, Southam K, Bennett E, Johnston F, Foa L, Wheeler AJ, Zosky GR. Adverse effects of prenatal exposure to residential dust on post-natal brain development. ENVIRONMENTAL RESEARCH 2021; 198:110489. [PMID: 33220241 DOI: 10.1016/j.envres.2020.110489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Previous studies have shown an association between prenatal exposure to particulate matter (PM) and adverse brain development. However, it is unclear whether gestational exposure to community-sampled residential PM has an impact on the developing brain. OBJECTIVES We aimed to test whether in utero exposure to PM from residential roof spaces (ceiling voids) alters critical foetal neurodevelopmental processes. METHODS Pregnant C57BL/6 mice were intranasally exposed to 100 μg of roof space particles (~5 mg kg-1) in 50 μl of saline, or saline alone under light methoxyflurane anaesthesia, throughout mid-to-late gestation. At 2 weeks post-natal age, pups were sacrificed and assessed for body and brain growth. The brain tissue was collected and examined for a range of neurodevelopmental markers for synaptogenesis, synaptic plasticity, gliogenic events and myelination by immunohistochemistry. RESULTS Gestational exposure to roof space PM reduced post-natal body and brain weights. There was no significant effect of roof space PM exposure on synaptogenesis, synaptic plasticity or astrocyte density. However, PM exposure caused increased myelin load in the white matter and elevated microglial density which was dependent on the PM sample. These effects were found to be consistent between male and female mice. CONCLUSIONS Our data suggest that exposure to residential roof space PM during pregnancy impairs somatic growth and causes neuropathological changes in the developing brain.
Collapse
Affiliation(s)
- Yong Song
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia.
| | - Katherine Southam
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia.
| | - Ellen Bennett
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia.
| | - Fay Johnston
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia.
| | - Lisa Foa
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia.
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia; Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3350, Australia.
| | - Graeme R Zosky
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia; Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, 7000, Australia.
| |
Collapse
|
34
|
Yoon J, Mao Y. Dissecting Molecular Genetic Mechanisms of 1q21.1 CNV in Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:5811. [PMID: 34071723 PMCID: PMC8197994 DOI: 10.3390/ijms22115811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.
Collapse
Affiliation(s)
| | - Yingwei Mao
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
35
|
Abstract
Pregnancy and early childhood are periods with high plasticity in neurological development. Environmental perturbations during these sensitive windows can have lifelong developmental consequences. This review summarizes key findings relevant to the effects of air pollution on neurological development. Mounting evidence suggests that exposure to air pollution, both during pregnancy and childhood, is associated with childhood developmental outcomes ranging from changes in brain structures to subclinical deficits in developmental test scores, and, ultimately, developmental disorders such as attention-deficit/hyperactivity disorders or autism spectrum disorders. Although the biological mechanisms of effects remain to be elucidated, multiple pathways are probably involved and include oxidative stress, inflammation, and/or endocrine disruption. Given the alarming global increase in developmental disorders in recent years, and increased human exposures to pollution, it is critical to reduce personal and community-level exposures through tight collaboration of interdisciplinary and multi-level bodies including community partners, physicians, industry partners, policy makers, public health practitioners, and researchers. WHAT THIS PAPER ADDS: Exposure to air pollution is associated with a range of childhood developmental complications. Biological mechanisms may include oxidative stress, inflammation, and endocrine disruption.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA, USA
| |
Collapse
|
36
|
Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 2020; 17:56. [PMID: 33138843 PMCID: PMC7607677 DOI: 10.1186/s12989-020-00386-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We systematically summarize and discuss the current evidence and define knowledge gaps concerning the maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included 73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and 2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied models irrespective of the species origin (i.e., rodent, rabbit, or human) or the complexity (i.e., in vitro, ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model, and surface composition influence maternal-fetal translocation, and (iii) no simple, standardized method for nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence, research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
37
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
38
|
Prenatal PM 2.5 exposure and behavioral development in children from Mexico City. Neurotoxicology 2020; 81:109-115. [PMID: 32950567 DOI: 10.1016/j.neuro.2020.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Childhood exposure to air pollution has been linked with maladaptive cognitive development; however, less is known about the association between prenatal fine particulate matter (PM2.5) exposure and childhood behavior. OBJECTIVES Our aim was to assess the association between prenatal PM2.5 exposure and behavioral development in 4-6 year old children residing in Mexico City. METHODS We used data from 539 mother-child pairs enrolled in a prospective birth cohort in Mexico City. We estimated daily PM2.5 exposure using a 1 km2 satellite-based exposure model and averaged over each trimester of pregnancy. We assessed childhood behavior at 4-6 years of age using the parent-completed Behavioral Assessment Scale for Children (BASC-2) composite scores and subscales. We used linear regression models to estimate change in BASC-2 T-scores with trimester specific 5-μg/m3 increases in PM2.5. All models were mutually adjusted for PM2.5 exposures during the other trimesters, maternal factors including age, education, socioeconomic status, depression, and IQ, child's age at study visit, and season. We additionally assessed sex-specific effects by including an interaction term between PM2.5 and sex. RESULTS Higher first trimester PM2.5 exposure was associated with reduced Adaptive Skills scores (β: -1.45, 95% CI: -2.60, -0.30). Lower scores on the Adaptive Skills composite score and subscales indicate poorer functioning. For PM2.5 exposure during the first trimester, decrements were consistent across adaptive subscale scores including Adaptability (β: -1.51, 95% CI: -2.72, -0.30), Social Skills (β: -1.63, 95% CI: -2.90, -0.36), and Functional Communication (β: -1.21, 95% CI: -2.21, -0.21). The association between 1st trimester PM2.5 and depression was stronger in males than females (β for males: 1.52, 95% CI: -0.41, 3.45; β for females: -0.13, 95% CI: -1.99, 1.72; p-int: 0.07). CONCLUSIONS Exposure to PM2.5 during early pregnancy may be associated with impaired behavioral development in children, particularly for measures of adaptive skills. These results suggest that air pollution impacts behavioral domains as well as cognition, and that the timing of exposure may be critical.
Collapse
|
39
|
Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLoS One 2020; 15:e0228092. [PMID: 31978108 PMCID: PMC6980590 DOI: 10.1371/journal.pone.0228092] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Early life exposure to air pollution poses a significant risk to brain development from direct exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gastrointestinal systems. In children, exposure to traffic related air pollution has been associated with adverse effects on cognitive, behavioral and psychomotor development. We aimed to determine whether childhood exposure to traffic related air pollution is associated with regional differences in brain volume and cortical thickness among children enrolled in a longitudinal cohort study of traffic related air pollution and child health. We used magnetic resonance imaging to obtain anatomical brain images from a nested subset of 12 year old participants characterized with either high or low levels of traffic related air pollution exposure during their first year of life. We employed voxel-based morphometry to examine group differences in regional brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and inferior parietal lobe of participants in the high traffic related air pollution exposure group relative to participants with low exposure. Reduced cortical thickness was observed in participants with high exposure relative to those with low exposure, primarily in sensorimotor regions of the brain including the pre- and post-central gyri and the paracentral lobule, but also within the frontal and limbic regions. These results suggest that significant childhood exposure to traffic related air pollution is associated with structural alterations in brain.
Collapse
|
40
|
Costa LG, Cole TB, Dao K, Chang YC, Garrick JM. Developmental impact of air pollution on brain function. Neurochem Int 2019; 131:104580. [PMID: 31626830 PMCID: PMC6892600 DOI: 10.1016/j.neuint.2019.104580] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Air pollution is an important contributor to the global burden of disease, particularly to respiratory and cardiovascular diseases. In recent years, evidence is accumulating that air pollution may adversely affect the nervous system as shown by human epidemiological studies and by animal models. Age appears to play a relevant role in air pollution-induced neurotoxicity, with growing evidence suggesting that air pollution may contribute to neurodevelopmental and neurodegenerative diseases. Traffic-related air pollution (e.g. diesel exhaust) is an important contributor to urban air pollution, and fine and ultrafine particulate matter (PM) may possibly be its more relevant component. Air pollution is associated with increased oxidative stress and inflammation both in the periphery and in the nervous system, and fine and ultrafine PM can directly access the central nervous system. This short review focuses on the adverse effects of air pollution on the developing brain; it discusses some characteristics that make the developing brain more susceptible to toxic effects, and summarizes the animal and human evidence suggesting that exposure to elevated air pollution is associated with a number of behavioral and biochemical adverse effects. It also discusses more in detail the emerging evidence of an association between perinatal exposure to air pollution and increased risk of autism spectrum disorder. Some of the common mechanisms that may underlie the neurotoxicity and developmental neurotoxicity of air pollution are also discussed. Considering the evidence presented in this review, any policy and legislative effort aimed at reducing air pollution would be protective of children's well-being.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A, Anderson T, Jackson BP, Oberdorster G. The Impact of Inhaled Ambient Ultrafine Particulate Matter on Developing Brain: Potential Importance of Elemental Contaminants. Toxicol Pathol 2019; 47:976-992. [PMID: 31610749 DOI: 10.1177/0192623319878400] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological studies report associations between air pollution (AP) exposures and several neurodevelopmental disorders including autism, attention deficit disorder, and cognitive delays. Our studies in mice of postnatal (human third trimester brain equivalent) exposures to concentrated ambient ultrafine particles (CAPs) provide biological plausibility for these associations, producing numerous neuropathological and behavioral features of these disorders, including male-biased vulnerability. These findings raise questions about the specific components of AP that underlie its neurotoxicity, which our studies suggest could involve trace elements as candidate neurotoxicants. X-ray fluorescence analyses of CAP chamber filters confirm contamination of AP exposures by multiple elements, including iron (Fe) and sulfur (S). Correspondingly, laser ablation inductively coupled plasma mass spectrometry of brains of male mice indicates marked postexposure elevations of Fe and S and other elements. Elevations of brain Fe and S in particular are consistent with potential ferroptotic, oxidative stress, and altered antioxidant capacity-based mechanisms of CAPs-induced neurotoxicity, supported by observations of increased serum oxidized glutathione and increased neuronal cell death in nucleus accumbens with no corresponding significant increase in caspase-3, in male brains following postnatal CAP exposures. Understanding the role of trace element contaminants of particulate matter AP as a source of neurotoxicity is critical for public health protection.
Collapse
Affiliation(s)
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Katherine Conrad
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Alyssa Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Tim Anderson
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Gunter Oberdorster
- Department of Environmental Medicine, University of Rochester Medical Center, NY, USA
| |
Collapse
|
42
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
43
|
Grandjean P, Prins GS, Weihe P. Development priority. Basic Clin Pharmacol Toxicol 2019; 125 Suppl 3:3-4. [PMID: 31077551 PMCID: PMC6713582 DOI: 10.1111/bcpt.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Gail S. Prins
- Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, IL, USA
| | - Pal Weihe
- Department of Public Health and Occupational Medicine, Tórshavn, Faroe Islands
| |
Collapse
|