1
|
Keller J, Danis J, Krehl I, Girousi E, Satoh TK, Meier-Schiesser B, Kemény L, Széll M, Wong WWL, Pascolo S, French LE, Kündig TM, Mellett M. LL37 complexed to double-stranded RNA induces RIG-I-like receptor signalling and Gasdermin E activation facilitating IL-36γ release from keratinocytes. Cell Death Dis 2025; 16:198. [PMID: 40121229 PMCID: PMC11929817 DOI: 10.1038/s41419-025-07537-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/19/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
The Interleukin-36 (IL-36) cytokine family have emerged as important players in mounting an inflammatory response at epithelial barriers and tailoring appropriate adaptive immune responses. As members of the Interleukin-1 superfamily, IL-36 cytokines lack a signal peptide for conventional secretion and require extracellular proteolysis to generate bioactive cytokines. Although the IL-36 family plays an important role in the pathogenesis of plaque and pustular psoriasis, little is known about the release mechanisms of these cytokines from keratinocytes and the physiological stimuli involved. Nucleic acid released from damaged or dying keratinocytes initiates early inflammatory signals that result in the breaking of tolerance associated with psoriasis pathogenesis onset. Cathelicidin peptide, LL37 binds to DNA or double-stranded RNA (dsRNA) and activates a type I Interferon responses in plasmacytoid dendritic cells and keratinocytes. Here, we demonstrate that LL37 binds to dsRNA and induces IL-36γ release from human primary keratinocytes. LL37/dsRNA complexes activate RIG-I-like Receptor signalling, resulting in Caspase-3 and Gasdermin E (GSDME) cleavage. Subsequent GSDME pore formation facilitates IL-36γ release. This response is magnified by priming with psoriasis-associated cytokines, IL-17A and IFNγ. IL-36γ release in this manner is largely independent of cell death in primary keratinocytes and lacked extracellular proteolysis of IL-36γ. Conversely, transfection of keratinocytes directly with dsRNA synthetic analogue, Poly(I:C) induces NLRP1 inflammasome activation, which facilitates IL-36γ expression and release in a GSDMD-dependent manner. Inflammasome-associated cell death also enables extracellular processing of IL-36γ by the release of keratinocyte-derived proteases. These data highlight the distinct responses triggered by dsRNA sensors in keratinocytes. Depending on the inflammatory context and magnitude of the exogenous threat, keratinocytes will release IL-36γ coupled with cell death and extracellular cleavage or release the inactive pro-form, which requires subsequent processing by neutrophil proteases to unleash full biological activity, as occurring in psoriatic skin. Cytoplasmic sensing of dsRNA in keratinocytes mediates IL-36γ release via caspase activity and GSDM pore formation Keratinocytes release IL-36γ upon stimulation with intracellular dsRNA alone or complexed to the psoriasis-associated cathelicidin anti-microbial peptide LL37. Left: Transfected dsRNA triggers NLRP1 inflammasome assembly and IL-1β release, which can enhance IL-36γ expression, resulting in IL-36γ release and extracellular cleavage by released proteases. Right: LL37/dsRNA complexes activate a MDA5-MAVS pathway facilitating the release of IL-36γ through Caspase-3 activation and GSDME pore formation.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Judit Danis
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
- Department of Immunology, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Isabella Krehl
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Eleftheria Girousi
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lajos Kemény
- Department of Immunology, University of Szeged, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- HCEMM-USZ Skin Research Group, University of Szeged, Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Functional Clinical Genetics Research Group, University of Szeged, Szeged, Hungary
| | - W Wei-Lynn Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Münich, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, USA
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091, Zürich, Switzerland.
| |
Collapse
|
2
|
Romana-Souza B, Mendes-Oliveira V, Sampaio AL, de Almeida Cabral Monteiro HC, da Silva CO, de Souza Nogueira J, Lagente V, Porto LC, Carneiro S. The expression of NLR family pyrin domain containing receptor 1 in Brazilian psoriatic patients is associated with increased disease severity and pro-inflammatory cytokine release. Arch Dermatol Res 2025; 317:476. [PMID: 39987325 DOI: 10.1007/s00403-025-04029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
This study aimed to investigate the gene and protein expression of key inflammasome mediators in venous blood and skin biopsy samples from Brazilian psoriatic patients treated at the Pedro Ernesto University Hospital (HUPE). Samples were collected from both psoriatic patients and healthy controls. Gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT‒PCR), while protein levels were assessed through immunohistochemistry and multiplex immunoassays. Compared with those from control individuals, blood and skin biopsy samples from psoriatic patients had significantly higher mRNA levels of nucleotide-binding domain leucine-rich repeat (NLR) family pyrin domain containing receptor 1 (NLRP1), caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18). Immunohistochemical analysis revealed elevated protein levels of NLRP1, caspase-1, IL-1β, and IL-18 in psoriatic skin biopsies. Multiplex immunoassays revealed increased plasma levels of interferon-γ (IFN-γ), IL-1β, interleukin-17 A (IL-17 A), and tumor necrosis factor-α (TNF-α) in psoriatic patients. A positive correlation was observed between NLRP1 expression, disease severity, and the protein levels of IL-1β and TNF-α. In conclusion, in Brazilian psoriatic patients treated at HUPE, both blood and skin biopsy samples show increased expression of the NLRP1 inflammasome and its downstream mediators. Furthermore, NLRP1 expression is positively correlated with disease severity and the release of T helper 1-type cytokines, highlighting its potential role in the pathogenesis and progression of psoriasis.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, 381 Marechal Rondon Avenue, Rio de Janeiro, 20950-003, Brazil.
| | - Victoria Mendes-Oliveira
- Histocompatibility and Cryopreservation Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luisa Sampaio
- Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Camila Oliveira da Silva
- Histocompatibility and Cryopreservation Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeane de Souza Nogueira
- Histocompatibility and Cryopreservation Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Univ Rennes, INSERM, INRAE, CHU Rennes, Rennes, F-35000, France
| | - Luís Cristóvão Porto
- Histocompatibility and Cryopreservation Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sueli Carneiro
- School of Medicine and University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
El Gendy A, Abo Ali FH, Baioumy SA, Taha SI, El-Bassiouny M, Abdel Latif OM. NOD-like receptor family pyrin domain containing 3 (rs10754558) gene polymorphism in chronic spontaneous urticaria: A pilot case-control study. Immunobiology 2025; 230:152868. [PMID: 39818117 DOI: 10.1016/j.imbio.2025.152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Chronic spontaneous urticaria (CSU) is a persistent skin condition with no known cause or trigger. The unpredictability of CSU attacks lowers patients' quality of life. NOD-like receptor pyrin domain containing 3 (NLRP3) gene dysregulation can result in numerous immunological and inflammatory diseases. OBJECTIVE This case-control study aimed to determine the association between the NLRP3 inflammasome (rs10754558) single nucleotide polymorphism (SNP) and the occurrence, severity and etiology of CSU. METHODS Each study group included 62 participants; all were subjected to CSU severity evaluation by the urticaria activity score (UAS), autologous serum skin testing (ASST) and NLRP3 (rs10754558) genotyping. RESULTS The NLRP3 (rs10754558) CG genotype was the most predominant in both study groups, followed by the CC genotype (41.9 %) in the CSU group and the GG genotype (25.8 %) in the control group. Most of the CSU group (66.1 %) had the C allele, compared to most controls (53.2 %) with the G allele. The frequency of NLRP3 (rs10754558) genotypes and alleles did not differ significantly according to the severity of CSU by UAS (P > 0.05). The prevalence of the CC genotype was significantly higher among the ASST-positive CSU patients. The C allele elevated the likelihood of positive ASST in CSU patients by 21 times, suggesting the autoimmune theory of CSU. None of the ASST-positive patients had the GG genotype. CONCLUSION The NLRP3 inflammasome (rs10754558) C allele may be associated with CSU risk but not severity by UAS. It may also be associated with ASST positivity which suggests a connection between the C-allele and the autoimmune notion of CSU.
Collapse
Affiliation(s)
- Aya El Gendy
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Fawzia Hassan Abo Ali
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shereen A Baioumy
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mahy El-Bassiouny
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Osama M Abdel Latif
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Vind AC, Zhong FL, Bekker-Jensen S. Death by ribosome. Trends Cell Biol 2024:S0962-8924(24)00230-7. [PMID: 39665883 DOI: 10.1016/j.tcb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Next to their essential role as protein production factories, ribosomes serve as molecular sensors of cell stress. Stalled and collided ribosomes trigger specific stress signaling, including the ribotoxic stress response (RSR). The RSR is initiated by the mitogen-activated protein (MAP)-3 kinase ZAKα in response to a plethora of translational aberrations, leading to activation of the stress-activated MAP kinases p38 and jun N-terminal kinase (JNK). Recent insights have highlighted an important role for the RSR pathway in triggering programmed cell death processes, including apoptosis and pyroptosis, in a broad range of physiologically relevant conditions. In this review, we summarize recent work on known links between programmed and accidental ribosome toxicity, RSR signaling, and cell death.
Collapse
Affiliation(s)
- Anna Constance Vind
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Franklin L Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore; Skin Research Institute of Singapore (SRIS), A*STAR, Singapore #17-01 Clinical Sciences Building, 11 Mandalay Road, 308232, Singapore
| | - Simon Bekker-Jensen
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
5
|
Kim G, Lee SY, Oh S, Jang JW, Lee J, Kim HS, Son KH, Byun K. Anti-Inflammatory Effects of Extracellular Vesicles from Ecklonia cava on 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation in Mice. Int J Mol Sci 2024; 25:12522. [PMID: 39684233 DOI: 10.3390/ijms252312522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Steroids, which are often used to treat the inflammation associated with various skin diseases, have several negative side effects. As Ecklonia cava extract has anti-inflammatory effects in various diseases, we evaluated the efficacy of Ecklonia cava-derived extracellular vesicles (EVEs) in decreasing 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. We determined the effect of the EVEs on the TLR4/NF-κB/NLRP3 inflammasome in human keratinocytes and mouse ear skin. TPA-treated human keratinocytes showed an increased expression of TLR4 and its ligands HMGB1 and S100A8. TPA also increased the expression of (1) NF-κB; (2) the NLRP3 inflammasome components NLRP3, ASC, and caspase 1; and (3) the pyroptosis-related factors GSDMD-NT, IL-18, and IL-1β. However, the expression of these molecules decreased in the TPA-treated human keratinocytes after EVE treatment. Similar to the in vitro results, TPA increased the expression of these molecules in mouse ear skin, and EVE treatment decreased their expression. The TPA treatment of skin increased edema, redness, neutrophil infiltration, and epidermal thickness, and EVE reduced these symptoms of inflammation. In conclusion, the EVEs decreased TPA-induced skin inflammation, which was associated with a decrease in the TLR4/NF-κB/NLRP3 inflammasome.
Collapse
Affiliation(s)
- Geebum Kim
- Misogain Dermatology Clinic, Gimpo 10108, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Jehyuk Lee
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Doctorbom Clinic, Seoul 06614, Republic of Korea
| | - Hyun-Seok Kim
- Kim Hyun Seok Plastic Surgery Clinic, Seoul 06030, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
6
|
Wang T, Yazdi AS, Panayotova-Dimitrova D. Comparison of Different Keratinocyte Cell Line Models for Analysis of NLRP1 Inflammasome Activation. Biomolecules 2024; 14:1427. [PMID: 39595603 PMCID: PMC11592008 DOI: 10.3390/biom14111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome is the most important inflammasome in human keratinocytes. It plays a crucial role in regulating innate immunity in the skin. This study aimed to evaluate NLRP1 inflammasome activation and the corresponding levels of detection in different keratinocyte cell lines to identify a suitable in vitro model for analyzing inflammasome activation in keratinocytes. We compared NLRP1 inflammasome activation, expression, and cell death among primary keratinocytes and immortalized keratinocyte cell lines HaCaT, HaSKpw, and SVTERT upon stimulation with ultraviolet B (UVB) irradiation or talabostat. The effects of both NLRP1 inducers on cell death and the modification of NLRP1 molecules were examined using fluorescence-activated cell sorting analysis, Western blotting, and an enzyme-linked immunosorbent assay. The key inflammasome components had varied expression levels among the keratinocyte cell models, with the highest expression observed in primary keratinocytes. Moreover, our data showed that both UVB and talabostat triggered cell death, and NLRP1 inflammasome activation was readily detected in primary keratinocytes but not in the analyzed immortalized keratinocyte cell lines. Therefore, we do not recommend the use of the immortalized keratinocyte cell lines HaCaT, HaSKpw, and SVTERT for analyzing inflammasome activation in keratinocytes; we strongly recommend the use of primary keratinocytes for these studies.
Collapse
Affiliation(s)
| | | | - Diana Panayotova-Dimitrova
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, 52074 Aachen, Germany; (T.W.); (A.S.Y.)
| |
Collapse
|
7
|
Campbell C, Mayatra JM, Neve AJ, Fletcher JM, Johnston DGW. Inflammasomes: emerging therapeutic targets in hidradenitis suppurativa? Br J Dermatol 2024; 191:670-679. [PMID: 38913409 DOI: 10.1093/bjd/ljae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent inflammatory lesions, which affect skin and hair follicles in intertriginous areas. HS has a multifactorial aetiology resulting in barrier dysfunction associated with aberrant immune activation. There is increased evidence for the role of inflammasomes in the pathophysiology of inflammatory skin diseases, including HS. Inflammasomes are multiprotein complexes activated following exposure to danger signals, including microbial ligands and components of damaged host cells. Inflammasome activation induces many signalling cascades and subsequent cleavage of proinflammatory cytokines - most notably interleukin (IL)-1β - which have a role in HS pathogenesis. Limited immunotherapies are approved for treating moderate-to-severe HS, with variable response rates influenced by disease heterogeneity. Inflammasomes represent attractive targets to suppress multiple inflammatory pathways in HS, including IL-1β and IL-17. This review aims to summarize the role of inflammasomes in HS and to evaluate evidence for inflammasomes as therapeutic targets for HS treatment.
Collapse
Affiliation(s)
- Ciara Campbell
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Jay M Mayatra
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
| | - Ashish J Neve
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin
| | - Daniel G W Johnston
- Discipline of Anatomy, Trinity College Dublin, Dublin, Ireland
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Rossi S, Richards EL, Orozco G, Eyre S. Functional Genomics in Psoriasis. Int J Mol Sci 2024; 25:7349. [PMID: 39000456 PMCID: PMC11242296 DOI: 10.3390/ijms25137349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Psoriasis is an autoimmune cutaneous condition that significantly impacts quality of life and represents a burden on society due to its prevalence. Genome-wide association studies (GWASs) have pinpointed several psoriasis-related risk loci, underlining the disease's complexity. Functional genomics is paramount to unveiling the role of such loci in psoriasis and disentangling its complex nature. In this review, we aim to elucidate the main findings in this field and integrate our discussion with gold-standard techniques in molecular biology-i.e., Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-and high-throughput technologies. These tools are vital to understanding how disease risk loci affect gene expression in psoriasis, which is crucial in identifying new targets for personalized treatments in advanced precision medicine.
Collapse
Affiliation(s)
| | | | | | - Stephen Eyre
- Centre for Genetics and Genomics versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (S.R.); (E.L.R.); (G.O.)
| |
Collapse
|
9
|
Robinson KS, Boucher D. Inflammasomes in epithelial innate immunity: front line warriors. FEBS Lett 2024; 598:1335-1353. [PMID: 38485451 DOI: 10.1002/1873-3468.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 06/12/2024]
Abstract
Our epithelium represents a battle ground against a variety of insults including pathogens and danger signals. It encodes multiple sensors that detect and respond to such insults, playing an essential role in maintaining and defending tissue homeostasis. One key set of defense mechanisms is our inflammasomes which drive innate immune responses including, sensing and responding to pathogen attack, through the secretion of pro-inflammatory cytokines and cell death. Identification of physiologically relevant triggers for inflammasomes has greatly influenced our ability to decipher the mechanisms behind inflammasome activation. Furthermore, identification of patient mutations within inflammasome components implicates their involvement in a range of epithelial diseases. This review will focus on exploring the roles of inflammasomes in epithelial immunity and cover: the diversity and differential expression of inflammasome sensors amongst our epithelial barriers, their ability to sense local infection and damage and the contribution of the inflammasomes to epithelial homeostasis and disease.
Collapse
Affiliation(s)
- Kim Samirah Robinson
- The Skin Innate Immunity and Inflammatory Disease Lab, Skin Research Centre, Department of Hull York Medical School, University of York, UK
- York Biomedical Research Institute, University of York, UK
| | - Dave Boucher
- York Biomedical Research Institute, University of York, UK
- Department of Biology, University of York, UK
| |
Collapse
|
10
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
11
|
Calabrese L, Fiocco Z, Mellett M, Aoki R, Rubegni P, French LE, Satoh TK. Role of the NLRP1 inflammasome in skin cancer and inflammatory skin diseases. Br J Dermatol 2024; 190:305-315. [PMID: 37889986 DOI: 10.1093/bjd/ljad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Inflammasomes are cytoplasmic protein complexes that play a crucial role in protecting the host against pathogenic and sterile stressors by initiating inflammation. Upon activation, these complexes directly regulate the proteolytic processing and activation of proinflammatory cytokines interleukin (IL)-1β and IL-18 to induce a potent inflammatory response, and induce a programmed form of cell death called pyroptosis to expose intracellular pathogens to the surveillance of the immune system, thus perpetuating inflammation. There are various types of inflammasome complexes, with the NLRP1 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-1) inflammasome being the first one identified and currently recognized as the predominant inflammasome sensor protein in human keratinocytes. Human NLRP1 exhibits a unique domain structure, containing both an N-terminal pyrin (PYD) domain and an effector C-terminal caspase recruitment domain (CARD). It can be activated by diverse stimuli, such as viruses, ultraviolet B radiation and ribotoxic stress responses. Specific mutations in NLRP1 or related genes have been associated with rare monogenic skin disorders, such as multiple self-healing palmoplantar carcinoma; familial keratosis lichenoides chronica; autoinflammation with arthritis and dyskeratosis; and dipeptidyl peptidase 9 deficiency. Recent research breakthroughs have also highlighted the involvement of dysfunctions in the NLRP1 pathway in a handful of seemingly unrelated dermatological conditions. These range from monogenic autoinflammatory diseases to polygenic autoimmune diseases such as vitiligo, psoriasis, atopic dermatitis and skin cancer, including squamous cell carcinoma, melanoma and Kaposi sarcoma. Additionally, emerging evidence implicates NLRP1 in systemic lupus erythematosus, pemphigus vulgaris, Addison disease, Papillon-Lefèvre syndrome and leprosy. The aim of this review is to shed light on the implications of pathological dysregulation of the NLRP1 inflammasome in skin diseases and investigate the potential rationale for targeting this pathway as a future therapeutic approach.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Zeno Fiocco
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Takashi K Satoh
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| |
Collapse
|
12
|
Liu S, He M, Jiang J, Duan X, Chai B, Zhang J, Tao Q, Chen H. Triggers for the onset and recurrence of psoriasis: a review and update. Cell Commun Signal 2024; 22:108. [PMID: 38347543 PMCID: PMC10860266 DOI: 10.1186/s12964-023-01381-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease, involving a complex interplay between genetic and environmental factors. Previous studies have demonstrated that genetic factors play a major role in the pathogenesis of psoriasis. However, non-genetic factors are also necessary to trigger the onset and recurrence of psoriasis in genetically predisposed individuals, which include infections, microbiota dysbiosis of the skin and gut, dysregulated lipid metabolism, dysregulated sex hormones, and mental illness. Psoriasis can also be induced by other environmental triggers, such as skin trauma, unhealthy lifestyles, and medications. Understanding how these triggers play a role in the onset and recurrence of psoriasis provides insights into psoriasis pathogenesis, as well as better clinical administration. In this review, we summarize the triggers for the onset and recurrence of psoriasis and update the current evidence on the underlying mechanism of how these factors elicit the disease. Video Abstract.
Collapse
Grants
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- No.82173423, No.81974475, No.82103731 the National Natural Science Foundation of China
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Basic Research Project, No. JCYJ20190809103805589 Shenzhen Natural Science Foundation
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
- Key Project, No.2019003 Shenzhen Nanshan District Science and Technology Project
Collapse
Affiliation(s)
- Suwen Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengwen He
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoru Duan
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Jingyu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
- Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Qingxiao Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
13
|
Barry K, Murphy C, Mansell A. NLRP1- A CINDERELLA STORY: a perspective of recent advances in NLRP1 and the questions they raise. Commun Biol 2023; 6:1274. [PMID: 38104185 PMCID: PMC10725483 DOI: 10.1038/s42003-023-05684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
NLRP1, while the first inflammasome described, has only recently begun to gain significant attention in disease pathology, inflammation research, and potentially, as a therapeutic target. Recently identified human variants provide key insights into NLRP1 biology while its unique expression in barrier cells such as keratinocytes and airway epithelial cells has aligned with new, human specific agonists. This differentiates NLRP1 from other inflammasomes such as NLRP3 and identifies it as a key therapeutic target in inflammatory diseases. Indeed, recent discoveries highlight that NLRP1 may be the predominant inflammasome in human barrier cells, its primary role akin to NLRP3, to respond to cellular stress. This review focuses on recent studies identifying new human-specific NLRP1 mechanisms of activation of, gain-of-function human variants and disease, its role in responding to cellular stress, and discuss potential advances and the therapeutic potential for NLRP1.
Collapse
Affiliation(s)
- Kristian Barry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
14
|
Ivarsson J, Ferrara F, Vallese A, Guiotto A, Colella S, Pecorelli A, Valacchi G. Comparison of Pollutant Effects on Cutaneous Inflammasomes Activation. Int J Mol Sci 2023; 24:16674. [PMID: 38068996 PMCID: PMC10706824 DOI: 10.3390/ijms242316674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The skin is the outermost layer of the body and, therefore, is exposed to a variety of stressors, such as environmental pollutants, known to cause oxinflammatory reactions involved in the exacerbation of several skin conditions. Today, inflammasomes are recognized as important modulators of the cutaneous inflammatory status in response to air pollutants and ultraviolet (UV) light exposure. In this study, human skin explants were exposed to the best-recognized air pollutants, such as microplastics (MP), cigarette smoke (CS), diesel engine exhaust (DEE), ozone (O3), and UV, for 1 or 4 days, to explore how each pollutant can differently modulate markers of cutaneous oxinflammation. Exposure to environmental pollutants caused an altered oxidative stress response, accompanied by increased DNA damage and signs of premature skin aging. The effect of specific pollutants being able to exert different inflammasomes pathways (NLRP1, NLRP3, NLRP6, and NLRC4) was also investigated in terms of scaffold formation and cell pyroptosis. Among all environmental pollutants, O3, MP, and UV represented the main pollutants affecting cutaneous redox homeostasis; of note, the NLRP1 and NLRP6 inflammasomes were the main ones modulated by these outdoor stressors, suggesting their role as possible molecular targets in preventing skin disorders and the inflammaging events associated with environmental pollutant exposure.
Collapse
Affiliation(s)
- John Ivarsson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA;
| | - Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Vallese
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Anna Guiotto
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Sante Colella
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, 53100 Siena, Italy;
| | - Alessandra Pecorelli
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; (A.V.); (A.G.); (A.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 26723, Republic of Korea
| |
Collapse
|
15
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Shahi A, Afzali S, Amirzargar A, Mohaghegh P, Salehi S, Mansoori Y. Potential roles of inflammasomes in the pathophysiology of Psoriasis: A comprehensive review. Mol Immunol 2023; 161:44-60. [PMID: 37481828 DOI: 10.1016/j.molimm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Psoriasis is an inflammatory skin disease whose pathophysiology is attributed to both innate and adaptive immune cells and molecules. Despite the crucial roles of the immune system in psoriasis, it cannot be categorized as an autoimmune disease because of the lack of main signs of autoimmunity, such as specific antibodies, well-defined antigens, and autoimmune genetic risk factors. The presence of some cellular and molecular properties, such as the presence of neutrophils in skin lesions and the activation of the innate immune system, attributes psoriasis to a group of diseases called autoinflammatory disorders. Autoinflammatory diseases refer to a group of inherited disorders whose main manifestations are recurrent fever, a high level of acute-phase reactant, and a tendency for inflammation of the skin, joints, and other organs like the nervous system. In most autoinflammatory disorders, it has been seen that complexes of the high-molecular-weight protein named inflammasomes have significant roles. The inflammasome complex usually is formed and activated in the stimulated immune cell cytoplasm, and its activation consequently leads to inflammatory events such as producing of active caspase-1, mature interleukin-1β (IL-1β), and IL-18 and can cause an inflammatory programmed cell death called pyroptosis. Since the identification of inflammasomes, it has been shown that there are close links between them and hereditary and acquired autoinflammatory diseases like psoriasis. In this review, we aim to focus on well-defined inflammasome and their role in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Abbas Shahi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Afzali
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Poopak Mohaghegh
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeedeh Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
17
|
Bulté D, Rigamonti C, Romano A, Mortellaro A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023; 12:1766. [PMID: 37443800 PMCID: PMC10340308 DOI: 10.3390/cells12131766] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammasome complexes and their integral receptor proteins have essential roles in regulating the innate immune response and inflammation at the post-translational level. Yet despite their protective role, aberrant activation of inflammasome proteins and gain of function mutations in inflammasome component genes seem to contribute to the development and progression of human autoimmune and autoinflammatory diseases. In the past decade, our understanding of inflammasome biology and activation mechanisms has greatly progressed. We therefore provide an up-to-date overview of the various inflammasomes and their known mechanisms of action. In addition, we highlight the involvement of various inflammasomes and their pathogenic mechanisms in common autoinflammatory, autoimmune and neurodegenerative diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We conclude by speculating on the future avenues of research needed to better understand the roles of inflammasomes in health and disease.
Collapse
Affiliation(s)
- Dimitri Bulté
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Chiara Rigamonti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (D.B.); (C.R.); (A.R.)
| |
Collapse
|
18
|
Awni AA, Hamed ZO, Abdul-Hassan Abbas A, Abdulamir AS. Effect of NLRP3 inflammasome genes polymorphism on disease susceptibility and response to TNF-α inhibitors in Iraqi patients with rheumatoid arthritis. Heliyon 2023; 9:e16814. [PMID: 37332933 PMCID: PMC10275785 DOI: 10.1016/j.heliyon.2023.e16814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 04/19/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a genetically predisposed, systemic, chronic, inflammatory disease. Immune system dysregulation and inherited susceptibility polymorphisms suggest that this type of variation is functional and may help predict disease susceptibility and develop new therapeutic strategies. Anti-TNF-alpha (TNF-α) drugs are highly effective RA treatments, but not all patients respond the same way. It's important to figure out whether RA risk alleles can identify and predict anti-TNF-α-responsiveness in RA patients. Aims of the study Examine the function of the NLR family pyrin domain containing 3 (NLRP3) and caspase recruitment domain family member 8 (CARD8) genes polymorphisms and their morbid genotypes and alleles in RA patients and apparently healthy controls. In addition, their role in disease susceptibility, severity, and response to anti-TNF-α therapy. Also, examine how single nucleotide polymorphisms (SNPs) affect serum levels of pro-inflammatory cytokines like TNF-α and interleukin (IL)-1β. Materials and methods 100 RA patients (88 females, 12 males) and 100 apparently healthy people (86 females, 14 males) were examined. To measure serum TNF-α and IL-1β, Elabscience sandwich ELISA kits were used. Iraq Biotech, Turkey DNA extraction kit was used to extract genomic DNA from whole blood. CARD8 (rs2043211) and NLRP3 (rs4612666) were genotyped using Agilent, AriaMx, USA, through Tri-Plex SYBR Green-based real-time PCR allelic discrimination assays. Geneious software, version 2019.2.2, used to design primers from published sequences (GenBank accession no. GCA 009914755.1). Primer specificity was determined by NCBI's BLAST. Results Study found that there is association between cytokines serum level and 28-joints disease activity score (DAS-28). The level of TNF-α increases with the higher DAS-28 (r2 = 0.45, P < 0.0001). Also, IL- 1β level increases with higher DAS-28 (r2 = 0.51, P < 0.0001). There were no statistically significant variations between patients with RA and the control group in the distribution of CARD8 SNP rs2043211 and NLRP3 SNP rs4612666 genotypes (P = 0.17 and 0.08 respectively) as well their alleles (P = 0.059 and 0.879 respectively). CARD8 (rs2043211) TT genotype was more frequent in patients with higher DAS-28 (P < 0.0001) and higher TNF-α and IL-1β serum levels (P < 0.0001 for both). Also, NLRP3 (rs4612666) TT genotype was more frequent in patients with higher DAS-28 (P < 0.0001) and higher TNF-α and IL- 1β serum levels (P < 0.0001 for both). Interestingly, this study revealed that CARD8 (rs2043211) and NLRP3 (rs4612666) variant genotypes are associated with lower response to anti-TNF-α drugs. Conclusions Serum TNF-α and IL-1β correlate with DAS-28 and disease activity. Non-responders have elevated TNF-α and IL-1β. CARD8 rs2043211 and NLRP3 rs4612666 variant polymorphisms are associated with high serum TNF-α and IL-1β, active disease course, poor disease outcomes, and low response to anti-TNF-α therapy.
Collapse
Affiliation(s)
- Abdullah Abbas Awni
- College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Zainab Oday Hamed
- Therapeutics and Clinical Pharmacy Department, Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | | |
Collapse
|
19
|
Fetter T, de Graaf DM, Claus I, Wenzel J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front Immunol 2023; 14:1190388. [PMID: 37325658 PMCID: PMC10266227 DOI: 10.3389/fimmu.2023.1190388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Autoimmune skin diseases are understood as conditions in which the adaptive immune system with autoantigen-specific T cells and autoantibody-producing B cells reacting against self-tissues plays a crucial pathogenic role. However, there is increasing evidence that inflammasomes, which are large multiprotein complexes that were first described 20 years ago, contribute to autoimmune disease progression. The inflammasome and its contribution to the bioactivation of interleukins IL-1β and IL-18 play an essential role in combating foreign pathogens or tissue damage, but may also act as a pathogenic driver of myriad chronic inflammatory diseases when dysfunctionally regulated. Inflammasomes containing the NOD-like receptor family members NLRP1 and NLRP3 as well as the AIM2-like receptor family member AIM2 have been increasingly investigated in inflammatory skin conditions. In addition to autoinflammatory diseases, which are often associated with skin involvement, the aberrant activation of the inflammasome has also been implied in autoimmune diseases that can either affect the skin besides other organs such as systemic lupus erythematosus and systemic sclerosis or are isolated to the skin in humans. The latter include, among others, the T-cell mediated disorders vitiligo, alopecia areata, lichen planus and cutaneous lupus erythematosus as well as the autoantibody-driven blistering skin disease bullous pemphigoid. Some diseases are characterized by both autoinflammatory and autoimmune responses such as the chronic inflammatory skin disease psoriasis. Further insights into inflammasome dysregulation and associated pathways as well as their role in forming adaptive immune responses in human autoimmune skin pathology could potentially offer a new field of therapeutic options in the future.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | | | - Isabelle Claus
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
20
|
Burian M, Schmidt MF, Yazdi AS. The NLRP1 inflammasome in skin diseases. Front Immunol 2023; 14:1111611. [PMID: 36911693 PMCID: PMC9996011 DOI: 10.3389/fimmu.2023.1111611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Healthy human skin is constantly exposed to sterile and microbial agents. The skin immune system plays an important role in immune surveillance between tolerance and immune activation. This is mainly mediated by neutrophils, macrophages and most importantly lymphocytes. Keratinocytes, which form the outer skin barrier (epidermis) are also critical for cutaneous homeostasis. Being a non-professional immune cell, recognition of danger signals in keratinocytes is mediated by innate immune receptors (pattern recognition receptors, PRR). While Toll-like receptors are located on the cell membrane or the endosomes, nucleotide-binding domain and leucine-rich repeat containing gene family receptors (NLR) are intracellular PRRs. Some of these, once activated, trigger the formation of inflammasomes. Inflammasomes are multiprotein complexes and serve as platforms that mediate the release of innate cytokines after successful recognition, thereby attracting immune cells. Moreover, they mediate the pro-inflammatory cell death pyroptosis. Best characterized is the NLRP3 inflammasome. The function of inflammasomes differs significantly between different cell types (keratinocytes versus immune cells) and between different species (human versus mouse). In recent years, great progress has been made in deciphering the activation mechanisms. Dysregulation of inflammasomes can lead to diseases with varying degrees of severity. Here we focus on the structure, function, and associated pathologies of the NLRP1 inflammasome, which is the most relevant inflammasome in keratinocytes.
Collapse
Affiliation(s)
- Marc Burian
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Morna F Schmidt
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
21
|
NLRP1 Inflammasome Activation in Keratinocytes: Increasing Evidence of Important Roles in Inflammatory Skin Diseases and Immunity. J Invest Dermatol 2022; 142:2313-2322. [PMID: 35550825 DOI: 10.1016/j.jid.2022.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
Abstract
In 2007, it was shown that DNA sequence variants of the human NLRP1 gene are associated with autoimmune and autoinflammatory diseases affecting mainly the skin. However, at that time, the underlying cellular and molecular mechanisms were poorly characterized. Meanwhile, increasing evidence suggests that the NLRP1 inflammasome expressed by keratinocytes not only plays a part in the pathology of common inflammatory skin diseases and cancer development but also contributes to skin immunity. Understanding the mechanisms regulating NLRP1 activation in keratinocytes and the downstream events in human skin might pave the way for developing novel strategies for treating patients suffering from NLRP1-mediated skin diseases.
Collapse
|
22
|
Kocaaga A, Kocaaga M. Psoriasis: An Immunogenetic Perspective. Glob Med Genet 2022; 9:82-89. [PMID: 35707771 PMCID: PMC9192173 DOI: 10.1055/s-0042-1743259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 11/09/2022] Open
Abstract
Psoriasis is an erythematous-squamous dermatosis with a polygenic inheritance history. Both environmental and genetic factors play a role in the etiology of the disease. Over the past two decades, numerous linkage analyzes and genome-wide association studies have been conducted to investigate the role of genetic variation in disease pathogenesis and progression. To date, >70 psoriasis susceptibility loci have been identified, including HLA-Cw6, IL12B, IL23R, and LCE3B/3C. Some genetic markers are used in clinical diagnosis, prognosis, treatment, and personalized new drug development that can further explain the pathogenesis of psoriasis. This review summarizes the immunological mechanisms involved in the etiopathogenesis of psoriasis and recent advances in susceptibility genes and highlights new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ayca Kocaaga
- Department of Medical Genetics, Eskişehir City Hospital, Eskisehir, Turkey
| | - Mustafa Kocaaga
- Department of Medical Microbiology, Yunus Emre State Hospital, Eskisehir, Turkey
| |
Collapse
|
23
|
Savic S, Coe J, Laws P. Autoinflammation: Interferonopathies and Other Autoinflammatory Diseases. J Invest Dermatol 2021; 142:781-792. [PMID: 34887082 DOI: 10.1016/j.jid.2021.07.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/19/2022]
Abstract
The family of autoinflammatory diseases (AIDs) continues to expand and now includes over 40 genetically defined disorders. Their defining feature is a dysregulated inflammatory innate immune response. Many AIDs have overlapping clinical characteristics, and dermatological manifestations are common. Autoinflammatory features have also been recognized in more common dermatological conditions such as psoriasis. Furthermore, there is an increasing understanding that immunodeficiencies, autoimmune disorders, and even some allergic disorders share overlapping autoinflammatory features. The discovery that certain somatic mutations, arising within the bone marrow and restricted to the myeloid cell lineage can cause acquired AID heralds a new era of discoveries in this field.
Collapse
Affiliation(s)
- Sinisa Savic
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre, School of Medicine, University of Leeds, Leeds, United Kingdom; Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), School of Medicine, University of Leeds, Leeds, United Kingdom; Department of Allergy and Clinical Immunology, The Leeds Teaching Hospitals, National Health Service (NHS) Trust, Leeds, United Kingdom.
| | - James Coe
- Leeds Centre for Dermatology, Leeds Teaching Hospitals, National Health Service (NHS) Trust, Leeds, United Kingdom
| | - Philip Laws
- Leeds Centre for Dermatology, Leeds Teaching Hospitals, National Health Service (NHS) Trust, Leeds, United Kingdom
| |
Collapse
|
24
|
Nakajo T, Katayoshi T, Kitajima N, Tsuji-Naito K. 1,25-Dihydroxyvitamin D 3 attenuates IL-1β secretion by suppressing NLRP1 inflammasome activation by upregulating the NRF2-HO-1 pathway in epidermal keratinocytes. Redox Biol 2021; 48:102203. [PMID: 34872043 PMCID: PMC8646996 DOI: 10.1016/j.redox.2021.102203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein (NLRP) inflammasome is a key inflammatory signaling pathway activated via a two-step signaling process consisting of priming and activation steps. Several studies have shown that 1,25-dihydroxyvitamin D3 (1,25(OH)2VD3) inhibits the priming step required for NLRP3 inflammasome activation in immune cells. However, as activating the NLRP1 inflammasome in keratinocytes does not necessarily require a priming step, whether 1,25(OH)2VD3 inhibits NLRP1 activation in unprimed keratinocytes is currently unknown. In this study, we showed that 1,25(OH)2VD3 inhibits nigericin-induced NLRP1 inflammasome activation in unprimed keratinocytes. 1,25(OH)2VD3 suppressed nigericin-induced interleukin-1β (IL-1β) secretion and caspase-1 activation in human primary keratinocytes. In addition, 1,25(OH)2VD3 significantly inhibited the formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomers and specks, but not caspase-1 enzymatic activity, suggesting that 1,25(OH)2VD3 prevents NLRP1-ASC complex assembly in keratinocytes. Vitamin D receptor (VDR)-knockdown abolished the inhibitory effects of 1,25(OH)2VD3 on nigericin-induced ASC oligomerization and IL-1β secretion, suggesting that 1,25(OH)2VD3 suppresses inflammasome activation via VDR signaling. Furthermore, nigericin induced K+ efflux and cellular reactive oxygen species (ROS) production, and 1,25(OH)2VD3 pretreatment suppressed nigericin-induced ROS production. 1,25(OH)2VD3 increased the expression of both nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1), whereas HO-1 inhibition or NRF2 and HO-1 knockdown abrogated the inhibitory effects of 1,25(OH)2VD3 on IL-1β secretion. Our results indicate that 1,25(OH)2VD3 inhibits nigericin-induced activation step of NLRP1 inflammasome activation in unprimed keratinocytes. Our findings reveal the mechanism underlying the inhibitory effect of 1,25(OH)2VD3, which involves NRF2-HO-1 pathway activation through the VDR, providing further insight into the potential function of 1,25(OH)2VD3 as a therapeutic agent for inflammasome-related skin diseases.
Collapse
Affiliation(s)
- Takahisa Nakajo
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - Takeshi Katayoshi
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - Natsuko Kitajima
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| | - Kentaro Tsuji-Naito
- DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba, 261-0025, Japan.
| |
Collapse
|
25
|
Guo K, Qiu L, Xu Y, Gu X, Zhang L, Lin K, Wang X, Song S, Liu Y, Niu Z, Ma S. Single-Nucleotide Polymorphism LncRNA AC008392.1/rs7248320 in CARD8 is Associated with Kawasaki Disease Susceptibility in the Han Chinese Population. J Inflamm Res 2021; 14:4809-4816. [PMID: 34584439 PMCID: PMC8464376 DOI: 10.2147/jir.s331727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Kawasaki disease (KD) is a multisystem vasculitis in infants and young children and involved in the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation. Genetic factors may increase the risk of KD. To assess the association between rs7248320 in long noncoding RNA (lncRNA) AC008392.1 located in the upstream region of CARD8 and the risk of KD, a case–control study was conducted in the Han Chinese population. Methods This study genotyped the polymorphism rs7248320 in the lncRNA AC008392.1 gene using the TaqMan real-time polymerase chain reaction assay. The genetic contribution of rs7248320 was evaluated using odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression analysis. The association between rs7248320 and KD susceptibility was analyzed by performing a hospital-based case–control study including 559 KD patients and 1055 non-KD controls. Results In this study, a significant relationship between rs7248320 and KD risk was observed in the genotype/allele frequency distribution. The rs7248320 polymorphism was associated with a significantly decreased risk of KD after adjustment for age and sex (AG vs AA: adjusted OR = 0.80, 95% CI: 0.64–0.99, P = 0.0421; GG vs AA: adjusted OR = 0.71, 95% CI: 0.51–1.00, P = 0.0492; AG/GG vs AA: adjusted OR = 0.78, 95% CI: 0.63–0.96, P = 0.0186). Moreover, the rs7248320 G allele also exhibited a decreased risk for KD (adjusted OR = 0.83, 95% CI: 0.72–0.97, P = 0.0193) compared with the A allele. In the stratification analysis, compared to the rs7248320 AA genotype, AG/GG genotypes were more protective for males (OR = 0.71, 95% CI: 0.55–0.93, P = 0.0122). Conclusion This study suggests for the first time that the lncRNA AC008392.1 rs7248320 polymorphism may be involved in KD susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Lijuan Qiu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linyuan Zhang
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kun Lin
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaohuan Wang
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shanshan Song
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yu Liu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Zijian Niu
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| |
Collapse
|
26
|
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. Int J Mol Sci 2021; 22:ijms22179449. [PMID: 34502368 PMCID: PMC8430580 DOI: 10.3390/ijms22179449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory disease of the skin associated with systemic and joint manifestations and accompanied by comorbidities, such as metabolic syndrome and increased risk of cardiovascular disease. Psoriasis has a strong genetic basis, but exacerbation requires additional signals that are still largely unknown. The clinical manifestations involve the interplay between dendritic and T cells in the dermis to generate a self-sustaining inflammatory loop around the TNFα/IL-23/IL-17 axis that forms the psoriatic plaque. In addition, in recent years, a critical role of keratinocytes in establishing the interplay that leads to psoriatic plaques’ formation has re-emerged. In this review, we analyze the most recent evidence of the role of keratinocytes and danger associates molecular patterns, such as extracellular ATP in the generation of psoriatic skin lesions. Particular attention will be given to purinergic signaling in inflammasome activation and in the initiation of psoriasis. In this phase, keratinocytes’ inflammasome may trigger early inflammatory pathways involving IL-1β production, to elicit the subsequent cascade of events that leads to dendritic and T cell activation. Since psoriasis is likely triggered by skin-damaging events and trauma, we can envisage that intracellular ATP, released by damaged cells, may play a role in triggering the inflammatory response underlying the pathogenesis of the disease by activating the inflammasome. Therefore, purinergic signaling in the skin could represent a new and early step of psoriasis; thus, opening the possibility to target single molecular actors of the purinome to develop new psoriasis treatments.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, 44121 Ferrara, Italy;
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (F.C.); (P.S.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
27
|
Tripathy T, Singh BSTP, Dixit N, Kar BR. Co-existence of Pemphigus Foliaceous and Psoriasis: Is There a Common Pathogenetic Link? Indian Dermatol Online J 2021; 12:639-642. [PMID: 34430484 PMCID: PMC8354403 DOI: 10.4103/idoj.idoj_605_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
- Tapaswini Tripathy
- Department of Skin and VD, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | | | - Nibedita Dixit
- Department of Skin and VD, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Bikash R Kar
- Department of Skin and VD, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| |
Collapse
|
28
|
Abstract
SUMMARY Exposure to air pollutants has been now associated with detrimental effects on a variety of organs, including the heart, lungs, GI tract, and brain. However, recently it has become clear that pollutant exposure can also promote the development/exacerbation of a variety of skin conditions, including premature aging, psoriasis, acne, and atopic dermatitis. Although the molecular mechanisms by which pollutant exposure results in these cutaneous pathological manifestations, it has been noticed that an inflammatory status is a common denominator of all those skin conditions. For this reason, recently, the activation of a cytosolic multiprotein complex involved in inflammatory responses (the inflammasome) that could promote the maturation of proinflammatory cytokines interleukin-1β and interleukin-18 has been hypothesized to play a key role in pollution-induced skin damage. In this review, we summarize and propose the cutaneous inflammasome as a novel target of pollutant exposure and the eventual usage of inflammasome inhibitor as new technologies to counteract pollution-induced skin damage. Possibly, the ability to inhibit the inflammasome activation could prevent cutaneous inflammaging and ameliorate the health and appearance of the skin.
Collapse
|
29
|
The Role of NLRP1, NLRP3, and AIM2 Inflammasomes in Psoriasis: Review. Int J Mol Sci 2021; 22:ijms22115898. [PMID: 34072753 PMCID: PMC8198493 DOI: 10.3390/ijms22115898] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are high-molecular-weight protein complexes that may cleave the two main proinflammatory cytokines, pro-interleukin-1β and pro-interleukin-18, into active forms, and contribute to psoriasis. Despite recent advances made in the pathogenesis of psoriasis, mainly studied as an autoimmune condition, activation of immune response triggers of psoriasis is still not completely understood. Recently, focus was placed on the role of inflammasomes in the pathogenesis of psoriasis. Multiple types of inhibitors and activators of various inflammasomes, inflammasome-related genes, and genetic susceptibility loci were recognized in psoriasis. In this systemic review, we collect recent and comprehensive evidence from the inflammasomes, NLRP1, NLRP3, and AIM2, in pathogenesis of psoriasis.
Collapse
|
30
|
Nod-Like Receptors in Host Defence and Disease at the Epidermal Barrier. Int J Mol Sci 2021; 22:ijms22094677. [PMID: 33925158 PMCID: PMC8124564 DOI: 10.3390/ijms22094677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The nucleotide-binding domain and leucine-rich-repeat-containing family (NLRs) (sometimes called the NOD-like receptors, though the family contains few bona fide receptors) are a superfamily of multidomain-containing proteins that detect cellular stress and microbial infection. They constitute a critical arm of the innate immune response, though their functions are not restricted to pathogen recognition and members engage in controlling inflammasome activation, antigen-presentation, transcriptional regulation, cell death and also embryogenesis. NLRs are found from basal metazoans to plants, to zebrafish, mice and humans though functions of individual members can vary from species to species. NLRs also display highly wide-ranging tissue expression. Here, we discuss the importance of NLRs to the immune response at the epidermal barrier and summarise the known role of individual family members in the pathogenesis of skin disease.
Collapse
|
31
|
Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res 2021; 44:16-35. [PMID: 33534121 PMCID: PMC7884371 DOI: 10.1007/s12272-021-01307-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) derived from invading pathogens and damaged tissues, respectively. Upon activation, the inflammasome forms a complex containing a receptor protein, an adaptor, and an effector to induce the autocleavage and activation of procaspase-1 ultimately culminating in the maturation and secretion of IL-1β and IL-18 and pyroptosis. Inflammasome activation plays an important role in host immune responses to pathogen infections and tissue repair in response to cellular damage. The NLRP3 inflammasome is a well-characterized pattern recognition receptor and is well known for its critical role in the regulation of immunity and the development and progression of various inflammatory diseases. In this review, we summarize recent efforts to develop therapeutic applications targeting the NLRP3 inflammasome to cure and prevent chronic inflammatory diseases. This review extensively discusses NLRP3 inflammasome-related diseases and current development of small molecule inhibitors providing beneficial information on the design of therapeutic strategies for NLRP3 inflammasome-related diseases. Additionally, small molecule inhibitors are classified depending on direct or indirect targeting mechanism to describe the current status of the development of pharmacological inhibitors.
Collapse
Affiliation(s)
- Jin Kyung Seok
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong-Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea.
| |
Collapse
|
32
|
Suryavanshi SV, Kovalchuk I, Kovalchuk O. Cannabinoids as Key Regulators of Inflammasome Signaling: A Current Perspective. Front Immunol 2021; 11:613613. [PMID: 33584697 PMCID: PMC7876066 DOI: 10.3389/fimmu.2020.613613] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are cytoplasmic inflammatory signaling protein complexes that detect microbial materials, sterile inflammatory insults, and certain host-derived elements. Inflammasomes, once activated, promote caspase-1–mediated maturation and secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18, leading to pyroptosis. Current advances in inflammasome research support their involvement in the development of chronic inflammatory disorders in contrast to their role in regulating innate immunity. Cannabis (marijuana) is a natural product obtained from the Cannabis sativa plant, and pharmacologically active ingredients of the plant are referred to as cannabinoids. Cannabinoids and cannabis extracts have recently emerged as promising novel drugs for chronic medical conditions. Growing evidence indicates the potent anti-inflammatory potential of cannabinoids, especially Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and synthetic cannabinoids; however, the mechanisms remain unclear. Several attempts have been made to decipher the role of cannabinoids in modulating inflammasome signaling in the etiology of chronic inflammatory diseases. In this review, we discuss recently published evidence on the effect of cannabinoids on inflammasome signaling. We also discuss the contribution of various cannabinoids in human diseases concerning inflammasome regulation. Lastly, in the milieu of coronavirus disease-2019 (COVID-19) pandemic, we confer available evidence linking inflammasome activation to the pathophysiology of COVID-19 suggesting overall, the importance of cannabinoids as possible drugs to target inflammasome activation in or to support the treatment of a variety of human disorders including COVID-19.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
33
|
Juneblad K, Kastbom A, Johansson L, Rantapää-Dahlqvist S, Söderkvist P, Alenius GM. Association between inflammasome-related polymorphisms and psoriatic arthritis. Scand J Rheumatol 2020; 50:206-212. [PMID: 33300400 DOI: 10.1080/03009742.2020.1834611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Psoriatic arthritis (PsA) is a heterogeneous inflammatory disease associated with psoriasis. Underlying genetic factors are considered important for disease expression and prognosis of PsA. Interleukin-1β-regulating protein complexes called inflammasomes are associated with several inflammatory diseases, e.g. rheumatoid arthritis and psoriasis. The aim was to determine whether inflammasome-related genetic variation is associated with PsA susceptibility or different disease phenotypes.Method: DNA from 724 patients with PsA and 587 population-based controls from northern Sweden was analysed for single-nucleotide polymorphisms in NLRP3-Q750K (rs35829419), NLRP3 (rs10733113), CARD8-C10X (rs2043211), NLRP1 (rs8079034), and NLRP1 (rs878329).Results: Significant associations were found with the genotype AA (vs AT+TT) of rs2043211 for PsA patients compared with controls [odds ratio (OR), 95% confidence interval (CI) 1.32 (1.05-1.65), p = 0.016]; and between the C-allele of rs878329 and axial involvement of PsA [OR (95% CI) 1.37 (1.02-1.84), p = 0.035], the T-allele of rs8079034 with prescription of conventional synthetic disease-modifying anti-rheumatic drugs [OR (95% CI) 1.76 (1.23-2.53), p = 0.0020], the G-allele of rs10733113 and patients with a skin disease with early onset [OR (95% CI) 1.58 (1.13-2.21), p = 0.007], and the C-allele of rs35829419 and a destructive/deforming disease [OR (95% CI) 1.63 (1.04-2.55), p = 0.030].Conclusions: This study is the first to show an association with a genetic polymorphism in an inflammasome-related gene, CARD8-C10X (rs2043211), in patients with PsA. Associations between different phenotypes of PsA and different polymorphisms of the inflammasome genes were also found. Our results indicate the involvement of inflammasome genes in the pathogenesis and disease expression of PsA.
Collapse
Affiliation(s)
- K Juneblad
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - A Kastbom
- Department of Rheumatology in Östergötland, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - L Johansson
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - S Rantapää-Dahlqvist
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - P Söderkvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - G-M Alenius
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| |
Collapse
|
34
|
Ferrara F, Pambianchi E, Woodby B, Messano N, Therrien JP, Pecorelli A, Canella R, Valacchi G. Evaluating the effect of ozone in UV induced skin damage. Toxicol Lett 2020; 338:40-50. [PMID: 33279629 DOI: 10.1016/j.toxlet.2020.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
Air pollution represents one of the main risks for both environment and human health. The rapid urbanization has been leading to a continuous release of harmful manmade substances into the atmosphere which are associated to the exacerbation of several pathologies. The skin is the main barrier of our body against the external environment and it is the main target for the outdoor stressors. Among the pollutants, Ozone (O3) is one of the most toxic, able to initiate oxidative reactions and activate inflammatory response, leading to the onset of several skin conditions. Moreover, skin is daily subjected to the activity of Ultraviolet Radiation which are well known to induce harmful cutaneous effects including skin aging and sunburn. Even though both UV and O3 are able to affect the skin homeostasis, very few studies have investigated their possible additive effect. Therefore, in this study we evaluated the effect of the combined exposure of O3 and UV in inducing skin damage, by exposing human skin explants to UV alone or in combination with O3 for 4-days. Markers related to inflammation, redox homeostasis and tissue structure were analyzed. Our results demonstrated that O3 is able to amplify the UV induced skin oxinflammation markers.
Collapse
Affiliation(s)
- Francesca Ferrara
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Erika Pambianchi
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | - Brittany Woodby
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | - Nicolo' Messano
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | | | - Alessandra Pecorelli
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States
| | - Rita Canella
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute Animal Science Dept., NC Research Campus Kannapolis, NC, 28081, United States; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, South Korea.
| |
Collapse
|
35
|
Verma D, Fekri SZ, Sigurdardottir G, Bivik Eding C, Sandin C, Enerbäck C. Enhanced Inflammasome Activity in Patients with Psoriasis Promotes Systemic Inflammation. J Invest Dermatol 2020; 141:586-595.e5. [PMID: 32896537 DOI: 10.1016/j.jid.2020.07.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
Psoriasis is linked to systemic inflammation and cardiovascular comorbidities, but studies of the underlying cellular mechanisms are lacking. The NLRP3 inflammasome is genetically associated with psoriasis, and its activation is increasingly linked with cardiovascular disease. In this study, we show that patients with psoriasis exhibited higher plasma levels of inflammasome-generated IL-1β and IL-18, without any correlation to skin lesion severity. Increased constitutive expression of the inflammasome sensors NLRP3, NLRP1, and AIM2 was found in peripheral blood cells of the patients and also of those with mild disease, and this was accompanied by an increased caspase-1 reactivity in the myeloid blood subsets. TNF-α was found to activate selectively the NLRP3 inflammasome without the requirement for a priming signal. TNF-α was found to signal through the TNFR‒caspase-8‒caspase-1 alternative inflammasome pathway, which proceeds independently of pyroptosis. Patients who received anti-TNF therapy had normalized plasma IL-1β and IL-18 levels as well as normalized caspase-1 reactivity. This was in contrast to the patients treated with methotrexate who exhibited persistent, increased caspase-1 reactivity. Thus, we show that the TNF-α-mediated activation of NLRP3 inflammasomes in patients with psoriasis may contribute to systemic inflammation. Anti-TNF therapy normalized inflammasome function, suggesting a mechanism for the cardiovascular risk‒reducing effect.
Collapse
Affiliation(s)
- Deepti Verma
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shora Zamani Fekri
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gunnthorunn Sigurdardottir
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Sandin
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Centre, Division of Dermatology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
36
|
Forouzandeh M, Besen J, Keane RW, de Rivero Vaccari JP. The Inflammasome Signaling Proteins ASC and IL-18 as Biomarkers of Psoriasis. Front Pharmacol 2020; 11:1238. [PMID: 32903782 PMCID: PMC7438850 DOI: 10.3389/fphar.2020.01238] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasome activation in the innate immune response plays a role in the pathogenesis of psoriasis largely due to the increased levels of pro-inflammatory cytokines. However, the precise role of inflammasomes in psoriasis (Ps) and psoriatic arthritis (PsA) is largely undefined. To establish the reliability of inflammasome signaling proteins as diagnostics and predictive biomarkers of clinical severity in this disease population, serum from healthy donors and patients with Ps/PsA were analyzed for the protein expression of caspase-1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), interleukin (IL)-1β and IL-18 levels to determine cut-off points, positive and negative predictive values, and receiver operator characteristic (ROC) curves. Our data revealed that ASC and IL-18 proteins were significantly higher in the Ps group when compared to healthy controls. The area under the curve (AUC) for ASC was 0.9224 with a cut-off point of 321.8 pg/ml, while IL-18 had an AUC of 0.7818 and a cut-off point of 232.1 pg/ml. In addition, levels of IL-18 had a statistically significant linear correlation with that of ASC with an adjusted R squared of 0.2566, indicating that approximately 25% of IL-18 levels could be explained by ASC levels in serum. Our findings indicate that ASC and IL-18 play a significant role in the inflammatory response associated with the pathology of Ps. These inflammasome proteins appear to be key biomarkers in determining diagnoses in this patient population.
Collapse
Affiliation(s)
- Mahtab Forouzandeh
- The Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jaren Besen
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
37
|
The NLRP1 Inflammasome in Human Skin and Beyond. Int J Mol Sci 2020; 21:ijms21134788. [PMID: 32640751 PMCID: PMC7370280 DOI: 10.3390/ijms21134788] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes represent a group of protein complexes that contribute to host defense against pathogens and repair processes upon the induction of inflammation. However, aberrant and chronic inflammasome activation underlies the pathology of numerous common inflammatory diseases. Inflammasome assembly causes activation of the protease caspase-1 which in turn activates proinflammatory cytokines and induces a lytic type of cell death termed pyroptosis. Although NLRP1 (NACHT, leucine-rich repeat and pyrin domain containing 1) was the first inflammasome sensor, described almost 20 years ago, the molecular mechanisms underlying its activation and the resulting downstream events are incompletely understood. This is partially a consequence of the poor conservation of the NLRP1 pathway between human and mice. Moreover, recent evidence demonstrates a complex and multi-stage mechanism of NLRP1 inflammasome activation. In contrast to other inflammasome sensors, NLRP1 possesses protease activity required for proteolytic self-cleavage and activation mediated by the function-to-find domain (FIIND). CARD8 is a second FIIND protein and is expressed in humans but not in mice. In immune cells and AML (acute myeloid leukemia) cells, the anti-cancer drug talabostat induces CARD8 activation and causes caspase-1-dependent pyroptosis. In contrast, in human keratinocytes talabostat induces NLRP1 activation and massive proinflammatory cytokine activation. NLRP1 is regarded as the principal inflammasome sensor in human keratinocytes and UVB radiation induces its activation, which is believed to underlie the induction of sunburn. Moreover, gain-of-function mutations of NLRP1 cause inflammatory skin syndromes and a predisposition for the development of skin cancer. SNPs (single nucleotide polymorphisms) of NLRP1 are associated with several (auto)inflammatory diseases with a major skin phenotype, such as psoriasis or vitiligo. Here, we summarize knowledge about NLRP1 with emphasis on its role in human keratinocytes and skin. Due to its accessibility, pharmacological targeting of NLRP1 activation in epidermal keratinocytes represents a promising strategy for the treatment of the numerous patients suffering from NLRP1-dependent inflammatory skin conditions and cancer.
Collapse
|
38
|
Abstract
Autoinflammation leads to inflammation that mostly occurs without any clinically obvious reason. It can be so severe that organ damage with relevant tissue damage occurs. Inflammasomes are the drivers of autoinflammation. Although IL‑1 beta and the inflammasomes as its critical regulators are very important in autoinflammation, not all patients respond to inhibition of this signalling pathway. Several autoinflammatory diseases were associated with mutations in proteasome-immunoproteasome components. Autoinflammatory diseases caused by highly relevant genetic variants are mostly hereditary. Usually in childhood but not always. The coming years will show whether inflammatory dermatoses will be increasingly treated with suppression of the innate immune system in addition to inhibition of adaptive immunity.
Collapse
Affiliation(s)
- L Feldmeyer
- Department of Dermatology, Inselspital Bern University Hospital, University of Bern, Bern, Schweiz
| | - A A Navarini
- Dermatologie & Allergologie, Departmente Biomedizin, Biomedical Engineering & Klinische Forschung, Universitätsspital Basel, Petersgraben 4, 4031, Basel, Schweiz.
| |
Collapse
|
39
|
Tang L, Zhou F. Inflammasomes in Common Immune-Related Skin Diseases. Front Immunol 2020; 11:882. [PMID: 32528469 PMCID: PMC7247819 DOI: 10.3389/fimmu.2020.00882] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
The inflammasome is an important protein complex that cleaves the proinflammatory cytokines pro-IL-1β and pro-IL-18 into their active forms. Owing to its critical role in eliciting innate immune responses, IL-1β has been suggested to contribute to various skin diseases, including psoriasis, vitiligo, systemic lupus erythematosus (SLE), and atopic dermatitis (AD). Recently, several types of activators and inhibitors of different inflammasomes, as well as inflammasome-related genes and genetic susceptibility loci, have been identified in these immune-related common skin diseases. In particular, inflammasome activators and inhibitors presented highly cell-type-specific activity, suggesting that the inflammasome might perform different functions in different cell types. Moreover, most of these findings were based on experimental disease models, and the clinical features of the models partly resemble the typical symptoms of the diseases. In this review, from the perspective of activators and inhibitors, we collected evidence from the widely-studied inflammasomes, NLRP3, AIM2, and NLRP1, in psoriasis, vitiligo, SLE, and AD. Importantly, some small-molecule inhibitors hold therapeutic promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Lili Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Institute of Dermatology, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| |
Collapse
|
40
|
Tupik JD, Nagai-Singer MA, Allen IC. To protect or adversely affect? The dichotomous role of the NLRP1 inflammasome in human disease. Mol Aspects Med 2020; 76:100858. [PMID: 32359693 DOI: 10.1016/j.mam.2020.100858] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 01/06/2023]
Abstract
NLRP1 is an inflammasome forming pattern recognition receptor (PRR). When activated by pathogen- and damage- associated molecular patterns (PAMPS/DAMPS), NLRP1 inflammasome formation leads to inflammation through the production of proinflammatory cytokines IL-18 and IL-1β. As with other inflammasome forming NLR family members, NLRP1 also regulates cell death processes, termed pyroptosis. The domain structure of NLRP1 differs between mice and humans, making it possible for the function of the inflammasome to differ between species and adds complexity to the study of this NLR family member. In humans, mutations in both coding and non-coding regions of the NLRP1 gene are linked to a variety of diseases. Likewise, interruption of NLRP1 inhibitors or changes in the prevalence of NLRP1 activators can also impact disease pathobiology. Adding to its complexity, the NLRP1 inflammasome plays a dichotomous role in human diseases, functioning to either attenuate or augment miscellaneous biological processes in a tissue specific manner. For example, NLRP1 plays a protective role in the gastrointestinal tract by modulating the microbiome composition; however, it augments neurological disorders, cardio-pulmonary diseases, and cancer through promoting inflammation. Thus, it is critical that the role of NLRP1 in each of these disease processes be robustly defined. In this review, we summarize the current research landscape to provide a better understanding of the mechanisms associated with NLRP1 function and dysfunction in human disease pathobiology. We propose that a better understanding of these mechanisms will ultimately result in improved insight into immune system dysfunction and therapeutic strategies targeting inflammasome function in multiple human diseases.
Collapse
Affiliation(s)
- Juselyn D Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
41
|
Abstract
Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Koshika Yadava
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Headington, Oxford OX3 7LE, United Kingdom;
| |
Collapse
|
42
|
Fan JJ, Gao B, Song AQ, Zhu YJ, Zhou J, Li WZ, Yin YY, Wu WN. Spinal cord NLRP1 inflammasome contributes to dry skin induced chronic itch in mice. J Neuroinflammation 2020; 17:122. [PMID: 32312281 PMCID: PMC7168883 DOI: 10.1186/s12974-020-01807-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dry skin itch is one of the most common skin diseases and elderly people are believed to be particularly prone to it. The inflammasome has been suggested to play an important role in chronic inflammatory disorders including inflammatory skin diseases such as psoriasis. However, little is known about the role of NLRP1 inflammasome in dry skin-induced chronic itch. METHODS Dry skin-induced chronic itch model was established by acetone-ether-water (AEW) treatment. Spontaneous scratching behavior was recorded by video monitoring. The expression of nucleotide oligomerization domain (NOD)-like receptor protein 1 (NLRP1) inflammasome complexes, transient receptor potential vanilloid type 1 (TRPV1), and the level of inflammatory cytokines were determined by western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay (ELISA) kits. Nlrp1a knockdown was performed by an adeno-associated virus (AAV) vector containing Nlrp1a-shRNA-eGFP infusion. H.E. staining was used to evaluate skin lesion. RESULTS AEW treatment triggers spontaneous scratching and significantly increases the expression of NLRP1, ASC, and caspase-1 and the levels of IL-1β, IL-18, IL-6, and TNF-α in the spinal cord and the skin of mice. Spinal cord Nlrp1a knockdown prevents AEW-induced NLRP1 inflammasome assembly, TRPV1 channel activation, and spontaneous scratching behavior. Capsazepine, a specific antagonist of TRPV1, can also inhibit AEW-induced inflammatory response and scratching behavior. Furthermore, elderly mice and female mice exhibited more significant AEW-induced scratching behavior than young mice and male mice, respectively. Interestingly, AEW-induced increases in the expression of NLRP1 inflammasome complex and the levels of inflammatory cytokines were more remarkable in elderly mice and female mice than in young mice and male mice, respectively. CONCLUSIONS Spinal cord NLRP1 inflammasome-mediated inflammatory response contributes to dry skin-induced chronic itch by TRPV1 channel, and it is also involved in age and sex differences of chronic itch. Inhibition of NLRP1 inflammasome may offer a new therapy for dry skin itch.
Collapse
Affiliation(s)
- Jun-Juan Fan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bo Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ao-Qi Song
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ya-Jing Zhu
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710100, People's Republic of China
| | - Jun Zhou
- Department of Pharmacy, Xi'an Chest Hospital, Shaanxi University of Chinese Medicine, Xi'an, 710100, People's Republic of China
| | - Wei-Zu Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan-Yan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wen-Ning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China. .,Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
43
|
A New Risk Polymorphism rs10403848 of CARD8 Significantly Associated with Psoriasis Vulgaris in Northeastern China. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2867505. [PMID: 32104685 PMCID: PMC7036091 DOI: 10.1155/2020/2867505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Caspase recruitment domain family member 8 (CARD8) is an adaptor molecule that negatively regulates nuclear factor-κB (NF-κB) activation, interleukin (IL)-1β secretion, and apoptosis. These play important roles in the pathogenesis of psoriasis. Genetic variants of CARD8 have been associated with an increased risk of several inflammatory diseases and psoriasis in Europe. However, nothing is known about the association of the polymorphisms of CARD8 and psoriasis vulgaris (PsV) in the Han population of northeastern China. To investigate the potential association between them, we designed a case-control study to genotype four selected single nucleotide polymorphisms (SNPs) using the improved multiplex ligation reaction (iMLDR) method. Model-based single SNP frequentist-test and haplotype association studies were performed to assess the association between SNPs and PsV. The results showed that the intron SNP rs10403848 was significantly associated with PsV (additive model p=0.0418, p'=0.0411, and statistical power 0.1902; heterozygous model p=0.0418, p'=0.0164, and statistical power 0.9406). A potential risk locus of nonsynonymous SNP rs2043211 found in the European population did not show a significant association in our study. We found that the polymorphism rs10403848 in CARD8 is significantly associated with PsV risk in the Han population of northeastern China. CARD8 may be involved in PsV in this population, as in the European population, but a different genetic process should be considered for the heterogeneity of risk loci.
Collapse
|
44
|
Hennig P, Fenini G, Di Filippo M, Beer HD. Electrophiles Against (Skin) Diseases: More Than Nrf2. Biomolecules 2020; 10:E271. [PMID: 32053878 PMCID: PMC7072181 DOI: 10.3390/biom10020271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The skin represents an indispensable barrier between the organism and the environment and is the first line of defense against exogenous insults. The transcription factor NRF2 is a central regulator of cytoprotection and stress resistance. NRF2 is activated in response to oxidative stress by reactive oxygen species (ROS) and electrophiles. These electrophiles oxidize specific cysteine residues of the NRF2 inhibitor KEAP1, leading to KEAP1 inactivation and, subsequently, NRF2 activation. As oxidative stress is associated with inflammation, the NRF2 pathway plays important roles in the pathogenesis of common inflammatory diseases and cancer in many tissues and organs, including the skin. The electrophile and NRF2 activator dimethyl fumarate (DMF) is an established and efficient drug for patients suffering from the common inflammatory skin disease psoriasis and the neuro-inflammatory disease multiple sclerosis (MS). In this review, we discuss possible molecular mechanisms underlying the therapeutic activity of DMF and other NRF2 activators. Recent evidence suggests that electrophiles not only activate NRF2, but also target other inflammation-associated pathways including the transcription factor NF-κB and the multi-protein complexes termed inflammasomes. Inflammasomes are central regulators of inflammation and are involved in many inflammatory conditions. Most importantly, the NRF2 and inflammasome pathways are connected at different levels, mainly antagonistically.
Collapse
Affiliation(s)
- Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, Gloriastrasse 31, CH-8091 Zurich, Switzerland; (P.H.); (G.F.); (M.D.F.)
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
45
|
Ciążyńska M, Bednarski IA, Wódz K, Narbutt J, Lesiak A. NLRP1 and NLRP3 inflammasomes as a new approach to skin carcinogenesis. Oncol Lett 2020; 19:1649-1656. [PMID: 32194656 PMCID: PMC7039172 DOI: 10.3892/ol.2020.11284] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are key innate immune system receptors that detect pathogenic endo- and exogenous stressors like microorganisms or ultraviolet radiation (UVR) which activate the highly proinflammatory cytokines interleukin-1β and interleukin-18. Inflammasomes are not only involved in inflammation, but also in carcinogenesis and tumor progression. Due to the dynamic increase in non-melanoma skin cancers (NMSC), it has become necessary to determine how UVR, which plays a key role in NMSC development, can regulate the structure and function of inflammasomes. In the present study, the regulatory mechanisms of NOD-Like Receptor Family Pyrin Domain Containing 1 and 3 inflammasome activation as well as an effective inflammasome-mediated immune response after UVR exposition are discussed. The differences and similarities between these molecular complexes that monitor cellular health, inflammation, and skin carcinogenesis are also highlighted. Despite numerous scientific data, more studies are still required to better understand the biology of inflammasomes in skin cancer development and to explore their therapeutic potential.
Collapse
Affiliation(s)
- Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Lodz 93-513, Poland
| | - Igor A Bednarski
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz 91-347, Poland
| | - Karolina Wódz
- Laboratory of Molecular Biology, VET-LAB, Brudzew 62-720, Poland
| | - Joanna Narbutt
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz 91-347, Poland
| | - Aleksandra Lesiak
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz 91-347, Poland
| |
Collapse
|
46
|
Abstract
The autoinflammatory diseases comprise a broad spectrum of disorders characterized by unchecked activation of the innate immune system. Whereas aberrations in adaptive immunity have long been identified in 'autoimmune' disorders, the concept of 'autoinflammation' emerged relatively recently, first describing a group of clinical disorders characterized by spontaneous episodes of systemic inflammation without manifestations typical of autoimmune disorders. Improved knowledge of innate immune mechanisms, coupled with remarkable progress in genomics and an expanding number of clinical cases, has since led to an increasing number of disorders classified as autoinflammatory or containing an autoinflammatory component. Biologic therapies targeting specific components of the innate immune system have provided immense clinical benefit, and have further elucidated the role of innate immunity in autoinflammatory disorders. This article reviews the basic mechanisms of autoinflammation, followed by an update on the pathophysiology and treatment of the monogenic and multifactorial autoinflammatory diseases, and the common dermatologic conditions in which autoinflammation plays a major role.
Collapse
|
47
|
Surace AEA, Hedrich CM. The Role of Epigenetics in Autoimmune/Inflammatory Disease. Front Immunol 2019; 10:1525. [PMID: 31333659 PMCID: PMC6620790 DOI: 10.3389/fimmu.2019.01525] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/18/2019] [Indexed: 12/21/2022] Open
Abstract
Historically, systemic self-inflammatory conditions were classified as either autoinflammatory and caused by the innate immune system or autoimmune and driven by adaptive immune responses. However, it became clear that reality is much more complex and that autoimmune/inflammatory conditions range along an “inflammatory spectrum” with primarily autoinflammatory vs. autoimmune conditions resembling extremes at either end. Epigenetic modifications influence gene expression and alter cellular functions without modifying the genomic sequence. Methylation of CpG DNA dinucleotides and/or their hydroxymethylation, post-translational modifications to amino termini of histone proteins, and non-coding RNA expression are main epigenetic events. The pathophysiology of autoimmune/inflammatory diseases has been closely linked with disease causing gene mutations (rare) or a combination of genetic susceptibility and epigenetic modifications arising from exposure to the environment (more common). Over recent years, progress has been made in understanding molecular mechanisms involved in systemic inflammation and the contribution of innate and adaptive immune responses. Epigenetic events have been identified as (i) central pathophysiological factors in addition to genetic disease predisposition and (ii) as co-factors determining clinical pictures and outcomes in individuals with monogenic disease. Thus, a complete understanding of epigenetic contributors to autoimmune/inflammatory disease will result in approaches to predict individual disease outcomes and the introduction of effective, target-directed, and tolerable therapies. Here, we summarize recent findings that signify the importance of epigenetic modifications in autoimmune/inflammatory disorders along the inflammatory spectrum choosing three examples: the autoinflammatory bone condition chronic nonbacterial osteomyelitis (CNO), the “mixed pattern” disorder psoriasis, and the autoimmune disease systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Anna Elisa Andrea Surace
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.,Pädiatrische Rheumatologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
48
|
Yan J, Song J, Qiao M, Zhao X, Li R, Jiao J, Sun Q. Long noncoding RNA expression profile and functional analysis in psoriasis. Mol Med Rep 2019; 19:3421-3430. [PMID: 30816535 PMCID: PMC6471922 DOI: 10.3892/mmr.2019.9993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) serve important roles in the biology of autoimmune diseases and immune-associated disorders. To identify lncRNAs specifically associated with psoriasis, the expression of lncRNAs from biopsies obtained from patients with psoriasis were compared with samples obtained from healthy volunteers using a microarray. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of 10 identified dysregulated lncRNAs. Cis- and trans-regulated target genes of lncRNAs were predicted. The results of microarray analysis indicated that 2,194 lncRNAs and 1,725 mRNAs were significantly dysregulated. Gene Ontology and pathway analyses among the dysregulated genes were performed. Co-expression network analysis was also performed to study molecular interactions. Several identified pathways were associated with psoriasis. Among the 2,194 dysregulated lncRNAs, 1,549 of these had cis- or trans-regulated predicted target genes. Among the 1,725 dysregulated mRNAs, 289 of the cis-regulated target genes and 262 of the trans-regulated target genes may be regulated by the differentially expressed lncRNAs; 10 differentially expressed lncRNAs were randomly selected and then validated. Of these lncRNAs, 7 exhibited the same expression profile as determined via microarray analysis, of which 3 lncRNAs were upregulated and 4 lncRNAs were downregulated. To the best of our knowledge, the present study is the first in which a microarray has been used to investigate the expression profile of lncRNAs associated with psoriasis. Additionally, the expression levels of the 10 aforementioned lncRNAs associated with psoriasis were validated in the present study for the first time using RT-qPCR. The findings demonstrated that lncRNAs may contribute to the pathogenesis of psoriasis and suggested their potential diagnostic and therapeutic value. Furthermore, the findings of the present study suggest that the combined actions of several lncRNAs may contribute to the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Jianjun Yan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Song
- Department of Medical Insurance, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Meng Qiao
- Department of Dermatology, Shandong Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Xintong Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ronghua Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jian Jiao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
49
|
Sand J, Fenini G, Grossi S, Hennig P, Di Filippo M, Levesque M, Werner S, French LE, Beer HD. The NLRP1 Inflammasome Pathway Is Silenced in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2019; 139:1788-1797.e6. [PMID: 30738816 DOI: 10.1016/j.jid.2019.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 01/27/2023]
Abstract
The inflammasome protein NLRP1 is an important innate immune sensor in human keratinocytes, and, together with ASC and caspase-1, it mediates the activation and secretion of the proinflammatory cytokines IL-1β and IL-18. These cytokines and inflammasomes can have partly opposing roles during tumorigenesis in mice. In contrast, ASC expression is impaired in different types of cancer in humans. In this study, we analyzed inflammasome activation and expression of inflammasome proteins, including their downstream cytokines, in squamous cell carcinomas, a type of nonmelanoma skin cancer derived from keratinocytes. We assessed mRNA and protein levels in human primary keratinocytes and skin carcinoma-derived SCC cell lines and detected a strong down-regulation of expression of NLRP1 inflammasome components, as well as reduced expression of the proinflammatory cytokines proIL-1β and proIL-1α. Protein levels of NLRP1, ASC, caspase-1, and proIL-1β were reduced in patient-derived SCC biopsy samples compared with healthy skin. Furthermore, the results suggest that expression of PYCARD (ASC), CASP1, IL1B, and NLRP1 is silenced by methylation in SCC cell lines. In conclusion, the down-regulation of the inflammasome pathway in SCCs might favor late tumor development in human skin.
Collapse
Affiliation(s)
- Jennifer Sand
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Serena Grossi
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Michela Di Filippo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Sabine Werner
- Institute for Molecular Health Sciences, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland; Department of Dermatology and Allergology, Klinikum der Universität München, Munich, Germany
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland.
| |
Collapse
|
50
|
Fenini G, Grossi S, Contassot E, Biedermann T, Reichmann E, French LE, Beer HD. Genome Editing of Human Primary Keratinocytes by CRISPR/Cas9 Reveals an Essential Role of the NLRP1 Inflammasome in UVB Sensing. J Invest Dermatol 2018; 138:2644-2652. [PMID: 30096351 DOI: 10.1016/j.jid.2018.07.016] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
Abstract
By forming a protective barrier, epidermal keratinocytes represent the first line of defense against environmental insults. UVB radiation of the sun is a major challenge for the skin and can induce inflammation, aging, and eventually skin cancer. UVB induces an immune response in human keratinocytes resulting in activation and secretion of the proinflammatory cytokines proIL-1β and -18. This is mediated by an assembly of protein complexes, termed inflammasomes. However, the mechanisms underlying sensing of UVB by keratinocytes, and particularly the types of inflammasomes required for cytokine secretion, are a matter of debate. To address these questions, we established a protocol that allows the generation of CRISPR/Cas9-targeted human primary keratinocytes. Our experiments showed an essential role of the NLRP1 rather than the NLRP3 inflammasome in UVB sensing and subsequent IL-1β and -18 secretion by keratinocytes. Moreover, NLRP1 but not NLRP3 was required for inflammasome activation in response to nigericin, a potassium ionophore and well-established NLRP3 activator in immune cells. Because the CRISPR/Cas9-targeted cells retained their full differentiation capacity, genome editing of human primary keratinocytes might be useful for numerous research and medical applications.
Collapse
Affiliation(s)
- Gabriele Fenini
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Serena Grossi
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|