1
|
Wang C, Wang Y, Duan Y, Dong Y, Hua H, Cui H, Huang S, Huang Z, Lu J, Ding C, Cai Z, Feng J. Design, Synthesis, and Biological Evaluation of a Novel Long-Acting Human Complement C3 Inhibitor Synthesized via the PASylation-Lipidation Modular (PLM) Platform. Bioconjug Chem 2025. [PMID: 40359518 DOI: 10.1021/acs.bioconjchem.5c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The complement system is essential for immune defense, but its dysregulation contributes to various complement-mediated disorders, including paroxysmal nocturnal hemoglobinuria (PNH). CP40 (a cyclic peptide also known as AMY101), effectively inhibits complement activation by preventing the initial binding of the C3 substrate to convertase. Despite its potency, CP40 has a very short plasma half-life when unbound to human C3, necessitating frequent dosing. We developed a novel PASylation-Lipidation Modular (PLM) platform. This platform incorporates a solubilizing PAS module and a half-life-extending lipid moiety into CP40 via a chemical linker. Systematic optimization of the spacer and lipid components in PLM-modified CP40 analogues identified 6C1 as a lead compound. Compared to CP40, 6C1 exhibited a 5-fold increase in antihemolytic potency in the classical complement pathway and a 6.3-fold improvement in solubility. In vivo studies demonstrated that PLM-CP40 analogues possess superior pharmacokinetic properties, with a 15.6-fold extension in half-life relative to unmodified CP40. Mechanistic studies revealed that the PLM platform extends half-life by interacting with albumin, which serves as a circulating depot for the compound. Surface plasmon resonance analysis and hemolysis assays postalbumin incubation demonstrated that PLM modifications maintain receptor affinity by strategically positioning the albumin-binding moiety away from the peptide region, preserving its biological activity. In a clinically relevant in vitro model of complement-mediated hemolysis in PNH, 6C1 effectively reduced erythrocyte lysis. The PLM platform thus offers a versatile strategy for enhancing peptide therapeutics by improving solubility, extending circulation time, and increasing efficacy, broadening their therapeutic potential.
Collapse
Affiliation(s)
- Chengcheng Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Yapeng Wang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yu Duan
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Yuanzhen Dong
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Haoju Hua
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Huixin Cui
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China
| | - Shuaiyi Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Zongqing Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Jianguang Lu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengyan Cai
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
| | - Jun Feng
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201203, China
- Shanghai Duomirui Bio-tech Co., Ltd., Shanghai 201203, China
| |
Collapse
|
2
|
Wang J, Meng X, Yang J, Tang Y, Zeng F, Wang Y, Chen Z, Chen D, Zou R, Liu W. Improvements in Exercise for Alzheimer's Disease: Highlighting FGF21-Induced Cerebrovascular Protection. Neurochem Res 2025; 50:95. [PMID: 39903342 DOI: 10.1007/s11064-025-04350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Currently, it has shown a trend of earlier onset, with most patients experiencing a progressive decline in cognitive function following the disease's onset, which places a heavy burden on society and family. Since no drug cure for AD exists, exploring new ways for its treatment and prevention has become critical. Early vascular damage is an initial trigger for neuronal injury in AD, underscoring the importance of vascular health in the early stages of the disease. Patients with early AD experience abnormal blood-brain barrier transport of amyloid-β (Aβ) peptides, with excess Aβ being deposited in the cerebral vasculature. The toxic effects of Aβ lead to abnormalities in cerebrovascular structure and function. Fibroblast growth factor21 (FGF21) is an endocrine factor that positively regulates energy homeostasis and glucose-lipid metabolism. Notably, it is one of the effective targets for metabolic disease prevention and treatment. Recent studies have found that FGF21 has anti-aging and vasoprotective effects, with receptors for FGF21 present in the brain. Exercise stimulates the liver to produce large amounts of FGF21, which enters the blood-brain barrier with the blood to exert neurovascular protection. Therefore, we review the biological properties of FGF21, its role in the cerebrovascular structure and function in AD, and the mechanism of exercise-regulated FGF21 action on AD-related cerebrovascular changes, aiming to provide a new theoretical basis for using exercise to ameliorate degenerative neurological diseases.
Collapse
Affiliation(s)
- Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Dandan Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Hunan Normal University, Changsha, Hunan Province, 410081, China.
- Physical Education College, Yuelu District, Hunan Normal University, Changsha, Hunan Province, 410081, China.
| |
Collapse
|
3
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
4
|
Wang Y, Shen L, Wang C, Dong Y, Hua H, Xu J, Zhang Y, Huang H, Huang Z, Zhao F, Xu Z, Qiu Y, Lu J, Ju D, Feng J. Lipidation-dimerization platform unlocks treatment potential of fibroblast growth factor 21 for non-alcoholic steatohepatitis. J Control Release 2024; 376:1130-1142. [PMID: 39510256 DOI: 10.1016/j.jconrel.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Optimizing the druggability of both native and AI-designed bioactive proteins is crucial for realizing their therapeutic potential. A key focus in designing protein-based therapeutics is improving their pharmacokinetic properties. However, a significant challenge is to preserve biological activity while implementing long-acting strategies. Fibroblast growth factor 21 (FGF21), an endogenous hormone with potential as a treatment for non-alcoholic steatohepatitis (NASH), exemplifies this challenge. In this study, we present a novel lipidation-dimerization (LiDi) platform that integrates lipidation with a dimeric form of FGF21 connected by a hydrophilic linker. The lipidation enhances albumin binding, enabling sustained release, while the dimeric structure boosts biological activity. In vivo evaluations of the LiDi FGF21 analogs demonstrated that they offer excellent pharmacokinetic properties and superior efficacy compared to other treatments for NASH. This platform effectively extends the therapeutic half-life of proteins without compromising their activity, substantially broadening the application range of proteins as therapeutics.
Collapse
Affiliation(s)
- Yapeng Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 201203 Shanghai, China; National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Lei Shen
- Anhui University of Traditional Chinese Medicine School of Pharmacy, 230013 Hefei, China; Yangtze Delta Drug Advanced Research Institute, 226133 Nantong, China; Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Chengcheng Wang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Yuanzhen Dong
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Haoju Hua
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Jun Xu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Ying Zhang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Hao Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China
| | - Zongqing Huang
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; School of Pharmacy, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Fei Zhao
- Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Zhiru Xu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Center for Pharmacological Evaluation and Research, Shanghai Institute of Pharmaceutical Industry Co., Ltd, China State Institute of Pharmaceutical Industry Co., Ltd., 200083 Shanghai, China
| | - Yunliang Qiu
- Shanghai Innostar Bio-tech Nantong Co., Ltd., 226133 Nantong, China
| | - Jianguang Lu
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, 201203 Shanghai, China.
| | - Jun Feng
- National Key Laboratory of Lead Druggability Research, China State Institute of Pharmaceutical Industry Co., Ltd., 201203 Shanghai, China; Shanghai Duomirui Bio-tech Co., Ltd., 201203 Shanghai, China.
| |
Collapse
|
5
|
Ji Y, Lu Q, Duan Y, Chen X, Zhang Y, Yao W, Yin J, Gao X. Enhanced bioactivity and stability of a long-acting FGF21: A novel variant for the treatment of NASH. Biochimie 2024; 225:26-39. [PMID: 38740172 DOI: 10.1016/j.biochi.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is pivotal in regulating energy metabolism, highlighting substantial therapeutic potential for non-alcoholic steatohepatitis (NASH). Previously, we reported a long-acting FGF21 fusion protein, PsTag-FGF21, which was prepared by genetically fusing human FGF21 with a 648-residue polypeptide (PsTag). While this fusion protein demonstrated therapeutic efficacy against NASH, our final product analysis revealed the presence of fixed impurities resistant to effective removal, indicating potential degradation of PsTag-FGF21. Here, we enriched and analyzed the impurities, confirming our hypothesis regarding the C-terminal degradation of PsTag-FGF21. We now describe a new variant developed to eliminate the C-terminal degradation. By introducing one mutation located at the C-terminal of PsTag-FGF21(V169L), we demonstrated that the new molecule, PsTag-FGF21(V169L), exhibits many improved attributes. Compared with PsTag-FGF21, PsTag-FGF21(V169L) displayed elevated bioactivity and stability, along with a twofold enhanced binding affinity to the coreceptor β-Klotho. In vivo, the circulating half-life of PsTag-FGF21(V169L) was further enhanced compared with that of PsTag-FGF21. In NASH mice, PsTag-FGF21(V169L) demonstrated efficacy with sustained improvements in multiple metabolic parameters. Besides, PsTag-FGF21(V169L) demonstrated the ability to alleviate NASH by decreasing hepatocyte apoptosis. The superior biophysical, pharmacokinetic, and pharmacodynamic properties, along with the positive metabolic effects, imply that further clinical development of PsTag-FGF21(V169L) as a metabolic therapy for NASH patients may be warranted.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qingzhou Lu
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yiliang Duan
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xuan Chen
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxi Zhang
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Ji Y, Duan Y, Li Y, Lu Q, Liu D, Yang Y, Chang R, Tian J, Yao W, Yin J, Gao X. A long-acting FGF21 attenuates metabolic dysfunction-associated steatohepatitis-related fibrosis by modulating NR4A1-mediated Ly6C phenotypic switch in macrophages. Br J Pharmacol 2024; 181:2923-2946. [PMID: 38679486 DOI: 10.1111/bph.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Because of the absence of effective therapies for metabolic dysfunction-associated steatohepatitis (MASH), there is a rising interest in fibroblast growth factor 21 (FGF21) analogues due to their potential anti-fibrotic activities in MASH treatment. PsTag-FGF21, a long-acting FGF21 analogue, has demonstrated promising therapeutic effects in several MASH mouse models. However, its efficacy and mechanism against MASH-related fibrosis remain less well defined, compared with the specific mechanisms through which FGF21 improves glucose and lipid metabolism. EXPERIMENTAL APPROACH The effectiveness of PsTag-FGF21 was evaluated in two MASH-fibrosis models. Co-culture systems involving macrophages and hepatic stellate cells (HSCs) were employed for further assessment. Hepatic macrophages were selectively depleted by administering liposome-encapsulated clodronate via tail vein injections. RNA sequencing and cytokine profiling were conducted to identify key factors involved in macrophage-HSC crosstalk. KEY RESULTS We first demonstrated the significant attenuation of hepatic fibrosis by PsTag-FGF21 in two MASH-fibrosis models. Furthermore, we highlighted the crucial role of macrophage phenotypic switch in PsTag-FGF21-induced HSC deactivation. FGF21 was demonstrated to regulate macrophages in a PsTag-FGF21-like manner. NR4A1, a nuclear factor which is notably down-regulated in human livers with MASH, was identified as a mediator responsible for PsTag-FGF21-induced phenotypic switch. Transcriptional control over insulin-like growth factor 1, a crucial factor in macrophage-HSC crosstalk, was exerted by the intrinsically disordered region domain of NR4A1. CONCLUSION AND IMPLICATIONS Our results have elucidated the previously unclear mechanisms through which PsTag-FGF21 treats MASH-related fibrosis and identified NR4A1 as a potential therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiliang Duan
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qingzhou Lu
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jing Tian
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Duan Y, Yang Y, Zhao S, Bai Y, Yao W, Gao X, Yin J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int 2024; 44:1856-1871. [PMID: 38717072 DOI: 10.1111/liv.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 04/26/2024] [Indexed: 07/17/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent chronic liver disease globally. Non-alcoholic steatohepatitis (NASH) represents an extremely progressive form of NAFLD, which, without timely intervention, may progress to cirrhosis or hepatocellular carcinoma. Presently, a definitive comprehension of the pathogenesis of NAFLD/NASH eludes us, and pharmacological interventions targeting NASH specifically remain constrained. The aetiology of NAFLD encompasses a myriad of external factors including environmental influences, dietary habits and gender disparities. More significantly, inter-organ and cellular interactions within the human body play a role in the development or regression of the disease. In this review, we categorize the influences affecting NAFLD both intra- and extrahepatically, elaborating meticulously on the mechanisms governing the onset and progression of NAFLD/NASH. This exploration delves into progress in aetiology and promising therapeutic targets. As a metabolic disorder, the development of NAFLD involves complexities related to nutrient metabolism, liver-gut axis interactions and insulin resistance, among other regulatory functions of extraneous organs. It further encompasses intra-hepatic interactions among hepatic cells, Kupffer cells (KCs) and hepatic stellate cells (HSCs). A comprehensive understanding of the pathogenesis of NAFLD/NASH from a macroscopic standpoint is instrumental in the formulation of future therapies for NASH.
Collapse
Affiliation(s)
- Yiliang Duan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yan Yang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shuqiang Zhao
- Jiangsu Institute for Food and Drug Control, NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu, China
| | - Yuesong Bai
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Tu Y, Han Z, Pan R, Zhou K, Tao J, Liu P, Han RPS, Gong S, Gu Y. Novel GRPR-Targeting Peptide for Pancreatic Cancer Molecular Imaging in Orthotopic and Liver Metastasis Mouse Models. Anal Chem 2023; 95:11429-11439. [PMID: 37465877 DOI: 10.1021/acs.analchem.3c01765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Despite advancements in pancreatic cancer treatment, it remains one of the most lethal malignancies with extremely poor diagnosis and prognosis. Herein, we demonstrated the efficiency of a novel peptide GB-6 labeled with a near-infrared (NIR) fluorescent dye 3H-indolium, 2-[2-[2-[(2-carboxyethyl)thio]-3-[2-[1,3-dihydro-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)-2H-indol-2-ylidene]ethylidene]-1-cyclohexen-1-yl]ethenyl]-3,3-dimethyl-5-sulfo-1-(3-sulfopropyl)-, inner salt (MPA) and radionuclide technetium-99m (99mTc) as targeting probes using the gastrin-releasing peptide receptor (GRPR) that is overexpressed in pancreatic cancer as the target. A short linear peptide with excellent in vivo stability was identified, and its radiotracer [99mTc]Tc-HYNIC-PEG4-GB-6 and the NIR probe MPA-PEG4-GB-6 exhibited selective and specific uptake by tumors in an SW1990 pancreatic cancer xenograft mouse model. The favorable biodistribution of the tracer [99mTc]Tc-HYNIC-PEG4-GB-6 in vivo afforded tumor-specific accumulation with high tumor-to-muscle and -bone contrasts and renal body clearance at 1 h after injection. The biodistribution analysis revealed that the tumor-to-pancreas and -intestine fluorescence signal ratios were 5.2 ± 0.3 and 6.3 ± 1.5, respectively, in the SW1990 subcutaneous xenograft model. Furthermore, the high signal accumulation in the orthotopic pancreatic and liver metastasis tumor models with tumor-to-pancreas and -liver fluorescence signal ratios of 7.66 ± 0.48 and 3.94 ± 0.47, respectively, enabled clear tumor visualization for intraoperative navigation. The rapid tumor targeting, precise tumor boundary delineation, chemical versatility, and high potency of the novel GB-6 peptide established it as a high-contrast imaging probe for the clinical detection of GRPR, with compelling additional potential in molecular-targeted therapy.
Collapse
Affiliation(s)
- Yuanbiao Tu
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rongbin Pan
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Kuncheng Zhou
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ji Tao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Peifei Liu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ray P S Han
- Cancer Research Center, Jiangxi Engineering Research Center for Translational Cancer Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuaichang Gong
- Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Liu D, Bao L, Zhu H, Yue Y, Tian J, Gao X, Yin J. Microenvironment-responsive anti-PD-L1 × CD3 bispecific T-cell engager for solid tumor immunotherapy. J Control Release 2023; 354:606-614. [PMID: 36669532 DOI: 10.1016/j.jconrel.2023.01.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Bispecific T-cell Engager (BiTE) antibodies can redirect T-cells to tumor cells, and turn on the targeted lysis of tumor cells. However, BiTE has been challenging in solid tumors due to short plasma half-life, "off-target" effect, and immunosuppression via PD-1/PD-L1 axis. This study designed a safe, long-acting, and highly effective Protease-Activated PSTAGylated BiTE, named PAPB, which includes a shielding polypeptide domain (PSTAG), a protease-activated linker, and a BiTE core. The BiTE core consists of two scFvs targeting PD-L1 and CD3. BiTE core bound PD-L1 and CD3 in a dose-dependent manner, and PAPB can release BiTE core in response to MMP2 in the tumor microenvironment to exert antitumor activity. The plasma half-life of PAPB in mice was significantly prolonged from 2.46 h to 6.34 h of the BiTE core. In mice bearing melanoma (A375) xenografts, PAPB significantly increased infiltration of T lymphocytes in tumor tissue, and inhibited tumor proliferation without activating T-cells in the peripheral blood. Overall, the engineering protein PAPB could be a promising drug candidate for solid tumor immunotherapy.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210029, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Yue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
In vivo near-infrared fluorescence and SPECT-CT imaging of colorectal Cancer using the bradykinin B2R-specific ligand icatibant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 239:112648. [PMID: 36641883 DOI: 10.1016/j.jphotobiol.2023.112648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/25/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Cancer molecular imaging using specific probes designed to identify target proteins in cancer is a powerful tool to guide therapeutic selection, patient management, and follow-up. We demonstrated that icatibant may be used as a targeting probe for the significantly upregulated bradykinin B2R in colorectal cancer (CRC). Icatibant-based probes with high affinity towards bradykinin B2R were identified. The near-infrared (NIR) fluorescent dye conjugate MPA-PEG3-k-Icatibant and radioconjugate [99mTc]Tc-HYNIC-PEG4-Icatibant exhibited favourable selective and specific uptake in tumours when the subcutaneous and orthotopic colorectal tumour-bearing mouse models were imaged using NIR fluorescence imaging and Single-Photon Emission Computed Tomography-Computed Tomography (SPECT-CT), respectively. The tracer of [99mTc]Tc-HYNIC-PEG4-Icatibant accumulated in tumours according to biodistribution studies and peaked at 4 h with an uptake value of 3.41 ± 0.27%ID/g in HT29 tumour-bearing nude mice following intravenous injection (i.v.). The tumour-to-colorectal signal ratios were 5.03 ± 0.37, 15.45 ± 0.32, 13.58 ± 1.19 and 11.33 ± 1.73 1, 2, 4 and 6 h after tail-veil injection, respectively. Overall, in the wake of rapid and precise tumour delineation and penetration characteristics, icatibant-based probes represent promising high-contrast molecular imaging probes for the detection of bradykinin B2R.
Collapse
|
12
|
Heating-mediated purification of active FGF21 and structure-based design of its variant with enhanced potency. Sci Rep 2023; 13:1005. [PMID: 36653390 PMCID: PMC9849446 DOI: 10.1038/s41598-023-27717-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) has pharmaceutical potential against obesity-related metabolic disorders, including non-alcoholic fatty liver disease. Since thermal stability is a desirable factor for therapeutic proteins, we investigated the thermal behavior of human FGF21. FGF21 remained soluble after heating; thus, we examined its temperature-induced structural changes using circular dichroism (CD). FGF21 showed inter-convertible temperature-specific CD spectra. The CD spectrum at 100 °C returned to that at 20 °C when the heated FGF21 solution was cooled. Through loop swapping, the connecting loop between β10 and β12 in FGF21 was revealed to be associated with the unique thermal behavior of FGF21. According to surface plasmon resonance (SPR) experiments, in vitro cell-based assays, and model high-fat diet (HFD)-induced obesity studies, heated FGF21 maintained biological activities that were comparable to those of non-heated and commercial FGF21s. Based on sequence comparison and structural analysis, five point-mutations were introduced into FGF21. Compared with the wild type, the heated FGF21 variant displayed improved therapeutic potential in terms of body weight loss, the levels of hepatic triglycerides and lipids, and the degree of vacuolization of liver in HFD-fed mice.
Collapse
|
13
|
Huang Z, Wang H, Chun C, Li X, Xu S, Zhao Y. Self-assembled FGF21 nanoparticles alleviate drug-induced acute liver injury. Front Pharmacol 2023; 13:1084799. [PMID: 36703750 PMCID: PMC9871310 DOI: 10.3389/fphar.2022.1084799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Acetaminophen (N-acetyl-p-aminophenol, APAP) is a common antipyretic agent and analgesic. An overdose of APAP can result in acute liver injury (ALI). Oxidative stress and inflammation are central to liver injury. N-acetylcysteine (NAC), a precursor of glutathione, is used commonly in clinical settings. However, the window of NAC treatment is limited, and more efficacious alternatives must be found. Endogenous cytokines such as fibroblast growth factor (FGF) 21 can improve mitochondrial function while decreasing intracellular oxidative stress and inflammatory responses, thereby exhibiting antioxidant-like effects. In this study, self-assembled nanoparticles comprising chitosan and heparin (CH) were developed to deliver FGF21 (CH-FGF21) to achieve the sustained release of FGF21 and optimize the in vivo distribution of FGF21. CH-FGF21 attenuated the oxidative damage and intracellular inflammation caused by APAP to hepatocytes effectively. In a murine model of APAP-induced hepatotoxicity, CH-FGF21 could alleviate ALI progression and promote the recovery of liver function. These findings demonstrated that a simple assembly of CH nanoparticles carrying FGF21 could be applied for the treatment of liver diseases.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, South Korea,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| | - Hengcai Wang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changju Chun
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, South Korea
| | - Xinze Li
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| | - Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China,*Correspondence: Zhiwei Huang, ; Shihao Xu, ; Yingzheng Zhao,
| |
Collapse
|
14
|
Li J, Duan H, Liu Y, Wang L, Zhou X. Biomaterial-Based Therapeutic Strategies for Obesity and Its Comorbidities. Pharmaceutics 2022; 14:1445. [PMID: 35890340 PMCID: PMC9320151 DOI: 10.3390/pharmaceutics14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a global public health issue that results in many health complications or comorbidities, including type 2 diabetes mellitus, cardiovascular disease, and fatty liver. Pharmacotherapy alone or combined with either lifestyle alteration or surgery represents the main modality to combat obesity and its complications. However, most anti-obesity drugs are limited by their bioavailability, target specificity, and potential toxic effects. Only a handful of drugs, including orlistat, liraglutide, and semaglutide, are currently approved for clinical obesity treatment. Thus, there is an urgent need for alternative treatment strategies. Based on the new revelation of the pathogenesis of obesity and the efforts toward the multi-disciplinary integration of materials, chemistry, biotechnology, and pharmacy, some emerging obesity treatment strategies are gradually entering the field of preclinical and clinical research. Herein, by analyzing the current situation and challenges of various new obesity treatment strategies such as small-molecule drugs, natural drugs, and biotechnology drugs, the advanced functions and prospects of biomaterials in obesity-targeted delivery, as well as their biological activities and applications in obesity treatment, are systematically summarized. Finally, based on the systematic analysis of biomaterial-based obesity therapeutic strategies, the future prospects and challenges in this field are proposed.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Hongli Duan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Yan Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Lu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (J.L.); (H.D.); (Y.L.)
- Institute of Materia Medica and Center of Translational Medicine, College of Pharmacy, Army Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
15
|
Tailored protein-conjugated DNA nanoplatform for synergistic cancer therapy. J Control Release 2022; 346:250-259. [PMID: 35452765 DOI: 10.1016/j.jconrel.2022.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) to chemotherapeutic drugs and targeted drug delivery are recurring issues in clinical cancer treatment. Here, a multifunctional fusion protein-DNA conjugate was designed as a co-delivery vehicle for anticancer peptides and chemotherapeutic drugs to combat both drug-resistant and drug-sensitive tumor cells. The fusion protein was constructed by fusing a PsTag polypeptide, a matrix metalloproteinase 2 (MMP2)-degradable domain, and the mitochondria-targeted pro-apoptotic peptide KLAKLAKKLAKLAK. Doxorubicin was efficiently loaded into the fusion protein pre-conjugated dendrimer-like DNA nanostructure. With the incorporation of enhanced stability, tumor targeting, and controlled-release elements, the tailored nanostructure can selectively enter tumor cells and synergistically exert antitumor activity with no significant adverse effects. Thus, these protein-conjugated DNA nanocarriers could be a potential co-delivery system for protein/peptide and chemotherapeutic drugs delivery in synergistic cancer therapy.
Collapse
|
16
|
Wang Q, Shen J, Mo E, Zhang H, Wang J, Hu X, Zhou J, Bai H, Tang G. A versatile ultrafine and super-absorptive H +-modified montmorillonite: application for metabolic syndrome intervention and gastric mucosal protection. Biomater Sci 2020; 8:3370-3380. [PMID: 32374328 DOI: 10.1039/d0bm00474j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metabolic syndrome (MetS) includes central obesity, hypertension, insulin resistance, and dyslipidemia and is closely related to nonalcoholic fatty liver disease, atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus, involving multiple causative factors. Current drug therapies for intervention and amelioration of MetS are essential in clinical treatment of metabolic disease. In this report, we proposed an H+-modified montmorillonite (H-MMT) using an acid modification method with ultrafine structure and super absorption ability as a potential drug for MetS. Hamsters fed a high-fat diet were orally treated with H-MMT and simvastatin was applied as a control. H-MMT lowered lipids by decreasing intestinal absorption and promoting lipid excretion, subsequently preventing obesity, fatty liver, and hyperlipidemia. Moreover, H-MMT was significantly safer and better tolerated by the liver compared to simvastatin, which was hepatotoxic. In addition, we found that H-MMT had protective effects on gastric mucosal damage. Therefore, this versatile H-MMT provides a potential strategy to effectively improve MetS and provide gastric mucosal protection in clinical applications.
Collapse
Affiliation(s)
- Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yin J, Liu D, Bao L, Wang Q, Chen Y, Hou S, Yue Y, Yao W, Gao X. Tumor targeting and microenvironment-responsive multifunctional fusion protein for pro-apoptotic peptide delivery. Cancer Lett 2019; 452:38-50. [PMID: 30904618 DOI: 10.1016/j.canlet.2019.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
The great therapeutic potential of peptides has not yet been achieved, mainly due to their remarkably short in vivo half-life. Although conjugation to macromolecules has been an effective way of improving protein in vivo half-life, the steric hindrance of macromolecules usually reduces the in vivo efficacy of peptides. Here we report a complex delivery system made from PsTag polypeptide, polyglutamic acid chain, matrix metalloproteinase 2 (MMP2)-degradable domain and cationic cell penetrating peptide for anticancer peptide delivery. Clear evidence was shown in vitro and in vivo to demonstrate that this multifunctional protein fusing a pro-apoptotic KLAKLAKKLAKLAK (KLA), named PAK, can increase circulation time in blood, enhance accumulation at tumor sites, eliminate the PsTag domain and the polyanionic sequence when triggered by tumor overexpressing MMP2, and then expose the cell penetrating peptide to realize the potent cellular uptake of KLA. Treatment of tumor-bearing mice with PAK could markedly induce tumor cells apoptosis and inhibit tumor growth, with no significant adverse effects. These results suggest our fusion protein can be a potential delivery system for peptide delivery in cancer treatments.
Collapse
Affiliation(s)
- Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ye Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shan Hou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yali Yue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Yin J, Hou S, Wang Q, Bao L, Liu D, Yue Y, Yao W, Gao X. Microenvironment-Responsive Delivery of the Cas9 RNA-Guided Endonuclease for Efficient Genome Editing. Bioconjug Chem 2019; 30:898-906. [PMID: 30802405 DOI: 10.1021/acs.bioconjchem.9b00022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Successful and efficient delivery of Cas9 protein and gRNA into cells is critical for genome editing and its therapeutic application. In this study, we developed an improved supercharged polypeptide (SCP) mediated delivery system based on dithiocyclopeptide linker to realize the effective genome editing in tumor cells. The fusion protein Cas9-linker-SCP (Cas9-LS) forms positively charged complexes with gRNA in vitro to provide possibilities for gRNA delivery into cells. Under the microenvironment of tumor cells, the dithiocyclopeptide linker, containing matrix metalloproteinase 2 (MMP-2) sensitive sequence and an intramolecular disulfide bond, can be completely disconnected to promote the release of Cas9 protein with the nuclear localization sequence (NLS) in the cytoplasm and transfer to the cell nucleus for highly efficient genome editing, resulting in an obvious increase of indel efficiency in comparison to fusion protein without dithiocyclopeptide linker (Cas9-SCP). Furthermore, Cas9-LS shows no significant cytotoxicity and minimal hemolytic activity. We envision that the microenvironment-responsive Cas9 protein delivery system can facilitate more efficient genome editing in tumor cells.
Collapse
Affiliation(s)
- Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Shan Hou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Yali Yue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
19
|
Yin J, Wang Q, Hou S, Bao L, Yao W, Gao X. Potent Protein Delivery into Mammalian Cells via a Supercharged Polypeptide. J Am Chem Soc 2018; 140:17234-17240. [DOI: 10.1021/jacs.8b10299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shan Hou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
20
|
Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018; 178:413-434. [DOI: 10.1016/j.biomaterials.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
|
21
|
Bao L, Yin J, Gao W, Wang Q, Yao W, Gao X. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway. Br J Pharmacol 2018; 175:3379-3393. [PMID: 29859019 PMCID: PMC6057909 DOI: 10.1111/bph.14383] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic fatty liver disease and is a serious public health problem around the world. There are currently no approved treatments for NASH. FGF21 has recently emerged as a promising drug candidate for metabolic diseases. However, the disadvantages of FGF21 as a clinically useful medicine include its short plasma half-life and poor drug-like properties. Here, we have explored the effects of PsTag600-FGF21, an engineered long-acting FGF21 fusion protein, in mice with NASH and describe some of the underlying mechanisms. EXPERIMENTAL APPROACH A long-acting FGF21 was prepared by genetic fusion with a 600 residues polypeptide (PsTag600). We used a choline-deficient high-fat diet-induced model of NASH in mice. The effects on body weight, insulin sensitivity, inflammation and levels of hormones and metabolites were studied first. We further investigated whether PsTag600-FGF21 attenuated inflammation through the Th17-IL17A axis and the associated mechanisms. KEY RESULTS PsTag600-FGF21 dose-dependently reduced body weight, blood glucose, and insulin and lipid levels and reversed hepatic steatosis. PsTag600-FGF21 enhanced fatty acid activation and mitochondrial β-oxidation in the liver. The profound reduction in hepatic inflammation in NASH mice following PsTag600-FGF21 was associated with inhibition of IL17A expression in Th17 cells. Furthermore, PsTag600-FGF21 depended on adiponectin to exert its suppression of Th17 cell differentiation and IL17A expression. CONCLUSIONS AND IMPLICATIONS Our data have uncovered some of the mechanisms by which PsTag600-FGF21 suppresses hepatic inflammation and further suggest that PsTag600-FGF21 could be an effective approach in NASH treatment.
Collapse
Affiliation(s)
- Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
22
|
Yin J, Bao L, Chen R, Gao W, Gao X, Yao W. Enhanced expression and distinctive characterization of a long-acting FGF21 and its potential to alleviate nonalcoholic steatohepatitis. Biochimie 2018; 151:166-175. [PMID: 29870802 DOI: 10.1016/j.biochi.2018.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/31/2018] [Indexed: 01/20/2023]
Abstract
We have previously constructed a novel polypeptide, PsTag, that should be useful in the development of biologics with properties comparable to those achievable by PEGylation, but with potentially less side effects. However, the low fermentation yields of polypeptide fusion proteins may limit the application of this technology. We suspected that when polypeptide fusion protein was expressed in E. coli, the corresponding 8 tRNAs were needed to transport a large number of repetitive 5 amino acids to the ribosomes and thus, resulting in a relative deficiency of these tRNAs. PsTag600-FGF21, a long-acting FGF21 fusion protein, was used as a model for studying the effects of these non-rare tRNAs on the efficiency of heterologous protein production in E. coli. To further enhance the expression level and facilitate purification, secretory expressions of PsTag600-FGF21 were achieved by fusion with three signal peptides. Meanwhile, a comparison of several distinctive characterizations was carried out between PsTag600-FGF21 and PEG20K-FGF21. We investigated the protective effects of PsTag600-FGF21 in a nonalcoholic steatohepatitis model induced by methionine- and choline-deficient diet. Our results showed that the provision of 8 tRNAs and secretory expression remarkably increased the expression levels of PsTag fusion protein, meanwhile there were no significant effects on E. coli growth states. PsTag600-FGF21 had a larger hydrodynamic volume, a higher affinity and a longer plasma half-life than PEG20K-FGF21, while avoiding vacuole formation in mice. In NASH mice, administration of PsTag600-FGF21 reduced hepatic steatosis, fibrosis and inflammation. Therefore, PsTag600-FGF21 with higher expression level may be further developed for potentially application in clinics.
Collapse
Affiliation(s)
- Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Rong Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wen Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
23
|
Gao W, Yin J, Bao L, Wang Q, Hou S, Yue Y, Yao W, Gao X. Engineering Extracellular Expression Systems in Escherichia coli Based on Transcriptome Analysis and Cell Growth State. ACS Synth Biol 2018; 7:1291-1302. [PMID: 29668266 DOI: 10.1021/acssynbio.7b00400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli extracellular expression systems have a number of advantages over other systems, such as lower pyrogen levels and a simple purification process. Various approaches, such as the generation of leaky mutants via chromosomal engineering, have been explored for this expression system. However, extracellular protein yields in leaky mutants are relatively low compared to that in intracellular expression systems and therefore need to be improved. In this work, we describe the construction, characterization, and mechanism of enhanced extracellular expression in Escherichia coli. On the basis of the localizations, functions, and transcription levels of cell envelope proteins, we systematically elucidated the effects of multiple gene deletions on cell growth and extracellular expression using modified CRISPR/Cas9-based genome editing and a FlAsH labeling assay. High extracellular yields of heterologous proteins of different sizes were obtained by screening multiple gene mutations. The enhancement of extracellular secretion was associated with the derepression of translation and translocation. This work utilized universal methods in the design of extracellular expression systems for genes not directly associated with protein synthesis that were used to generate strains with higher protein expression capability. We anticipate that extracellular expression systems may help to shed light on the poorly understood aspects of these secretion processes as well as to further assist in the construction of engineered prokaryotic cells for efficient extracellular production of heterologous proteins.
Collapse
Affiliation(s)
- Wen Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shan Hou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Yue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
He Y, Li Y, Wei Z, Zhang X, Gao J, Wang X, Li X, Wu W, Li W, Yi X, Zeng Y, Liu C. Pharmacokinetics, tissue distribution, and excretion of FGF-21 following subcutaneous administration in rats. Drug Test Anal 2018; 10:1061-1069. [PMID: 29399989 DOI: 10.1002/dta.2365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 12/29/2022]
Abstract
As one of the fibroblast growth factor (FGF) superfamily, FGF-21 has been extensively investigated for its functions and roles since its discovery. It has been demonstrated to be one of the key regulators for glucose and lipid metabolism, and exhibits beneficial effects on cardiovascular disease. However, studies focusing on its pharmacokinetic behavior in vivo as a novel therapeutic agent have not been reported. In the present study, rapid and sensitive analytical approaches including radioactivity assay and assay after precipitation/separation by high performance liquid chromatography (HPLC) were established to determine the content of FGF-21 tagged with 125 I in plasma, tissue, and excrement. The results indicated that FGF-21 were quickly absorbed into systematic circulation and slowly eliminated; Cmax and exposure increased in a dose-dependent manner, exhibiting a typical linear pharmacokinetic pattern. Tissue distribution also confirmed that the kidney is the primary organ for FGF-21 to be distributed, even though radioactivity of FGF-21 was recovered in all tissues examined. In addition, the results also supported that urinary excretion was the critical route for FGF-21 to be eliminated. The study fully clarifies the pharmacokinetic behavior of FGF-21 and can provide valuable information and support further safety and toxicology development.
Collapse
Affiliation(s)
- Yufei He
- Shenyang Pharmaceutical University, Shenyang, China
| | - Yazhuo Li
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | - Zihong Wei
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | - Xingyan Zhang
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | - Jing Gao
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | | | | | - Weidang Wu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | - Wei Li
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | - Xiulin Yi
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | - Yong Zeng
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| | - Changxiao Liu
- Shenyang Pharmaceutical University, Shenyang, China
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, China
| |
Collapse
|
25
|
Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, Santos NC. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 2018; 36:415-429. [PMID: 29330093 DOI: 10.1016/j.biotechadv.2018.01.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/13/2017] [Accepted: 01/06/2018] [Indexed: 12/25/2022]
Abstract
Infectious diseases are one of the main causes of human morbidity and mortality. In the last few decades, pathogenic microorganisms' resistance to conventional drugs has been increasing, and it is now pinpointed as a major worldwide health concern. The need to search for new therapeutic options, as well as improved treatment outcomes, has therefore increased significantly, with biologically active peptides representing a new alternative. A substantial research effort is being dedicated towards their development, especially due to improved biocompatibility and target selectivity. However, the inherent limitations of peptide drugs are restricting their application. In this review, we summarize the current status of peptide drug development, focusing on antiviral and antimicrobial peptide activities, highlighting the design improvements needed, and those already being used, to overcome the drawbacks of the therapeutic application of biologically active peptides.
Collapse
Affiliation(s)
- Bárbara Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcelo T Augusto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Axel Hollmann
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Laboratory of Molecular Microbiology, Institute of Basic and Applied Microbiology, National University of Quilmes, Bernal, Buenos Aires, Argentina; Laboratory of Biointerfaces and Biomimetic Systems, CITSE, National University of Santiago del Estero-CONICET, Santiago del Estero, Argentina
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
26
|
Larson KR, Russo KA, Fang Y, Mohajerani N, Goodson ML, Ryan KK. Sex Differences in the Hormonal and Metabolic Response to Dietary Protein Dilution. Endocrinology 2017; 158:3477-3487. [PMID: 28938440 DOI: 10.1210/en.2017-00331] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/03/2017] [Indexed: 12/31/2022]
Abstract
Consumption of a low-protein, high-carbohydrate diet induces a striking increase in circulating fibroblast growth factor-21 (FGF21), which is associated with improved cardiometabolic health and increased longevity. Increased lifespan during this dietary protein "dilution" has been explained by resource-mediated trade-offs between reproduction and survival, such that fecundity is optimized at a greater relative intake of proteins/carbohydrates. The magnitude of this trade-off is thought to be sex-dependent. In this study, we tested the hypothesis that metabolic responses to dietary protein dilution are likewise dependent on sex. We maintained age-matched adult male and female C57BL/6J mice on isocaloric diets containing 22% fat and differing in the ratio of protein/carbohydrate. The normal protein (NP) control diet contained 18% protein and 60% carbohydrate by kcal. The protein diluted (PD) diet contained 4% protein and 74% carbohydrate. Consistent with previous reports, PD males gained less weight and less fat than did normal protein controls and exhibited both improved glucose tolerance and decreased plasma lipids. In contrast, these metabolic benefits were absent among age-matched females maintained on the same diets. Likewise, whereas circulating FGF21 was increased up to 66-fold among PD male mice, this was substantially blunted among female counterparts. Sex differences in energy balance, glucose control, and plasma FGF21 were reversed upon ovariectomy. Collectively, our findings support that female mice are relatively less sensitive to the metabolic improvements observed following dietary protein dilution. This is accompanied by blunted circulating levels of FGF21 and requires an intact female reproductive system.
Collapse
Affiliation(s)
- Karlton R Larson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Kimberly A Russo
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Yanbin Fang
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Niloufar Mohajerani
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Michael L Goodson
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| | - Karen K Ryan
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, Davis, California 95616
| |
Collapse
|
27
|
Yin J, Bao L, Tian H, Wang Q, Gao X, Yao W. Genetic fusion of human FGF21 to a synthetic polypeptide improves pharmacokinetics and pharmacodynamics in a mouse model of obesity. Br J Pharmacol 2016; 173:2208-23. [PMID: 27339749 DOI: 10.1111/bph.13499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Chemical conjugation of therapeutic proteins with polyethylene glycol (PEG) is an established strategy to extend their biological half-life (t1/2 ) to a clinically useful range. We developed a novel uncharged and unstructured recombinant polypeptide composed of five amino acids (P, S, T, A and G), named PsTag, as another approach to extend the t1/2 of human FGF21, with increased hydrodynamic radius. EXPERIMENTAL APPROACH Human FGF21 was fused with PsTag polymers of differing lengths (200 - 600 residues). Three fusion proteins and native FGF21 were produced in Escherichia coli. The biophysical characteristics, metabolic stability, immunogenicity and pharmacokinetics in were assessed in first. In lean and diet-induced obese (DIO) mice, effects on body weight, oral glucose tolerance tests and levels of relevant hormones and metabolites were studied. KEY RESULTS Fusion proteins were solubly expressed in E. coli and prolonged the t1/2 from 0.34h up to 12.9 h in mice. Fusion proteins were also biodegradable, thus avoiding vacuole formation, while lacking immunogenicity in mice. In DIO mice, administration of PsTag fused to FGF21 reduced body weight, blood glucose and lipids levels and reversed hepatic steatosis. CONCLUSIONS AND IMPLICATIONS The novel recombinant polypeptide, PsTag, should be useful in the development of biological drugs with properties comparable to those achievable by PEGylation, but with potentially less side effects. In mice, fusion of FGF21 to PsTag prolonged and potentiated pharmacological effects of native FGF21, and may offer greater therapeutic effects in treatment of obesity.
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lichen Bao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hong Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qun Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|