1
|
Bompierre S, Byelyayeva Y, Mota E, Lefevre M, Pumo A, Kehler J, Castro LRV, Vincent P. Cross-pathway integration of cAMP signals through cGMP and calcium-regulated phosphodiesterases in mouse striatal cholinergic interneurons. Br J Pharmacol 2025; 182:1236-1253. [PMID: 39604216 DOI: 10.1111/bph.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Acetylcholine plays a key role in striatal function. Firing properties of striatal cholinergic interneurons depend on intracellular cAMP through the regulation of Ih currents. Yet, the dynamics of cyclic nucleotide signalling in these neurons have remained elusive. EXPERIMENTAL APPROACH We used highly selective FRET biosensors and pharmacological compounds to analyse the functional contribution of phosphodiesterases in striatal cholinergic interneurons in mouse brain slices. KEY RESULTS PDE1A, PDE3A and PDE4 appear as the main controllers of cAMP levels in striatal cholinergic interneurons. The calcium signal elicited through NMDA or metabotropic glutamate receptors activates PDE1A, which degrades both cAMP and cGMP. Interestingly, the nitric oxide/cGMP pathway amplifies cAMP signalling via PDE3A inhibition-a mechanism hitherto unexplored in a neuronal context. CONCLUSIONS AND IMPLICATIONS The expression pattern of specific PDE enzymes in striatal cholinergic interneurons, by integrating diverse intracellular pathways, can adjust cAMP responses bidirectionally. These properties eventually allow striatal cholinergic interneurons to dynamically regulate their overall activity and modulate acetylcholine release. Remarkably, this effect is the opposite of the cGMP-induced inhibition of cAMP signals involving PDE2A in striatal medium-sized spiny neurons, which provides important insights for the understanding of signal integration in the striatum.
Collapse
Affiliation(s)
- Ségolène Bompierre
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | | | - Elia Mota
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Marion Lefevre
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Anna Pumo
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | | | - Liliana R V Castro
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Pierre Vincent
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
2
|
Rong J, Yamasaki T, Chen J, Kumata K, Zhao C, Fujinaga M, Hu K, Mori W, Zhang Y, Xie L, Chaudhary AF, Zhou X, Zhang W, Gao Y, Zhang K, Patel JS, Song Z, Collier TL, Yuan H, Ran C, Haider A, Li Y, Zhang MR, Liang S. Development of a Candidate 11C-Labeled Selective Phosphodiesterase 1 Radioligand for Positron Emission Tomography. ACS OMEGA 2024; 9:44154-44163. [PMID: 39524622 PMCID: PMC11541501 DOI: 10.1021/acsomega.4c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Phosphodiesterases (PDEs) constitute a superfamily of phosphohydrolytic enzymes that regulate intracellular second messenger signaling by hydrolyzing cyclic adenosine monophosphate and cyclic guanosine monophosphate. Among the 11 subfamilies of PDEs, phosphodiesterase 1 (PDE1) stands out due to its broad implications in central and peripheral pathologies. There are three subtypes of PDE1: PDE1A, PDE1B, and PDE1C. While PDE1A and PDE1C are distributed in both the brain and peripheral organs, PDE1B is predominantly expressed in the brain, rendering it an attractive drug target for neurological and psychological disorders. Despite continuous efforts dedicated to the development of novel PDE1 inhibitors, a suitable PDE1 radioligand for human use is currently lacking. In this study, we present the identification and preclinical evaluation of [11C]PF-04822163, a selective radioligand candidate for imaging PDE1 with positron emission tomography. PF-04822163 exhibits excellent potency toward PDE1 and demonstrates great target selectivity over other PDEs. Then, PF-04822163 was labeled with carbon-11 (half-life, 20 min) in favorable radiochemical yields (25 ± 10%, decay-corrected) and high molar activities (106-194 GBq/μmol). Further, in vitro and in vivo evaluations in rodents suggested that [11C]PF-04822163 displayed good brain penetration and a rapid washout. Despite these promising performance characteristics of [11C]PF-04822163, only marginal specific binding was observed in vivo. Further optimization of the scaffold is warranted to obtain favorable pharmacological and ADME properties.
Collapse
Affiliation(s)
- Jian Rong
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Tomoteru Yamasaki
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Jiahui Chen
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Katsushi Kumata
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Chunyu Zhao
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Masayuki Fujinaga
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Wakana Mori
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Ahmad F. Chaudhary
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
| | - Wei Zhang
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
| | - Yabiao Gao
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
| | - Kuo Zhang
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
| | - Jimmy S. Patel
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University, Atlanta, Georgia 30322, United States
| | - Zhendong Song
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
| | - Thomas L. Collier
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Hongjie Yuan
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Chongzhao Ran
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Yinlong Li
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Ming-Rong Zhang
- Department
of Advanced Nuclear Medicine Sciences, Institute
for Quantum Medical Science, National Institutes for Quantum Science
and Technology, Chiba 263-8555, Japan
| | - Steven Liang
- Department
of Radiology and Imaging Sciences, Emory
University, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital,
and Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| |
Collapse
|
3
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+-dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. Cell Rep 2024; 43:114540. [PMID: 39058595 PMCID: PMC11426333 DOI: 10.1016/j.celrep.2024.114540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shintaro Otsuka
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Xu
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vernon R J Clarke
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhong Xie
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Asami Tanimura
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hitesh K Agarwal
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | - Anis Contractor
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
5
|
Zhai S, Otsuka S, Xu J, Clarke VRJ, Tkatch T, Wokosin D, Xie Z, Tanimura A, Agarwal HK, Ellis-Davies GCR, Contractor A, Surmeier DJ. Ca 2+ -dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590962. [PMID: 38712260 PMCID: PMC11071484 DOI: 10.1101/2024.04.24.590962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Although considerable attention has been paid to the mechanisms underlying synaptic strengthening and new learning, little scrutiny has been given to those involved in the attenuation of synaptic strength that attends suppression of a previously learned association. Our studies revealed a novel, non-Hebbian, long-term, postsynaptic depression of glutamatergic SPN synapses induced by interneuronal nitric oxide (NO) signaling (NO-LTD) that was preferentially engaged at quiescent synapses. This form of plasticity was gated by local Ca 2+ influx through CaV1.3 Ca 2+ channels and stimulation of phosphodiesterase 1 (PDE1), which degraded cyclic guanosine monophosphate (cGMP) and blunted NO signaling. Consistent with this model, mice harboring a gain-of-function mutation in the gene coding for the pore-forming subunit of CaV1.3 channels had elevated depolarization-induced dendritic Ca 2+ entry and impaired NO-LTD. Extracellular uncaging of glutamate and intracellular uncaging of cGMP suggested that this Ca 2+ -dependent regulation of PDE1 activity allowed for local regulation of dendritic NO signaling. This inference was supported by simulation of SPN dendritic integration, which revealed that dendritic spikes engaged PDE1 in a branch-specific manner. In a mouse model of Parkinson's disease (PD), NO-LTD was absent not because of a postsynaptic deficit in NO signaling machinery, but rather due to impaired interneuronal NO release. Re-balancing intrastriatal neuromodulatory signaling in the PD model restored NO release and NO-LTD. Taken together, these studies provide novel insights into the mechanisms governing NO-LTD in SPN and its role in psychomotor disorders, like PD.
Collapse
|
6
|
Zhu Z, Tang W, Qiu X, Xin X, Zhang J. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics. Eur J Med Chem 2024; 263:115967. [PMID: 38000211 DOI: 10.1016/j.ejmech.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Phosphodiesterase 1 (PDE1) is an enzyme entrusted with the hydrolysis of the second messengers cAMP and cGMP, thereby governing a plethora of metabolic processes, encompassing ion channel modulation and cellular apoptosis. Recent advancements in the realm of small molecule structural variations have greatly facilitated the exploration of innovative applications for PDE1. Remarkably, a recent series of PDE1 inhibitors (PDE1i) have been meticulously formulated and devised, showcasing enhanced selectivity and potency. Among them, ITI-214 has entered Phase II clinical trials, holding promise for the treatment of Parkinson's disease and heart failure. Nevertheless, the majority of current PDE1 inhibitors have encountered substantial side effects in clinical trials attributable to their limited selectivity, this predicament presents a formidable obstacle in the development of specific small molecule inhibitors targeting PDE1. This Perspective endeavors to illuminate the potential design approaches, structure-activity relationships, and biological activities of current PDE1i, aiming to offer support and insights for clinical practice and the development of novel PDE1i.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wentao Tang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Xin
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Wan M, Lu C, Liu Y, Luo F, Zhou J, Xu F. Mesenchymal stem cell-derived extracellular vesicles prevent the formation of pulmonary arterial hypertension through a microRNA-200b-dependent mechanism. Respir Res 2023; 24:233. [PMID: 37759281 PMCID: PMC10523762 DOI: 10.1186/s12931-023-02474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) have been highly studied with their critical roles as carriers of therapeutic targets such as microRNAs (miRNAs) in the treatment of human diseases, including pulmonary arterial hypertension (PAH). Herein, we tried to study the potential of BMSC-EVs to deliver miR-200b for the regulation of macrophage polarization in PAH. METHODS Rat models of PAH were induced with monocrotaline treatment, followed by miR-200b expression detection in lung tissues, pulmonary artery smooth muscle cells (PASMCs) and macrophages. miR-200b-containing BMSCs or miR-200b-deficient BMSCs were selected to extract EVs. Then, we assessed the changes in rats with PAH-associated disorders as well as in vitro macrophage polarization and the functions of PASMCs after treatment with BMSC-EVs. Moreover, the interaction between miR-200b, phosphodiesterase 1 A (PDE1A) was identified with a luciferase assay, followed by an exploration of the downstream pathway, cAMP-dependent protein kinase (PKA). RESULTS miR-200b was reduced in lung tissues, PASMCs and macrophages of rats with PAH-like pathology. BMSC-EVs transferred miR-200b into macrophages, and subsequently accelerated their switch to the M2 phenotype and reversed the PAH-associated disorders. Furthermore, miR-200b carried by BMSC-EVs induced PKA phosphorylation by targeting PDE1A, thereby expediting macrophage polarization. CONCLUSION Our current study highlighted the inhibitory role of BMSC-EV-miR-200b in PAH formation.
Collapse
Affiliation(s)
- Mengzhi Wan
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Caiju Lu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Yu Liu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Feng Luo
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Jing Zhou
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| | - Fei Xu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| |
Collapse
|
8
|
Wang Q, Chang Y, Yang X, Han Z. Deep sequencing of circulating miRNAs and target mRNAs level in deep venous thrombosis patients. IET Syst Biol 2023; 17:212-227. [PMID: 37466160 PMCID: PMC10439493 DOI: 10.1049/syb2.12071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Deep venous thrombosis is one of the most common peripheral vascular diseases that lead to major morbidity and mortality. The authors aimed to identify potential differentially expressed miRNAs and target mRNAs, which were helpful in understanding the potential molecule mechanism of deep venous thrombosis. The plasma samples of patients with deep venous thrombosis were obtained for the RNA sequencing. Differentially expressed miRNAs were identified, followed by miRNA-mRNA target analysis. Enrichment analysis was used to analyze the potential biological function of target mRNAs. GSE19151 and GSE173461 datasets were used for expression validation of mRNAs and miRNAs. 131 target mRNAs of 21 differentially expressed miRNAs were identified. Among which, 8 differentially expressed miRNAs including hsa-miR-150-5p, hsa-miR-326, hsa-miR-144-3p, hsa-miR-199a-5p, hsa-miR-199b-5p, hsa-miR-125a-5p, hsa-let-7e-5p and hsa-miR-381-3p and their target mRNAs (PRKCA, SP1, TP53, SLC27A4, PDE1B, EPHB3, IRS1, HIF1A, MTUS1 and ZNF652) were found associated with deep venous thrombosis for the first time. Interestingly, PDE1B and IRS1 had a potential diagnostic value for patients. Additionally, 3 important signaling pathways including p53, PI3K-Akt and MAPK were identified in the enrichment analysis of target mRNAs (TP53, PRKCA and IRS1). Identified circulating miRNAs and target mRNAs and related signaling pathways may be involved in the process of deep venous thrombosis.
Collapse
Affiliation(s)
- Qingxian Wang
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yunhe Chang
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xuqing Yang
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ziwang Han
- Department of Orthopedic Trauma, Orthopedic Research Institution of Hebei ProvinceKey Labratory of Biomechanics of Hebei ProvinceThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
9
|
Tam CH, Lim CK, Luk AO, Shi M, Man Cheung H, Ng AC, Lee HM, Lau ES, Fan B, Jiang G, Kong AP, Ozaki R, Chow EY, Lee KF, Siu SC, Hui G, Tsang CC, Lau KP, Leung JY, Cheung EY, Tsang MW, Kam G, Lau IT, Li JK, Yeung VT, Lau E, Lo S, Fung S, Cheng YL, Chow CC, Fan X, Chan TF, Yip KY, Lok S, Yu W, Tsui SK, Lan HY, Szeto CC, Tang NL, Tomlinson B, Huang Y, Jenkins AJ, Keech A, So WY, Chan JC, Ma RC. Identification of a Common Variant for Coronary Heart Disease at PDE1A Contributes to Individualized Treatment Goals and Risk Stratification of Cardiovascular Complications in Chinese Patients With Type 2 Diabetes. Diabetes Care 2023; 46:1271-1281. [PMID: 37125963 PMCID: PMC10234754 DOI: 10.2337/dc22-2331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVE In this study we aim to unravel genetic determinants of coronary heart disease (CHD) in type 2 diabetes (T2D) and explore their applications. RESEARCH DESIGN AND METHODS We performed a two-stage genome-wide association study for CHD in Chinese patients with T2D (3,596 case and 8,898 control subjects), followed by replications in European patients with T2D (764 case and 4,276 control subjects) and general populations (n = 51,442-547,261). Each identified variant was examined for its association with a wide range of phenotypes and its interactions with glycemic, blood pressure (BP), and lipid controls in incident cardiovascular diseases. RESULTS We identified a novel variant (rs10171703) for CHD (odds ratio 1.21 [95% CI 1.13-1.30]; P = 2.4 × 10-8) and BP (β ± SE 0.130 ± 0.017; P = 4.1 × 10-14) at PDE1A in Chinese T2D patients but found only a modest association with CHD in general populations. This variant modulated the effects of BP goal attainment (130/80 mmHg) on CHD (Pinteraction = 0.0155) and myocardial infarction (MI) (Pinteraction = 5.1 × 10-4). Patients with CC genotype of rs10171703 had >40% reduction in either cardiovascular events in response to BP control (2.9 × 10-8 < P < 3.6 × 10-5), those with CT genotype had no difference (0.0726 < P < 0.2614), and those with TT genotype had a threefold increase in MI risk (P = 6.7 × 10-3). CONCLUSIONS We discovered a novel CHD- and BP-related variant at PDE1A that interacted with BP goal attainment with divergent effects on CHD risk in Chinese patients with T2D. Incorporating this information may facilitate individualized treatment strategies for precision care in diabetes, only when our findings are validated.
Collapse
Affiliation(s)
- Claudia H.T. Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Cadmon K.P. Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Andrea O.Y. Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Hoi Man Cheung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Alex C.W. Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Heung-man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Eric S.H. Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Alice P.S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Risa Ozaki
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Elaine Y.K. Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Ka Fai Lee
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong
| | | | - Grace Hui
- Diabetes Centre, Tung Wah Eastern Hospital, Hong Kong
| | - Chiu Chi Tsang
- Diabetes and Education Centre, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | | | - Jenny Y.Y. Leung
- Department of Medicine and Geriatrics, Ruttonjee Hospital, Hong Kong
| | - Elaine Y.N. Cheung
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | - Man Wo Tsang
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | - Grace Kam
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong
| | | | - June K.Y. Li
- Department of Medicine, Yan Chai Hospital, Hong Kong
| | - Vincent T.F. Yeung
- Centre for Diabetes Education and Management, Our Lady of Maryknoll Hospital, Hong Kong
| | - Emmy Lau
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Stanley Lo
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Samuel Fung
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Yuk Lun Cheng
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong
| | - Chun Chung Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kevin Y.L. Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Si Lok
- Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Stephen K.W. Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hui-yao Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Cheuk Chun Szeto
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Nelson L.S. Tang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Yu Huang
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong
| | - Alicia J. Jenkins
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Anthony Keech
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Wing-yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
| | - Juliana C.N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ronald C.W. Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong
- CUHK-SJTU Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Wang L, Hubert F, Idres S, Belacel-Ouari M, Domergue V, Domenichini S, Lefebvre F, Mika D, Fischmeister R, Leblais V, Manoury B. Phosphodiesterases type 2, 3 and 4 promote vascular tone in mesenteric arteries from rats with heart failure. Eur J Pharmacol 2023; 944:175562. [PMID: 36736940 DOI: 10.1016/j.ejphar.2023.175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Phosphodiesterases (PDE) type 3 and 4 promote vasoconstriction by hydrolysing cAMP. In experimental heart failure (HF), PDE3 makes PDE4 redundant in aorta, but it is not known if this occurs in resistance vessels, such as mesenteric artery. As PDE2 is increased in the failing myocardium, its possible role in the vasculature also needs to be addressed. Here, the function of PDE2, PDE3 and PDE4 in rat mesenteric arteries was characterized in experimental HF. Mesenteric arteries were isolated from rats sacrificed 22 weeks after surgical stenosis of the ascending aorta (HF), or Sham surgery. PDE inhibitors were used to probe isoenzyme contributions in enzymatic and isometric tension assays. PDE2 and PDE4 activities, but not PDE3 activity, facilitate contraction produced by the thromboxane analogue U46619 in Sham arteries, while in HF all three isoenzymes contribute to this response. NO synthase inhibition by L-NAME abolished the action of the PDE2 inhibitor. L-NAME eliminated the contribution of PDE4 in HF, but unmasked a contribution for PDE3 in Sham. PDE3 and PDE4 activities attenuated relaxant response to β-adrenergic stimulation in Sham and HF. PDE2 did not participate in cAMP or cGMP-mediated relaxant responses. PDE3 and PDE4 cAMP-hydrolysing activities were smaller in HF mesenteric arteries, while PDE2 activity was scarce in both groups. Endothelial cells and arterial myocytes displayed PDE2 immunolabelling. We highlight that, by contrast with previous observations in aorta, PDE4 participates equally as PDE3 in contracting mesenteric artery in HF. PDE2 activity emerges as a promoter of contractile response that is preserved in HF.
Collapse
Affiliation(s)
- Liting Wang
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | - Fabien Hubert
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | - Sarah Idres
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | | | - Valérie Domergue
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | | | - Delphine Mika
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | | | | | - Boris Manoury
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France.
| |
Collapse
|
11
|
Al-Nema M, Gaurav A, Lee VS. Designing of 2,3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach. Comput Biol Med 2023; 159:106869. [PMID: 37071939 DOI: 10.1016/j.compbiomed.2023.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
In recent years, the PDE1B enzyme has become a desirable drug target for the treatment of psychological and neurological disorders, particularly schizophrenia disorder, due to the expression of PDE1B in brain regions involved in volitional behaviour, learning and memory. Although several inhibitors of PDE1 have been identified using different methods, none of these inhibitors has reached the market yet. Thus, searching for novel PDE1B inhibitors is considered a major scientific challenge. In this study, pharmacophore-based screening, ensemble docking and molecular dynamics simulations have been performed to identify a lead inhibitor of PDE1B with a new chemical scaffold. Five PDE1B crystal structures have been utilised in the docking study to improve the possibility of identifying an active compound compared to the use of a single crystal structure. Finally, the structure-activity- relationship was studied, and the structure of the lead molecule was modified to design novel inhibitors with a high affinity for PDE1B. As a result, two novel compounds have been designed that exhibited a higher affinity to PDE1B compared to the lead compound and the other designed compounds.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Sun W, Zhou Y, Xue H, Hou H, He G, Yang Q. Endoplasmic reticulum stress mediates homocysteine-induced hypertrophy of cardiac cells through activation of cyclic nucleotide phosphodiesterase 1C. Acta Biochim Biophys Sin (Shanghai) 2022; 54:388-399. [PMID: 35538034 PMCID: PMC9828163 DOI: 10.3724/abbs.2022009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Although the association of elevated homocysteine level with cardiac hypertrophy has been reported, the molecular mechanisms by which homocysteine induces cardiac hypertrophy remain inadequately understood. In this study we aim to uncover the roles of cyclic nucleotide phosphodiesterase 1 (PDE1) and endoplasmic reticulum (ER) stress and their relationship to advance the mechanistic understanding of homocysteine-induced cardiac cell hypertrophy. H9c2 cells and primary neonatal rat cardiomyocytes are exposed to homocysteine with or without ER stress inhibitor TUDCA or PDE1-specific inhibitor Lu AF58027, or transfected with siRNAs targeting PDE1 isoforms prior to homocysteine-exposure. Cell surface area is measured and ultrastructure is examined by transmission electron microscopy. Hypertrophic markers, PDE1 isoforms, and ER stress molecules are detected by q-PCR and western blot analysis. Intracellular cGMP and cAMP are measured by ELISA. The results show that homocysteine causes the enlargement of H9c2 cells, increases the expressions of hypertrophic markers β-MHC and ANP, upregulates PDE1A and PDE1C, promotes the expressions of ER stress molecules, and causes ER dilatation and degranulation. TUDCA and Lu AF58027 downregulate β-MHC and ANP, and alleviate cell enlargement. TUDCA decreases PDE1A and PDE1C levels. Silencing of PDE1C inhibits homocysteine-induced hypertrophy, whereas PDE1A knockdown has minor effect. Both cAMP and cGMP are decreased after homocysteine-exposure, while only cAMP is restored by Lu AF58027 and TUDCA. TUDCA and Lu AF58027 also inhibit cell enlargement, downregulate ANP, β-MHC and PDE1C, and enhance cAMP level in homocysteine-exposed primary cardiomyocytes. ER stress mediates homocysteine-induced hypertrophy of cardiac cells via upregulating PDE1C expression Cyclic nucleotide, especially cAMP, is the downstream mediator of the ER stress-PDE1C signaling axis in homocysteine-induced cell hypertrophy.
Collapse
Affiliation(s)
- Wentao Sun
- Center for Basic Medical Research & Department of Cardiovascular SurgeryTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China,The Institute of Cardiovascular DiseasesTianjin UniversityTianjin300457China
| | - Yang Zhou
- Center for Basic Medical Research & Department of Cardiovascular SurgeryTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China,The Institute of Cardiovascular DiseasesTianjin UniversityTianjin300457China
| | - Hongmei Xue
- Center for Basic Medical Research & Department of Cardiovascular SurgeryTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China,The Institute of Cardiovascular DiseasesTianjin UniversityTianjin300457China,Department of PhysiologyHebei Medical UniversityShijiazhuang050017China
| | - Haitao Hou
- Center for Basic Medical Research & Department of Cardiovascular SurgeryTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China,The Institute of Cardiovascular DiseasesTianjin UniversityTianjin300457China
| | - Guowei He
- Center for Basic Medical Research & Department of Cardiovascular SurgeryTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China,The Institute of Cardiovascular DiseasesTianjin UniversityTianjin300457China,Drug Research and Development CenterWannan Medical CollegeWuhu241002China,Department of SurgeryOregon Health and Science UniversityPortlandOR97239-3098USA
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular SurgeryTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China,The Institute of Cardiovascular DiseasesTianjin UniversityTianjin300457China
| |
Collapse
|
13
|
Golshiri K, Ataabadi EA, Jüttner AA, Snyder GL, Davis RE, Lin A, Zhang L, de Vries R, Garrelds IM, Leijten FPJ, Danser AHJ, Roks AJM. The Effects of Acute and Chronic Selective Phosphodiesterase 1 Inhibition on Smooth Muscle Cell-Associated Aging Features. Front Pharmacol 2022; 12:818355. [PMID: 35173613 PMCID: PMC8841451 DOI: 10.3389/fphar.2021.818355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022] Open
Abstract
Age-related cardiovascular diseases (CVDs) remain among the leading global causes of death, and vascular smooth muscle cell (VSMC) remodeling plays an essential role in its pathology. Reduced NO-cGMP pathway signaling is a major feature and pathogenic mechanism underlying vasodilator dysfunction. Recently, we identified phosphodiesterase (PDE) 1, an enzyme that hydrolyzes and inactivates the cyclic nucleotides cAMP and cGMP, and thereby provides a potential treatment target for restoring age-related vascular dysfunction due to aging of VSMC. Based on this hypothesis, we here tested the effects of PDE1 inhibition in a model of SMC-specific accelerated aging mice. SMC-KO and their WT littermates received either vehicle or the PDE1 inhibitor lenrispodun for 8 weeks. Vascular function was measured both in vivo (Laser Doppler technique) and ex vivo (organ bath). Moreover, we deployed UV irradiation in cell culture experiments to model accelerated aging in an in vitro situation. SMC-KO mice display a pronounced loss of vasodilator function in the isolated aorta, the cutaneous microvasculature, and mesenteric arteries. Ex vivo, in isolated vascular tissue, we found that PDE1 inhibition with lenrispodun improves vasodilation, while no improvement was observed in isolated aorta taken from mice after chronic treatment in vivo. However, during lenrispodun treatment in vivo, an enhanced microvascular response in association with upregulated cGMP levels was seen. Further, chronic lenrispodun treatment decreased TNF-α and IL-10 plasma levels while the elevated level of IL-6 in SMC-KO mice remained unchanged after treatment. PDE1 and senescence markers, p16 and p21, were increased in both SMC-KO aorta and cultured human VSMC in which DNA was damaged by ultraviolet irradiation. This increase was lowered by chronic lenrispodun. In contrast, lenrispodun increased the level of PDE1A in both situations. In conclusion, we demonstrated that PDE1 inhibition may be therapeutically useful in reversing aspects of age-related VSMC dysfunction by potentiating NO-cGMP signaling, preserving microvascular function, and decreasing senescence. Yet, after chronic treatment, the effects of PDE1 inhibition might be counteracted by the interplay between differential PDE1A and C expression. These results warrant further pharmacodynamic profiling of PDE enzyme regulation during chronic PDE1 inhibitor treatment.
Collapse
Affiliation(s)
- Keivan Golshiri
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Annika A. Jüttner
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Robert E Davis
- Intra-Cellular Therapies, Inc., New York, NY, United States
| | - Amy Lin
- Intra-Cellular Therapies, Inc., New York, NY, United States
| | - Lei Zhang
- Intra-Cellular Therapies, Inc., New York, NY, United States
| | - René de Vries
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Ingrid M Garrelds
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Frank P. J. Leijten
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - A. H. Jan Danser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Anton J. M. Roks
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- *Correspondence: Anton J. M. Roks,
| |
Collapse
|
14
|
Golshiri K, Ataei Ataabadi E, Rubio-Beltran E, Dutheil S, Yao W, Snyder GL, Davis RE, van der Pluijm I, Brandt R, Van den Berg-Garrelds IM, MaassenVanDenBrink A, de Vries R, Danser AHJ, Roks AJM. Selective Phosphodiesterase 1 Inhibition Ameliorates Vascular Function, Reduces Inflammatory Response, and Lowers Blood Pressure in Aging Animals. J Pharmacol Exp Ther 2021; 378:173-183. [PMID: 34099502 DOI: 10.1124/jpet.121.000628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Diminished nitric oxide-cGMP-mediated relaxation plays a crucial role in cardiovascular aging, leading to decreased vasodilation, vascular hypertrophy and stiffening, and ultimately, cardiovascular dysfunction. Aging is the time-related worsening of physiologic function due to complex cellular and molecular interactions, and it is at least partly driven by DNA damage. Genetic deletion of the DNA repair enzyme ERCC1 endonuclease in Ercc1Δ/- mice provides us an efficient tool to accelerate vascular aging, explore mechanisms, and test potential treatments. Previously, we identified the cGMP-degrading enzyme phosphodiesterase 1 as a potential treatment target in vascular aging. In the present study, we studied the effect of acute and chronic treatment with ITI-214, a selective phosphodiesterase 1 inhibitor on vascular aging features in Ercc1Δ/- mice. Compared with wild-type mice, Ercc1Δ/- mice at the age of 14 weeks showed decreased reactive hyperemia, diminished endothelium-dependent and -independent responses of arteries in organ baths, carotid wall hypertrophy, and elevated circulating levels of inflammatory cytokines. Acute ITI-214 treatment in organ baths restored the arterial endothelium-independent vasodilation in Ercc1Δ/- mice. An 8-week treatment with 100 mg/kg per day ITI-214 improved endothelium-independent relaxation in both aorta and coronary arteries, at least partly restored the diminished reactive hyperemia, lowered the systolic and diastolic blood pressure, normalized the carotid hypertrophy, and ameliorated inflammatory responses exclusively in Ercc1Δ/- mice. These findings suggest phosphodiesterase 1 inhibition would provide a powerful tool for nitric oxide-cGMP augmentation and have significant therapeutic potential to battle arteriopathy related to aging. SIGNIFICANCE STATEMENT: The findings implicate the key role of phosphodiesterase 1 in vascular function and might be of clinical importance for the prevention of mortalities and morbidities related to vascular complications during aging, as well as for patients with progeria that show a high risk of cardiovascular disease.
Collapse
Affiliation(s)
- Keivan Golshiri
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Ehsan Ataei Ataabadi
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Eloísa Rubio-Beltran
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Sophie Dutheil
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Wei Yao
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Gretchen L Snyder
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Robert E Davis
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Ingrid van der Pluijm
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Renata Brandt
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Ingrid M Van den Berg-Garrelds
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Antoinette MaassenVanDenBrink
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - René de Vries
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - A H Jan Danser
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| | - Anton J M Roks
- Dept. of Internal Medicine (K.G., E.A.A., E.R.-B., I.M.V.d.B.-G., A.M., R.d.V., A.H.J.D., A.J.M.R.), Dept. of Molecular Genetics (I.v.d.P., R.B.), Dept. of Vascular Surgery (I.v.d.P.), Erasmus Medical Center, Rotterdam, The Netherlands, and Intra-Cellular Therapies, Inc., New York, New York (S.D., W.Y., G.L.S., R.E.D.)
| |
Collapse
|
15
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
16
|
Blanco-Rivero J, Xavier FE. Therapeutic Potential of Phosphodiesterase Inhibitors for Endothelial Dysfunction- Related Diseases. Curr Pharm Des 2021; 26:3633-3651. [PMID: 32242780 DOI: 10.2174/1381612826666200403172736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
Abstract
Cardiovascular diseases (CVD) are considered a major health problem worldwide, being the main cause of mortality in developing and developed countries. Endothelial dysfunction, characterized by a decline in nitric oxide production and/or bioavailability, increased oxidative stress, decreased prostacyclin levels, and a reduction of endothelium-derived hyperpolarizing factor is considered an important prognostic indicator of various CVD. Changes in cyclic nucleotides production and/ or signalling, such as guanosine 3', 5'-monophosphate (cGMP) and adenosine 3', 5'-monophosphate (cAMP), also accompany many vascular disorders that course with altered endothelial function. Phosphodiesterases (PDE) are metallophosphohydrolases that catalyse cAMP and cGMP hydrolysis, thereby terminating the cyclic nucleotide-dependent signalling. The development of drugs that selectively block the activity of specific PDE families remains of great interest to the research, clinical and pharmaceutical industries. In the present review, we will discuss the effects of PDE inhibitors on CVD related to altered endothelial function, such as atherosclerosis, diabetes mellitus, arterial hypertension, stroke, aging and cirrhosis. Multiple evidences suggest that PDEs inhibition represents an attractive medical approach for the treatment of endothelial dysfunction-related diseases. Selective PDE inhibitors, especially PDE3 and PDE5 inhibitors are proposed to increase vascular NO levels by increasing antioxidant status or endothelial nitric oxide synthase expression and activation and to improve the morphological architecture of the endothelial surface. Thereby, selective PDE inhibitors can improve the endothelial function in various CVD, increasing the evidence that these drugs are potential treatment strategies for vascular dysfunction and reinforcing their potential role as an adjuvant in the pharmacotherapy of CVD.
Collapse
Affiliation(s)
- Javier Blanco-Rivero
- Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain
| | - Fabiano E Xavier
- Departamento de Fisiologia e Farmacologia, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
17
|
Betolngar DB, Mota É, Fabritius A, Nielsen J, Hougaard C, Christoffersen CT, Yang J, Kehler J, Griesbeck O, Castro LRV, Vincent P. Phosphodiesterase 1 Bridges Glutamate Inputs with NO- and Dopamine-Induced Cyclic Nucleotide Signals in the Striatum. Cereb Cortex 2020; 29:5022-5036. [PMID: 30877787 DOI: 10.1093/cercor/bhz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
The calcium-regulated phosphodiesterase 1 (PDE1) family is highly expressed in the brain, but its functional role in neurones is poorly understood. Using the selective PDE1 inhibitor Lu AF64196 and biosensors for cyclic nucleotides including a novel biosensor for cGMP, we analyzed the effect of PDE1 on cAMP and cGMP in individual neurones in brain slices from male newborn mice. Release of caged NMDA triggered a transient increase of intracellular calcium, which was associated with a decrease in cAMP and cGMP in medium spiny neurones in the striatum. Lu AF64196 alone did not increase neuronal cyclic nucleotide levels, but blocked the NMDA-induced reduction in cyclic nucleotides indicating that this was mediated by calcium-activated PDE1. Similar effects were observed in the prefrontal cortex and the hippocampus. Upon corelease of dopamine and NMDA, PDE1 was shown to down-regulate the D1-receptor mediated increase in cAMP. PDE1 inhibition increased long-term potentiation in rat ventral striatum, showing that PDE1 is implicated in the regulation of synaptic plasticity. Overall, our results show that PDE1 reduces cyclic nucleotide signaling in the context of glutamate and dopamine coincidence. This effect could have a therapeutic value for treating brain disorders related to dysfunctions in dopamine neuromodulation.
Collapse
Affiliation(s)
| | - Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Arne Fabritius
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | - Jun Yang
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark
| | - Oliver Griesbeck
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
18
|
Dey AB, Khedr S, Bean J, Porras LL, Meredith TD, Willard FS, Hass JV, Zhou X, Terashvili M, Jesudason CD, Ruley KM, Wiley MR, Kowala M, Atkinson SJ, Staruschenko A, Rekhter MD. Selective Phosphodiesterase 1 Inhibitor BTTQ Reduces Blood Pressure in Spontaneously Hypertensive and Dahl Salt Sensitive Rats: Role of Peripheral Vasodilation. Front Physiol 2020; 11:543727. [PMID: 33013477 PMCID: PMC7506137 DOI: 10.3389/fphys.2020.543727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/14/2020] [Indexed: 01/20/2023] Open
Abstract
Regulation of the peripheral vascular resistance via modulating the vessel diameter has been considered as a main determinant of the arterial blood pressure. Phosphodiesterase enzymes (PDE1-11) hydrolyse cyclic nucleotides, which are key players controlling the vessel diameter and, thus, peripheral resistance. Here, we have tested and reported the effects of a novel selective PDE1 inhibitor (BTTQ) on the cardiovascular system. Normal Sprague Dawley, spontaneously hypertensive (SHR), and Dahl salt-sensitive rats were used to test in vivo the efficacy of the compound. Phosphodiesterase radiometric enzyme assay revealed that BTTQ inhibited all three isoforms of PDE1 in nanomolar concentration, while micromolar concentrations were needed to induce effective inhibition for other PDEs. The myography study conducted on mesenteric arteries revealed a potent vasodilatory effect of the drug, which was confirmed in vivo by an increase in the blood flow in the rat ear arteriols reflected by the rise in the temperature. Furthermore, BTTQ proved a high efficacy in lowering the blood pressure about 9, 36, and 24 mmHg in normal Sprague Dawley, SHR and, Dahl salt-sensitive rats, respectively, compared to the vehicle-treated group. Moreover, additional blood pressure lowering of about 22 mmHg could be achieved when BTTQ was administered on top of ACE inhibitor lisinopril, a current standard of care in the treatment of hypertension. Therefore, PDE1 inhibition induced efficient vasodilation that was accompanied by a significant reduction of blood pressure in different hypertensive rat models. Administration of BTTQ was also associated with increased heart rate in both models of hypertension as well as in the normotensive rats. Thus, PDE1 appears to be an attractive therapeutic target for the treatment of resistant hypertension, while tachycardia needs to be addressed by further compound structural optimization.
Collapse
Affiliation(s)
- Asim B Dey
- Eli Lilly and Company, Indianapolis, IN, United States
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - James Bean
- Eli Lilly and Company, Indianapolis, IN, United States
| | - Leah L Porras
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | | | - Joseph V Hass
- Eli Lilly and Company, Indianapolis, IN, United States
| | - Xin Zhou
- Eli Lilly and Company, Indianapolis, IN, United States
| | - Maia Terashvili
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Kevin M Ruley
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Mark Kowala
- Eli Lilly and Company, Indianapolis, IN, United States
| | - Simon J Atkinson
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, United States
| | | |
Collapse
|
19
|
Pan BW, Shi Y, Li WC, Wang Q, Pan M, Wu Q, Fu HZ. Synthesis and biological evaluation of Vinpocetine derivatives. Bioorg Med Chem Lett 2020; 30:126472. [PMID: 31859156 DOI: 10.1016/j.bmcl.2019.05.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 11/29/2022]
Abstract
A new series of Vinpocetine derivatives were synthesized and evaluated for their inhibitory activity on PDE1A in vitro. Seven compounds with higher inhibitory activity were selected for surface plasmon resonance (SPR) binding experiments. Compared with Vinpocetine, these high potency compounds presented a higher binding affinity with PDE1A, which was consistent with inhibitory activity. After further screening, compounds 5, 7, 21, 34 and Vinpocetine were selected to examine the vasorelaxant effects on endothelium-intact rat thoracic aortic rings. The study suggested that the effects of compounds 7 and 21 were the most significant with the maximum value of 93.46 ± 0.77% and 92.90 ± 0.78% (n = 5) at a concentration of 100 μM respectively. Based on these studies, compounds 7 and 21 were considered for further development as hit compounds.
Collapse
Affiliation(s)
- Bo-Wen Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Yang Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; School of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
| | - Wen-Chao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meng Pan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiong Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hong-Zheng Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
20
|
Enomoto T, Tatara A, Goda M, Nishizato Y, Nishigori K, Kitamura A, Kamada M, Taga S, Hashimoto T, Ikeda K, Fujii Y. A Novel Phosphodiesterase 1 Inhibitor DSR-141562 Exhibits Efficacies in Animal Models for Positive, Negative, and Cognitive Symptoms Associated with Schizophrenia. J Pharmacol Exp Ther 2019; 371:692-702. [PMID: 31578257 DOI: 10.1124/jpet.119.260869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/18/2019] [Indexed: 01/09/2023] Open
Abstract
In our drug discovery program, we identified a novel orally available and brain-penetrant phosphodiesterase (PDE) 1 inhibitor, 3-methyl-7-(tetrahydro-2H-pyran-4-yl)-2-{[trans-4-(trifluoromethyl)cyclohexyl]-methoxy}imidazo[5,1-f][1,2,4]triazin-4(3H)-one (DSR-141562). In the present study, we characterized the preclinical profile of DSR-141562. This compound has preferential selectivity for predominantly brain-expressed PDE1B over other PDE1 family members, and high selectivity for the PDE1 family over other PDE families and 65 other tested biologic targets. Oral administration of DSR-141562 at 10 mg/kg slightly elevated the cGMP concentration, and it potently enhanced the increase of cGMP induced by a dopamine D1 receptor agonist in mouse brains. The cGMP level in monkey cerebrospinal fluid was also elevated after treatment with DSR-141562 at 30 and 100 mg/kg and could be used as a translational biomarker. Since PDE1B is believed to regulate dopaminergic and glutamatergic signal transduction, we evaluated the effects of this compound using schizophrenia-related behavioral assays. DSR-141562 at 3-30 mg/kg potently inhibited methamphetamine-induced locomotor hyperactivity in rats, while it had only minimal effects on the spontaneous locomotor activity. Furthermore, DSR-141562 at 1-100 mg/kg did not induce any signs of catalepsy in rats. DSR-141562 at 0.3-3 mg/kg reversed social interaction and novel object recognition deficits induced by repeated treatment with an N-methyl-D-aspartate receptor antagonist, phencyclidine, in mice and rats, respectively. In common marmosets, DSR-141562 at 3 and 30 mg/kg improved the performance in object retrieval with detour tasks. These results suggest that DSR-141562 is a therapeutic candidate for positive, negative, and cognitive symptoms in schizophrenia. SIGNIFICANCE STATEMENT: This is the first paper showing that a phosphodiesterase 1 inhibitor is efficacious in animal models for positive and negative symptoms associated with schizophrenia. Furthermore, we demonstrated that this compound improved cognitive function in the common marmoset, a nonhuman primate.
Collapse
Affiliation(s)
- Takeshi Enomoto
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Ayaka Tatara
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Masao Goda
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Yohei Nishizato
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Kantaro Nishigori
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Atsushi Kitamura
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Mami Kamada
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Shiori Taga
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Takashi Hashimoto
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Kazuhito Ikeda
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Yuki Fujii
- Drug Research Division, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| |
Collapse
|
21
|
Khammy MM, Dalsgaard T, Larsen PH, Christoffersen CT, Clausen D, Rasmussen LK, Folkersen L, Grunnet M, Kehler J, Aalkjaer C, Nielsen J. PDE1A inhibition elicits cGMP-dependent relaxation of rat mesenteric arteries. Br J Pharmacol 2017; 174:4186-4198. [PMID: 28910498 DOI: 10.1111/bph.14034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE PDE1, a subfamily of cyclic nucleotide PDEs consisting of three isoforms, PDE1A, PDE1B and PDE1C, has been implicated in the regulation of vascular tone. The PDE1 isoform(s) responsible for tone regulation is unknown. This study used isoform-preferring PDE1 inhibitors, Lu AF58027, Lu AF64196, Lu AF66896 and Lu AF67897, to investigate the relative contribution of PDE1 isoforms to regulation of vascular tone. EXPERIMENTAL APPROACH In rat mesenteric arteries, expression and localization of Pde1 isoforms were determined by quantitative PCR and in situ hybridization, and physiological impact of PDE1 inhibition was evaluated by isometric tension recordings. KEY RESULTS In rat mesenteric arteries, Pde1a mRNA expression was higher than Pde1b and Pde1c. In situ hybridization revealed localization of Pde1a to vascular smooth muscle cells (VSMCs) and only minor appearance of Pde1b and Pde1c. The potency of the PDE1 inhibitors at eliciting relaxation showed excellent correlation with their potency at inhibiting PDE1A. Thus, Lu AF58027 was the most potent at inhibiting PDE1A and was also the most potent at eliciting relaxation in mesenteric arteries. Inhibition of NOS with l-NAME, soluble GC with ODQ or PKG with Rp-8-Br-PET-cGMP all attenuated the inhibitory effect of PDE1 on relaxation, whereas PKA inhibition with H89 had no effect. CONCLUSIONS AND IMPLICATIONS Pde1a is the dominant PDE1 isoform present in VSMCs, and relaxation mediated by PDE1A inhibition is predominantly driven by enhanced cGMP signalling. These results imply that isoform-selective PDE1 inhibitors are powerful investigative tools allowing examination of physiological and pathological roles of PDE1 isoforms.
Collapse
Affiliation(s)
- Makhala Michell Khammy
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas Dalsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Dorte Clausen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | | | - Lasse Folkersen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | - Morten Grunnet
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | - Jan Kehler
- Division of Discovery Chemistry and DMPK, H. Lundbeck A/S, Valby, Denmark
| | - Christian Aalkjaer
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jacob Nielsen
- Division of Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| |
Collapse
|