1
|
Sirtori CR, Cincotto G, Castiglione S, Pavanello C. HDL-replacement therapy: From traditional to emerging clinical applications. ATHEROSCLEROSIS PLUS 2025; 59:68-79. [PMID: 40103705 PMCID: PMC11914826 DOI: 10.1016/j.athplu.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The unique and multifaceted properties of high-density lipoproteins (HDL)-ranging from cholesterol efflux to anti-inflammatory, anti-oxidant, and immunomodulatory effects-have prompted their direct use, particularly in cardiovascular ischemic conditions. Recent advances have extended the interest in HDL-based treatments to novel applications, from improving stent biocompatibility, to treatment of heart failure to central nervous system (CNS) disorders. Strategies to harness HDL's therapeutic potential have evolved from the direct use of isolated HDL in animal models to reconstituted HDL (rHDL) in humans. For these latter, the use of isolated apoA-I associated with different phospholipids has been the most frequent approach, also involving apparently beneficial mutants, such as the apo A-I Milano (AIM). From the initial very promising results, particularly with this mutant in coronary patients, later studies have mostly been non-confirmatory, although issues such as possible inadequate dose/response and unexpected immunological properties have come to light. Most recently a study on isolated plasma HDL in coronary patients (AEGIS-II) provided overall negative findings, but a clear fall of major cardiovascular events was recorded when restricting analysis to hypercholesterolemic patients. Emerging approaches, including gene therapy and plant-derived recombinant HDL formulations, hold promise for enhancing the accessibility and efficacy of HDL-based interventions. At this time, an improved approach to heart failure treatment also appears feasible, and a better understanding of the role played by HDL in the CNS may lead to significant improvements in the handling of some dramatic diseases at this level. While challenges persist, the evolving landscape of HDL replacement therapies offers hope for significant progress in addressing both cardiovascular and non-cardiovascular conditions.
Collapse
Affiliation(s)
- Cesare Riccardo Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulia Cincotto
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Sofia Castiglione
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Benkhoff M, Polzin A. Lipoprotection in cardiovascular diseases. Pharmacol Ther 2024; 264:108747. [PMID: 39491757 DOI: 10.1016/j.pharmthera.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cardioprotection is a well-established term in the scientific world. It describes the protection of various mediators on the cardiovascular system. These protective effects can also be provided by certain lipids. Since lipids are a very specific and clearly definable class of substances, we define the term lipoprotection as lipid-mediated cardioprotection. In this review, we highlight high-density lipoprotein (HDL), sphingosine-1-phosphate (S1P) and omega-3 polyunsaturated fatty acids (n-3 PUFA) as the most important lipoprotective mediators and show their beneficial impact on coronary artery disease (CAD), acute myocardial infarction (AMI) and heart failure (HF).
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany.
| |
Collapse
|
3
|
Aboumsallem JP, de Boer RA. IGFBP7: From Senescence Biomarker to a Vaccine for Heart Failure. Circulation 2024; 150:390-392. [PMID: 39074184 DOI: 10.1161/circulationaha.124.067059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Affiliation(s)
- Joseph Pierre Aboumsallem
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| | - Rudolf A de Boer
- Erasmus MC, Cardiovascular Institute, Thorax Center, Department of Cardiology, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Ganzetti GS, Parolini C. Microarray analysis identifies human apoA-I Milano and apoA-II as determinants of the liver gene expression related to lipid and energy metabolism. Exp Cell Res 2023; 433:113826. [PMID: 37858836 DOI: 10.1016/j.yexcr.2023.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The phenotype of individuals carrying the apolipoprotein A-IMilano (apoA-IM), the mutant form of human apoA-I (apoA-I), is characterized by very low concentrations of HDL and apoA-I, and hypertriglyceridemia. Paradoxically, these subjects are not found to be at increased risk of premature cardiovascular disease compared to controls. Besides, various in vitro and in vivo studies have demonstrated that apoA-IM possesses greater anti-atherosclerotic activity compared to apoA-I. The molecular mechanisms explaining the apoA-IM carrier's phenotype and the apoA-IM higher efficacy are still not fully elucidated. To investigate such mechanisms, we crossed previously generated apoA-I (A-I k-in) or apoA-IM knock-in mice (A-IM k-in) with transgenic mice expressing human apoA-II but lacking murine apoA-I (hA-II) to generate hA-II/A-I k-in, and hA-II/A-IM k-in, respectively. These genetically modified mice completely reproduced the apoA-IM carrier's phenotype, including hypoalphalipoproteinemia and hypertriglyceridemia. Furthermore, by using the microarray methodology, we investigated the intrinsic differences in hepatic gene expression among these k-in mouse lines. The expression of 871, 1,018, 1129 and 764 genes was significantly altered between 1) hA-II/A-I and hA-II/A-IM k-in; 2) A-IM and hA-II/A-IM k-in; 3) A-I and A-IM; 4) A-I and hA-II/A-I k-in liver samples, respectively. Bioinformatics analysis highlighted that the hepatic expression of two genes, Elovl6 and Gatm, related to fatty acid/lipid and energy metabolism, respectively, is influenced by the presence of the apoA-IM natural variant and/or apoA-II.
Collapse
Affiliation(s)
- Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
5
|
Xing L, Liu Y, Wang J, Tian P, Liu P. High-Density Lipoprotein and Heart Failure. Rev Cardiovasc Med 2023; 24:321. [PMID: 39076447 PMCID: PMC11272862 DOI: 10.31083/j.rcm2411321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/31/2024] Open
Abstract
The protective effect of high-density lipoprotein (HDL) on atherosclerosis is well known, and its mechanisms of action has been extensively studied. However, the impact of HDL on heart failure and its mechanisms are still controversial or unknown. The cardioprotective role of HDL may be reflected in its antioxidant, anti-inflammatory, anti-apoptotic, and endothelial function protection. In epidemiological studies, high-density lipoprotein cholesterol (HDL-C) levels have been negatively associated with heart failure (HF). The major protein component of HDL-C is apolipoprotein (Apo) A-I, while paraoxonase-1 (PON-1) is an essential mediator for many protective functions of HDL, and HDL may act through components like (Apo) A-I or PON-1 to delay heart failure progress. HDL can slow heart failure disease progression through parts like (Apo) A-I or PON-1. The potential causality between HDL and heart failure, the role of HDL in the pathogenesis of HF, and its interaction with C-reactive protein (CRP), triglycerides (TG), and monocytes in the process of heart failure have been briefly summarized and discussed in this article. HDL plays an important role in the pathogenesis, progression and treatment of HF.
Collapse
Affiliation(s)
- Liyun Xing
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Yixuan Liu
- School of Clinical and Basic Medicine, Shandong First Medical University,
250117 Jinan, Shandong, China
| | - Jiayu Wang
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Peiqing Tian
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Ping Liu
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| |
Collapse
|
6
|
Klobučar I, Degoricija V, Potočnjak I, Trbušić M, Pregartner G, Berghold A, Fritz-Petrin E, Habisch H, Madl T, Frank S. HDL-apoA-II Is Strongly Associated with 1-Year Mortality in Acute Heart Failure Patients. Biomedicines 2022; 10:1668. [PMID: 35884971 PMCID: PMC9313377 DOI: 10.3390/biomedicines10071668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
The prognostic value of the subset of high-density lipoprotein (HDL) particles containing apolipoprotein (apo)A-II (HDL-apoA-II) in acute heart failure (AHF) remains unexplored. In this study, baseline serum levels of HDL-apoA-II (total and subfractions 1−4) were measured in 315 AHF patients using NMR spectroscopy. The mean patient age was 74.2 ± 10.5 years, 136 (43.2%) were female, 288 (91.4%) had a history of cardiomyopathy, 298 (94.6%) presented as New York Heart Association class 4, and 118 (37.5%) patients died within 1 year after hospitalization for AHF. Multivariable Cox regression analyses, adjusted for age and sex as well as other clinical and laboratory parameters associated with 1-year mortality in the univariable analyses, revealed a significant inverse association of HDL-apoA-II (hazard ratio (HR) 0.67 per 1 standard deviation (1 SD) increase, 95% confidence interval (CI) 0.47−0.94, p = 0.020), HDL2-apoA-II (HR 0.72 per 1 SD increase, 95% CI 0.54−0.95, p = 0.019), and HDL3-apoA-II (HR 0.59 per 1 SD increase, 95% CI 0.43−0.80, p < 0.001) with 1-year mortality. We conclude that low baseline HDL-apoA-II, HDL2-apoA-II, and HDL3-apoA-II serum levels are associated with increased 1-year mortality in AHF patients and may thus be of prognostic value in AHF.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| | - Ines Potočnjak
- Institute for Clinical Medical Research and Education, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia;
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics und Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Eva Fritz-Petrin
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Hansjörg Habisch
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Tobias Madl
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
7
|
Muthuramu I, Mishra M, De Geest B. Increased Remnant Lipoproteins in Apo E Deficient Mice Induce Coronary Atherosclerosis following Transverse Aortic Constriction and Aggravate the Development of Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure. Biomedicines 2022; 10:biomedicines10071592. [PMID: 35884897 PMCID: PMC9312863 DOI: 10.3390/biomedicines10071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Murine coronary arteries are very resistant to the development of atherosclerosis, which may be related to their intramyocardial course. Blood pressure promotes atherosclerotic plaque formation by acting as a physical force that potentiates the migration of pro-atherogenic lipoproteins across the endothelium. C57BL/6N apolipoprotein (apo) E deficient mice have increased remnant lipoproteins that are a risk factor for coronary atherosclerosis. In this study, our aim was to quantify coronary atherosclerosis and artery remodeling following transverse aortic constriction (TAC) in C57BL/6N apo E−/− mice and to evaluate the impact of increased remnant lipoproteins on the development of pressure overload-induced cardiac hypertrophy and heart failure. Advanced atherosclerotic lesions were observed in the left coronary artery of C57BL/6N apo E−/− TAC mice but not in C57BL/6N TAC mice. Pressure overload resulted in markedly increased cardiac hypertrophy and more pronounced heart failure in C57BL/6N apo E−/− TAC mice in comparison to C57BL/6N TAC mice. Pathological hypertrophy, as evidenced by increased myocardial fibrosis and capillary rarefaction, was more prominent in C57BL/6N TAC apo E−/− than in C57BL/6N TAC mice and led to more marked cardiac dysfunction. In conclusion, TAC in apo E deficient mice induces coronary atherosclerosis and aggravates the development of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, 3000 Leuven, Belgium; (I.M.); (M.M.)
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, 3000 Leuven, Belgium; (I.M.); (M.M.)
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, University Utrecht, 3508 GA Utrecht, The Netherlands
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, 3000 Leuven, Belgium; (I.M.); (M.M.)
- Correspondence: ; Tel.: +32-16-372059; Fax: +32-16-345990
| |
Collapse
|
8
|
Sirtori CR, Corsini A, Ruscica M. The Role of High-Density Lipoprotein Cholesterol in 2022. Curr Atheroscler Rep 2022; 24:365-377. [PMID: 35274229 PMCID: PMC8913032 DOI: 10.1007/s11883-022-01012-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE OF THE REVIEW High-density lipoproteins (HDL) are responsible for the transport in plasma of a large fraction of circulating lipids, in part from tissue mobilization. The evaluation of HDL-associated cholesterol (HDL-C) has provided a standard method for assessing cardiovascular (CV) risk, as supported by many contributions on the mechanism of this arterial benefit. The present review article will attempt to investigate novel findings on the role and mechanism of HDL in CV risk determination. RECENT FINDINGS The most recent research has been aimed to the understanding of how a raised functional capacity of HDL, rather than elevated levels per se, may be responsible for the postulated CV protection. Markedly elevated HDL-C levels appear instead to be associated to a raised coronary risk, indicative of a U-shaped relationship. While HDL-C reduction is definitely related to a raised CV risk, HDL-C elevations may be linked to non-vascular diseases, such as age-related macular disease. The description of anti-inflammatory, anti-oxidative and anti-infectious properties has indicated potential newer areas for diagnostic and therapeutic approaches. In the last two decades inconclusive data have arisen from clinical trials attempting to increase HDL-C pharmacologically or by way of recombinant protein infusions (most frequently with the mutant A-I Milano); prevention of stent occlusion or heart failure treatment have shown instead significant promise. Targeted clinical studies are still ongoing.
Collapse
Affiliation(s)
- Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
9
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
10
|
da Silva FS, Aquino de Souza NCS, de Moraes MV, Abreu BJ, de Oliveira MF. CmyoSize: An ImageJ macro for automated analysis of cardiomyocyte size in images of routine histology staining. Ann Anat 2022; 241:151892. [DOI: 10.1016/j.aanat.2022.151892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
|
11
|
Xu H, Wang Q, Liu Y, Meng L, Long H, Wang L, Liu D. U-Shaped Association Between Serum Uric Acid Level and Hypertensive Heart Failure: A Genetic Matching Case-Control Study. Front Cardiovasc Med 2021; 8:708581. [PMID: 34957229 PMCID: PMC8692761 DOI: 10.3389/fcvm.2021.708581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Heart failure (HF) is a global pandemic and lays an added burden on public healthcare. Previous studies indicated that high and low serum uric acid levels are associated with worse outcomes in many diseases. Reduced serum uric acid may not result in a better outcome. Methods: A comparative, matched cross-sectional study design was implemented. The matching variables were age, sex, BMI, BP, and histories of CKD, CVD, diabetes mellitus, stroke, hyperlipidemia. We reviewed the electronic medical records to identify patients diagnosed with hypertension or hypertensive heart failure (HHF) admitted to Beijing Hospital's cardiology department. Results: The median age of the two groups after matching are 71. There are 55.6% males in the hypertension group and 53.8% in the heart failure group. Univariate logistic regression analysis showed that UA's quadratic term is significant (OR = 1.00, 95% CI 1.00 to 1.00; P = 0.03), which indicated a u-shaped relationship between hypertension and HHF. FBS (OR = 0.22, 95% CI 0.05 to 0.95, p = 0.07) and HDL (OR = 1.23, 95% CI 1.00 to 1.54, P = 0.05) were not significant but close. Conclusion: Our results supported that both low and high uric acid levels were predictive of hypertensive heart failure. Besides, high-density lipoprotein cholesterol and fasting blood sugar were also associated with hypertensive heart failure. Low-density lipoprotein cholesterol was not associated with hypertensive heart failure.
Collapse
Affiliation(s)
- Hongxuan Xu
- Chinese Academy of Medical Sciences, National Center of Gerontology, National Health Commission, Department of Cardiology, Beijing Hospital, Institute of Geriatric Medicine, Beijing, China.,The Key Laboratory of Geriatrics, Chinese Academy of Medical Sciences, Beijing Institute of Geriatrics, Beijing Hospital National Center of Gerontology, Institute of Geriatric Medicine, Beijing, China
| | - Quan Wang
- Yuetan Community Health Center, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yunqing Liu
- Chinese Academy of Medical Sciences, National Center of Gerontology, National Health Commission, Department of Cardiology, Beijing Hospital, Institute of Geriatric Medicine, Beijing, China.,The Key Laboratory of Geriatrics, Chinese Academy of Medical Sciences, Beijing Institute of Geriatrics, Beijing Hospital National Center of Gerontology, Institute of Geriatric Medicine, Beijing, China
| | - Lingbing Meng
- Chinese Academy of Medical Sciences, National Center of Gerontology, National Health Commission, Department of Cardiology, Beijing Hospital, Institute of Geriatric Medicine, Beijing, China.,Chinese Academy of Medical Science, Peking Union Medical College, Beijing, China
| | - Huanyu Long
- The Key Laboratory of Geriatrics, Chinese Academy of Medical Sciences, Beijing Institute of Geriatrics, Beijing Hospital National Center of Gerontology, Institute of Geriatric Medicine, Beijing, China
| | - Li Wang
- The Key Laboratory of Geriatrics, Chinese Academy of Medical Sciences, Beijing Institute of Geriatrics, Beijing Hospital National Center of Gerontology, Institute of Geriatric Medicine, Beijing, China.,Chinese Academy of Medical Sciences, Departments of Neurology, National Center of Gerontology, Beijing Hospital, Institute of Geriatric Medicine, Beijing, China
| | - Deping Liu
- Chinese Academy of Medical Sciences, National Center of Gerontology, National Health Commission, Department of Cardiology, Beijing Hospital, Institute of Geriatric Medicine, Beijing, China.,Yuetan Community Health Center, Fuxing Hospital, Capital Medical University, Beijing, China.,Peking University Health Science Centre, Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
12
|
De Geest B, Mishra M. Role of high-density lipoproteins in cardioprotection and in reverse remodeling: Therapeutic implications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159022. [PMID: 34333125 DOI: 10.1016/j.bbalip.2021.159022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Cardioprotection includes all mechanisms that contribute to preservation of the heart by reducing or even preventing myocardial damage. High-density lipoproteins (HDLs) are circulating multimolecular platforms that exert a multitude of effects on cardiomyocytes and nonmyocyte cells in the myocardium leading to preservation of cardiac structure and function. Animal intervention studies applying HDL-targeted therapies have provided consistent evidence that HDLs protect against ischemia-reperfusion injury, leading to smaller myocardial infarctions, and that HDLs attenuate infarct expansion and cardiac remodeling post-myocardial infarction. These beneficial effects of HDLs are not restricted to prevention of development of ischemic cardiomyopathy but also apply to prevention of pathological hypertrophy and adverse remodeling in the presence of diabetes or in the presence of pressure overload. Moreover, HDLs can induce reverse remodeling characterized by a reduction of cardiac hypertrophy, a decrease of myocardial fibrosis, a regression of capillary rarefaction, and a restoration of cardiac function. HDL-targeted interventions are an effective treatment for heart failure in animal models. In conclusion, whereas protective effects of HDLs on coronary arteries remain essentially unproven till now, the potential for clinical translation of HDL-targeted interventions in prevention of cardiomyopathy and in treatment of heart failure is supported by consistent evidence from animal intervention studies.
Collapse
Affiliation(s)
- Bart De Geest
- Centre for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium.
| | - Mudit Mishra
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
13
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
14
|
Kessler EL, Oerlemans MIFJ, van den Hoogen P, Yap C, Sluijter JPG, de Jager SCA. Immunomodulation in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives. J Cardiovasc Transl Res 2021; 14:63-74. [PMID: 32444946 PMCID: PMC7892675 DOI: 10.1007/s12265-020-10026-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
The heart failure (HF) epidemic is growing and approximately half of the HF patients have heart failure with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous syndrome, characterized by a preserved left ventricular ejection fraction (LVEF ≥ 50%) with diastolic dysfunction, and is associated with high morbidity and mortality. Underlying comorbidities of HFpEF, i.e., hypertension, type 2 diabetes mellitus, obesity, and renal failure, lead to a systemic pro-inflammatory state, thereby affecting normal cardiac function. Increased inflammatory biomarkers predict incident HFpEF and are higher in patients with HFpEF as compared with heart failure with reduced ejection fraction (HFrEF). Randomized trials in HFpEF patients using traditional HF medication failed to demonstrate a clear benefit on hard endpoints (mortality and/or HF hospitalization). Therefore, therapies targeting underlying comorbidities and systemic inflammation in early HFpEF may provide better opportunities. Here, we provide an overview of the current state and future perspectives of immunomodulatory therapies for HFpEF.
Collapse
Affiliation(s)
- Elise L Kessler
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, 3511 EP, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Martinus I F J Oerlemans
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Patricia van den Hoogen
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carmen Yap
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands.
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
15
|
High-Density Lipoprotein-Targeted Therapies for Heart Failure. Biomedicines 2020; 8:biomedicines8120620. [PMID: 33339429 PMCID: PMC7767106 DOI: 10.3390/biomedicines8120620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
The main and common constituents of high-density lipoproteins (HDLs) are apolipoprotein A-I, cholesterol, and phospholipids. Biochemical heterogeneity of HDL particles is based on the variable presence of one or more representatives of at least 180 proteins, 200 lipid species, and 20 micro RNAs. HDLs are circulating multimolecular platforms that perform divergent functions whereby the potential of HDL-targeted interventions for treatment of heart failure can be postulated based on its pleiotropic effects. Several murine studies have shown that HDLs exert effects on the myocardium, which are completely independent of any impact on coronary arteries. Overall, HDL-targeted therapies exert a direct positive lusitropic effect on the myocardium, inhibit the development of cardiac hypertrophy, suppress interstitial and perivascular myocardial fibrosis, increase capillary density in the myocardium, and prevent the occurrence of heart failure. In four distinct murine models, HDL-targeted interventions were shown to be a successful treatment for both pre-existing heart failure with reduced ejection fraction (HFrEF) and pre-existing heart failure with preserved ejection fraction (HFrEF). Until now, the effect of HDL-targeted interventions has not been evaluated in randomized clinical trials in heart failure patients. As HFpEF represents an important unmet therapeutic need, this is likely the preferred therapeutic domain for clinical translation.
Collapse
|
16
|
Tsujita M, Vaisman B, Chengyu L, Vickers KC, Okuhira KI, Braesch-Andersen S, Remaley AT. Apolipoprotein A-I in mouse cerebrospinal fluid derives from the liver and intestine via plasma high-density lipoproteins assembled by ABCA1 and LCAT. FEBS Lett 2020; 595:773-788. [PMID: 33020907 DOI: 10.1002/1873-3468.13950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
Abstract
Apolipoprotein (apo) A-I, the major structural protein of high-density lipoprotein (HDL), is present in human and mouse cerebrospinal fluid (CSF) despite its lack of expression in brain cells. To identify the origin of apoA-I in CSF, we generated intestine-specific and liver-specific Apoa1 knockout mice (Apoa1ΔInt and Apoa1Δliv mice, respectively). Lipoprotein profiles of Apoa1ΔInt and Apoa1ΔLiv mice resembled those of control littermates, whereas knockout of Apoa1 in both intestine and liver (Apoa1ΔIntΔLiv ) resulted in a 60-percent decrease in HDL-cholesterol levels, thus strongly mimicking the Apoa1-/- mice. Immunoassays revealed that mouse apoA-I was not present in the CSF of the Apoa1ΔIntΔLiv mice. Furthermore, apoA-I levels in CSF were highly correlated with plasma spherical HDL levels, which were regulated by ABCA1 and LCAT. Collectively, these results suggest that apoA-I protein in CSF originates in liver and small intestine and is taken up from the plasma.
Collapse
Affiliation(s)
- Maki Tsujita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Boris Vaisman
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| | - Liu Chengyu
- Transgenic Core facility, NHLBI, NIH, Bethesda, MD, USA
| | - Kasey C Vickers
- Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
17
|
Richart AL, Reddy M, Khalaji M, Natoli AL, Heywood SE, Siebel AL, Lancaster GL, Murphy AJ, Carey AL, Drew BG, Didichenko SA, Navdaev AV, Kingwell BA. Apo AI Nanoparticles Delivered Post Myocardial Infarction Moderate Inflammation. Circ Res 2020; 127:1422-1436. [PMID: 32951519 DOI: 10.1161/circresaha.120.316848] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Decades of research have examined immune-modulatory strategies to protect the heart after an acute myocardial infarction and prevent progression to heart failure but have failed to translate to clinical benefit. OBJECTIVE To determine anti-inflammatory actions of n-apo AI (Apo AI nanoparticles) that contribute to cardiac tissue recovery after myocardial infarction. METHODS AND RESULTS Using a preclinical mouse model of myocardial infarction, we demonstrate that a single intravenous bolus of n-apo AI (CSL111, 80 mg/kg) delivered immediately after reperfusion reduced the systemic and cardiac inflammatory response. N-apo AI treatment lowered the number of circulating leukocytes by 30±7% and their recruitment into the ischemic heart by 25±10% (all P<5.0×10-2). This was associated with a reduction in plasma levels of the clinical biomarker of cardiac injury, cardiac troponin-I, by 52±17% (P=1.01×10-2). N-apo AI reduced the cardiac expression of chemokines that attract neutrophils and monocytes by 60% to 80% and lowered surface expression of integrin CD11b on monocytes by 20±5% (all P<5.0×10-2). Fluorescently labeled n-apo AI entered the infarct and peri-infarct regions and colocalized with cardiomyocytes undergoing apoptosis and with leukocytes. We further demonstrate that n-apo AI binds to neutrophils and monocytes, with preferential binding to the proinflammatory monocyte subtype and partially via SR-BI (scavenger receptor BI). In patients with type 2 diabetes, we also observed that intravenous infusion of the same n-apo AI (CSL111, 80 mg/kg) similarly reduced the level of circulating leukocytes by 12±5% (all P<5.0×10-2). CONCLUSIONS A single intravenous bolus of n-apo AI delivered immediately post-myocardial infarction reduced the systemic and cardiac inflammatory response through direct actions on both the ischemic myocardium and leukocytes. These data highlight the anti-inflammatory effects of n-apo AI and provide preclinical support for investigation of its use for management of acute coronary syndromes in the setting of primary percutaneous coronary interventions.
Collapse
Affiliation(s)
- Adele L Richart
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Medini Reddy
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Mina Khalaji
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Alaina L Natoli
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Sarah E Heywood
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | | | - Graeme L Lancaster
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Andrew L Carey
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | | | | | - Bronwyn A Kingwell
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.).,Department of Physiology (B.A.K.), Monash University, Melbourne, Australia.,School of Medicine (B.A.K.), Monash University, Melbourne, Australia.,CSL Ltd, Bio21, Parkville, Australia (B.A.K.)
| |
Collapse
|
18
|
Administration of apo A-I (Milano) nanoparticles reverses pathological remodelling, cardiac dysfunction, and heart failure in a murine model of HFpEF associated with hypertension. Sci Rep 2020; 10:8382. [PMID: 32433476 PMCID: PMC7239951 DOI: 10.1038/s41598-020-65255-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/02/2020] [Indexed: 01/01/2023] Open
Abstract
Therapeutic interventions with proven efficacy in heart failure with reduced ejection fraction (HFrEF) have been unsuccessful in heart failure with preserved ejection fraction (HFpEF). The modifiable risk factor with the greatest impact on the development of HFpEF is hypertension. The objectives of this study were to establish a murine model of HFpEF associated with hypertension and to evaluate the effect of apo A-IMilano nanoparticles (MDCO-216) on established HFpEF in this model. Subcutaneous infusion of angiotensin II in combination with 1% NaCl in the drinking water was started at the age of 12 weeks in male C57BL/6 N mice and continued for the entire duration of the experiment. Treatment with MDCO-216 partially reversed established cardiac hypertrophy, cardiomyocyte hypertrophy, capillary rarefaction, and perivascular fibrosis in this model. Pressure-volume loop analysis was consistent with HFpEF in hypertension mice as evidenced by the preserved ejection fraction and a significant reduction of cardiac output (7.78 ± 0.56 ml/min versus 10.5 ± 0.7 ml/min; p < 0.01) and of the peak filling rate (p < 0.05). MDCO-216 completely reversed cardiac dysfunction and abolished heart failure as evidenced by the normal lung weight and normal biomarkers of heart failure. In conclusion, apo A-IMilano nanoparticles constitute an effective treatment for established hypertension-associated HFpEF.
Collapse
|
19
|
Chirinos JA, Zhao L, Jia Y, Frej C, Adamo L, Mann D, Shewale SV, Millar JS, Rader DJ, French B, Brandimarto J, Margulies KB, Parks JS, Wang Z, Seiffert DA, Fang J, Sweitzer N, Chistoffersen C, Dahlbäck B, Car BD, Gordon DA, Cappola TP, Javaheri A. Reduced Apolipoprotein M and Adverse Outcomes Across the Spectrum of Human Heart Failure. Circulation 2020; 141:1463-1476. [PMID: 32237898 PMCID: PMC7200273 DOI: 10.1161/circulationaha.119.045323] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Apo (apolipoprotein) M mediates the physical interaction between high-density lipoprotein (HDL) particles and sphingosine-1-phosphate (S1P). Apo M exerts anti-inflammatory and cardioprotective effects in animal models. METHODS In a subset of PHFS (Penn Heart Failure Study) participants (n=297), we measured apo M by Enzyme-Linked ImmunoSorbent Assay (ELISA). We also measured total S1P by liquid chromatography-mass spectrometry and isolated HDL particles to test the association between apo M and HDL-associated S1P. We confirmed the relationship between apo M and outcomes using modified aptamer-based apo M measurements among 2170 adults in the PHFS and 2 independent cohorts: the Washington University Heart Failure Registry (n=173) and a subset of TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial; n=218). Last, we examined the relationship between apo M and ≈5000 other proteins (SomaScan assay) to identify biological pathways associated with apo M in heart failure. RESULTS In the PHFS, apo M was inversely associated with the risk of death (standardized hazard ratio, 0.56 [95% CI, 0.51-0.61]; P<0.0001) and the composite of death/ventricular assist device implantation/heart transplantation (standardized hazard ratio, 0.62 [95% CI, 0.58-0.67]; P<0.0001). This relationship was independent of HDL cholesterol or apo AI levels. Apo M remained associated with death (hazard ratio, 0.78 [95% CI, 0.69-0.88]; P<0.0001) and the composite of death/ventricular assist device/heart transplantation (hazard ratio, 0.85 [95% CI, 0.76-0.94]; P=0.001) in models that adjusted for multiple confounders. This association was present in both heart failure with reduced and preserved ejection fraction and was replicated in the Washington University cohort and a cohort with heart failure with preserved ejection fraction only (TOPCAT). The S1P and apo M content of isolated HDL particles strongly correlated (R=0.81, P<0.0001). The top canonical pathways associated with apo M were inflammation (negative association), the coagulation system (negative association), and liver X receptor/retinoid X receptor activation (positive association). The relationship with inflammation was validated with multiple inflammatory markers measured with independent assays. CONCLUSIONS Reduced circulating apo M is independently associated with adverse outcomes across the spectrum of human heart failure. Further research is needed to assess whether the apo M/S1P axis is a suitable therapeutic target in heart failure.
Collapse
Affiliation(s)
- Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Lei Zhao
- Bristol-Myers Squibb Company, Lawrenceville, NJ
| | - Yi Jia
- SomaLogic Inc., Boulder, CO
| | | | - Luigi Adamo
- Washington University School of Medicine, St. Louis, MO
| | - Douglas Mann
- Washington University School of Medicine, St. Louis, MO
| | - Swapnil V. Shewale
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - John S. Millar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Daniel J. Rader
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Benjamin French
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jeff Brandimarto
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Kenneth B. Margulies
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - John S. Parks
- Dept. of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | | | | | - James Fang
- University of Utah. Salt Lake City, Utah
| | - Nancy Sweitzer
- Sarver Heart Institute, University of Arizona, Tuscon, AZ
| | - Christina Chistoffersen
- Dept. of Clinical Biochemistry, Rigshospitalet and Dept. of Biomedical Sciences, Copenhagen, Denmark
| | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
20
|
Mishra M, Muthuramu I, De Geest B. HDL dysfunction, function, and heart failure. Aging (Albany NY) 2020; 11:293-294. [PMID: 30654330 PMCID: PMC6366992 DOI: 10.18632/aging.101775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| | - Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Zanoni P, von Eckardstein A. Inborn errors of apolipoprotein A-I metabolism: implications for disease, research and development. Curr Opin Lipidol 2020; 31:62-70. [PMID: 32022753 DOI: 10.1097/mol.0000000000000667] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review current knowledge regarding naturally occurring mutations in the human apolipoprotein A-I (APOA1) gene with a focus on their clinical complications as well as their exploitation for the elucidation of structure-function-(disease) relationships and therapy. RECENT FINDINGS Bi-allelic loss-of-function mutations in APOA1 cause HDL deficiency and, in the majority of patients, premature atherosclerotic cardiovascular disease (ASCVD) and corneal opacities. Heterozygous HDL-cholesterol decreasing mutations in APOA1 were associated with increased risk of ASCVD in several but not all studies. Some missense mutations in APOA1 cause familial amyloidosis. Structure-function-reationships underlying the formation of amyloid as well as the manifestion of amyloidosis in specific tissues are better understood. Lessons may also be learnt from the progress in the treatment of amyloidoses induced by transthyretin variants. Infusion of reconstituted HDL (rHDL) containing apoA-I (Milano) did not cause regression of atherosclerosis in coronary arteries of patients with acute coronary syndrome. However, animal experiments indicate that rHDL with apoA-I (Milano) or apoA-I mimetic peptides may be useful for the treatment of heart failure of inflammatory bowel disease. SUMMARY Specific mutations in APOA1 are the cause of premature ASCVD or familial amyloidosis. Synthetic mimetics of apoA-I (mutants) may be useful for the treatment of several diseases beyond ASCVD.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute of Medical Genetics, University of Zurich
| | | |
Collapse
|
22
|
Parolini C. A Compendium of the Biological Effects of Apolipoprotein A-I Milano. J Pharmacol Exp Ther 2020; 372:54-62. [PMID: 31649050 DOI: 10.1124/jpet.119.261719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 03/08/2025] Open
Abstract
Obesity is a pathologic condition generated by an energy imbalance, that is, excess caloric consumption, leading to weight gain and metabolic disturbances characterized by adipose tissue inflammation and hyperglycemic conditions. In line with these observations, increasing evidence causally links inflammation, or the molecules and networks integral to inflammatory response, to the development of obesity and the complications that emerge from this pathology, such as cardiovascular, neurologic, respiratory, and metabolic illnesses, as well as sepsis and cancer. Not surprisingly, this chronic and abnormal metabolic background leads to constant derangements in innate and adaptive immunity. It is well known that high-density lipoprotein (HDL) possesses anti-inflammatory and antioxidant properties, and various studies have highlighted an emerging role of HDL in modulating immune function. The efficacy of synthetic HDL (sHDL) containing the recombinant form of apoA-IMilano (sHDL-apoA-IM), originating from the observation that carriers of this mutation have low levels of HDL cholesterol without increased atherosclerosis, has been largely proved in diverse animal models of atherosclerosis; however, the therapeutic use of sHDL-apoA-IM still needs clinical validation. One of the main limitations to the use of recombinant proteins in clinical studies lies in the unsustainable purification costs. Unpurified rice-milk-apoA-IM demonstrated anti-inflammatory and antiatherogenic properties in a mouse model, even though administrated by an unconventional way: by oral gavage. Additionally, recent data have uncovered new therapeutic applications for this sHDL-apoA-IM This review provides an overview of all potential application of sHDL-apoA-IM in some inflammatory-based diseases. SIGNIFICANCE STATEMENT: A recent study demonstrated that oral administration of rice-seed protein extracts containing the apoA-IM (i.e., the milk-apoA-IM) reduced atherosclerosis development in a mouse model. Moreover, the rice-milk-apoA-IM preserved both in vitro and in vivo anti-inflammatory properties, as observed when sHDL-apoA-IM was given by intravascular infusion. Besides, various studies suggested that sHDL-apoA-IM could positively affect other inflammatory-based diseases. Together, these data might represent a new starting point for "sHDL-apoA-IM-based therapies" in chronic degenerative disease.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
23
|
Sirtori CR, Ruscica M, Calabresi L, Chiesa G, Giovannoni R, Badimon JJ. HDL therapy today: from atherosclerosis, to stent compatibility to heart failure. Ann Med 2019; 51:345-359. [PMID: 31729238 PMCID: PMC7877888 DOI: 10.1080/07853890.2019.1694695] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epidemiologically, high-density lipoprotein (HDL) cholesterol levels have been inversely associated to cardiovascular (CV) events, although a Mendelian Randomisation Study had failed to establish a clear causal role. Numerous atheroprotective mechanisms have been attributed to HDL, the main being the ability to promote cholesterol efflux from arterial walls; anti-inflammatory effects related to HDL ligands such as S1P (sphingosine-1-phosphate), resolvins and others have been recently identified. Experimental studies and early clinical investigations have indicated the potential of HDL to slow progression or induce regression of atherosclerosis. More recently, the availability of different HDL formulations, with different phospholipid moieties, has allowed to test other indications for HDL therapy. Positive reports have come from studies on coronary stent biocompatibility, where the use of HDL from different sources reduced arterial cell proliferation and thrombogenicity. The observation that low HDL-C levels may be associated with an enhanced risk of heart failure (HF) has also suggested that HDL therapy may be applied to this condition. HDL infusions or apoA-I gene transfer were able to reverse heart abnormalities, reduce diastolic resistance and improve cardiac metabolism. HDL therapy may be effective not only in atherosclerosis, but also in other conditions, of relevant impact on human health.Key messagesHigh-density lipoproteins have as a major activity that of removing excess cholesterol from tissues (particularly arteries).Knowledge on the activity of high-density lipoproteins on health have however significantly widened.HDL-therapy may help to improve stent biocompatibility and to reduce peripheral arterial resistance in heart failure.
Collapse
Affiliation(s)
- C R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - G Chiesa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - R Giovannoni
- Department of Biology, University of Pisa, Pisa, Italy
| | - J J Badimon
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The inverse association between plasma high-density lipoprotein cholesterol (HDL-C) concentration and the incidence of cardiovascular disease (CVD) has been unequivocally proven by many epidemiological studies. There are several genetic disorders affecting HDL-C plasma levels, either providing atheroprotection or predisposing to premature atherosclerosis. However, up to date, there has not been any pharmacological intervention modulating HDL-C levels, which has been clearly shown to prevent the progression of CVD. Thus, clarifying the exact underlying mechanisms of inheritance of these genetic disorders that affect HDL is a current goal of the research, as key roles of molecular components of HDL metabolism and function can be revealed and become targets for the discovery of novel medications for the prevention and treatment of CVD. RECENT FINDINGS Primary genetic disorders of HDL can be either associated with longevity or, in contrast, may lead to premature CVD, causing high morbidity and mortality to their carriers. A large body of recent research has closely examined the genetic disorders of HDL and new promising therapeutic strategies have been developed, which may be proven beneficial in patients predisposed to CVD in the near future. SUMMARY We have reviewed recent findings on the inheritance of genetic disorders associated with high and low HDL-C plasma levels and we have discussed their clinical features, as well as information about new promising HDL-C-targeted therapies that are under clinical trials.
Collapse
Affiliation(s)
| | - Constantine E Kosmas
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
25
|
Aboumsallem JP, Muthuramu I, Mishra M, De Geest B. Cholesterol-Lowering Gene Therapy Prevents Heart Failure with Preserved Ejection Fraction in Obese Type 2 Diabetic Mice. Int J Mol Sci 2019; 20:ijms20092222. [PMID: 31064116 PMCID: PMC6539537 DOI: 10.3390/ijms20092222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Hypercholesterolemia may be causally related to heart failure with preserved ejection fraction (HFpEF). We aimed to establish a HFpEF model associated with hypercholesterolemia and type 2 diabetes mellitus by feeding a high-sucrose/high-fat (HSHF) diet to C57BL/6J low-density lipoprotein receptor (LDLr)−/− mice. Secondly, we evaluated whether cholesterol-lowering adeno-associated viral serotype 8 (AAV8)-mediated LDLr gene transfer prevents HFpEF. AAV8-LDLr gene transfer strongly (p < 0.001) decreased plasma cholesterol in standard chow (SC) mice (66.8 ± 2.5 mg/dl versus 213 ± 12 mg/dl) and in HSHF mice (84.6 ± 4.4 mg/dl versus 464 ± 25 mg/dl). The HSHF diet induced cardiac hypertrophy and pathological remodeling, which were potently counteracted by AAV8-LDLr gene transfer. Wet lung weight was 19.0% (p < 0.001) higher in AAV8-null HSHF mice than in AAV8-null SC mice, whereas lung weight was normal in AAV8-LDLr HSHF mice. Pressure–volume loop analysis was consistent with HFpEF in AAV8-null HSHF mice and showed a completely normal cardiac function in AAV8-LDLr HSHF mice. Treadmill exercise testing demonstrated reduced exercise capacity in AAV8-null HSHF mice but a normal capacity in AAV8-LDLr HSHF mice. Reduced oxidative stress and decreased levels of tumor necrosis factor-α may mediate the beneficial effects of cholesterol lowering. In conclusion, AAV8-LDLr gene therapy prevents HFpEF.
Collapse
Affiliation(s)
- Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Effective Treatment of Diabetic Cardiomyopathy and Heart Failure with Reconstituted HDL (Milano) in Mice. Int J Mol Sci 2019; 20:ijms20061273. [PMID: 30871282 PMCID: PMC6470758 DOI: 10.3390/ijms20061273] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
The risk of heart failure (HF) is prominently increased in patients with type 2 diabetes mellitus. The objectives of this study were to establish a murine model of diabetic cardiomyopathy induced by feeding a high-sugar/high-fat (HSHF) diet and to evaluate the effect of reconstituted HDLMilano administration on established HF in this model. The HSHF diet was initiated at the age of 12 weeks and continued for 16 weeks. To investigate the effect of reconstituted HDLMilano on HF, eight intraperitoneal administrations of MDCO-216 (100 mg/kg protein concentration) or of an identical volume of control buffer were executed with a 48-h interval starting at the age of 28 weeks. The HSHF diet-induced obesity, hyperinsulinemia, and type 2 diabetes mellitus. Diabetic cardiomyopathy was present in HSHF diet mice as evidenced by cardiac hypertrophy, increased interstitial and perivascular fibrosis, and decreased myocardial capillary density. Pressure-volume loop analysis indicated the presence of both systolic and diastolic dysfunction and of decreased cardiac output in HSHF diet mice. Treatment with MDCO-216 reversed pathological remodelling and cardiac dysfunction and normalized wet lung weight, indicating effective treatment of HF. No effect of control buffer injection was observed. In conclusion, reconstituted HDLMilano reverses HF in type 2 diabetic mice.
Collapse
|
27
|
Ayaz O, Banga S, Heinze-Milne S, Rose RA, Pyle WG, Howlett SE. Long-term testosterone deficiency modifies myofilament and calcium-handling proteins and promotes diastolic dysfunction in the aging mouse heart. Am J Physiol Heart Circ Physiol 2019; 316:H768-H780. [PMID: 30657724 DOI: 10.1152/ajpheart.00471.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of long-term gonadectomy (GDX) on cardiac contractile function was explored in the setting of aging. Male mice were subjected to bilateral GDX or sham operation (4 wk) and investigated at 16-18 mo of age. Ventricular myocytes were field stimulated (2 Hz, 37°C). Peak Ca2+ transients (fura 2) and contractions were similar in GDX and sham-operated mice, although Ca2+ transients (50% decay time: 45.2 ± 2.3 vs. 55.6 ± 3.1 ms, P < 0.05) and contractions (time constant of relaxation: 39.1 ± 3.2 vs. 69.5 ± 9.3 ms, P < 0.05) were prolonged in GDX mice. Action potential duration was increased in myocytes from GDX mice, but this did not account for prolonged responses, as Ca2+ transient decay was slow even when cells from GDX mice were voltage clamped with simulated "sham" action potentials. Western blots of proteins involved in Ca2+ sequestration and efflux showed that Na+/Ca2+ exchanger and sarco(endo)plasmic reticulum Ca2+-ATPase type 2 protein levels were unaffected, whereas phospholamban was dramatically higher in ventricles from aging GDX mice (0.24 ± 0.02 vs. 0.86 ± 0.13, P < 0.05). Myofilament Ca2+ sensitivity at physiological Ca2+ was similar, but phosphorylation of essential myosin light chain 1 was reduced by ≈50% in ventricles from aging GDX mice. M-mode echocardiography showed no change in systolic function (e.g., ejection fraction). Critically, pulse-wave Doppler echocardiography showed that GDX slowed isovolumic relaxation time (12.9 ± 0.9 vs. 16.9 ± 1.0 ms, P < 0.05), indicative of diastolic dysfunction. Thus, dysregulation of intracellular Ca2+ and myofilament dysfunction contribute to deficits in contraction in hearts from testosterone-deficient aging mice. This suggests that low testosterone helps promote diastolic dysfunction in the aging heart. NEW & NOTEWORTHY The influence of long-term gonadectomy on contractile function was examined in aging male hearts. Gonadectomy slowed the decay of Ca2+ transients and contractions in ventricular myocytes and slowed isovolumic relaxation time, demonstrating diastolic dysfunction. Underlying mechanisms included Ca2+ dysregulation, elevated phospholamban protein levels, and hypophosphorylation of a myofilament protein, essential myosin light chain. Testosterone deficiency led to intracellular Ca2+ dysregulation and myofilament dysfunction, which may facilitate diastolic dysfunction in the setting of aging.
Collapse
Affiliation(s)
- Omar Ayaz
- Department of Pharmacology, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Shubham Banga
- Department of Pharmacology, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Stefan Heinze-Milne
- Department of Pharmacology, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Robert A Rose
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - W Glen Pyle
- Department of Biomedical Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University , Halifax, Nova Scotia , Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
28
|
Aboumsallem JP, Mishra M, Amin R, Muthuramu I, Kempen H, De Geest B. Successful treatment of established heart failure in mice with recombinant HDL (Milano). Br J Pharmacol 2018; 175:4167-4182. [PMID: 30079544 PMCID: PMC6177616 DOI: 10.1111/bph.14463] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The pleiotropic properties of HDL may exert beneficial effects on the myocardium. The effect of recombinant HDLMilano on established heart failure was evaluated in C57BL/6 mice. EXPERIMENTAL APPROACH Mice were subjected to transverse aortic constriction (TAC) or sham operation at the age of 14 weeks. Eight weeks later, TAC and sham mice were each randomized into three different groups. Reference groups were killed at day 56 after the operation for baseline analysis. Five i.p. injections of recombinant HDLMilano (MDCO-216), 100 mg·kg-1 , or an equivalent volume of control buffer were administered with a 48 h interval starting at day 56. Endpoint analyses in the control buffer groups and in the MDCO-216 groups were executed at day 65. KEY RESULTS Lung weight in MDCO-216 TAC mice was 25.3% lower than in reference TAC mice and 27.9% lower than in control buffer TAC mice and was similar in MDCO-216 sham mice. MDCO-216 significantly decreased interstitial fibrosis and increased relative vascularity compared to reference TAC mice and control buffer TAC mice. The peak rate of isovolumetric relaxation in MDCO-216 TAC mice was 30.4 and 36.3% higher than in reference TAC mice and control buffer TAC mice respectively. Nitro-oxidative stress and myocardial apoptosis were significantly reduced in MDCO-216 TAC mice compared to control buffer TAC mice. CONCLUSIONS AND IMPLICATIONS MDCO-216 improves diastolic function, induces regression of interstitial fibrosis and normalizes lung weight in mice with established heart failure. Recombinant HDL may emerge as a treatment modality in heart failure.
Collapse
Affiliation(s)
- Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Ruhul Amin
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| | - Herman Kempen
- The Medicines Company (Schweiz) GmbHZürichSwitzerland
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular SciencesCatholic University of LeuvenLeuvenBelgium
| |
Collapse
|
29
|
Mishra M, Muthuramu I, Aboumsallem JP, Kempen H, De Geest B. Reconstituted HDL (Milano) Treatment Efficaciously Reverses Heart Failure with Preserved Ejection Fraction in Mice. Int J Mol Sci 2018; 19:ijms19113399. [PMID: 30380754 PMCID: PMC6274776 DOI: 10.3390/ijms19113399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents a major unmet therapeutic need. This study investigated whether feeding coconut oil (CC diet) for 26 weeks in female C57BL/6N mice induces HFpEF and evaluated the effect of reconstituted high-density lipoprotein (HDL)Milano (MDCO-216) administration on established HFpEF. Eight intraperitoneal injections of MDCO-216 (100 mg/kg protein concentration) or of an equivalent volume of control buffer were executed with a 48-h interval starting at 26 weeks after the initiation of the diet. Feeding the CC diet for 26 weeks induced pathological left ventricular hypertrophy characterized by a 17.1% (p < 0.0001) lower myocardial capillary density and markedly (p < 0.0001) increased interstitial fibrosis compared to standard chow (SC) diet mice. Parameters of systolic and diastolic function were significantly impaired in CC diet mice resulting in a reduced stroke volume, decreased cardiac output, and impaired ventriculo-arterial coupling. However, ejection fraction was preserved. Administration of MDCO-216 in CC diet mice reduced cardiac hypertrophy, increased capillary density (p < 0.01), and reduced interstitial fibrosis (p < 0.01). MDCO-216 treatment completely normalized cardiac function, lowered myocardial acetyl-coenzyme A carboxylase levels, and decreased myocardial transforming growth factor-β1 in CC diet mice. In conclusion, the CC diet induced HFpEF. Reconstituted HDLMilano reversed pathological remodeling and functional cardiac abnormalities.
Collapse
Affiliation(s)
- Mudit Mishra
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Ilayaraja Muthuramu
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Joseph Pierre Aboumsallem
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| | - Herman Kempen
- The Medicines Company (Schweiz), CH-8001 GmbH Zürich, Switzerland.
| | - Bart De Geest
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Catholic University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|