1
|
Miya MS, Shrestha S, Dhakal A, Shrestha S, Karki R, Thapa K, Simkhada N, Chataut P, Tamang PM, Chhetri A. Seasonal Variation of Forest Butterfly Diversity in Tropical Lowland Nepal. Ecol Evol 2025; 15:e71550. [PMID: 40529335 PMCID: PMC12171244 DOI: 10.1002/ece3.71550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/23/2025] [Accepted: 05/28/2025] [Indexed: 06/20/2025] Open
Abstract
Butterfly populations and diversity vary with the seasons due to bioclimatic factors, particularly precipitation and temperature. Their seasonality in the tropical region of Nepal has not been well studied, and climatic factors have yet to be incorporated into research. Hence, this study examined the seasonal variation of forest butterfly diversity, community composition, and the effect of precipitation and temperature on diversity in the tropical lowland of Nepal. Butterflies were sampled for a year using Pollard Walk and checklist methods. Different forms of diversity indices, similarity/dissimilarity, and indicator species analysis were performed using data from the Pollard Walk. Generalized Linear Mixed Models were employed to assess the effect of precipitation and temperature on species richness and abundance. Data from the checklist method was utilized to account for the overall species richness. A total of 115 butterfly species from six families were documented. The diversity and community composition varied significantly between the seasons, with two seasonal peaks of richness: pre-monsoon and post-monsoon. Species richness and abundance also varied significantly among the families. Species such as Euthalia aconthea, Hypolimnas misippus, Jamides celeno, and Vanessa indica were found to be strong indicators for particular seasons. Nymphalidae was the richest, most abundant, and most diverse family. Different families exhibited noticeable variations in diversity throughout the seasons. Species richness and abundance were positively affected by increased temperature but negatively affected by increased precipitation. The present study highlights the significance of seasonal shifts for butterfly diversity in a tropical region. The seasonality of butterflies in the study area may have also been influenced by anthropogenic activities and human-created habitat heterogeneity, resulting in the dominance of generalist species during specific seasons.
Collapse
Affiliation(s)
- Mahamad Sayab Miya
- Department of Biological SciencesWestern Kentucky UniversityBowling GreenKentuckyUSA
| | - Subarna Shrestha
- Faculty of ForestryAgriculture and Forestry UniversityHetaudaNepal
| | - Annapurna Dhakal
- Institute of ForestryHetauda Campus, Tribhuvan UniversityHetaudaNepal
| | - Soniya Shrestha
- Institute of ForestryHetauda Campus, Tribhuvan UniversityHetaudaNepal
| | - Renuka Karki
- Institute of ForestryHetauda Campus, Tribhuvan UniversityHetaudaNepal
| | - Kriti Thapa
- Institute of ForestryHetauda Campus, Tribhuvan UniversityHetaudaNepal
| | | | - Prakriti Chataut
- Institute of ForestryHetauda Campus, Tribhuvan UniversityHetaudaNepal
| | | | - Apeksha Chhetri
- Institute of ForestryPokhara Campus, Tribhuvan UniversityPokharaNepal
| |
Collapse
|
2
|
Anjum N, Khan S, Verma S, Gaira KS, Rawat B, Chettri N, Hanief M. Plant-pollinator interactions along the altitudinal gradient in Berberis lycium royle: An endangered medicinal plant of the Himalayan region. PLoS One 2025; 20:e0310572. [PMID: 40334260 PMCID: PMC12058197 DOI: 10.1371/journal.pone.0310572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/11/2025] [Indexed: 05/09/2025] Open
Abstract
The terrestrial ecosystem, particularly mountain regions, influences species distribution by providing diverse climatic conditions that vary with rising altitude. These climatic factors play a significant role in determining species phenology and niche width. However, the environmental factors influencing pollination dynamics of specific plant species across altitudes remain unexplored. Considering the gaps, we assess how the composition and abundance of pollinator fauna associated with the important medicinal plant Berberis lyciumRoyle (Berberidaceae) vary across five distinct altitudinal gradients (800-2200 m) in the Pir-Panjal mountain range in the northwestern part of the Indian Himalayan region. Pollinators, including bees, butterflies, wasps, and flies were monitored over two consecutive flowering seasons (2022-2023). A total of 39 insect species representing five orders and 17 families, were recorded visiting B. lycium during its flowering period across the altitudinal range. The linear regression model indicated that all four pollination indices exhibited a declining trend with increasing altitude when data were pooled together. However, only foraging speed (FS) and index of visiting rate (IVR) were showed significant declines. Among individual pollinator groups, only Lepidoptera displayed a significant relationship with altitude, while other groups exhibited asynchrony along the altitudinal gradient. Furthermore, reproductive output (fruit and seed production) declined significantly with increasing altitude. Our findings suggest that while altitude influences species distribution but also differentially shapes plant-pollinator interactions, pollinator foraging behaviour, and reproductive success. This study highlights the importance of monitoring plant-pollinator interactions in fragile Himalayan ecosystem, where environmental changes could have cascading effects on ecological stability.
Collapse
Affiliation(s)
- Nahila Anjum
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu and Kashmir, India
| | - Kailash S. Gaira
- G. B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok, Sikkim, India
| | - Balwant Rawat
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Nakul Chettri
- International Centre for Integrated Mountain Development, Kathmandu, Nepal
| | - Mohd Hanief
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
3
|
Muthukrishnan R, Smiley TM, Title PO, Fudickar AM, Jahn AE, Lau JA. Chasing the Niche: Escaping Climate Change Threats in Place, Time, and Space. GLOBAL CHANGE BIOLOGY 2025; 31:e70167. [PMID: 40197960 DOI: 10.1111/gcb.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 04/10/2025]
Abstract
Climate change is creating mismatches between species' current environments and their historical niches. Locations that once had the abiotic and biotic conditions to support the persistence of a species may now be too warm, too dry, or simply too different, to meet their niche requirements. Changes in behaviors, altered phenology, and range shifts are common responses to climate change. Though these responses are often studied in isolation by scientists from disparate subfields of ecology, they all represent variants of the same solution-strategies to realign the conditions populations experience with their niche. Here, we aim to (1) identify the physiological and ecological effects, and potential alignment, of these three ecological responses: shifts in behavior, phenology, or ranges, (2) determine the circumstances under which each type of response may be more or less effective at mitigating the effects of climate change, and (3) consider how these strategies might interact with each other. Each response has been previously reviewed, but efforts to consider relationships between ecological (or with evolutionary) responses have been limited. A synthetic perspective that considers the similarities among ecological responses and how they interact with each other and with evolutionary responses offers a more robust view on species' resilience to climate change.
Collapse
Affiliation(s)
- Ranjan Muthukrishnan
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, St. Olaf College, Northfield, Minnesota, USA
| | - Tara M Smiley
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Pascal O Title
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Adam M Fudickar
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alex E Jahn
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, Oregon State University, Corvallis, Oregon, USA
| | - Jennifer A Lau
- Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Wepprich T, Henry E, Haddad NM. Voltinism Shifts in Response to Climate Warming Generally Benefit Populations of Multivoltine Butterflies. Ecol Lett 2025; 28:e70018. [PMID: 40172582 DOI: 10.1111/ele.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 04/04/2025]
Abstract
Climate change is implicated as one contributor to insect declines. Insects may respond to warming by advancing phenology and increasing the number of generations each year (voltinism). However, if earlier phenology changes cue-response relationships, then late-season generations might lack time to complete diapause development before winter and result in doomed 'lost generations'. Using 27 years of monitoring of 30 multivoltine butterfly species, we find the opposite, as larger late-season generations (voltinism shifts) are associated with more positive overwinter population growth rates. The potential threat of lost generations is limited to late-season species at cooler sites in years with early frosts. Overall, long-term population trends are positively correlated with larger late-season generations, suggesting that they are an adaptive response to climate warming. Still, overwinter population growth rates and long-term population trends have declined over time as the benefits of voltinism shifts have been insufficient to reverse population declines.
Collapse
Affiliation(s)
| | - Erica Henry
- Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - Nick M Haddad
- Kellogg Biological Station and Department of Integrative Biology, Michigan State University, Hickory, Michigan, USA
| |
Collapse
|
5
|
Koo KA, Park SU. A Dark Future of Endangered Mountain Species, Parnassius bremeri, Under Climate Change. Ecol Evol 2025; 15:e71178. [PMID: 40177682 PMCID: PMC11961400 DOI: 10.1002/ece3.71178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
Climate and land-use changes are key factors in the habitat loss and population declines of climate change-sensitive endangered species. We assessed the climate change effects on the distribution of Parnassius bremeri, a critically endangered wildlife species in the Republic of Korea, in association with food availability (Sedum kamtschaticum and Sedum aizoon), land-use change, and dispersal limitation. We first predicted the current and future distributions of P. bremeri, S. kamtschaticum, and S. aizoon using the presence/absence data and current (2000) and future climate data (2050, 2100) with BioMod2, an ensemble platform for species distribution model projections. Then, the dispersal capacity of P. bremeri and land-use change were coupled with SDMs using MigClim. We used future climate and land-use changes predicted according to the SSP scenarios (SSP1-2.6, SSP2-4.5, and SSP3-7.0) and the dispersal model estimated from previous studies. The current distributional areas of P. bremeri were predicted to be about 10,956 km2 without land-cover coupling and 8.861 km2 with coupling, showing land-cover decreased by about 19% of the suitable habitat. The future predictions under climate change only showed the distribution reduced by 56% and 50% in 2050 and 2100 under SSP1-2.6, respectively, 55% and 48% under SSP2-4.5, and 44% and 14% under SSP3-7.0. Applying land-use change and dispersal capacity further decreased the future distribution of P. bremeri but trivially (about 0.42% on average). The strict conservation policies and measures for P. bremeri's habitats explain the trivial additional decrease, delaying its habitat loss. However, our results suggest that such efforts cannot halt the climate change-driven habitat loss trend of P. bremeri. Strong climate mitigation efforts and promoting the species' adaptive capacity are the only ways to reverse the tragic decline of climate-sensitive species.
Collapse
Affiliation(s)
- Kyung Ah Koo
- Korea Environment InstituteSejong‐siRepublic of Korea
| | - Seon Uk Park
- National Institute of EcologyGyeongsangbuk‐doRepublic of Korea
| |
Collapse
|
6
|
Liu Q, Wang Z, Xu D, Peng Y, Wu J, Liu Z, Li X, Zhuo Z. Effects of Climate Change on the Distribution of Papilio xuthus. INSECTS 2025; 16:131. [PMID: 40003761 PMCID: PMC11856998 DOI: 10.3390/insects16020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The Papilio xuthus is a widely distributed species in the genus Papilio of the family Papilionidae, possessing ecological, ornamental, and socio-economic service values. To determine the ecological role of P. xuthus and assess its population distribution under future climate change scenarios, this study utilized the MaxEnt model to predict the geographic distribution of P. xuthus in the future and evaluate its population dynamics. The results indicated that P. xuthus is currently widely distributed in East Asia, with a high suitability area of 1827.83 × 103 km2, primarily in China, Japan, North Korea, and South Korea. Climate change has a significant impact on the geographic distribution of P. xuthus, with its high suitability areas decreasing in the future, particularly within China, where the change is projected to be as high as 46.46% under the SSP126 scenario by the 2050s. The centroid of its high-suitability area is expected to shift northeastward. Key environmental variable analysis revealed that Temperature Seasonality, Mean Temperature of the Wettest Quarter, Precipitation of the Wettest Month, and Precipitation of the Warmest Quarter are critical factors influencing the selection of suitable habitats by P. xuthus. This study assessed the distribution of P. xuthus and provided conservation recommendations, offering a reference for future population control and conservation efforts.
Collapse
Affiliation(s)
- Quanwei Liu
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
| | - Zhuoyuan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
- Medical College, Nanchong Vocational College of Science and Technology, Nanchong 637200, China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
| | - Yaqin Peng
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
| | - Junhao Wu
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
| | - Zhiqian Liu
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
| | - Xiushan Li
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China; (Q.L.); (Z.W.); (D.X.); (Y.P.); (J.W.); (Z.L.); (X.L.)
| |
Collapse
|
7
|
Yang F, Liu Q, Yang J, Liu B, Deng X, Gan T, Liao X, Li X, Xu D, Zhuo Z. Evaluating the Impact of Climate Change on the Asia Habitat Suitability of Troides helena Using the MaxEnt Model. INSECTS 2025; 16:79. [PMID: 39859660 PMCID: PMC11766371 DOI: 10.3390/insects16010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Butterflies are highly sensitive to climate change, and Troides helena, as an endangered butterfly species, is also affected by these changes. To enhance the conservation of T. helena and effectively plan its protected areas, it is crucial to understand the potential impacts of climate change on its distribution. This study utilized a MaxEnt model in combination with ArcGIS technology to predict the global potential suitable habitats of T. helena under current and future climate conditions, using the species' distribution data and relevant environmental variables. The results indicated that the MaxEnt model provided a good prediction accuracy for the distribution of T. helena. Under the current climate scenario, the species is primarily distributed in tropical regions, with high suitability areas concentrated in tropical rainforest climates. In future climate scenarios, the suitable habitat areas for T. helena in medium and high suitability categories generally show an expansion trend, which increases over time. Especially under the SSP5-8.5 scenario, by the 2090s, the area of high suitability for T. helena is projected to increase by 42.85%. The analysis of key environmental factors revealed that precipitation of the wettest quarter (Bio16) was the most significant environmental factor affecting the distribution of T. helena. The species has high demands for precipitation and temperature and can adapt to future climate warming. This study is valuable for identifying the optimal conservation areas for T. helena and provides a reference for future conservation efforts.
Collapse
Affiliation(s)
- Fengrong Yang
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Quanwei Liu
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Junyi Yang
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Biyu Liu
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Xinqi Deng
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Tingjiang Gan
- Engineering Research Centre of Chuanxibei Rural Human Settlement (RHS) Construction, Mianyang Teachers’ College, Mianyang 621016, China;
| | - Xue Liao
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Xiushan Li
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong 637002, China; (F.Y.); (Q.L.); (J.Y.); (B.L.); (X.D.); (X.L.); (X.L.); (D.X.)
| |
Collapse
|
8
|
Diamond SE, da Silva CRB, Medina-Báez OA. A multicontinental dataset of butterfly thermal physiological traits. Sci Data 2024; 11:1348. [PMID: 39695139 PMCID: PMC11655982 DOI: 10.1038/s41597-024-04191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Butterflies serve as key indicators of climate change impacts such as shifts in emergence timing and shifts in geographic range and distribution. However, the development of commonly used ecological forecasts based on butterfly physiological tolerance of temperature change has lagged behind that of other taxonomic groups. Here, we provide a series of related datasets comprising butterfly thermal physiological traits to enable such forecasts. We compiled data from the literature on butterfly heat and cold tolerance (critical thermal maxima and minima) for 117 species as well as heat resistance (knockdown time) for 45 species. We also present a new dataset comprising heat and cold tolerance and thermal sensitivity of metabolic rate of 28 common North American butterfly species. We envision these data to not only provide foundations for contemporary ecological forecasts of vulnerability to recent climate change, but also to aid in our understanding of butterfly ecology and evolution over historical timescales.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Carmen R B da Silva
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | | |
Collapse
|
9
|
Kumar S, Khanduri VP. Impact of climate change on the Himalayan alpine treeline vegetation. Heliyon 2024; 10:e40797. [PMID: 39698095 PMCID: PMC11652899 DOI: 10.1016/j.heliyon.2024.e40797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The Himalayan alpine treeline varies depending on altitude and aspects, supporting a variety of plant species. In recent years, climate changes have exerted pressure on the vegetation in this region, challenging its adaptation to rapidly changing environmental conditions. This systematic review commenced by formulating a research question on the impact of climate change on Himalayan alpine treeline vegetation and conducted a thorough literature search, adhering to the PRISMA protocol. The rising temperatures, altered precipitation patterns, and other climate-related factors have initiated an upward shift in the treeline that threatens the unique biodiversity of the region. Indeed, in various parts of the Himalayas, there is evidence of the treeline moving upwards, altering plant regeneration and growing season, and impacting soil properties. There is a shift of vegetation ranging from 0.80 to 503.00 m in Himalayan treeline regions have been reported in various studies. Abies spectabilis and Betula utilis are the most sensitive, showing the highest upward shifts due to climate change. The repercussions of climate change on the Himalayan alpine treeline are anticipated to have significant ecological implications. Most species at the Himalayan alpine treeline exhibit poor regeneration status, while some others reveals good, fair, or no regeneration. Consequently, new regeneration patterns are emerging. Changes in soil temperature and physicochemical properties due to climate warming are ultimately affecting Himalayan alpine treeline vegetation. Additionally, shifts in the growing season and phenophases of various tree species have also been observed. The profound and far-reaching impacts of climate change on the Himalayan alpine treeline necessitates implementing mitigation and adaptation strategies to safeguard the delicate alpine ecosystems of the region.
Collapse
Affiliation(s)
- Sandeep Kumar
- College of Forestry, Veer Chandra Singh Garhwali Uttarakhand University of Horticulture and Forestry, Ranichauri, 249199, Uttarakhand, India
| | - Vinod Prasad Khanduri
- College of Forestry, Veer Chandra Singh Garhwali Uttarakhand University of Horticulture and Forestry, Ranichauri, 249199, Uttarakhand, India
| |
Collapse
|
10
|
Mesler SP, Mabry KE. Effects of temperature experienced across life stages on morphology and flight behavior of painted lady butterflies (Vanessa cardui). MOVEMENT ECOLOGY 2024; 12:76. [PMID: 39627891 PMCID: PMC11616341 DOI: 10.1186/s40462-024-00516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND With ongoing anthropogenic climate change, there is increasing interest in how organisms are affected by higher temperatures, including how animals respond behaviorally to increasing temperatures. Movement behavior is especially relevant, as the ability of a species to shift its range is implicitly dependent upon movement capacity and motivation. Temperature may influence movement behavior of ectotherms both directly, through an increase in body temperature, and indirectly, through temperature-dependent effects on physiological and morphological traits. METHODS We investigated the influence of ambient temperature during two life stages, larval and adult, on body size and movement behavior of the painted lady butterfly (Vanessa cardui). We reared painted ladies to emergence at either a "low" (24 °C) or "high" (28 °C) temperature. At eclosion, we assessed flight behavior in an arena test. We used a full factorial experimental design in which half of the adults that emerged from each rearing treatment were tested at either the "low" or "high" temperature. We measured adult body size, including wingspan, and determined flight speed, distance, and duration from video recordings. RESULTS Adult butterflies that experienced the higher temperature during development were larger. We documented an interaction of rearing x testing temperature on flight behavior: unexpectedly, the fastest butterflies were those who experienced a change in temperature, whether an increase or decrease, between rearing and testing. Individuals that experienced matching thermal environments flew more slowly, but for more time and covering more distance. We found no influence of body size per se on flight. CONCLUSIONS We conclude that the potential role of "matching" thermal environments across life stages has been underinvestigated with regard to how organisms may respond to warming conditions.
Collapse
Affiliation(s)
- Sarah P Mesler
- Department of Biology, MSC 3AF New Mexico State University, Las Cruces, NM, 88003, USA
| | - Karen E Mabry
- Department of Biology, MSC 3AF New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
11
|
KC S, Sapkota A. Butterfly Diversity and Community Dynamics in the Central Himalayas: Species Composition, Richness, Abundance, and Seasonal Variation of Butterflies (Lepidoptera: Papilionoidea) in Bhorletar, Nepal. Ecol Evol 2024; 14:e70612. [PMID: 39691430 PMCID: PMC11650754 DOI: 10.1002/ece3.70612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
Butterflies are among the most effective bioindicators of climate change; however, their diversity in many rural areas of the Central Himalayas remains understudied. This study provides an assessment of butterfly diversity in the foothills of Bhorletar, Madhya Nepal Municipality, Lamjung District, Nepal, within an elevation range of 420-600 m. Conducted between July 2019 and January 2021, the survey involved opportunistic observations and photography of adult butterflies in their natural habitats, with sampling occurring six times each month. The study aimed to investigate the species composition, richness, and abundance of butterflies across the survey period and identify seasonal changes in species composition and richness. A total of 94,009 individuals across 226 species, 129 genera, and six families were documented. During this study, Halpe arcuata Evans, 1937 and Hasora taminatus bhavara Fruhstorfer, 1911 were recorded for the first time in Nepal. Additionally, Halpe filda Evans, 1949 and Ctenoptilum vasava vasava (Moore, [1866]) were recorded for only the second and third times, respectively, in Nepal, following a gap of approximately three decades. The most abundant species was Pieris canidia indica Evans, 1926 (Relative Abundance [RA] 2.55%), followed by Pseudozizeeria maha maha (Kollar, [1844]) (RA 2.13%). Species richness showed an annual bimodal distribution, peaking in April (180 species) and August (161 species), while the lowest richness was observed in January and February, with 68 and 75 species, respectively. Diversity indices included a Shannon-Wiener index of 4.71, Pielou's J index of 0.87, an effective number of species of 111.24, and Margalef's richness index of 19.65, indicating high species diversity with a well-balanced mix of species evenness and richness. This study offers the first peer-reviewed checklist of butterflies from Bhorletar, providing crucial baseline data for future research and conservation efforts, and highlights the remarkable seasonal and species diversity within the region.
Collapse
Affiliation(s)
- Sajan KC
- Institute of Agriculture and Animal ScienceTribhuvan UniversitySundarbazarGandaki ProvinceNepal
| | - Anisha Sapkota
- Agriculture and Forestry UniversityBharatpurBagmati ProvinceNepal
| |
Collapse
|
12
|
Whitla R, Hens K, Hogan J, Martin G, Breuker C, Shreeve TG, Arif S. The last days of Aporia crataegi (L.) in Britain: Evaluating genomic erosion in an extirpated butterfly. Mol Ecol 2024; 33:e17518. [PMID: 39192591 DOI: 10.1111/mec.17518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/29/2024]
Abstract
Current rates of habitat degradation and climate change are causing unprecedented declines in global biodiversity. Studies on vertebrates highlight how conservation genomics can be effective in identifying and managing threatened populations, but it is unclear how vertebrate-derived metrics of genomic erosion translate to invertebrates, with their markedly different population sizes and life histories. The Black-veined White butterfly (Aporia crataegi) was extirpated from Britain in the 1920s. Here, we sequenced historical DNA from 17 specimens collected between 1854 and 1924 to reconstruct demography and compare levels of genomic erosion between extirpated British and extant European mainland populations. We contrast these results using modern samples of the Common Blue butterfly (Polyommatus icarus); a species with relatively stable demographic trends in Great Britain. We provide evidence for bottlenecks in both these species around the period of post-glacial colonization of the British Isles. Our results reveal different demographic histories and Ne for both species, consistent with their fates in Britain, likely driven by differences in life history, ecology and genome size. Despite a difference, by an order of magnitude, in historical effective population sizes (Ne), reduction in genome-wide heterozygosity in A. crataegi was comparable to that in P. icarus. Symptomatic of A. crataegi's disappearance were marked increases in runs-of-homozygosity (RoH), potentially indicative of recent inbreeding, and accumulation of putatively mildly and weakly deleterious variants. Our results provide a rare glimpse of genomic erosion in a regionally extinct insect and support the potential use of genomic erosion metrics in identifying invertebrate populations or species in decline.
Collapse
Affiliation(s)
- Rebecca Whitla
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Korneel Hens
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - James Hogan
- Oxford University Museum of Natural History, Oxford, UK
| | - Geoff Martin
- Insects Division, Natural History Museum, London, UK
| | - Casper Breuker
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| | - Timothy G Shreeve
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Functional Genomics, Oxford Brookes University, Oxford, UK
| |
Collapse
|
13
|
Schröer C, Singer D, Kamp J. Large, but Dispersal-Limited Populations of the Marsh Fritillary Euphydryas aurinia Persist on Abandoned Military Training Areas Three Decades After the End of the Cold War. Ecol Evol 2024; 14:e70459. [PMID: 39440204 PMCID: PMC11494246 DOI: 10.1002/ece3.70459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Military training areas can host important biodiversity, due to the preservation of diverse, nutrient-poor historical cultural landscapes and an insect-friendly disturbance regime. In Europe, many training areas were abandoned after the end of the cold war in 1991 and the withdrawal of the Allied and Soviet forces. Many of these are now protected areas, and current management strategies vary from rewilding to active habitat management such as grazing or mowing. In a capture-release-recapture approach, marking 2418 individuals, we assessed the population size and movement patterns of the dry ecotype of the Marsh Fritillary Euphydryas aurinia Rottemburg 1775 on three former military training areas in Germany that varied in size and management (natural succession, mowing, and sheep-/goat grazing). Euphydryas aurinia is a rare and declining butterfly species listed in Annex II of the European Union Habitats Directive. Jolly-Seber models revealed a large population of ca. 19,000 individuals on the largest study site and a smaller population at a second site, whereas recapture rates were too low to predict the population size reliably at a third site. Population densities were 190-194 butterflies ha-1 at the unmanaged, large site and 56-71 butterflies ha-1 at a smaller site grazed with sheep. Thirty-nine percent of the recapture events occurred within the same 1-ha-study plot. The average minimum flight distance between the study plots was 313 m for males and 328 m for females. The maximum lifetime flight distance was 1237 m within 3 days. No dispersal was detected between study sites. Thirty years after cessation of the military use, the large former training site still held what likely is one of the largest populations of the species dry ecotype in Central Europe, including in areas where management ceased already in 1991. This suggests remarkable persistence of the species in areas without regular management, contrary to current opinion. However, regular flight distances seem not to be sufficient to connect the isolated habitat patches. It remains unknown how long the large population at the abandoned military area will persist without active habitat management. Careful, but active habitat management and restoration of habitat connectivity should thus be considered.
Collapse
Affiliation(s)
- Cindy Schröer
- Department of Conservation BiologyUniversity of GöttingenGöttingenGermany
- Natura 2000‐Station Gotha‐/IlmkreisNaturforschende Gesellschaft Altenburg e.V.AltenburgGermany
| | - David Singer
- Institute for Applied Animal EcologyGöttingenGermany
| | - Johannes Kamp
- Department of Conservation BiologyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
14
|
Marquardt T, Kaczmarek S, Niedbała W. Distribution of euptyctimous mite Phthiracarus longulus (Acari: Oribatida) under future climate change in the Palearctic. Sci Rep 2024; 14:21913. [PMID: 39300195 DOI: 10.1038/s41598-024-72852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The aim of this paper is to prepare, describe and discuss the models of the current and future distribution of Phthiracarus longulus (Koch, 1841) (Acari: Oribatida: Euptyctima), the oribatid mite species widely distributed within the Palearctic. We used the maximum entropy (MAXENT) method to predict its current and future (until the year 2100) distribution based on macroclimatic bio-variables. To our best knowledge, this is the first-ever prediction of distribution in mite species using environmental niche modelling. The main thermal variables that shape the current distribution of P. longulus are the temperature annual range, mean temperature of the coldest quarter and the annual mean temperature, while for precipitation variables the most important is precipitation of the driest quarter. Regardless of the climatic change scenario (SSP1-2.6, SSP2-4.5, SSP5-8.5) our models show generally the northward shift of species range, and in Southern Europe the loss of most habitats with parallel upslope shift. According to our current model, the most of suitable habitats for P. longulus are located in the European part of Palearctic. In general, the species range is mostly affected in Europe. The most stable areas of P. longulus distribution were the Jutland with surrounding southern coasts of Scandinavia, islands of the Danish Straits and the region of Trondheim Fjord.
Collapse
Affiliation(s)
- Tomasz Marquardt
- Department of Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland.
| | - Sławomir Kaczmarek
- Department of Evolutionary Biology, Faculty of Biological Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Wojciech Niedbała
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
15
|
Ho H, Altermatt F. Predicted community consequences of spatially explicit global change-induced processes on plant-insect networks. Ecol Evol 2024; 14:e70272. [PMID: 39286316 PMCID: PMC11405086 DOI: 10.1002/ece3.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Plant-insect trophic systems should be particularly sensitive to processes altering species spatial co-occurrences, as impacts on one level can cascade effectively through the strong trophic reliance to the other level. Here, we predicted the biogeography of Lepidoptera-plant communities under global-change scenarios, exploiting spatially resolved data on 423 Lepidoptera species and their 848 food plants across the German state of Baden-Württemberg (ca. 36,000 km2). We performed simulations of plant extinction and Lepidoptera expansion, and respectively assessed their cascading consequences-namely secondary extinction of Lepidoptera and change in functional distance of plants-on the interaction networks. Importantly, the simulations were spatially explicit, as we accounted for realistic landscape contexts of both processes: Plant extinctions were simulated as "regional" (a species goes extinct in the whole region at once) vs. "isolation-driven" (a species gradually goes extinct from the peripheral or isolated localities according to its real regional distribution); Lepidoptera expansions were simulated with random, northward, and upward directions according to real topography. The consequences were assessed based on empirical community composition and trophic relationships. When evaluated by regional richness, the robustness of Lepidoptera assemblages against secondary extinctions was higher under isolation-driven plant extinctions than regional plant extinction; however, this relationship was reversed when evaluated by averaged local richness. Also, with isolation-driven plant extinctions, Lepidoptera at the central sub-region of Baden-Württemberg appeared to be especially vulnerable. With Lepidoptera expansions, plants' functional distances in local communities dropped, indicating a possible increase of competition among plants, yet to a lesser extent particularly with upward movements. Together, our results suggested that the communities' composition context at the landscape scale (i.e., how communities, with respective species composition, are arranged within the landscape) matters when assessing global-change influences on interaction systems; spatially explicit consideration of such context can reveal localised consequences that are not necessarily captured via a spatially implicit, regional perspective.
Collapse
Affiliation(s)
- Hsi‐Cheng Ho
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Ecology and Evolutionary BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Florian Altermatt
- Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
16
|
Foerster SÍA, Clarke JT, Õunap E, Teder T, Tammaru T. A comparative study of body size evolution in moths: evidence of correlated evolution with feeding and phenology-related traits. J Evol Biol 2024; 37:891-904. [PMID: 38847298 DOI: 10.1093/jeb/voae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 06/05/2024] [Indexed: 08/02/2024]
Abstract
Interspecific variation in body size is one of the most popular topics in comparative studies. Despite recent advances, little is known about the patterns and processes behind the evolution of body size in insects. Here, we used a robust data set comprising all geometrid moth species occurring in Northern Europe to examine the evolutionary associations involving body size and several life-history traits under an explicitly phylogenetic framework. We provided new insights into the interactive effects of life-history traits on body size and evidence of correlated evolution. We further established the sequence of trait evolution linking body size with the life-history traits correlated with it. We found that most (but not all) of the studied life-history traits, to some extent, influenced interspecific variation in body size, but interactive effects were uncommon. Both bi- and multivariate phylogenetic analyses indicated that larger species tend to be nocturnal flyers, overwinter in the larval stage, feed on the foliage of trees rather than herbs, and have a generalist feeding behaviour. We found evidence of correlated evolution involving body size with overwintering stage, host-plant growth form, and dietary specialization. The examination of evolutionary transitions within the correlated evolution models signalled that overwintering as larvae commonly preceded the evolution of large sizes, as did feeding on tree foliage and the generalist feeding behaviour. By showing that both body size and all life-history traits correlated with it evolve at very slow rates, we caution against uncritical attempts to propose causal explanations for respective associations based on contemporary ecological settings.
Collapse
Affiliation(s)
| | - John T Clarke
- German Centre for Integrative Biodiversity Research (iDiv) Halle- Jena- Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig Maximilians-Universität München, Munich, Germany
- Department of Ecology and Biogeography, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Erki Õunap
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Tiit Teder
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czech Republic
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Martins ARP, Warren NB, McMillan WO, Barrett RDH. Spatiotemporal dynamics in butterfly hybrid zones. INSECT SCIENCE 2024; 31:328-353. [PMID: 37596954 DOI: 10.1111/1744-7917.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/21/2023]
Abstract
Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.
Collapse
Affiliation(s)
- Ananda R Pereira Martins
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Natalie B Warren
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Gamboa, Panama City, Panama
| | - Rowan D H Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Hayes MP, Ashe-Jepson E, Hitchcock GE, Clark R, Hellon J, Knock RI, Bladon AJ, Turner EC. Heatwave predicts a shady future for insects: impacts of an extreme weather event on a chalk grassland in Bedfordshire, UK. JOURNAL OF INSECT CONSERVATION 2024; 28:923-933. [PMID: 39430689 PMCID: PMC11489253 DOI: 10.1007/s10841-024-00556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 10/22/2024]
Abstract
Climate change is set to become one of the leading causes of biodiversity loss worldwide, with extreme weather events projected to increase in frequency. Ectothermic animals such as insects are at particular risk, especially when they are isolated and unable to move through the landscape to track suitable climate. To protect such taxa, it is important to understand how they are impacted by extreme weather events and whether management could provide effective microclimate refuges. However, potential management interventions remain untested for many species. Here, we show that the extreme high temperatures experienced in the UK on 19th July 2022 resulted in a community of butterflies becoming inactive, but that shaded areas, including artificial slopes created as part of conservation management for climate change, provided a refuge during this period. Our results indicate that future high temperatures could force butterflies to shelter in the shade, potentially being unable to fly, feed or mate during these periods, with possible long-term impacts, particularly if multiple consecutive high temperature days are experienced. Supplementary Information The online version contains supplementary material available at 10.1007/s10841-024-00556-5.
Collapse
Affiliation(s)
- Matthew P. Hayes
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| | - Esme Ashe-Jepson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| | - Gwen E. Hitchcock
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Ryan Clark
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Josh Hellon
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Richard I. Knock
- Wildlife Trust for Bedfordshire, Cambridgeshire & Northamptonshire, UK
| | - Andrew J. Bladon
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| | - Edgar C. Turner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EJ UK
| |
Collapse
|
19
|
Swaegers J, De Cupere S, Gaens N, Lancaster LT, Carbonell JA, Sánchez Guillén RA, Stoks R. Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion. Evol Lett 2024; 8:76-88. [PMID: 38370551 PMCID: PMC10872138 DOI: 10.1093/evlett/qrac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/20/2024] Open
Abstract
Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Simon De Cupere
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Noah Gaens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Russo D, Jones G, Martinoli A, Preatoni DG, Spada M, Pereswiet‐Soltan A, Cistrone L. Climate is changing, are European bats too? A multispecies analysis of trends in body size. Ecol Evol 2024; 14:e10872. [PMID: 38333101 PMCID: PMC10850807 DOI: 10.1002/ece3.10872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Animal size, a trait sensitive to spatial and temporal variables, is a key element in ecological and evolutionary dynamics. In the context of climate change, there is evidence that some bat species are increasing their body size via phenotypic responses to higher temperatures at maternity roosts. To test the generality of this response, we conducted a >20-year study examining body size changes in 15 bat species in Italy, analysing data from 4393 individual bats captured since 1995. In addition to examining the temporal effect, we considered the potential influence of sexual dimorphism and, where relevant, included latitude and altitude as potential drivers of body size change. Contrary to initial predictions of a widespread increase in size, our findings challenge this assumption, revealing a nuanced interplay of factors contributing to the complexity of bat body size dynamics. Specifically, only three species (Myotis daubentonii, Nyctalus leisleri, and Pipistrellus pygmaeus) out of the 15 exhibited a discernible increase in body size over the studied period, prompting a reassessment of bats as reliable indicators of climate change based on alterations in body size. Our investigation into influencing factors highlighted the significance of temperature-related variables, with latitude and altitude emerging as crucial drivers. In some cases, this mirrored patterns consistent with Bergmann's rule, revealing larger bats recorded at progressively higher latitudes (Plecotus auritus, Myotis mystacinus, and Miniopterus schreibersii) or altitudes (Pipistrellus kuhlii). We also observed a clear sexual dimorphism effect in most species, with females consistently larger than males. The observed increase in size over time in three species suggests the occurrence of phenotypic plasticity, raising questions about potential long-term selective pressures on larger individuals. The unresolved question of whether temperature-related changes in body size reflect microevolutionary processes or phenotypic plastic responses adds further complexity to our understanding of body size patterns in bats over time and space.
Collapse
Affiliation(s)
- Danilo Russo
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
- School of Biological SciencesUniversity of BristolBristolUK
| | - Gareth Jones
- School of Biological SciencesUniversity of BristolBristolUK
| | - Adriano Martinoli
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | - Damiano G. Preatoni
- Unità di Analisi e Gestione delle Risorse Ambientali, Guido Tosi Research Group, Dipartimento di Scienze Teoriche ed ApplicateUniversità degli Studi dell'InsubriaVareseItaly
| | | | | | - Luca Cistrone
- Laboratory of Animal Ecology and Evolution (AnEcoEvo), Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
| |
Collapse
|
21
|
Merckx T, Nielsen ME, Kankaanpää T, Kadlec T, Yazdanian M, Kivelä SM. Continent-wide parallel urban evolution of increased heat tolerance in a common moth. Evol Appl 2024; 17:e13636. [PMID: 38283598 PMCID: PMC10810253 DOI: 10.1111/eva.13636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Urbanization and its urban-heat-island effect (UHI) have expanding footprints worldwide. The UHI means that urban habitats experience a higher mean and more frequent extreme high temperatures than rural habitats, impacting the ontogeny and resilience of urban biodiversity. However, many organisms occupy different microhabitats during different life stages and thus may experience the UHI differently across their development. While evolutionary changes in heat tolerance in line with the UHI have been demonstrated, it is unknown whether such evolutionary responses can vary across development. Here, using common-garden-reared Chiasmia clathrata moths from urban and rural populations from three European countries, we tested for urban evolution of heat shock tolerance in two life stages: larvae and adults. Our results indicate widespread urban evolution of increased heat tolerance in the adult stage only, suggesting that the UHI may be a stronger selective agent in adults. We also found that the difference in heat tolerance between urban and rural populations was similar to the difference between Mid- and North-European regions, suggesting similarity between adaptation to the UHI and natural, latitudinal temperature variation. Our observations incentivize further research to quantify the impact of these UHI adaptations on fitness during urbanization and climate change, and to check whether life-stage-specific adaptations in heat tolerance are typical of other ectothermic species that manage to survive in urbanized settings.
Collapse
Affiliation(s)
- Thomas Merckx
- WILD, Biology DepartmentVrije Universiteit BrusselBrusselsBelgium
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Matthew E. Nielsen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Faculty 2 Biology/ChemistryUniversity of BremenBremenGermany
| | | | - Tomáš Kadlec
- Department of EcologyCzech University of Life Sciences PraguePragueCzech Republic
| | | | - Sami M. Kivelä
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
22
|
Hird C, Cramp RL, Franklin CE. Thermal compensation reduces DNA damage from UV radiation. J Therm Biol 2023; 117:103711. [PMID: 37717403 DOI: 10.1016/j.jtherbio.2023.103711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Increases in ultraviolet radiation (UVR) correlate spatially and temporally with global amphibian population declines and interact with other stressors such as disease and temperature. Declines have largely occurred in high-altitude areas associated with greater UVR and cooler temperatures. UVR is a powerful mutagenic harming organisms largely by damaging DNA. When acutely exposed to UVR at cool temperatures, amphibian larvae have increased levels of DNA damage. Amphibians may compensate for the depressive effects of temperature on DNA damage through acclimatisation, but it is unknown whether they have this capacity. We reared striped marsh frog larvae (Limnodynastes peronii) in warm (25 °C) and cool (15 °C) temperatures under a low or moderate daily dose of UVR (10 and 40 μW cm-2 UV-B for 1 h at midday, respectively) for 18-20 days and then measured DNA damage resulting from an acute high UVR dose (80 μW cm-2 UV-B for 1.5 h) at a range of temperatures (10, 15, 20, 25, and 30 °C). Larvae acclimated to 15 °C and exposed to UVR at 15 °C completely compensated UVR-induced DNA damage compared with 25 °C acclimated larvae exposed to UVR at 25 °C. Additionally, warm-acclimated larvae had higher DNA damage than cold-acclimated larvae across test temperatures, which indicated a cost of living in warmer temperatures. Larvae reared under elevated UVR levels showed no evidence of UVR acclimation resulting in lower DNA damage following high UVR exposure. Our finding that thermal acclimation in L. peronii larvae compensated UVR-induced DNA damage at low temperatures suggested that aquatic ectotherms living in cool temperatures may be more resilient to high UVR than previously realised. We suggested individuals or species with less capacity for thermal acclimation of DNA repair mechanisms may be more at risk if exposed to changing thermal and UVR exposure regimes.
Collapse
Affiliation(s)
- Coen Hird
- School of the Environment, The University of Queensland, Magandjin, 4072, Australia.
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, Magandjin, 4072, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Magandjin, 4072, Australia
| |
Collapse
|
23
|
Ashe‐Jepson E, Hayes MP, Hitchcock GE, Wingader K, Turner EC, Bladon AJ. Day-flying lepidoptera larvae have a poorer ability to thermoregulate than adults. Ecol Evol 2023; 13:e10623. [PMID: 37854314 PMCID: PMC10580006 DOI: 10.1002/ece3.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
Changes to ambient temperatures under climate change may detrimentally impact small ectotherms that rely on their environment for thermoregulation; however, there is currently a limited understanding of insect larval thermoregulation. As holometabolous insects, Lepidoptera differ in morphology, ecology and behaviour across the life cycle, and so it is likely that adults and larvae differ in their capacity to thermoregulate. In this study, we investigated the thermoregulatory capacity (buffering ability) of 14 species of day-flying Lepidoptera, whether this is influenced by body length or gregariousness, and whether it differs between adult and larval life stages. We also investigated what thermoregulation mechanisms are used: microclimate selection (choosing locations with a particular temperature) or behavioural thermoregulation (controlling temperature through other means, such as basking). We found that Lepidoptera larvae differ in their buffering ability between species and body lengths, but gregariousness did not influence buffering ability. Larvae are worse at buffering themselves against changes in air temperature than adults. Therefore Lepidoptera may be more vulnerable to adverse temperature conditions during their larval life stage. Adults and larvae rely on different thermoregulatory mechanisms; adults primarily use behavioural thermoregulation, whereas larvae use microclimate selection. This implies that larvae are highly dependent on the area around their foodplant for effective thermoregulation. These findings have implications for the management of land and species, for example, highlighting the importance of creating and preserving microclimates and vegetation complexity surrounding Lepidoptera foodplants for larval thermoregulation under future climate change.
Collapse
Affiliation(s)
| | | | - Gwen E. Hitchcock
- The Wildlife Trust for Bedfordshire, Cambridgeshire and NorthamptonshireCambridgeUK
| | | | | | | |
Collapse
|
24
|
Lazarina M, Michailidou DE, Tsianou M, Kallimanis AS. How Biodiversity, Climate and Landscape Drive Functional Redundancy of British Butterflies. INSECTS 2023; 14:722. [PMID: 37754690 PMCID: PMC10531656 DOI: 10.3390/insects14090722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Biodiversity promotes the functioning of ecosystems, and functional redundancy safeguards this functioning against environmental changes. However, what drives functional redundancy remains unclear. We analyzed taxonomic diversity, functional diversity (richness and β-diversity) and functional redundancy patterns of British butterflies. We explored the effect of temperature and landscape-related variables on richness and redundancy using generalized additive models, and on β-diversity using generalized dissimilarity models. The species richness-functional richness relationship was saturating, indicating functional redundancy in species-rich communities. Assemblages did not deviate from random expectations regarding functional richness. Temperature exerted a significant effect on all diversity aspects and on redundancy, with the latter relationship being unimodal. Landscape-related variables played a role in driving observed patterns. Although taxonomic and functional β-diversity were highly congruent, the model of taxonomic β-diversity explained more deviance than the model of functional β-diversity did. Species-rich butterfly assemblages exhibited functional redundancy. Climate- and landscape-related variables emerged as significant drivers of diversity and redundancy. Τaxonomic β-diversity was more strongly associated with the environmental gradient, while functional β-diversity was driven more strongly by stochasticity. Temperature promoted species richness and β-diversity, but warmer areas exhibited lower levels of functional redundancy. This might be related to the land uses prevailing in warmer areas (e.g., agricultural intensification).
Collapse
Affiliation(s)
- Maria Lazarina
- Department of Ecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.-E.M.); (A.S.K.)
| | | | | | | |
Collapse
|
25
|
Matsuura T, Bangay R, Tuno N. Mild Winter Causes Increased Mortality in the Fall Webworm Hyphantria cunea (Lepidoptera: Arctiidae). INSECTS 2023; 14:534. [PMID: 37367350 DOI: 10.3390/insects14060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
The fall webworm Hyphantria cunea (Drury) is native to North America and Mexico and has currently expanded its distribution to the temperate areas of the Northern Hemisphere including Japan. According to the data on seasonal fluctuations of this moth for 18 years collected in western-central Japan, the abundance of adults of the overwintered generation showed a negative correlation with winter temperature. We investigated survival, weight loss, and fungal infection of diapausing pupae at 3.0 (an approximate temperature of cold winter) and 7.4 °C (a temperature of mild winter). In the results, mortality was higher and weight loss was larger in pupae exposed to 7.4 °C than in those exposed to 3.0 °C. In addition, pupae that were heavier at the start of cold exposure survived longer than lighter ones. Furthermore, almost all pupae that died at 7.4 °C were infected by fungi. It has been reported that the distribution range of this moth shifts to higher latitudes. According to the experiments conducted, it has been observed that warm winters can lead to a decrease in pupae weight and an increase in fungal deaths; however, the impact of warm winters on populations in the field can be more complicated and multifaceted.
Collapse
Affiliation(s)
- Takahiro Matsuura
- School of Natural Sciences and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Rohit Bangay
- School of Natural Sciences and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Nobuko Tuno
- School of Natural Sciences and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
Sunde J, Franzén M, Betzholtz PE, Francioli Y, Pettersson LB, Pöyry J, Ryrholm N, Forsman A. Century-long butterfly range expansions in northern Europe depend on climate, land use and species traits. Commun Biol 2023; 6:601. [PMID: 37270651 DOI: 10.1038/s42003-023-04967-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Climate change is an important driver of range shifts and community composition changes. Still, little is known about how the responses are influenced by the combination of land use, species interactions and species traits. We integrate climate and distributional data for 131 butterfly species in Sweden and Finland and show that cumulative species richness has increased with increasing temperature over the past 120 years. Average provincial species richness increased by 64% (range 15-229%), from 46 to 70. The rate and direction of range expansions have not matched the temperature changes, in part because colonisations have been modified by other climatic variables, land use and vary according to species characteristics representing ecological generalisation and species interactions. Results emphasise the role of a broad ecological filtering, whereby a mismatch between environmental conditions and species preferences limit the ability to disperse and establish populations in emerging climates and novel areas, with potentially widespread implications for ecosystem functioning.
Collapse
Affiliation(s)
- Johanna Sunde
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden.
| | - Markus Franzén
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Per-Eric Betzholtz
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Yannick Francioli
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| | - Lars B Pettersson
- Biodiversity Unit, Department of Biology, Lund University, SE-22362, Lund, Sweden
| | - Juha Pöyry
- Finnish Environment Institute (SYKE), Nature Solutions, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Nils Ryrholm
- Department of Electronics, Mathematics and Natural Sciences, Faculty of Engineering and Sustainable Development, University of Gävle, SE-80176, Gävle, Sweden
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, SE-39182, Kalmar, Sweden
| |
Collapse
|
27
|
Park SH, Kim JH, Kim JG. Effects of human activities on Sericinus montela and its host plant Aristolochia contorta. Sci Rep 2023; 13:8289. [PMID: 37217596 DOI: 10.1038/s41598-023-35607-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Sericinus montela, a globally threatened butterfly species, feeds exclusively on Aristolochia contorta (Northern pipevine). Field surveys and glasshouse experiments were conducted to obtain a better understanding of the relationship between the two species. Interviews with the persons concerned with A. contorta were conducted to collect information about the site management measures. We found that management practices to control invasive species and manage the riverine areas might reduce the coverage of A. contorta and the number of eggs and larvae of S. montela. Our results indicated that the degraded quality of A. contorta may result in a decrease in S. montela populations by diminishing their food source and spawning sites. This study implies that ecological management in the riverine area should be set up to protect rare species and biodiversity.
Collapse
Affiliation(s)
- Si-Hyun Park
- Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hyun Kim
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA, 30602, USA
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Education Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
28
|
Hordley LA, Fox R, Suggitt AJ, Bourn NAD. Precipitation buffers temperature-driven local extinctions of moths at warm range margins. Ecol Lett 2023; 26:805-815. [PMID: 36946283 DOI: 10.1111/ele.14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
Species' distributions are moving polewards in response to climate change, and although range expansions of relatively warm-adapted species are widely reported, reports of range retractions in cool-adapted species are less common. Here, we analysed species' distribution shifts for 76 cool-adapted moths in Great Britain using citizen science occurrence records from the National Moth Recording Scheme over a 40-year period. Although we find evidence for trailing edge shifts to higher latitudes, shifts in species' range centroids are oriented towards the north-west, and are more closely correlated with directional changes in total precipitation than average temperature. We also found that species' local extinction risk is higher in areas where temperature is high and precipitation is low, but this risk diminishes as precipitation increases. Adaptation efforts should therefore focus on maintaining or increasing water availability as the climate continues to change.
Collapse
Affiliation(s)
| | - Richard Fox
- Butterfly Conservation, Manor Yard, Wareham, UK
| | - Andrew J Suggitt
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
29
|
Boieiro M, Antunes S, Figueiredo H, Soares A, Lopes A, Monteiro E, Garcia-Pereira P, Rego C, Conde J, Borges PA, Serrano AR. Standardised inventories of lepidopterans and odonates from Serra da Estrela Natural Park (Portugal) - setting the scene for mountain biodiversity monitoring. Biodivers Data J 2023; 11:e99558. [PMID: 38327325 PMCID: PMC10848661 DOI: 10.3897/bdj.11.e99558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Background Mountain insect biodiversity is unique, but is menaced by different drivers, particularly climate and land-use changes. In mainland Portugal, the highest mountain - Serra da Estrela - is one of the most important biodiversity hotspots, being classified as Natural Park since 1976. Many lepidopteran and odonate species, including rare and protected species, are known to occur in Serra da Estrela, but basic knowledge on their abundance, distribution and ecology is still lacking. Standardised sampling of these communities is crucial to provide valuable biological information to support short-term decision-making for conservation management, setting simultaneously the standards for mountain biodiversity monitoring aiming to tackle the effects of environmental change in the long-term. New information This study reports novel information on lepidopteran and odonate species diversity, distribution and abundance from Serra da Estrela Natural Park (Portugal). Seventy-two lepidopteran and 26 odonate species were sampled in this protected area, including the first findings of Apaturailia (Denis & Schiffermüller, 1775), Macromiasplendens (Pictet, 1843) and Vanessavirginiensis (Drury, 1773). New populations of Euphydriasaurinia (Rottemburg, 1775) and Oxygastracurtisii (Dale, 1834), protected species under the Habitats Directive, were found in this Natural Park and novel distribution and ecological data were collected for most species, including several rare species and subspecies [e.g. Aeshnajuncea (Linnaeus, 1758), Coenonymphaglycerioniphioides Staudinger, 1870, Cyanirissemiargus (Rottemburg, 1775) and Sympetrumflaveolum (Linnaeus, 1758)]. All data were collected using standardised sampling allowing its use as a baseline for biodiversity monitoring in Serra da Estrela.
Collapse
Affiliation(s)
- Mário Boieiro
- Centre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group, CHANGE – Global Change and Sustainability Institute, Faculty of Agricultural Sciences and Environment, University of the Azores, Angra do Heroísmo, Azores, PortugalCentre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group, CHANGE – Global Change and Sustainability Institute, Faculty of Agricultural Sciences and Environment, University of the AzoresAngra do Heroísmo, AzoresPortugal
| | - Sandra Antunes
- TAGIS - Centro de Conservação das Borboletas de Portugal, Avis, PortugalTAGIS - Centro de Conservação das Borboletas de PortugalAvisPortugal
| | - Hugo Figueiredo
- CISE - Centro de Interpretação da Serra da Estrela, Município de Seia, Seia, PortugalCISE - Centro de Interpretação da Serra da Estrela, Município de SeiaSeiaPortugal
| | - Albano Soares
- TAGIS - Centro de Conservação das Borboletas de Portugal, Avis, PortugalTAGIS - Centro de Conservação das Borboletas de PortugalAvisPortugal
| | - Ana Lopes
- Departamento de Biologia, Universidade de Aveiro, Aveiro, PortugalDepartamento de Biologia, Universidade de AveiroAveiroPortugal
| | - Eva Monteiro
- TAGIS - Centro de Conservação das Borboletas de Portugal, Avis, PortugalTAGIS - Centro de Conservação das Borboletas de PortugalAvisPortugal
| | - Patrícia Garcia-Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisboa, PortugalCentre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculty of Sciences, University of LisbonLisboaPortugal
| | - Carla Rego
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisboa, PortugalCentre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculty of Sciences, University of LisbonLisboaPortugal
| | - José Conde
- CISE - Centro de Interpretação da Serra da Estrela, Município de Seia, Seia, PortugalCISE - Centro de Interpretação da Serra da Estrela, Município de SeiaSeiaPortugal
| | - Paulo A.V. Borges
- Centre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group, CHANGE – Global Change and Sustainability Institute, Faculty of Agricultural Sciences and Environment, University of the Azores, Angra do Heroísmo, Azores, PortugalCentre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group, CHANGE – Global Change and Sustainability Institute, Faculty of Agricultural Sciences and Environment, University of the AzoresAngra do Heroísmo, AzoresPortugal
| | - Artur R.M. Serrano
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisboa, PortugalCentre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE – Global Change and Sustainability Institute, Faculty of Sciences, University of LisbonLisboaPortugal
| |
Collapse
|
30
|
Yu XT, Yang FL, Da W, Li YC, Xi HM, Cotton AM, Zhang HH, Duan K, Xu ZB, Gong ZX, Wang WL, Hu SJ. Species Richness of Papilionidae Butterflies (Lepidoptera: Papilionoidea) in the Hengduan Mountains and Its Future Shifts under Climate Change. INSECTS 2023; 14:259. [PMID: 36975944 PMCID: PMC10058169 DOI: 10.3390/insects14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The family of Papilionidae (Lepidoptera: Papilionoidea) is a group of butterflies with high ecological and conservation value. The Hengduan Mountains (HMDs) in Southwest China is an important diversity centre for these butterflies. However, the spatial distribution pattern and the climate vulnerability of Papilionidae butterflies in the HDMs remain unknown to date. The lack of such knowledge has already become an obstacle in formulating effective butterfly conservation strategies. The present research compiled a 59-species dataset with 1938 occurrence points. The Maxent model was applied to analyse the spatial pattern of species richness in subfamilies Parnassiinae and Papilioninae, as well as to predict the response under the influence of climate change. The spatial pattern of both subfamilies in the HDMs has obvious elevation prevalence, with Parnassiinae concentrated in the subalpine to alpine areas (2500-5500 m) in western Sichuan, northwestern Yunnan and eastern Tibet, while Papilioninae is concentrated in the low- to medium-elevation areas (1500-3500 m) in the river valleys of western Yunnan and western Sichuan. Under the influence of climate change, both subfamilies would exhibit northward and upward range shifts. The majority of Parnassiinae species would experience drastic habitat contraction, resulting in lower species richness across the HDMs. In contrast, most Papilioninae species would experience habitat expansion, and the species richness would also increase significantly. The findings of this research should provide new insights and a clue for butterfly diversity and climatic vulnerability in southwestern China. Future conservation efforts should be focused on species with habitat contraction, narrow-ranged distribution and endemicity with both in situ and ex situ measures, especially in protected areas. Commercialised collecting targeting these species must also be regulated by future legislation.
Collapse
Affiliation(s)
- Xin-Tong Yu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| | - Fei-Ling Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| | - Wa Da
- Tibet Plateau Institute of Biology, Lhasa 850008, China
| | - Yu-Chun Li
- Yulong Xueshan Provincial Nature Reserve, Yulong, Lijiang 674100, China
| | - Hong-Mei Xi
- Yulong Xueshan Provincial Nature Reserve, Yulong, Lijiang 674100, China
| | - Adam M. Cotton
- 86/2 Moo 5, Tambon Nong Kwai, Hang Dong, Chiang Mai 50230, Thailand
| | - Hui-Hong Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Kuang Duan
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Zhen-Bang Xu
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Zhi-Xian Gong
- Yulong Xueshan Provincial Nature Reserve, Yulong, Lijiang 674100, China
| | - Wen-Ling Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| | - Shao-Ji Hu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming 650500, China
- Asian International River Center, Kunming 650500, China
| |
Collapse
|
31
|
Riva F, Drapeau Picard AP, Larrivée M. Butterfly foraging is remarkably synchronous in an experimental tropical macrocosm. Biol Lett 2023; 19:20220555. [PMID: 36987612 PMCID: PMC10050915 DOI: 10.1098/rsbl.2022.0555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Diel patterns in foraging activity are dictated by a combination of abiotic, biotic and endogenous limits. Understanding these limits is important for insects because ectotherm taxa will respond more pronouncedly to ongoing climatic change, potentially affecting crucial ecosystem services. We leverage an experimental macrocosm, the Montreal Insectarium Grand Vivarium, to test the importance of endogenous mechanisms in determining temporal patterns in foraging activity of butterflies. Specifically, we assessed the degree of temporal niche partitioning among 24 butterfly species originating from the Earth's tropics within controlled environmental conditions. We found strong niche overlap, with the frequency of foraging events peaking around solar noon for 96% of the species assessed. Our models suggest that this result was not due to the extent of cloud cover, which affects radiational heating and thus limits body temperature in butterflies. Together, these findings suggest that an endogenous mechanism evolved to regulate the timing of butterfly foraging activity within suitable environmental conditions. Understanding similar mechanisms will be crucial to forecast the effects of climate change on insects, and thus on the many ecosystem services they provide.
Collapse
Affiliation(s)
- Federico Riva
- Montréal Insectarium - Space for Life, 4581, Rue Sherbrooke East, Montréal, Québec, Canada H1X 2B2
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | | | - Maxim Larrivée
- Montréal Insectarium - Space for Life, 4581, Rue Sherbrooke East, Montréal, Québec, Canada H1X 2B2
| |
Collapse
|
32
|
Chowdhury S. Threatened species could be more vulnerable to climate change in tropical countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159989. [PMID: 36347284 DOI: 10.1016/j.scitotenv.2022.159989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a major threat impacting insects globally, yet the impact on tropical insects is largely unknown. Here, I assessed the climatic vulnerability of Bangladeshi butterflies (242 species). About 42 % of species could experience range contraction, and the impact could be significantly more severe among threatened species. Depending on Socio-Economic Pathways (ssps), the future climatic condition could be unsuitable for 2 (ssp126) - 34 % (ssp585) species. The mean elevation of the suitable habitat could increase by 238 %, and the situation could be more severe for the threatened butterflies. Further, 54 % of the realised niche of butterflies could be altered. Although there might be no significant association between the shift in habitat suitability along the elevational gradient, migratory species could experience a more significant shift than non-migrants. Overall, climate change could have a severe impact on Bangladeshi butterflies. To mitigate insect decline globally and meet the Post 2020 Biodiversity Framework targets, immediate detection of climate change impact on tropical insects and developing effective conservation strategies is essential.
Collapse
Affiliation(s)
- Shawan Chowdhury
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia; Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany; Helmholtz Centre for Environmental Research (UFZ), Department of Ecosystem Services, Permoserstraße 15, 04318 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| |
Collapse
|
33
|
Macro-moth (Lepidoptera) Diversity of a Newly Shaped Ecological Corridor and the Surrounding Forest Area in the Western Italian Alps. DIVERSITY 2023. [DOI: 10.3390/d15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In addition to the compilation of biodiversity inventories, checklists, especially if combined with abundance data, are important tools to understand species distribution, habitat use, and community composition over time. Their importance is even higher when ecological indicator taxa are considered, as in the case of moths. In this work, we investigated macro-moth diversity in a forest area (30 ha) in the Western Italian Alps, recently subjected to intense management activities. Indeed, an ecological corridor, which includes 10 clearings, has been shaped thanks to forest compensation related to the construction site of the Turin–Lyon High-Speed Railway. Here, we identified 17 patches (9 clearings and 8 forests), and we conducted moth surveys using UV–LED light traps. A total of 15,614 individuals belonging to 442 species were collected in 2020 and 2021. Two and fifteen species are new records for Piedmont and for Susa Valley, respectively. In addition to the faunistic interest of the data, this study—using a standardized method—provides geo-referenced occurrences, species-richness, and abundance values useful to compile a baseline dataset for future comparisons. Indeed, the replicable and easy shareable method allows us to make comparisons with other research and thus assess the impact of environmental changes.
Collapse
|
34
|
Kolanowska M, Michalska E. The effect of global warming on the Australian endemic orchid Cryptostylis leptochila and its pollinator. PLoS One 2023; 18:e0280922. [PMID: 36716308 PMCID: PMC9886262 DOI: 10.1371/journal.pone.0280922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Ecological stability together with the suitability of abiotic conditions are crucial for long-term survival of any organism and the maintenance of biodiversity and self-sustainable ecosystems relies on species interactions. By influencing resource availability plants affect the composition of plant communities and ultimately ecosystem functioning. Plant-animal interactions are very complex and include a variety of exploitative and mutualistic relationships. One of the most important mutualistic interactions is that between plants and their pollinators. Coevolution generates clustered links between plants and their pollen vectors, but the pollination and reproductive success of plants is reduced by increase in the specialization of plant-animal interactions. One of the most specialized types of pollination is sexual deception, which occurs almost exclusively in Orchidaceae. In this form of mimicry, male insects are attracted to orchid flowers by chemical compounds that resemble insect female sex pheromones and pollinate the flowers during attempted copulations. These interactions are often species-specific with each species of orchid attracting only males of one or very few closely related species of insects. For sexually deceptive orchids the presence of a particular pollen vector is crucial for reproductive success and any reduction in pollinator availability constitutes a threat to the orchid. Because global warming is rapidly becoming the greatest threat to all organisms by re-shaping the geographical ranges of plants, animals and fungi, this paper focuses on predicting the effect of global warming on Cryptostylis leptochila, a terrestrial endemic in eastern Australia that is pollinated exclusively via pseudo copulation with Lissopimpla excelsa. As a species with a single pollinator this orchid is a perfect model for studies on the effect of global warming on plants and their pollen vectors. According to our predictions, global warming will cause a significant loss of suitable niches for C. leptochila. The potential range of this orchid will be 36%-75% smaller than currently and as a result the Eastern Highlands will become unsuitable for C. leptochila. On the other hand, some new niches will become available for this species in Tasmania. Simultaneously, climate change will result in a substantial expansion of niches suitable for the pollinator (44-82%). Currently ca. 71% of the geographical range of the orchid is also suitable for L. excelsa, therefore, almost 30% of the areas occupied by C. leptochila already lack the pollen vector. The predicted availability of the pollen vector increased under three of the climate change scenarios analysed. The predicted habitat loss is a serious threat to this orchid even with the potential colonization of Tasmania by this plant. In the reduced range of C. leptochila the pollen vector will also be present assuring fruit set in populations of this orchid. The genetic pool of the populations in New South Wales and Queensland will probably be lost.
Collapse
Affiliation(s)
- Marta Kolanowska
- Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, University of Lodz, Poland
- * E-mail:
| | - Ewa Michalska
- Faculty of Biology and Environmental Protection, Department of Geobotany and Plant Ecology, University of Lodz, Poland
| |
Collapse
|
35
|
Kerner JM, Krauss J, Maihoff F, Bofinger L, Classen A. Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants. Ecology 2023; 104:e3848. [PMID: 36366785 DOI: 10.1002/ecy.3848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Despite sometimes strong codependencies of insect herbivores and plants, the responses of individual taxa to accelerating climate change are typically studied in isolation. For this reason, biotic interactions that potentially limit species in tracking their preferred climatic niches are ignored. Here, we chose butterflies as a prominent representative of herbivorous insects to investigate the impacts of temperature changes and their larval host plant distributions along a 1.4-km elevational gradient in the German Alps. Following a sampling protocol of 2009, we revisited 33 grassland plots in 2019 over an entire growing season. We quantified changes in butterfly abundance and richness by repeated transect walks on each plot and disentangled the direct and indirect effects of locally assessed temperature, site management, and larval and adult food resource availability on these patterns. Additionally, we determined elevational range shifts of butterflies and host plants at both the community and species level. Comparing the two sampled years (2009 and 2019), we found a severe decline in butterfly abundance and a clear upward shift of butterflies along the elevational gradient. We detected shifts in the peak of species richness, community composition, and at the species level, whereby mountainous species shifted particularly strongly. In contrast, host plants showed barely any change, neither in connection with species richness nor individual species shifts. Further, temperature and host plant richness were the main drivers of butterfly richness, with change in temperature best explaining the change in richness over time. We concluded that host plants were not yet hindering butterfly species and communities from shifting upwards. However, the mismatch between butterfly and host plant shifts might become a problem for this very close plant-herbivore relationship, especially toward higher elevations, if butterflies fail to adapt to new host plants. Further, our results support the value of conserving traditional extensive pasture use as a promoter of host plant and, hence, butterfly richness.
Collapse
Affiliation(s)
- Janika M Kerner
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jochen Krauss
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabienne Maihoff
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Alice Classen
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
36
|
Franzén M, Francioli Y, Askling J, Kindvall O, Johansson V, Forsman A. Yearly weather variation and surface temperature drives the spatiotemporal dynamics of a threatened butterfly and its host plant. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.917991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It remains unclear to what extent yearly weather variation and spatial variation in microclimate influences the outcome of interacting plant-animal species and whether responses differ between life stages. We collected data over several years on 46 ha on File Hajdar, Gotland, Sweden, and executed a complete mapping of larva nests (n = 776) and imago (n = 5,952) of the marsh fritillary butterfly Euphydryas aurinia and its host plant Succisa pratensis. The phenology of the butterflies and the major nectar plants visited varied among years. The duration of the adult flight period decreased with increasing ambient air temperatures. The density of butterflies, host plants, and host plant leaf size increased between years with increasing precipitation in the preceding year, and decreased with increasing average ambient air temperature in the preceding year. In 2021–2022 we deployed a unmanned aerial vehicle (UAV) with a high-resolution thermal sensor to measure spatial variation in surface temperatures in the study area. We found that survival from the egg to the larva stage increased with increasing surface temperature and host plant density. Host plants and larva nests generally occupied warmer microhabitats compared to imago butterflies. The results further suggested that the relationships linking surface temperature to the densities of imago, larva, host plants, and leaf size differed qualitatively between years. In 2017, larva nests and host plant density increased with increasing surface temperatures, and butterflies showed a non-linear response with a density peak at intermediate temperatures. As a result of the extreme drought in 2018 there was a reduction in maximum leaf size, and in the densities of plants, larvae, and butterflies. Moreover, the slopes of the relationships linking the density of larvae, butterflies, and plants to temperature shifted from linear positive to negative or curvilinear. Our findings demonstrate how yearly weather variation and heterogeneous surface temperatures can drive the spatiotemporal distribution and dynamics of butterflies and their host plants. The context specificity of the responses indicated by our results makes it challenging to project how climate change will affect the dynamics of ecological communities.
Collapse
|
37
|
Gornostaev NG, Ruchin AB, Esin MN, Kulikov AM. Seasonal Dynamics of Fruit Flies (Diptera: Drosophilidae) in Forests of the European Russia. INSECTS 2022; 13:751. [PMID: 36005376 PMCID: PMC9409203 DOI: 10.3390/insects13080751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: Seasonal dynamics of the abundance and species diversity of various insect groups is of great importance for understanding their life cycles; (2) Methods: In our study, Drosophilidae species and their seasonal changes in Mordovia State Nature Reserve were explored. We collected the flies by crown fermental traps in five types of forests (birch, aspen, linden, pine and oak) since May to October in 2019. (3) Results: A total of 4725 individuals belonging to 9 genera and 30 species of drosophilid flies were identified, among them 15 species in 3 genera are new to the Republic of Mordovia. Drosophila obscura and D. histrio were the most abundant species in traps, the other mass species are D. kuntzei, D. testacea, D. phalerata, S. rufifrons, D. bifasciata, A. semivirgo, and L. quinquemaculata. (4) Conclusions: We found three groups of mass species with significant correlation of seasonal dynamics, e.g., D.obscura and D. bifasciata; D. histrio, D. kuntzei, D. phalerata, and D. testacea, and, finally, A. semivirgo and S. rufifrons. Apparently, the similarity observed in the seasonal dynamics of these drosophilid species is influenced at a high degree by their food preferences and rearing sites.
Collapse
Affiliation(s)
| | - Alexander B. Ruchin
- Joint Directorate of the Mordovia State Nature Reserve and National Park “Smolny”, 430005 Saransk, Russia
| | - Mikhail N. Esin
- Joint Directorate of the Mordovia State Nature Reserve and National Park “Smolny”, 430005 Saransk, Russia
| | - Aleksei M. Kulikov
- N.K. Koltsov Institute of Developmental Biology RAS, 119334 Moscow, Russia
| |
Collapse
|
38
|
Differences in phenology, daily timing of activity, and associations of temperature utilization with survival in three threatened butterflies. Sci Rep 2022; 12:7534. [PMID: 35534513 PMCID: PMC9085768 DOI: 10.1038/s41598-022-10676-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
We used observational data collected during a mark-recapture study that generated a total of 7503 captures of 6108 unique individuals representing three endangered butterfly species to quantify inter-and intraindividual variation in temperature utilization and examine how activity patterns vary according to season, time of day, and ambient temperature. The Marsh Fritillary, the Apollo, and the Large Blue differed in utilized temperatures and phenology. Their daily activity patterns responded differently to temperature, in part depending on whether they were active in the beginning, middle or end of the season, in part reflecting interindividual variation and intraindividual flexibility, and in part owing to differences in ecology, morphology, and colouration. Activity temperatures varied over the season, and the Apollo and the Large Blue were primarily active at the highest available ambient temperatures (on the warmest days and during the warmest part of the day). The Marsh Fritillary was active early in the season and decreased activity during the highest temperatures. The relationship between individual lifespan and the average temperature was qualitatively different in the three species pointing to species-specific selection. Lifespan increased with an increasing range of utilized temperatures in all species, possibly reflecting that intra-individual flexibility comes with a general survival benefit.
Collapse
|