1
|
Guo C, Wright MD, Buckley A, Laycock A, Berthing T, Vogel U, Cosnier F, Gaté L, Leonard MO, Smith R. Pulmonary Toxicity of Long, Thick MWCNT and Very Long, Thin Carboxylated MWCNT Aerosols Following 28 Days Whole-Body Exposure. TOXICS 2025; 13:401. [PMID: 40423481 DOI: 10.3390/toxics13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Pulmonary exposure to carbon nanotubes (CNTs) has been linked to a series of adverse respiratory effects in animal models, including inflammation, genotoxicity, fibrosis, and granuloma formation, the degree and characteristics of which are considered dependent upon the detailed physicochemical properties of the material as inhaled. To further explore the effect of variations in physicochemical properties on pulmonary effects, two different multi-walled CNTs (MWCNTs) were tested in vivo: a pristine MWCNT (pMWCNT) (NM-401) and a surface-modified MWCNT (MWCNT-COOH). Female Sprague-Dawley rats were whole-body exposed for 28 days to MWCNT aerosols (pMWCNT (0.5 and 1.5 mg/m3) and MWCNT-COOH (1.5 and 4.5 mg/m3)) and followed up to 1 year post-exposure. The inhalation exposures resulted in relatively low estimated lung deposition. Bronchoalveolar lavage fluid (BALF) analysis indicated inflammation levels broadly consistent with deposited dose levels. Lung histopathology indicated that both MWCNTs produced very limited toxicological effects; however, global mRNA expression levels in lung tissue and BALF cytokines indicated different characteristics for the two MWCNTs. For example, pMWCNT but not MWCNT-COOH exposure induced osteopontin production, suggestive of potential pre-fibrosis/fibrosis effects linked to the higher aspect ratio aerosol particles. This is of concern as brightfield and enhanced darkfield microscopy indicated the persistence of pMWCNT fibres in lung tissue.
Collapse
Affiliation(s)
- Chang Guo
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Matthew D Wright
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Alison Buckley
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Adam Laycock
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Trine Berthing
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 54519 Vandoeuvre les Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 54519 Vandoeuvre les Nancy, France
| | - Martin O Leonard
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| |
Collapse
|
2
|
Korchevskiy AA, Wylie AG. The empirical metric of mesothelial carcinogenicity for carbon nanotubes and elongate mineral particles. Inhal Toxicol 2025:1-26. [PMID: 40270366 DOI: 10.1080/08958378.2025.2486087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Carcinogenic potential of elongate particles depends on many characteristics, with dimensional parameters playing an important role at all stages of disease origination and progression. It is important to develop quantitative metrics of mesothelial carcinogenicity for particles in order to predict their behavior within biological systems. It would be especially valuable if such metrics could be developed for both carbon nanotubes (CNTs) and elongate mineral particles (EMPs) to demonstrate similarities and differences in the estimations of mesothelioma risk. METHODS The database is organized with dimensional characteristics of EMPs, containing 570,950 records for 246 asbestiform, non-asbestiform, and mixed datasets. A database on carbon nanotubes (CNTs) with various toxicological outcomes of animal experiments, including mesothelioma, was also created. Mathematical modeling was used to determine the best metric of mesotheliomagenicity that would work for CNTs and EMPs. RESULTS The dimensional coefficient of carcinogenicity (DCC) was introduced with the formula DCC = 1-exp(-AxSA/(BxWidth3+C)), where SA - surface area of the elongate particle, Width - particle width, A, B, C - coefficients. It was demonstrated that DCC can efficiently determine mesotheliomagenic varieties of CNTs and EMPs, with a threshold for carcinogenic potential of 0.05 with A = 0.11, B = 1000, C = 1. DISCUSSION The new quantitative metric of carcinogenicity can be used for the purposes of mineralogical evaluation and toxicological analysis. It was confirmed that DCC-based models predict negligible mesothelioma potency for non-asbestiform amphiboles.
Collapse
Affiliation(s)
| | - Ann G Wylie
- University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Wylie AG, Korchevskiy AA. Critical values for dimensional parameters of mesotheliomagenic mineral fibers: evidence from the dimensions and rigidity of MWCNT. FRONTIERS IN TOXICOLOGY 2025; 7:1568513. [PMID: 40330553 PMCID: PMC12052570 DOI: 10.3389/ftox.2025.1568513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
MWCNT (multi-walled carbon nanotubes) used in 72 animal instillation or inhalation studies were classified by average length, average width, Young's modulus, Rigidity Index (RI), and potency for mesothelioma in animals. The RI is based on the Euler buckling theory. MWCNT that induce mesothelioma have average lengths >2 µm and widths >37 nm, and average RI > 0.05 (µm2 x GPa x 104). Many noncarcinogenic MWCNT materials have RI < 0.05 and lack biological rigidity. In comparison, Elongate Mineral Particle (EMP) populations with one exception have RI > 0.05. Mineral particles likely to have RI < 0.05 include chrysotile fibrils with lengths >5 μm, amosite and crocidolite fibers with widths <60 nm, and sheet silicate fibers with widths <200 nm. The product of percent EMPA, average RI, and biosolubility among silicates correlates with known mesothelioma potency. The derived models reproduce published values of RM with high statistical significance (P < 0.05). Average RI, length, and width are critical parameters for mesotheliomagenicity for both MWCNT and EMPA mineral fiber.
Collapse
Affiliation(s)
- Ann G. Wylie
- Department of Geology, University of Maryland, College Park, MD, United States
| | | |
Collapse
|
4
|
Ahmed OHM, Naiki-Ito A, Takahashi S, Alexander WT, Alexander DB, Tsuda H. A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:168. [PMID: 39940144 PMCID: PMC11820818 DOI: 10.3390/nano15030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
The carcinogenic potential of MWCNTs is not well defined. Currently, IARC has classified MWCNT-7 as a Group 2 B material, possibly carcinogenic to humans, and all other MWCNTs as Group 3 materials, inadequate evidence in experimental animals for their carcinogenicity and not classifiable as to their carcinogenicity to humans. In this review we discuss studies that investigated the lung toxicity of well characterized MWCNTs in mice and rats. Intraperitoneal and intrascrotal injection studies identified rigid MWCNTs as hazardous materials. The assessment of lung toxicity of MWCNTs in short and medium term instillation and inhalation studies were not conclusive; therefore, these studies do not confirm the hazard of MWCNTs. However, two-year carcinogenicity studies indicate that MWCNT-7 and other MWCNTs, both thick rigid MWCNTs and thin flexible MWCNTs, are carcinogenic in test animals. Therefore, the carcinogenicity of MWCNTs in experimental animals should be reassessed.
Collapse
Affiliation(s)
- Omnia Hosny Mohamed Ahmed
- Nanotoxicology Project, Nagoya City University, Nagoya 467-8603, Japan; (O.H.M.A.); (W.T.A.)
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (A.N.-I.); (S.T.)
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Aswan University, Aswan 81528, Egypt
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (A.N.-I.); (S.T.)
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (A.N.-I.); (S.T.)
| | - William T. Alexander
- Nanotoxicology Project, Nagoya City University, Nagoya 467-8603, Japan; (O.H.M.A.); (W.T.A.)
| | - David B. Alexander
- Nanotoxicology Project, Nagoya City University, Nagoya 467-8603, Japan; (O.H.M.A.); (W.T.A.)
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya 467-8603, Japan; (O.H.M.A.); (W.T.A.)
| |
Collapse
|
5
|
Wolff H, Vogel U. Recent progress in the EU classification of the health hazards associated with certain multiwall carbon nanotubes (MWCNTs): what about the other MWCNTs? Nanotoxicology 2024; 18:119-121. [PMID: 38412222 DOI: 10.1080/17435390.2024.2321885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Affiliation(s)
- Henrik Wolff
- Laboratory of Pathology, Finnish institute of Occupational Health, Helsinki, Finland
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
6
|
Verma S, Malviya R, Srivastava S, Ahmad I, Singh B, Almontasheri R, Uniyal P. Shape Dependent Therapeutic Potential of Nanoparticulate System: Advance Approach for Drug Delivery. Curr Pharm Des 2024; 30:2606-2618. [PMID: 39034725 DOI: 10.2174/0113816128314618240628110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Drug delivery systems rely heavily on nanoparticles because they provide a targeted and monitored release of pharmaceuticals that maximize therapeutic efficacy and minimize side effects. To maximize drug internalization, this review focuses on comprehending the interactions between biological systems and nanoparticles. The way that nanoparticles behave during cellular uptake, distribution, and retention in the body is determined by their shape. Different forms, such as mesoporous silica nanoparticles, micelles, and nanorods, each have special properties that influence how well drugs are delivered to cells and internalized. To achieve the desired particle morphology, shape-controlled nanoparticle synthesis strategies take into account variables like pH, temperatures, and reaction time. Top-down techniques entail dissolving bulk materials to produce nanoparticles, whereas bottom-up techniques enable nanostructures to self-assemble. Comprehending the interactions at the bio-nano interface is essential to surmounting biological barriers and enhancing the therapeutic efficacy of nanotechnology in drug delivery systems. In general, drug internalization and distribution are greatly influenced by the shape of nanoparticles, which presents an opportunity for tailored and efficient treatment plans in a range of medical applications.
Collapse
Affiliation(s)
- Shristy Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai 71800, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Rasha Almontasheri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
7
|
Wils RS, Jacobsen NR, Vogel U, Roursgaard M, Jensen A, Møller P. Pleural inflammatory response, mesothelin content and DNA damage in mice at one-year after intra-pleural carbon nanotube administration. Toxicology 2023; 499:153662. [PMID: 37923288 DOI: 10.1016/j.tox.2023.153662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Many in vitro and in vivo studies have shown that exposure to carbon nanotubes (CNTs) is associated with inflammation, oxidative stress and genotoxicity, although there is a paucity of studies on these effects in the pleural cavity. In the present study, we investigated adverse outcomes of pleural exposure to multi-walled CNTs (MWCNT-7, NM-401 and NM-403) and single-walled CNTs (NM-411). Female C57BL/6 mice were exposed to 0.2 or 5 µg of CNTs by intra-pleural injection and sacrificed one-year post-exposure. Exposure to long and straight types of MWCNTs (i.e. MWCNT-7 and NM-401) was associated with decreased number of macrophages and increased number of neutrophils and eosinophils in pleural lavage fluid. Increased protein content in the pleural lavage fluid was also observed in mice exposed to MWCNT-7 and NM-401. The concentration of mesothelin was increased in mice exposed to MWCNT-7 and NM-411. Levels of DNA strand breaks and DNA oxidation damage, measured by the comet assay, were unaltered in cells from pleural scrape. Extra-pleural effects were seen in CNT exposed mice, including enlarged and pigmented mediastinal lymph nodes (all four types of CNTs), pericardial plaques (MWCNT-7 and NM-401), macroscopic abnormalities on the liver (MWCNT-7) and ovaries/uterus (NM-411). In conclusion, the results demonstrate that intra-pleural exposure to long and straight MWCNTs is associated with adverse outcomes. Certain observations such as increased content of mesothelin in pleural lavage fluid and ovarian/uterine abnormalities in mice exposed to NM-411 suggests that exposure to SWCNTs may also be associated with some adverse outcomes.
Collapse
Affiliation(s)
- Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark; DTU Food, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5 A, DK-1014 Copenhagen K, Denmark.
| |
Collapse
|
8
|
Nel A. Carbon nanotube pathogenicity conforms to a unified theory for mesothelioma causation by elongate materials and fibers. ENVIRONMENTAL RESEARCH 2023; 230:114580. [PMID: 36965801 DOI: 10.1016/j.envres.2022.114580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 05/30/2023]
Abstract
The purpose of this review is to elucidate how dimensional and durability characteristics of high aspect ratio nanomaterials (HARN), including carbon nanotubes (CNT) and metal nanowires (MeNW), contribute to understanding the fiber pathogenicity paradigm (FPP), including by explaining the structure-activity relationships (SAR) of a diverse range of natural and synthetic elongate materials that may or may not contribute to mesothelioma development in the lung. While the FPP was originally developed to explain the critical importance of asbestos and synthetic vitreous fiber length, width, aspect ratio and biopersistence in mesothelioma development, there are a vast number of additional inhalable materials that need to be considered in terms of pathogenic features that may contribute to mesothelioma or lack thereof. Not only does the ability to exert more exact control over the length and biopersistence of HARNs confirm the tenets of the FPP, but could be studied by implementating more appropriate toxicological tools for SAR analysis. This includes experimentation with carefully assembled libraries of CNTs and MeNWs, helping to establish more precise dimensional features for interfering in lymphatic drainage from the parietal pleura, triggering of lysosomal damage, frustrated phagocytosis and generation of chronic inflammation. The evidence includes data that long and rigid, but not short and flexible multi-wall CNTs are capable of generating mesotheliomas in rodents based on an adverse outcome pathway requiring access to pleural cavity, obstruction of pleural stomata, chronic inflammation and transformation of mesothelial cells. In addition to durability and dimensional characteristics, bending stiffness of CNTs is a critical factor in determining the shape and rigidity of pathogenic MWCNTs. While no evidence has been obtained in humans that CNT exposure leads to a mesothelioma outcome, it is important to monitor exposure levels and health effect impacts in workers to prevent adverse health outcomes in humans.
Collapse
Affiliation(s)
- André Nel
- Distinguished Professor of Medicine and Research Director of the California Nano Systems Institute at UCLA, USA; Division of NanoMedicine, And Department of Medicine, David Geffen School of Medicine at UCLA, 52-175 Center for the Health Sciences, 10833 LeConte Ave, Los Angeles, CA, 90095, USA; California Nano Systems Institute at UCLA, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Erdem JS, Závodná T, Ervik TK, Skare Ø, Hron T, Anmarkrud KH, Kuśnierczyk A, Catalán J, Ellingsen DG, Topinka J, Zienolddiny-Narui S. High aspect ratio nanomaterial-induced macrophage polarization is mediated by changes in miRNA levels. Front Immunol 2023; 14:1111123. [PMID: 36776851 PMCID: PMC9911541 DOI: 10.3389/fimmu.2023.1111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. Methods MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. Results Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. Conclusion Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czechia
| | | | - Øivind Skare
- National Institute of Occupational Health, Oslo, Norway
| | - Tomáš Hron
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | | | - Anna Kuśnierczyk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Proteomics and Modomics Experimental Core Facility and St. Olavs Hospital Central Staff, Trondheim, Norway
| | - Julia Catalán
- Department of Work Safety, Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | | | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
10
|
Chen C, Wang J, Liang Z, Li M, Fu D, Zhang L, Yang X, Guo Y, Ge D, Liu Y, Sun B. Monosodium urate crystals with controlled shape and aspect ratio for elucidating the pathological progress of acute gout. BIOMATERIALS ADVANCES 2022; 139:213005. [PMID: 35882152 DOI: 10.1016/j.bioadv.2022.213005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Gout is a self-limiting inflammatory arthritis mediated by the precipitation of monosodium urate (MSU) crystals that further activate the NLRP3 inflammasome and initiate a cascade of inflammatory events. However, the key physicochemical properties of MSU crystals that determine the acute phase of gout have not been fully identified. In this study, a library of engineered MSU crystals with well-controlled size and shape is designed to explore their proinflammatory potentials in mediating the pathological progress of gout. It is demonstrated that medium-sized long aspect ratio MSU crystals induce more prominent IL-1β production in vitro due to enhanced cellular uptake and the production of mitochondrial reactive oxygen species (mtROS). The characteristics of MSU crystals are also correlated with their inflammatory potentials in both acute peritonitis and arthritis models. Furthermore, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) is demonstrated to inhibit MSU-induced oxidative burst by removing plasma membrane cholesterol. As a result, it attenuates the inflammatory responses both in vitro and in vivo. Additionally, antioxidant N-acetylcysteine (NAC) is shown to alleviate acute gouty symptom by suppressing oxidative stress. This study identifies the key physicochemical properties of MSU crystals that mediate the pathogenesis of gout, which sheds light on novel design strategies for the intervention of gout.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Duo Fu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Lei Zhang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Xuecheng Yang
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Yiyang Guo
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Dan Ge
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Yang Liu
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China.; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, PR China..
| |
Collapse
|
11
|
Hojo M, Maeno A, Sakamoto Y, Ohnuki A, Tada Y, Yamamoto Y, Ikushima K, Inaba R, Suzuki J, Taquahashi Y, Yokota S, Kobayashi N, Ohnishi M, Goto Y, Numano T, Tsuda H, Alexander DB, Kanno J, Hirose A, Inomata A, Nakae D. Two-year intermittent exposure of a multiwalled carbon nanotube by intratracheal instillation induces lung tumors and pleural mesotheliomas in F344 rats. Part Fibre Toxicol 2022; 19:38. [PMID: 35590372 PMCID: PMC9118836 DOI: 10.1186/s12989-022-00478-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A mounting number of studies have been documenting the carcinogenic potential of multiwalled carbon nanotubes (MWCNTs); however, only a few studies have evaluated the pulmonary carcinogenicity of MWCNTs in vivo. A 2-year inhalation study demonstrated that MWNT-7, a widely used MWCNT, was a pulmonary carcinogen in rats. In another 2-year study, rats administered MWNT-7 by intratracheal instillation at the beginning of the experimental period developed pleural mesotheliomas but not lung tumors. To obtain data more comparable with rats exposed to MWNT-7 by inhalation, we administered MWNT-7 to F344 rats by intratracheal instillation once every 4-weeks over the course of 2 years at 0, 0.125, and 0.5 mg/kg body weight, allowing lung burdens of MWNT-7 to increase over the entire experimental period, similar to the inhalation study. RESULTS Absolute and relative lung weights were significantly elevated in both MWNT-7-treated groups. Dose- and time-dependent toxic effects in the lung and pleura, such as inflammatory, fibrotic, and hyperplastic lesions, were found in both treated groups. The incidences of lung carcinomas, lung adenomas, and pleural mesotheliomas were significantly increased in the high-dose group compared with the control group. The pleural mesotheliomas developed mainly at the mediastinum. No MWNT-7-related neoplastic lesions were noted in the other organs. Cytological and biochemical parameters of the bronchoalveolar lavage fluid (BALF) were elevated in both treated groups. The lung burden of MWNT-7 was dose- and time-dependent, and at the terminal necropsy, the average value was 0.9 and 3.6 mg/lung in the low-dose and high-dose groups, respectively. The number of fibers in the pleural cavity was also dose- and time-dependent. CONCLUSIONS Repeated administration of MWNT-7 by intratracheal instillation over the 2 years indicates that MWNT-7 is carcinogenic to both the lung and pleura of rats, which differs from the results of the 2 carcinogenicity tests by inhalation or intratracheal instillation.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan.
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Aya Ohnuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yukie Tada
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Ryota Inaba
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Yuhji Taquahashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Satoshi Yokota
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Norihiro Kobayashi
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Makoto Ohnishi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | - Yuko Goto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, Japan
| | | | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Aichi, Japan
| | | | - Jun Kanno
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiko Hirose
- Center for Biological Safety and Research, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku, Tokyo, 169-0073, Japan
| | - Dai Nakae
- Animal Medical Course, Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara, Chiba, 290-0193, Japan. .,Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
12
|
Fujita K, Obara S, Maru J. Pulmonary toxicity, cytotoxicity, and genotoxicity of submicron-diameter carbon fibers with different diameters and lengths. Toxicology 2021; 466:153063. [PMID: 34890706 DOI: 10.1016/j.tox.2021.153063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Submicron-diameter carbon fibers (SCFs) are a type of fine-diameter fibrous carbon material that can be used in various applications. To accelerate their practical application, a hazard assessment of SCFs must be undertaken. This study demonstrated the pulmonary toxicity, cytotoxicity, and genotoxicity of three types of SCFs with different diameters and lengths. The average diameter and length of SCFs were 259.2 nm and 11.7 μm in SCF1 suspensions, 248.5 nm and 6.7 μm in SCF2 suspensions, and 183.0 nm and 13.7 μm in SCF3 suspensions, respectively. The results of pulmonary inflammation and recovery following intratracheal instillation with SCFs at doses of 0.25, 0.5, or 1.0 mg/kg showed that the pulmonary toxicity of SCFs was SCF3 > SCF1 > SCF2. These results suggest that SCF diameter and length are most likely important contributing factors associated with lung SCF clearance, pulmonary inflammation, and recovery. Furthermore, SCFs are less pulmonary toxic than bent multi-walled carbon nanotubes. Cell viability, pro-inflammatory cytokine and intracellular reactive oxygen species productions, morphological changes, gene expression profiling in NR8383 rat alveolar macrophage cells showed that the cytotoxic potency of SCFs is: SCF3 > SCF1 > SCF2. These results showed that SCFs with small diameters had high cytotoxicity, and SCFs with short lengths had low cytotoxicity. We conclude that pulmonary toxicity and cytotoxicity are associated with the diameter and length distributions of SCFs. In addition, a standard battery for genotoxicity testing, namely the Ames test, an in vitro chromosomal aberration test, and a mammalian erythrocyte micronucleus test, demonstrated that the three types of SCFs did not induce genotoxicity. Our findings provide new evidence for evaluating the potential toxicity of not only SCFs used in this study but also various SCFs which differ depending on the manufacturing processes or physicochemical properties.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan.
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
13
|
Zhang C, Wu L, de Perrot M, Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Front Oncol 2021; 11:693814. [PMID: 34386422 PMCID: PMC8353320 DOI: 10.3389/fonc.2021.693814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Carbon nanotubes (CNTs) are nanomaterials with broad applications that are produced on a large scale. Animal experiments have shown that exposure to CNTs, especially one type of multi-walled carbon nanotube, MWCNT-7, can lead to malignant transformation. CNTs have characteristics similar to asbestos (size, shape, and biopersistence) and use the same molecular mechanisms and signaling pathways as those involved in asbestos tumorigenesis. Here, a comprehensive review of the characteristics of carbon nanotubes is provided, as well as insights that may assist in the design and production of safer nanomaterials to limit the hazards of currently used CNTs.
Collapse
Affiliation(s)
- Chengke Zhang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Licun Wu
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories and Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Department Immunology, University of Toronto, Toronto, ON, Canada
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Thoracic Cancer, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial Shape Influence on Cell Behavior. Int J Mol Sci 2021; 22:5266. [PMID: 34067696 PMCID: PMC8156540 DOI: 10.3390/ijms22105266] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. Despite this fact, only surface chemistry, charge, and area are often linked to these phenomena. Moreover, most attention in this field is directed exclusively at nanomaterial cytotoxicity. At the same time, there is a large body of studies showing the influence of nanomaterials on cellular metabolism, proliferation, differentiation, reprogramming, gene transfer, and many other processes. Furthermore, it has been revealed that in all these cases, the shape of the nanomaterial plays a crucial role. In this paper, the mechanisms of nanomaterials shape control, approaches toward its synthesis, and the influence of nanomaterial shape on various biological activities of mammalian and microbial cells, such as proliferation, differentiation, and metabolism, as well as the prospects of this emerging field, are reviewed.
Collapse
Affiliation(s)
| | | | | | - Artur Y. Prilepskii
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (D.V.K.); (A.S.F.); (N.S.S.)
| |
Collapse
|
15
|
Murphy F, Dekkers S, Braakhuis H, Ma-Hock L, Johnston H, Janer G, di Cristo L, Sabella S, Jacobsen NR, Oomen AG, Haase A, Fernandes T, Stone V. An integrated approach to testing and assessment of high aspect ratio nanomaterials and its application for grouping based on a common mesothelioma hazard. NANOIMPACT 2021; 22:100314. [PMID: 35559971 DOI: 10.1016/j.impact.2021.100314] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 06/15/2023]
Abstract
Here we describe the development of an Integrated Approach to Testing and Assessment (IATA) to support the grouping of different types (nanoforms; NFs) of High Aspect Ratio Nanomaterials (HARNs), based on their potential to cause mesothelioma. Hazards posed by the inhalation of HARNs are of particular concern as they exhibit physical characteristics similar to pathogenic asbestos fibres. The approach for grouping HARNs presented here is part of a framework to provide guidance and tools to group similar NFs and aims to reduce the need to assess toxicity on a case-by-case basis. The approach to grouping is hypothesis-driven, in which the hypothesis is based on scientific evidence linking critical physicochemical descriptors for NFs to defined fate/toxicokinetic and hazard outcomes. The HARN IATA prompts users to address relevant questions (at decision nodes; DNs) regarding the morphology, biopersistence and inflammatory potential of the HARNs under investigation to provide the necessary evidence to accept or reject the grouping hypothesis. Each DN in the IATA is addressed in a tiered manner, using data from simple in vitro or in silico methods in the lowest tier or from in vivo approaches in the highest tier. For these proposed methods we provide justification for the critical descriptors and thresholds that allow grouping decisions to be made. Application of the IATA allows the user to selectively identify HARNs which may pose a mesothelioma hazard, as demonstrated through a literature-based case study. By promoting the use of alternative, non-rodent approaches such as in silico modelling, in vitro and cell-free tests in the initial tiers, the IATA testing strategy streamlines information gathering at all stages of innovation through to regulatory risk assessment while reducing the ethical, time and economic burden of testing.
Collapse
Affiliation(s)
- Fiona Murphy
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK.
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lan Ma-Hock
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | | | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | | | | | | | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | | | - Vicki Stone
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
16
|
Kuper CF, Pieters RHH, van Bilsen JHM. Nanomaterials and the Serosal Immune System in the Thoracic and Peritoneal Cavities. Int J Mol Sci 2021; 22:ijms22052610. [PMID: 33807632 PMCID: PMC7961545 DOI: 10.3390/ijms22052610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NM on ILCs and other components of the serosal immune system are scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NM may lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NM on the serosal immune system.
Collapse
Affiliation(s)
- C. Frieke Kuper
- Consultant, Haagstraat 13, 3581 SW Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| | - Raymond H. H. Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
- Innovative Testing in Life Sciences & Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Padualaan 97, 3584 CH Utrecht, The Netherlands
| | - Jolanda H. M. van Bilsen
- Department for Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| |
Collapse
|
17
|
Numano T, Sugiyama T, Kawabe M, Mera Y, Ogawa R, Nishioka A, Fukui H, Sato K, Hagiwara Y. Lung toxicity of a vapor-grown carbon fiber in comparison with a multi-walled carbon nanotube in F344 rats. J Toxicol Pathol 2020; 34:57-71. [PMID: 33627945 PMCID: PMC7890169 DOI: 10.1293/tox.2020-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Carbon fibers have excellent physicochemical and electrical properties. Vapor-grown
carbon fibers are a type of carbon fibers that have a multi-walled carbon tube structure
with a high aspect ratio. The representative vapor-grown carbon fiber,
VGCFTM-H, is extremely strong and stable and has superior thermal and
electrical conductivity. Because some high-aspect-ratio multi-walled carbon nanotubes
(MWCNTs) have been reported to have toxic and carcinogenic effects in the lungs of
rodents, we performed a 13-week lung toxicity study using VGCFTM-H in
comparison with one of MWCNTs, MWNT-7, in rats. Male and female F344 rats were
intratracheally administered VGCFTM-H at doses of 0.2, 0.4, and 0.8 mg/kg bw or
MWNT-7 at doses of 0.4 and 0.8 mg/kg bw once a week for 8 weeks and then up to week 13
without treatment. The lung burden was equivalent in the VGCFTM-H and MWNT-7
groups; however, the lung weight had increased and the inflammatory and biochemical
parameters in the broncho-alveolar lavage fluid and histopathological parameters,
including inflammatory cell infiltration, alveolar type II cells proliferation, alveolar
fibrosis, pleural fibrosis, lung mesothelium proliferation, and diaphragm fibrosis, were
milder in the VGCFTM-H group than in the MWNT-7 group. In addition, the
proliferating cell nuclear antigen (PCNA)-positive index in the visceral and pleural
mesothelium was significantly higher in the MWNT-7 group than in the controls, but not in
the VGCFTM-H group. Thus, the results of this study indicate that the lung and
pleural toxicities of VGCFTM-H were less than those of MWNT-7.
Collapse
Affiliation(s)
- Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Taiki Sugiyama
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Mayumi Kawabe
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi 491-0113, Japan
| | - Ryoji Ogawa
- Chemicals Assessment & Management Center, Responsible Care Department, Showa Denko K.K., 13-9 Shiba Daimon 1-Chome, Minato-ku, Tokyo 105-8518, Japan
| | - Ayako Nishioka
- Chemicals Assessment & Management Center, Responsible Care Department, Showa Denko K.K., 13-9 Shiba Daimon 1-Chome, Minato-ku, Tokyo 105-8518, Japan
| | - Hiroko Fukui
- Chemicals Assessment & Management Center, Responsible Care Department, Showa Denko K.K., 13-9 Shiba Daimon 1-Chome, Minato-ku, Tokyo 105-8518, Japan
| | - Kei Sato
- Chemicals Assessment & Management Center, Responsible Care Department, Showa Denko K.K., 13-9 Shiba Daimon 1-Chome, Minato-ku, Tokyo 105-8518, Japan
| | - Yuji Hagiwara
- Chemicals Assessment & Management Center, Responsible Care Department, Showa Denko K.K., 13-9 Shiba Daimon 1-Chome, Minato-ku, Tokyo 105-8518, Japan
| |
Collapse
|
18
|
Saleh DM, Alexander WT, Numano T, Ahmed OHM, Gunasekaran S, Alexander DB, Abdelgied M, El-Gazzar AM, Takase H, Xu J, Naiki-Ito A, Takahashi S, Hirose A, Ohnishi M, Kanno J, Tsuda H. Comparative carcinogenicity study of a thick, straight-type and a thin, tangled-type multi-walled carbon nanotube administered by intra-tracheal instillation in the rat. Part Fibre Toxicol 2020; 17:48. [PMID: 33054855 PMCID: PMC7559486 DOI: 10.1186/s12989-020-00382-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Multi-walled carbon nanotubes can be divided into two general subtypes: tangled and straight. MWCNT-N (60 nm in diameter) and MWCNT-7 (80–90 nm in diameter) are straight-type MWCNTs, and similarly to asbestos, both are carcinogenic to the lung and pleura when administered to rats via the airway. Injection of straight-type MWCNTs into the peritoneal cavity also induces the development of mesothelioma, however, injection of tangled-type MWCNTs into the peritoneal cavity does not induce carcinogenesis. To investigate these effects in the lung we conducted a 2-year comparative study of the potential carcinogenicities of a straight-type MWCNT, MWCNT-A (approximately 150 nm in diameter), and a tangled-type MWCNT, MWCNT-B (7.4 nm in diameter) after administration into the rat lung. Crocidolite asbestos was used as the reference material, and rats administered vehicle were used as the controls. Test materials were administered by intra-Tracheal Intra-Pulmonary Spraying (TIPS) once a week over a 7 week period (8 administrations from day 1 to day 50), followed by a 2-year observation period without further treatment. Rats were administered total doses of 0.5 or 1.0 mg MWCNT-A and MWCNT-B or 1.0 mg asbestos. Results There was no difference in survival between any of the groups. The rats administered MWCNT-A or asbestos did not have a significant increase in bronchiolo-alveolar hyperplasia or tumors in the lung. However, the rats administered MWCNT-B did have significantly elevated incidences of bronchiolo-alveolar hyperplasia and tumors in the lung: the incidence of bronchiolo-alveolar hyperplasia was 0/20, 6/20, and 9/20 in the vehicle, 0.5 mg MWCNT-B, and 1.0 mg MWCNT-B groups, respectively, and the incidence of adenoma and adenocarcinoma combined was 1/19, 5/20, and 7/20 in the vehicle, 0.5 mg MWCNT-B, and 1.0 mg MWCNT-B groups, respectively. Malignant pleural mesothelioma was not induced in any of the groups. Conclusions The results of this initial study indicate that tangled-type MWCNT-B is carcinogenic to the rat lung when administered via the airway, and that straight-type MWCNT-A did not have higher carcinogenic potential in the rat lung than tangled-type MWCNT-B.
Collapse
Affiliation(s)
- Dina Mourad Saleh
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - William T Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan
| | - Takamasa Numano
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan
| | - Omnia Hosny Mohamed Ahmed
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Sivagami Gunasekaran
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - David B Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.
| | - Mohamed Abdelgied
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M El-Gazzar
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.,Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Veterinary Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jiegou Xu
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.,Department of Immunology, Anhui Medical University College of Basic Medical Sciences, Hefei, China
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Kawasaki, Japan
| | - Makoto Ohnishi
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Hadano, Kanagawa, Japan
| | - Jun Kanno
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Hadano, Kanagawa, Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-Dohri, Mizuho-ku, Nagoya, 466-8603, Japan.
| |
Collapse
|
19
|
Abstract
Abstract
Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.
Collapse
|
20
|
Chen H, Humes ST, Rose M, Robinson SE, Loeb JC, Sabaraya IV, Smith LC, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T. Hydroxyl functionalized multi-walled carbon nanotubes modulate immune responses without increasing 2009 pandemic influenza A/H1N1 virus titers in infected mice. Toxicol Appl Pharmacol 2020; 404:115167. [PMID: 32771490 PMCID: PMC10636740 DOI: 10.1016/j.taap.2020.115167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Growing use of carbon nanotubes (CNTs) have garnered concerns regarding their association with adverse health effects. Few studies have probed how CNTs affect a host's susceptibility to pathogens, particularly respiratory viruses. We reported that exposure of lung cells and mice to pristine single-walled CNTs (SWCNTs) leads to significantly increased influenza virus H1N1 strain A/Mexico/4108/2009 (IAV) titers in concert with repressed antiviral immune responses. In the present study, we investigated if hydroxylated multi-walled CNTs (MWCNTs), would result in similar outcomes. C57BL/6 mice were exposed to 20 μg MWCNTs on day 0 and IAV on day 3 and samples were collected on day 7. We investigated pathological changes, viral titers, immune-related gene expression in lung tissue, and quantified differential cell counts and cytokine and chemokine levels in bronchoalveolar lavage fluid. MWCNTs alone caused mild inflammation with no apparent changes in immune markers whereas IAV alone presented typical infection-associated inflammation, pathology, and titers. The co-exposure (MWCNTs + IAV) did not alter titers or immune cell profiles compared to the IAV only but increased concentrations of IL-1β, TNFα, GM-CSF, KC, MIPs, and RANTES and inhibited mRNA expression of Tlr3, Rig-i, Mda5, and Ifit2. Our findings suggest MWCNTs modulate immune responses to IAV with no effect on the viral titer and modest pulmonary injury, a result different from those reported for SWCNT exposures. This is the first study to show that MWCNTs modify cytokine and chemokine responses that control aspects of host defenses which may play a greater role in mitigating IAV infections.
Collapse
Affiliation(s)
- Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Melanie Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Indu V Sabaraya
- Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - L Cody Smith
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Navid B Saleh
- Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - William L Castleman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Gainesville, FL 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
21
|
Huang X, Tian Y, Shi W, Chen J, Yan L, Ren L, Zhang X, Zhu J. Role of inflammation in the malignant transformation of pleural mesothelial cells induced by multi-walled carbon nanotubes. Nanotoxicology 2020; 14:947-967. [PMID: 32574520 DOI: 10.1080/17435390.2020.1777477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are one of the most widely used types of novel nano-fiber materials. The aim of this study was to establish an experimental system based on actual exposure dosage and environments and explore the roles and mechanisms of inflammation in the malignant transformation of pleural mesothelial cells induced by MWCNTs after low doses and long-term exposure. Here, we established an in vitro system by co-culturing macrophages and mesothelial cells and exposing these cells to high aspect ratio MWCNTs (0.1 μg/mL) for three months. Results indicated that IL-1β, secreted by macrophages stimulated by MWCNTs, may significantly enhance the release of inflammatory cytokines, such as IL-8, TNF-α, and IL-6, from mesothelial cells. Results obtained from proliferation, migration, invasion, colony formation, and chromosomal aberration studies indicated that MWCNTs may promote malignant transformation of mesothelial cells after long-term and low-dose exposure via inflammation. Furthermore, the obtained results demonstrated that the NF-κB/IL-6/STAT3 pathway was active in the malignant transformation of Met 5A cells, induced by MWCNTs, and played an important role in the process. In conclusion, our results showed that the NF-κB (p65)/IL-6/STAT3 molecular pathway, which was mediated by inflammation, played an important role in the malignant transformation of pleural mesothelial cells induced by MWCNTs. These findings also provide novel ideas and references for the treatment of mesothelioma and offers options for the occupational safety of nanomaterial practitioners.
Collapse
Affiliation(s)
- Xiaopei Huang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Yijun Tian
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Wenjing Shi
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jikuai Chen
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lang Yan
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Lijun Ren
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Xiaofang Zhang
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| | - Jiangbo Zhu
- Department of Hygienic Toxicology and Center for Evaluation of Drug Safety, The Navy Military Medical University, Shanghai, PR China
| |
Collapse
|
22
|
Lim CS, Porter DW, Orandle MS, Green BJ, Barnes MA, Croston TL, Wolfarth MG, Battelli LA, Andrew ME, Beezhold DH, Siegel PD, Ma Q. Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization. Front Immunol 2020; 11:1186. [PMID: 32595644 PMCID: PMC7303302 DOI: 10.3389/fimmu.2020.01186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary exposure to certain engineered nanomaterials (ENMs) causes chronic lesions like fibrosis and cancer in animal models as a result of unresolved inflammation. Resolution of inflammation involves the time-dependent biosynthesis of lipid mediators (LMs)-in particular, specialized pro-resolving mediators (SPMs). To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F). Pharyngeal aspiration of MWCNTs at 40 μg/mouse or C60F at a dose above 640 μg/mouse elicited pulmonary effects in B6C3F1 mice. Both ENMs stimulated acute inflammation, predominated by neutrophils, in the lung at day 1, which transitioned to histiocytic inflammation by day 7. By day 28, the lesion in MWCNT-exposed mice progressed to fibrotic granulomas, whereas it remained as alveolar histiocytosis in C60F-exposed mice. Flow cytometric profiling of whole lung lavage (WLL) cells revealed that neutrophil recruitment was the greatest at day 1 and declined to 36.6% of that level in MWCNT- and 16.8% in C60F-treated mice by day 7, and to basal levels by day 28, suggesting a rapid initiation phase and an extended resolution phase. Both ENMs induced high levels of proinflammatory leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) with peaks at day 1, and high levels of SPMs resolvin D1 (RvD1) and E1 (RvE1) with peaks at day 7. MWCNTs and C60F induced time-dependent polarization of M1 macrophages with a peak at day 1 and subsequently of M2 macrophages with a peak at day 7 in the lung, accompanied by elevated levels of type 1 or type 2 cytokines, respectively. M1 macrophages exhibited preferential induction of arachidonate 5-lipoxygenase activating protein (ALOX5AP), whereas M2 macrophages had a high level expression of arachidonate 15-lipoxygenase (ALOX15). Polarization of macrophages in vitro differentially induced ALOX5AP in M1 macrophages or ALOX15 in M2 macrophages resulting in increased preferential biosynthesis of proinflammatory LMs or SPMs. MWCNTs increased the M1- or M2-specific production of LMs accordingly. These findings support a mechanism by which persistent ENM-induced neutrophilic inflammation is actively resolved through time-dependent polarization of macrophages and enhanced biosynthesis of specialized LMs via distinct ALOX pathways.
Collapse
Affiliation(s)
- Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Dale W. Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Marlene S. Orandle
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Mark A. Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Tara L. Croston
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael G. Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Lori A. Battelli
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael E. Andrew
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Donald H. Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Paul D. Siegel
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
23
|
Fujita K, Obara S, Maru J, Endoh S. Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties. Toxicol Mech Methods 2020; 30:477-489. [DOI: 10.1080/15376516.2020.1761920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shigehisa Endoh
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Veerubhotla K, Lee CH. Emerging Trends in Nanocarbon‐Based Cardiovascular Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| | - Chi H. Lee
- Division of Pharmacology and Pharmaceutics Sciences School of Pharmacy University of Missouri–Kansas City Kansas City MO 64108 USA
| |
Collapse
|
25
|
Wang Q, Wang Q, Zhao Z, Alexander DB, Zhao D, Xu J, Tsuda H. Pleural translocation and lesions by pulmonary exposed multi-walled carbon nanotubes. J Toxicol Pathol 2020; 33:145-151. [PMID: 32764839 PMCID: PMC7396733 DOI: 10.1293/tox.2019-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Carbon nanotubes (CNTs) are recently developed tubular nanomaterials, with diameters ranging from a few nanometers to tens of nanometers, and the length reaching up to several micrometers. They can be either single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs). Due to their nano-scaled structure, CNTs have a unique set of mechanical, electrical, and chemical properties that make them useful in information technologies, optoelectronics, energy technologies, material sciences, medical technologies, and other fields. However, with the wide application and increasing production of CNTs, their potential risks have led to concerns regarding their impact on environment and health. The shape of some types of CNTs is similar to asbestos fibers, which suggests that these CNTs may cause characteristic pleural diseases similar to those found in asbestos-exposed humans, such as pleural plaques and malignant mesothelioma. Experimental data indicate that CNTs can induce lung and pleural lesions, inflammation, pleural fibrosis, lung tumors, and malignant mesothelioma upon inhalation in the experimental animals. In this review, we focus on the potential of MWCNTs to induce diseases similar to those by asbestos, molecular and cellular mechanisms associated with these diseases, and we discuss a method for evaluating the pleural toxicity of MWCNTs.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - Qiqi Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - Ziyue Zhao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - David B Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan
| | - Dahai Zhao
- Department of Respiratory and Critical Medicine, the Second Affiliated Hospital, Anhui Medical University, 678 Furong Road, Hefei, Anhui Province 230601, P.R. China
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, P.R. China
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
26
|
Abstract
Carbon nanotubes (CNTs) are nanomaterials with unique physicochemical properties that are targets of great interest for industrial and commercial applications. Notwithstanding, some characteristics of CNTs are associated with adverse outcomes from exposure to pathogenic particulates, raising concerns over health risks in exposed workers and consumers. Indeed, certain forms of CNTs induce a range of harmful effects in laboratory animals, among which inflammation, fibrosis, and cancer are consistently observed for some CNTs. Inflammation, fibrosis, and malignancy are complex pathological processes that, in summation, underlie a major portion of human disease. Moreover, the functional interrelationship among them in disease pathogenesis has been increasingly recognized. The CNT-induced adverse effects resemble certain human disease conditions, such as pneumoconiosis, idiopathic pulmonary fibrosis (IPF), and mesothelioma, to some extent. Progress has been made in understanding CNT-induced pathologic conditions in recent years, demonstrating a close interconnection among inflammation, fibrosis, and cancer. Mechanistically, a number of mediators, signaling pathways, and cellular processes are identified as major mechanisms that underlie the interplay among inflammation, fibrosis, and malignancy, and serve as pathogenic bases for these disease conditions in CNT-exposed animals. These studies indicate that CNT-induced pathological effects, in particular, inflammation, fibrosis, and cancer, are mechanistically, and in some cases, causatively, interrelated. These findings generate new insights into CNT adverse effects and pathogenesis and provide new targets for exposure monitoring and drug development against inflammation, fibrosis, and cancer caused by inhaled nanomaterials.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| |
Collapse
|
27
|
Gaté L, Knudsen KB, Seidel C, Berthing T, Chézeau L, Jacobsen NR, Valentino S, Wallin H, Bau S, Wolff H, Sébillaud S, Lorcin M, Grossmann S, Viton S, Nunge H, Darne C, Vogel U, Cosnier F. Pulmonary toxicity of two different multi-walled carbon nanotubes in rat: Comparison between intratracheal instillation and inhalation exposure. Toxicol Appl Pharmacol 2019; 375:17-31. [PMID: 31075343 DOI: 10.1016/j.taap.2019.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 01/19/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods. The deposited doses following inhalation were lower than the instilled doses. Both types of carbon nanotube induced pulmonary neutrophil influx using both exposure methods. This influx correlated with deposited surface area across MWCNT types and means of exposure at two different time points, 1-3 days and 28-30 days post-exposure. Increased levels of DNA damage were observed across doses and time points for both exposure methods, but no dose-response relationship was observed. Intratracheal instillation of NM-401 induced fibrosis at the highest dose while lower lung deposited doses obtained by inhalation did not induce such lung pathology. No fibrosis was observed following NM-403 exposure. When the deposited dose was taken into account, sub-acute inhalation and a single instillation of NM-401 and NM-403 produced very similar inflammation and DNA damage responses. Our data suggest that the dose-dependent inflammatory responses observed after intratracheal instillation and inhalation of MWCNTs are similar and were predicted by the deposited surface area.
Collapse
Affiliation(s)
- Laurent Gaté
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | | | - Carole Seidel
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Trine Berthing
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark.
| | - Laëtitia Chézeau
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France
| | | | - Sarah Valentino
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway.
| | - Sébastien Bau
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Henrik Wolff
- Finnish Institute of Occupational Health, FI-00251 Helsinki, Finland.
| | - Sylvie Sébillaud
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Mylène Lorcin
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Stéphane Grossmann
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Stéphane Viton
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Hervé Nunge
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Christian Darne
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; Department for Micro- and Nanotechnology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Frédéric Cosnier
- Institut National de Recherche et de Sécurité, F-54519 Vandoeuvre-lès-Nancy Cedex, France.
| |
Collapse
|
28
|
Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem Biol Interact 2019; 307:206-222. [PMID: 31054282 DOI: 10.1016/j.cbi.2019.04.036] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Application of nanomaterials in our daily life is increasing, day in day out and concerns have raised about their toxicity for human and other organisms. In this manner, carbon-based nanomaterials have been applied to different products due to their unique physicochemical, electrical, mechanical properties, and biological compatibility. But, there are several reports about the negative effects of these materials on biological systems and cellular compartments. This review article describes the various types of carbon-based nanomaterials and methods that use for determining these toxic effects that are reported recently in the papers. Then, extensively discussed the toxic effects of these materials on the human and other living organisms and also their toxicity routs including Neurotoxicity, Hepatotoxicity, Nephrotoxicity, Immunotoxicity, Cardiotoxicity, Genotoxicity and epigenetic toxicity, Dermatotoxicity, and Carcinogenicity.
Collapse
|
29
|
Kane AB, Hurt RH, Gao H. The asbestos-carbon nanotube analogy: An update. Toxicol Appl Pharmacol 2018; 361:68-80. [PMID: 29960000 PMCID: PMC6298811 DOI: 10.1016/j.taap.2018.06.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 01/16/2023]
Abstract
Nanotechnology is an emerging industry based on commercialization of materials with one or more dimensions of 100 nm or less. Engineered nanomaterials are currently incorporated into thin films, porous materials, liquid suspensions, or filler/matrix nanocomposites with future applications predicted in energy and catalysis, microelectronics, environmental sensing and remediation, and nanomedicine. Carbon nanotubes are one-dimensional fibrous nanomaterials that physically resemble asbestos fibers. Toxicologic studies in rodents demonstrated that some types of carbon nanotubes can induce mesothelioma, and the World Health Organization evaluated long, rigid multiwall carbon nanotubes as possibly carcinogenic for humans in 2014. This review summarizes key physicochemical similarities and differences between asbestos fibers and carbon nanotubes. The "fiber pathogenicity paradigm" has been extended to include carbon nanotubes as well as other high-aspect-ratio fibrous nanomaterials including metallic nanowires. This paradigm identifies width, length, and biopersistence of high-aspect-ratio fibrous nanomaterials as critical determinants of lung disease, including mesothelioma, following inhalation. Based on recent theoretical modeling studies, a fourth factor, mechanical bending stiffness, will be considered as predictive of potential carcinogenicity. Novel three-dimensional lung tissue platforms provide an opportunity for in vitro screening of a wide range of high aspect ratio fibrous nanomaterials for potential lung toxicity prior to commercialization.
Collapse
Affiliation(s)
- Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States; Institute for Molecular and Nanoscale Innovation, Providence, RI, United States.
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, RI, United States; Institute for Molecular and Nanoscale Innovation, Providence, RI, United States
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI, United States; Institute for Molecular and Nanoscale Innovation, Providence, RI, United States
| |
Collapse
|
30
|
Sakamoto Y, Hojo M, Kosugi Y, Watanabe K, Hirose A, Inomata A, Suzuki T, Nakae D. Comparative study for carcinogenicity of 7 different multi-wall carbon nanotubes with different physicochemical characteristics by a single intraperitoneal injection in male Fischer 344 rats. J Toxicol Sci 2018; 43:587-600. [PMID: 30298847 DOI: 10.2131/jts.43.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The present study comparatively examined carcinogenicity of 7 different multi-wall carbon nanotubes (MWCNTs) with different physicochemical characteristics. Physicochemical characteristics of MWCNTs (referred to as M-, N-, WL-, SD1-, WS-, SD2- and T-CNTs in the present study) were determined using scanning electron and light microscopes and a collision type inductively coupled plasma mass spectrometer. Male Fischer 344 rats (10 weeks old, 15 animals per group) were administered MWCNTs at a single intraperitoneal dose of 1 mg/kg body weight, and sacrificed up to 52 weeks after the commencement. Fibers of M-, N-, WL- and SD1-CNTs were straight and acicular in shape, and contained few agglomerates. They were relatively long (38-59% of fibers were longer than 5 μm) and thick (33% to more than 70% of fibers were thicker than 60 nm). All of these 4 MWCNTs induced mesotheliomas at absolute incidences of 100%. Fibers of WS-, SD2- and T-CNTs were curled and tightly tangled to form frequent agglomerates. They were relatively short and thin (more than 90% of measured fibers were thinner than 50 nm). WS- CNT did not induce mesothelioma, and only one of 15 rat given SD2- or T-CNT developed tumor. Any correlations existed between the metal content and neither the size or form of fibers, nor the carcinogenicity. It is thus indicated that the physicochemical characteristics of MWCNTs are critical for their carcinogenicity. The straight and acicular shape without frequent agglomerates, and the relatively long and thick size, but not the iron content, may be critical factors. The present data can contribute to the risk management, practical use and social acceptance of MWCNTs.
Collapse
Affiliation(s)
- Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yuki Kosugi
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Kimiyo Watanabe
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Akihiko Hirose
- Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Toshinari Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Biosciences, Tokyo University of Agriculture
| |
Collapse
|
31
|
Knudsen KB, Berthing T, Jackson P, Poulsen SS, Mortensen A, Jacobsen NR, Skaug V, Szarek J, Hougaard KS, Wolff H, Wallin H, Vogel U. Physicochemical predictors of Multi-Walled Carbon Nanotube-induced pulmonary histopathology and toxicity one year after pulmonary deposition of 11 different Multi-Walled Carbon Nanotubes in mice. Basic Clin Pharmacol Toxicol 2018; 124:211-227. [PMID: 30168672 PMCID: PMC7379927 DOI: 10.1111/bcpt.13119] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
Multi‐walled carbon nanotubes (MWCNT) are widely used nanomaterials that cause pulmonary toxicity upon inhalation. The physicochemical properties of MWCNT vary greatly, which makes general safety evaluation challenging to conduct. Identification of the toxicity‐inducing physicochemical properties of MWCNT is therefore of great importance. We have evaluated histological changes in lung tissue 1 year after a single intratracheal instillation of 11 well‐characterized MWCNT in female C57BL/6N BomTac mice. Genotoxicity in liver and spleen was evaluated by the comet assay. The dose of 54 μg MWCNT corresponds to three times the estimated dose accumulated during a work life at a NIOSH recommended exposure limit (0.001 mg/m3). Short and thin MWCNT were observed as agglomerates in lung tissue 1 year after exposure, whereas thicker and longer MWCNT were detected as single fibres, suggesting biopersistence of both types of MWCNT. The thin and entangled MWCNT induced varying degree of pulmonary inflammation, in terms of lymphocytic aggregates, granulomas and macrophage infiltration, whereas two thick and straight MWCNT did not. By multiple regression analysis, larger diameter and higher content of iron predicted less histopathological changes, whereas higher cobalt content significantly predicted more histopathological changes. No MWCNT‐related fibrosis or tumours in the lungs or pleura was found. One thin and entangled MWCNT induced increased levels of DNA strand breaks in liver; however, no physicochemical properties could be related to genotoxicity. This study reveals physicochemical‐dependent difference in MWCNT‐induced long‐term, pulmonary histopathological changes. Identification of diameter size and cobalt content as important for MWCNT toxicity provides clues for designing MWCNT, which cause reduced human health effects following pulmonary exposure.
Collapse
Affiliation(s)
- Kristina B Knudsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Trine Berthing
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Alicja Mortensen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Vidar Skaug
- National Institute of Occupational Health, Oslo, Norway
| | - Józef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karin S Hougaard
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, DTU, Lyngby, Denmark
| |
Collapse
|
32
|
Duke KS, Thompson EA, Ihrie MD, Taylor-Just AJ, Ash EA, Shipkowski KA, Hall JR, Tokarz DA, Cesta MF, Hubbs AF, Porter DW, Sargent LM, Bonner JC. Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes. Nanotoxicology 2018; 12:975-991. [PMID: 30317900 DOI: 10.1080/17435390.2018.1502830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The fiber-like shape of multi-walled carbon nanotubes (MWCNTs) is reminiscent of asbestos, suggesting they pose similar health hazards when inhaled, including pulmonary fibrosis and mesothelioma. Mice deficient in the tumor suppressor p53 are susceptible to carcinogenesis. However, the chronic pathologic effect of MWCNTs delivered to the lungs of p53 heterozygous (p53+/-) mice has not been investigated. We hypothesized that p53+/- mice would be susceptible to lung tumor development after exposure to either tangled (t-) or rod-like (r-) MWCNTs. Wild-type (p53+/+) or p53+/- mice were exposed to MWCNTs (1 mg/kg) via oropharyngeal aspiration weekly over four consecutive weeks and evaluated for cellular and pathologic outcomes 11-months post-initial exposure. No lung or pleural tumors were observed in p53+/+ or p53+/- mice exposed to either t- or rMWCNTs. In comparison to tMWCNTs, the rMWCNTs induced the formation of larger granulomas, a greater number of lymphoid aggregates and greater epithelial cell hyperplasia in terminal bronchioles in both p53+/- and p53+/+ mice. A constitutively larger area of CD45R+/CD3+ lymphoid tissue was observed in p53+/- mice compared to p53+/+ mice. Importantly, p53+/- mice had larger granulomas induced by rMWCNTs as compared to p53+/+ mice. These findings indicate that a combination of p53 deficiency and physicochemical characteristics including nanotube geometry are factors in susceptibility to MWCNT-induced lymphoid infiltration and granuloma formation.
Collapse
Affiliation(s)
- Katherine S Duke
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Elizabeth A Thompson
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Mark D Ihrie
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Alexia J Taylor-Just
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Elizabeth A Ash
- b College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Kelly A Shipkowski
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Jonathan R Hall
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Debra A Tokarz
- b College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Mark F Cesta
- c National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Ann F Hubbs
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Dale W Porter
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Linda M Sargent
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - James C Bonner
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
33
|
Liao D, Wang Q, He J, Alexander DB, Abdelgied M, El-Gazzar AM, Futakuchi M, Suzui M, Kanno J, Hirose A, Xu J, Tsuda H. Persistent Pleural Lesions and Inflammation by Pulmonary Exposure of Multiwalled Carbon Nanotubes. Chem Res Toxicol 2018; 31:1025-1031. [PMID: 30212183 DOI: 10.1021/acs.chemrestox.8b00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Translocation of multiwalled carbon nanotubes (MWCNTs) from the lung to the pleural cavity, deposition of the fibers in the pleural tissue, induction of pleural fibrosis, and mesothelial proliferation have been found in rodents administered MWCNTs by different pulmonary exposure methods. However, whether the translocation and deposition and the subsequent pleural inflammation are associated with the pleural lesions is unclear. In the present study, male F344 rats were given 250 μg of two types of MWCNTs, with crocidolite as a positive control, 2 times/week for 4 weeks by intratracheal spraying. At 24 h and at 3 months after the last spraying, the rats were sacrificed for histological examination of the lung and chest wall; pleural cavity lavage was also collected at sacrifice for observation of pleural inflammatory reactions. The results indicated that intratracheally sprayed MWCNTs, like crocidolite fibers, translocated into the pleural cavity, deposited in the pleura, and induced persistent infiltration of immune cells into the pleural cavity, persistent pleural fibrosis, and mesothelial proliferation. The number of MWCNT fibers detected in the pleural cavity lavage was parallel to the number of infiltrating immune cells, which were mainly composed of macrophages. Analysis of cytokines in the fluids of the pleural cavity lavages by suspension array indicated that levels of IL-2, IL-18, and IP-10 were significantly increased both at 24 h and at 3 months after the last spraying. In vitro proliferation assays revealed that a mixture of IL-2, IL-18, and IP-10, but not any of these cytokines alone, promoted cell proliferation of human fibroblasts and mesothelial cells. These results suggest that translocated and deposited MWCNTs induce subsequent pleural inflammation and that increased IL-2, IL-18, and IP-10 synergistically promote the development of pleural fibrosis and mesothelial proliferation.
Collapse
Affiliation(s)
- Dongping Liao
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China
| | - Qiqi Wang
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China
| | - Jiali He
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China
| | - David B Alexander
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | - Mohamed Abdelgied
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | - Ahmed M El-Gazzar
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | | | | | | | | | - Jiegou Xu
- Department of Immunology , Anhui Medical University College of Basic Medical Sciences , Meishan Road 81 , Hefei 230032 , China.,Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| | - Hiroyuki Tsuda
- Nanotoxicology Project , Nagoya City University , 3-1 Tanabedohri , Mizuho-ku, Nagoya 467-8603 , Japan
| |
Collapse
|
34
|
Sinis SI, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Carbon Nanotubes and Other Engineered Nanoparticles Induced Pathophysiology on Mesothelial Cells and Mesothelial Membranes. Front Physiol 2018; 9:295. [PMID: 29651248 PMCID: PMC5884948 DOI: 10.3389/fphys.2018.00295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have great potential for numerous applications due to their unique physicochemical properties. However, concerns have been raised that they may induce deleterious effects on biological systems. There is accumulating evidence that, like asbestos, inhaled nanomaterials of >5 μm and high aspect ratio (3:1), particularly rod-like carbon nanotubes, may inflict pleural disease including mesothelioma. Additionally, a recent set of case reports suggests that inhalation of polyacrylate/nanosilica could in part be associated with inflammation and fibrosis of the pleura of factory workers. However, the adverse outcomes of nanoparticle exposure to mesothelial tissues are still largely unexplored. In that context, the present review aims to provide an overview of the relevant pathophysiological implications involving toxicological studies describing effects of engineered nanoparticles on mesothelial cells and membranes. In vitro studies primarily emphasize on simulating cellular uptake and toxicity of nanotubes on benign or malignant cell lines. On the other hand, in vivo studies focus on illustrating endpoints of serosal pathology in rodent animal models. From a molecular aspect, some nanoparticle categories are shown to be cytotoxic and genotoxic after acute treatment, whereas chronic incubation may lead to malignant-like transformation. At an organism level, a number of fibrous shaped nanotubes are related with features of chronic inflammation and MWCNT-7 is the only type to consistently inflict mesothelioma.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
35
|
Fukushima S, Kasai T, Umeda Y, Ohnishi M, Sasaki T, Matsumoto M. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment. J Occup Health 2018; 60:10-30. [PMID: 29046510 PMCID: PMC5799097 DOI: 10.1539/joh.17-0102-ra] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/10/2017] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES This report reviews the carcinogenicity of multi-walled carbon nanotubes (MWCNTs) in experimental animals, concentrating on MWNT-7, a straight fibrous MWCNT. METHODS MWCNTs were administered to mice and rats by intraperitoneal injection, intrascrotal injection, subcutaneous injection, intratracheal instillation and inhalation. RESULTS Intraperitoneal injection of MWNT-7 induced peritoneal mesothelioma in mice and rats. Intrascrotal injection induced peritoneal mesothelioma in rats. Intratracheal instillation of MWCNT-N (another straight fibrous MWCNT) induced both lung carcinoma and pleural mesothelioma in rats. In the whole body inhalation studies, in mice MWNT-7 promoted methylcholanthrene-initiated lung carcinogenesis. In rats, inhalation of MWNT-7 induced lung carcinoma and lung burdens of MWNT-7 increased with increasing concentration of airborne MWNT-7 and increasing duration of exposure. CONCLUSIONS Straight, fibrous MWCNTs exerted carcinogenicity in experimental animals. Phagocytosis of MWCNT fibers by macrophages was very likely to be a principle factor in MWCNT lung carcinogenesis. Using no-observed-adverse-effect level-based approach, we calculated that the occupational exposure limit (OEL) of MWNT-7 for cancer protection is 0.15 μg/m3 for a human worker. Further studies on the effects of the shape and size of MWCNT fibers and mode of action on the carcinogenicity are required.
Collapse
Affiliation(s)
- Shoji Fukushima
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety
- Association for Promotion of Research on Risk Assessment
| | - Tatsuya Kasai
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety
| | - Yumi Umeda
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety
| | - Makoto Ohnishi
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety
| | - Toshiaki Sasaki
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety
| | - Michiharu Matsumoto
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety
| |
Collapse
|
36
|
Phuyal S, Kasem M, Knittelfelder O, Sharma A, Fonseca DDM, Vebraite V, Shaposhnikov S, Slupphaug G, Skaug V, Zienolddiny S. Characterization of the proteome and lipidome profiles of human lung cells after low dose and chronic exposure to multiwalled carbon nanotubes. Nanotoxicology 2018; 12:138-152. [PMID: 29350075 DOI: 10.1080/17435390.2018.1425500] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of long-term chronic exposure of human lung cells to multi-walled carbon nanotubes (MWCNT) and their impact upon cellular proteins and lipids were investigated. Since the lung is the major target organ, an in vitro normal bronchial epithelial cell line model was used. Additionally, to better mimic exposure to manufactured nanomaterials at occupational settings, cells were continuously exposed to two non-toxic and low doses of a MWCNT for 13-weeks. MWCNT-treatment increased ROS levels in cells without increasing oxidative DNA damage and resulted in differential expression of multiple anti- and pro-apoptotic proteins. The proteomic analysis of the MWCNT-exposed cells showed that among more than 5000 identified proteins; more than 200 were differentially expressed in the treated cells. Functional analyses revealed association of these differentially regulated proteins to cellular processes such as cell death and survival, cellular assembly, and organization. Similarly, shotgun lipidomic profiling revealed accumulation of multiple lipid classes. Our results indicate that long-term MWCNT-exposure of human normal lung cells at occupationally relevant low-doses may alter both the proteome and the lipidome profiles of the target epithelial cells in the lung.
Collapse
Affiliation(s)
- Santosh Phuyal
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Mayes Kasem
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | | | - Animesh Sharma
- c Department of Clinical and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway.,d Proteomics and Metabolomics Core Facility (PROMEC) , NTNU and the Central Norway Regional Health Authority , Trondheim , Norway
| | - Davi de Miranda Fonseca
- c Department of Clinical and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway.,d Proteomics and Metabolomics Core Facility (PROMEC) , NTNU and the Central Norway Regional Health Authority , Trondheim , Norway
| | | | | | - Geir Slupphaug
- c Department of Clinical and Molecular Medicine , Norwegian University of Science and Technology , Trondheim , Norway.,d Proteomics and Metabolomics Core Facility (PROMEC) , NTNU and the Central Norway Regional Health Authority , Trondheim , Norway
| | - Vidar Skaug
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| | - Shanbeh Zienolddiny
- a Department of Chemical and Biological Work Environment , National Institute of Occupational Health , Oslo , Norway
| |
Collapse
|
37
|
The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010104. [PMID: 29320402 PMCID: PMC5800203 DOI: 10.3390/ijerph15010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. METHODS Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. RESULTS Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. CONCLUSIONS (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.
Collapse
|
38
|
Effects on human bronchial epithelial cells following low-dose chronic exposure to nanomaterials: A 6-month transformation study. Toxicol In Vitro 2017; 44:230-240. [PMID: 28746895 DOI: 10.1016/j.tiv.2017.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
The most plausible exposure route to manufactured nanomaterials (MNM) remains pulmonary inhalation. Yet, few studies have attempted to assess carcinogenic properties in vitro following long-term exposure of human pulmonary cells to low and occupationally relevant doses. The most advanced in vitro tests for carcinogenicity, the cell transformation assay (CTA), rely mostly on rodent cells and short-term exposure. We hypothesized that long-term exposure of human bronchial epithelial cells with a normal phenotype could be a valuable assay for testing carcinogenicity of nanomaterials. Therefore, this study (performed within the framework of the FP7-NANoREG project) assessed carcinogenic potential of chronic exposure (up to 6months) to low doses of multi-walled carbon nanotubes (MWCNT, NM-400 and NM-401) and TiO2 materials (NM62002 and KC7000). In order to harmonize and standardize the experiments, standard operating protocols of MNM dispersion (NANOGENOTOX) were used by three different NANoREG project partners. All nanomaterials showed low cytotoxicity in short-term tests for the tested doses (0.96 and 1.92μg/cm2). During long-term exposure, however, NM-401 clearly affected cell proliferation. In contrast, no cell transformation was observed for NM-401 by any of the partners. NM-400 and NM62002 formed some colonies after 3months. We conclude that agglomerated NM-401 in low doses affect cell proliferation but do not cause cell transformation in the CTA assay used.
Collapse
|
39
|
Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 2017; 47:767-810. [DOI: 10.1080/10408444.2017.1328400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- William K. Boyes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brittany Lila M. Thornton
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Souhail R. Al-Abed
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Christian P. Andersen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Dermont C. Bouchard
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Burgess
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Elaine A. Cohen Hubal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kay T. Ho
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kirk Kitchin
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jay R. Reichman
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kim R. Rogers
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey A. Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul T. Rygiewicz
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard G. Zepp
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Zucker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
40
|
Zhang T, Tang M, Zhang S, Hu Y, Li H, Zhang T, Xue Y, Pu Y. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int J Nanomedicine 2017; 12:1539-1554. [PMID: 28280324 PMCID: PMC5339008 DOI: 10.2147/ijn.s123345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The numerous increasing use of carbon nanotubes (CNTs) derived from nanotechnology has raised concerns about their biosafety and potential toxicity. CNTs cause immunologic dysfunction and limit the application of CNTs in biomedicine. The immunological responses induced by pristine multi-walled carbon nanotubes (p-MWCNTs) and PEGylated multi-walled carbon nanotubes (MWCNTs-PEG) on BALB/c mice via an intravenous administration were investigated. The results reflect that the p-MWCNTs induced significant increases in spleen, thymus, and lung weight. Mice treated with p-MWCNTs showed altered lymphocyte populations (CD3+, CD4+, CD8+, and CD19+) in peripheral blood and increased serum IgM and IgG levels, and splenic macrophage ultrastructure indicated mitochondria swelling. p-MWCNTs inhibited humoral and cellular immunity function and were associated with decreased immune responses against sheep erythrocytes and serum hemolysis level. Natural killer (NK) activity was not modified by two types of MWCNTs. In comparison with two types of MWCNTs, for a same dose, p-MWCNTs caused higher levels of inflammation and immunosuppression than MWCNTs-PEG. The results of immunological function suggested that after intravenous administration with p-MWCNTs caused more damage to systemic immunity than MWCNTs-PEG. Here, we demonstrated that a surface functional modification on MWCNTs reduces their immune perturbations in vivo. The chemistry-modified MWCNTs change their preferred immune response in vivo and reduce the immunotoxicity of p-MWCNTs.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Shanshan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Han Li
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
| | - Tao Zhang
- Department of Material Science and Engineering, National Key Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| |
Collapse
|
41
|
Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 2017; 47:1-58. [PMID: 27537422 PMCID: PMC5555643 DOI: 10.1080/10408444.2016.1206061] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose-response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.
Collapse
Affiliation(s)
- Eileen D Kuempel
- a National Institute for Occupational Safety and Health , Cincinnati , OH , USA
| | - Marie-Claude Jaurand
- b Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche , UMR 1162 , Paris , France
- c Labex Immuno-Oncology, Sorbonne Paris Cité, University of Paris Descartes , Paris , France
- d University Institute of Hematology, Sorbonne Paris Cité, University of Paris Diderot , Paris , France
- e University of Paris 13, Sorbonne Paris Cité , Saint-Denis , France
| | - Peter Møller
- f Department of Public Health , University of Copenhagen , Copenhagen , Denmark
| | - Yasuo Morimoto
- g Department of Occupational Pneumology , University of Occupational and Environmental Health , Kitakyushu City , Japan
| | | | - Kent E Pinkerton
- i Center for Health and the Environment, University of California , Davis , California , USA
| | - Linda M Sargent
- j National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Roel C H Vermeulen
- k Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| | - Bice Fubini
- l Department of Chemistry and "G.Scansetti" Interdepartmental Center , Università degli Studi di Torino , Torino , Italy
| | - Agnes B Kane
- m Department of Pathology and Laboratory Medicine , Brown University , Providence , RI , USA
| |
Collapse
|
42
|
Morimoto Y, Kobayashi N. Evaluations of the Carcinogenicity of Carbon Nanotubes, Fluoro-Edinite, and Silicon Carbide by the International Agency for Research on Cancer (IARC). Nihon Eiseigaku Zasshi 2016; 71:252-259. [PMID: 27725428 DOI: 10.1265/jjh.71.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported the evaluations of the carcinogenicity of fluoro-edinite, silicon carbide, and carbon nanotubes performed by IARC working group in October 2014. For carbon nanotubes (CNTs), multi-walled carbon nanotube (MWCNT)-7 was classified as Group 2B, and MWCNTs without MWCNT-7 and single-walled carbon nanotubes (SWCNTs) were classified as not classifiable in terms of their carcinogenicity to humans. There is sufficient evidence of carcinogenicity for MWCNT-7 in experimental animals, limited evidence for other MWCNTs, and inadequate evidence for SWCNTs. The mechanic evidence for CNTs was not strong. Fluoro-edinite was classified as carcinogenic to humans (Group 1) on the basis of sufficient evidence of carcinogenicity to humans and experimental animals. Silicon carbide was classified into silicon carbide fibers and whiskers. Silicon carbide fibers were evaluated as possibly carcinogenic to humans (Group 2B) on the basis of limited evidence of carcinogenicity to humans. Silicon carbide whiskers were evaluated as probably carcinogenic to humans (Group 2A) on the basis of sufficient evidence of carcinogenicity to experimental animals and the similarity of their physicochemical properties to those of asbestos in terms of the mechanism of carcinogenicity. We report the process of progression in meeting and discuss how to determine the evidence and the evaluation of the carcinogenicity of the three materials.
Collapse
Affiliation(s)
- Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan
| | | |
Collapse
|
43
|
Huaux F, d'Ursel de Bousies V, Parent MA, Orsi M, Uwambayinema F, Devosse R, Ibouraadaten S, Yakoub Y, Panin N, Palmai-Pallag M, van der Bruggen P, Bailly C, Marega R, Marbaix E, Lison D. Mesothelioma response to carbon nanotubes is associated with an early and selective accumulation of immunosuppressive monocytic cells. Part Fibre Toxicol 2016; 13:46. [PMID: 27549627 PMCID: PMC4994252 DOI: 10.1186/s12989-016-0158-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 08/12/2016] [Indexed: 12/25/2022] Open
Abstract
Background The asbestos-like toxicity of some engineered carbon nanotubes (CNT), notably their capacity to induce mesothelioma, is a serious cause of concern for public health. Here we show that carcinogenic CNT induce an early and sustained immunosuppressive response characterized by the accumulation of monocytic Myeloid Derived Suppressor Cells (M-MDSC) that counteract effective immune surveillance of tumor cells. Methods Wistar rats and C57BL/6 mice were intraperitoneally injected with carcinogenic multi-walled Mitsui-7 CNT (CNT-7) or crocidolite asbestos. Peritoneal mesothelioma development and immune cell accumulation were assessed until 12 months. Leukocyte sub-populations were identified by recording expression of CD11b/c and His48 by flow cytometry. The immunosuppressive activity on T lymphocytes of purified peritoneal leukocytes was assessed in a co-culture assay with activated spleen cells. Results We demonstrate that long and short mesotheliomagenic CNT-7 injected in the peritoneal cavity of rats induced, like asbestos, an early and selective accumulation of monocytic cells (CD11b/cint and His48hi) which possess the ability to suppress polyclonal activation of T lymphocytes and correspond to M-MDSC. Peritoneal M-MDSC persisted during the development of peritoneal mesothelioma in CNT-7-treated rats but were only transiently recruited after non-carcinogenic CNT (CNT-M, CNT-T) injection. Peritoneal M-MDSC did not accumulate in mice which are resistant to mesothelioma development. Conclusions Our data provide new insights into the initial pathogenic events induced by CNT, adding a new component to the adverse outcome pathway leading to mesothelioma development. The specificity of the M-MDSC response after carcinogenic CNT exposure highlights the interest of this response for detecting the ability of new nanomaterials to cause cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0158-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- François Huaux
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium.
| | - Virginie d'Ursel de Bousies
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Marie-Astrid Parent
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Micaela Orsi
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Francine Uwambayinema
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Raynal Devosse
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Saloua Ibouraadaten
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Yousof Yakoub
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Nadtha Panin
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, Brussels Branch, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Christian Bailly
- Bio and Soft Matter (BSMA), Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Riccardo Marega
- Departement of Chemistry, Université de Namur, Namur, Belgium
| | - Etienne Marbaix
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université catholique de Louvain, Avenue Mounier 53 bte B1.52.12, 1200, Brussels, Belgium
| |
Collapse
|
44
|
Pulmonary and pleural inflammation after intratracheal instillation of short single-walled and multi-walled carbon nanotubes. Toxicol Lett 2016; 257:23-37. [DOI: 10.1016/j.toxlet.2016.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 12/25/2022]
|
45
|
Suzui M, Futakuchi M, Fukamachi K, Numano T, Abdelgied M, Takahashi S, Ohnishi M, Omori T, Tsuruoka S, Hirose A, Kanno J, Sakamoto Y, Alexander DB, Alexander WT, Jiegou X, Tsuda H. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci 2016; 107:924-35. [PMID: 27098557 PMCID: PMC4946724 DOI: 10.1111/cas.12954] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022] Open
Abstract
Multiwalled carbon nanotubes (MWCNT) have a fibrous structure and physical properties similar to asbestos and have been shown to induce malignant mesothelioma of the peritoneum after injection into the scrotum or peritoneal cavity in rats and mice. For human cancer risk assessment, however, data after administration of MWCNT via the airway, the exposure route that is most relevant to humans, is required. The present study was undertaken to investigate the carcinogenicity of MWCNT‐N (NIKKISO) after administration to the rat lung. MWCNT‐N was fractionated by passing it through a sieve with a pore size of 25 μm. The average lengths of the MWCNT were 4.2 μm before filtration and 2.6 μm in the flow‐through fraction; the length of the retained MWCNT could not be determined. For the present study, 10‐week‐old F344/Crj male rats were divided into five groups: no treatment, vehicle control, MWCNT‐N before filtration, MWCNT‐N flow‐through and MWCNT‐N retained groups. Administration was by the trans‐tracheal intrapulmonary spraying (TIPS) method. Rats were administered a total of 1 mg/rat during the initial 2 weeks of the experiment and then observed up to 109 weeks. The incidences of malignant mesothelioma and lung tumors (bronchiolo‐alveolar adenomas and carcinomas) were 6/38 and 14/38, respectively, in the three groups administered MWCNT and 0/28 and 0/28, respectively, in the control groups. All malignant mesotheliomas were localized in the pericardial pleural cavity. The sieve fractions did not have a significant effect on tumor incidence. In conclusion, administration of MWCNT to the lung in the rat induces malignant mesothelioma and lung tumors.
Collapse
Affiliation(s)
- Masumi Suzui
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuru Futakuchi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsumi Fukamachi
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takamasa Numano
- Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mohamed Abdelgied
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Makoto Ohnishi
- Japan Industrial Safety and Health Association, Japan Bioassay Research Center, Kanagawa, Japan
| | - Toyonori Omori
- National Center for Child Health and Development, Tokyo, Japan
| | - Shuji Tsuruoka
- Institute of Carbon Science and Technology, Shinshu University, Nagano City, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Akihiko Hirose, Tokyo, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | | | - Xu Jiegou
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan.,Department of Immunology, College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, Nagoya, Japan
| |
Collapse
|
46
|
Polimeni M, Gulino GR, Gazzano E, Kopecka J, Marucco A, Fenoglio I, Cesano F, Campagnolo L, Magrini A, Pietroiusti A, Ghigo D, Aldieri E. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway. Part Fibre Toxicol 2016; 13:27. [PMID: 27251132 PMCID: PMC4890337 DOI: 10.1186/s12989-016-0138-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Multi-walled carbon nanotubes (MWCNT) are currently under intense toxicological investigation due to concern on their potential health effects. Current in vitro and in vivo data indicate that MWCNT exposure is strongly associated with lung toxicity (inflammation, fibrosis, granuloma, cancer and airway injury) and their effects might be comparable to asbestos-induced carcinogenesis. Although fibrosis is a multi-origin disease, epithelial-mesenchymal transition (EMT) is recently recognized as an important pathway in cell transformation. It is known that MWCNT exposure induces EMT through the activation of the TGF-β/Smad signalling pathway thus promoting pulmonary fibrosis, but the molecular mechanisms involved are not fully understood. In the present work we propose a new mechanism involving a TGF-β-mediated signalling pathway. Methods Human bronchial epithelial cells were incubated with two different MWCNT samples at various concentrations for up to 96 h and several markers of EMT were investigated. Quantitative real time PCR, western blot, immunofluorescent staining and gelatin zymographies were performed to detect the marker protein alterations. ELISA was performed to evaluate TGF-β production. Experiments with neutralizing anti-TGF-β antibody, specific inhibitors of GSK-3β and Akt and siRNA were carried out in order to confirm their involvement in MWCNT-induced EMT. In vivo experiments of pharyngeal aspiration in C57BL/6 mice were also performed. Data were analyzed by a one-way ANOVA with Tukey’s post-hoc test. Results Fully characterized MWCNT (mean length < 5 μm) are able to induce EMT in an in vitro human model (BEAS-2B cells) after long-term incubation at sub-cytotoxic concentrations. MWCNT stimulate TGF-β secretion, Akt activation and GSK-3β inhibition, which induces nuclear accumulation of SNAIL-1 and its transcriptional activity, thus contributing to switch on the EMT program. Moreover, a significant increment of nuclear β-catenin - due to E-cadherin repression and following translocation to nucleus - likely reinforces signalling for EMT promotion. In vivo results supported the occurrence of pulmonary fibrosis following MWCNT exposure. Conclusions We demonstrate a new molecular mechanism of MWCNT-mediated EMT, which is Smad-independent and involves TGF-β and its intracellular effectors Akt/GSK-3β that activate the SNAIL-1 signalling pathway. This finding suggests potential novel targets in the development of therapeutic and preventive approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0138-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela Polimeni
- Department of Oncology, University of Turin, via Santena 5/bis, 10126, Turin, Italy.,Interdepartmental Centre Scansetti for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - Giulia Rossana Gulino
- Department of Oncology, University of Turin, via Santena 5/bis, 10126, Turin, Italy.,Interdepartmental Centre Scansetti for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - Elena Gazzano
- Department of Oncology, University of Turin, via Santena 5/bis, 10126, Turin, Italy.,Interdepartmental Centre Scansetti for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, via Santena 5/bis, 10126, Turin, Italy
| | - Arianna Marucco
- Interdepartmental Centre Scansetti for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy.,Department of Chemistry, University of Turin, via Pietro Giuria 7, 10125, Turin, Italy
| | - Ivana Fenoglio
- Interdepartmental Centre Scansetti for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy.,Department of Chemistry, University of Turin, via Pietro Giuria 7, 10125, Turin, Italy.,NIS - Nanostructured Interfaces and Surfaces, University of Turin, via Pietro Giuria 7, 10125, Turin, Italy
| | - Federico Cesano
- Department of Chemistry, University of Turin, via Pietro Giuria 7, 10125, Turin, Italy.,NIS - Nanostructured Interfaces and Surfaces, University of Turin, via Pietro Giuria 7, 10125, Turin, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Dario Ghigo
- Department of Oncology, University of Turin, via Santena 5/bis, 10126, Turin, Italy.,Interdepartmental Centre Scansetti for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - Elisabetta Aldieri
- Department of Oncology, University of Turin, via Santena 5/bis, 10126, Turin, Italy. .,Interdepartmental Centre Scansetti for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy.
| |
Collapse
|
47
|
Luanpitpong S, Wang L, Davidson DC, Riedel H, Rojanasakul Y. Carcinogenic Potential of High Aspect Ratio Carbon Nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2016; 3:483-493. [PMID: 27570625 PMCID: PMC4996468 DOI: 10.1039/c5en00238a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Engineered nanomaterials, including high aspect ratio carbon nanomaterials, are often commercialized without a complete human risk assessment and safety evaluation. A health concern has been raised that high aspect ratio nanomaterials such as carbon nanotubes may cause unintended health consequences, such as asbestos-like lung cancer and mesothelioma, when chronically inhaled. Considering the widespread industrial and clinical applications and the increasing incidence of human exposure to nanomaterials, it is important to address the issue of nanomaterial carcinogenicity in a timely manner. This review summarizes recent advances in nanomaterial genotoxicity and carcinogenicity with a focus on high aspect ratio carbon nanotubes, and discusses current knowledge gaps and future research directions.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Liying Wang
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Donna C. Davidson
- Allergy and Clinical Immunology Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Heimo Riedel
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
48
|
Zhao X, Hao F, Lu D, Liu W, Zhou Q, Jiang G. Influence of the Surface Functional Group Density on the Carbon-Nanotube-Induced α-Chymotrypsin Structure and Activity Alterations. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18880-18890. [PMID: 26248557 DOI: 10.1021/acsami.5b05895] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Because of the special properties of carbon nanotubes (CNTs), their applications have been introduced to many fields. The biosafety of these emerging materials is of high concern concomitantly. Because CNTs may initially bind with proteins in biofluids before they exert biological effects, it is of great importance to understand how the target proteins interact with these exogenous nanomaterials. Here we investigated the interaction between α-chymotrypsin (α-ChT) and carboxylized multiwalled CNTs in a simulated biophysical environment utilizing the techniques of fluorescence, UV-vis, circular dichroism spectroscopy, ζ potential, atomic force microscopy, and bicinchoninic acid analysis. It was demonstrated that CNTs interacted with α-ChT through electrostatic forces, causing a decrement in the α-helix and an increment in the β-sheet content of the protein. The protein fluorescence was quenched in a static mode. The increase in the surface modification density of CNTs enhanced the protein absorption and decreased the enzymatic activity correspondingly. α-ChT activity inhibition induced by CNTs with low surface modification density exhibited noncompetitive characteristics; however, a competitive feature was observed when CNTs with high surface modification density interacted with the protein. An increase of the ionic strength in the reaction buffer may help to reduce the interaction between CNTs and α-ChT because the high ionic strength may favor the release of the protein from binding on a CNT surface modified with functional groups. Accordingly, the functionalization density on the CNT surface plays an important role in the regulation of their biological effects and is worthy of concern when new modified CNTs are developed.
Collapse
Affiliation(s)
- Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P. R. China
| | - Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P. R. China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P. R. China
| | - Wei Liu
- Institute of Chemical Safety, Chinese Academy of Inspection and Quarantine , Beijing 100124, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P. R. China
| |
Collapse
|
49
|
Røe OD, Stella GM. Malignant pleural mesothelioma: history, controversy and future of a manmade epidemic. Eur Respir Rev 2015; 24:115-31. [PMID: 25726562 PMCID: PMC9487774 DOI: 10.1183/09059180.00007014] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Asbestos is the term for a family of naturally occurring minerals that have been used on a small scale since ancient times. Industrialisation demanded increased mining and refining in the 20th century, and in 1960, Wagner, Sleggs and Marchand from South Africa linked asbestos to mesothelioma, paving the way to the current knowledge of the aetiology, epidemiology and biology of malignant pleural mesothelioma. Pleural mesothelioma is one of the most lethal cancers, with increasing incidence worldwide. This review will give some snapshots of the history of pleural mesothelioma discovery, and the body of epidemiological and biological research, including some of the controversies and unresolved questions. Translational research is currently unravelling novel circulating biomarkers for earlier diagnosis and novel treatment targets. Current breakthrough discoveries of clinically promising noninvasive biomarkers, such as the 13-protein signature, microRNAs and the BAP1 mesothelioma/cancer syndrome, are highlighted. The asbestos history is a lesson to not be repeated, but here we also review recent in vivo and in vitro studies showing that manmade carbon nanofibres could pose a similar danger to human health. This should be taken seriously by regulatory bodies to ensure thorough testing of novel materials before release in the society. Malignant pleural mesothelioma is a cancer with increasing death tolls due to the past and present use of asbestoshttp://ow.ly/DhA2y
Collapse
|
50
|
Oberdörster G, Castranova V, Asgharian B, Sayre P. Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:121-212. [PMID: 26361791 PMCID: PMC4706753 DOI: 10.1080/10937404.2015.1051611] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon nanotubes (CNT) and nanofibers (CNF) are used increasingly in a broad array of commercial products. Given current understandings, the most significant life-cycle exposures to CNT/CNF occur from inhalation when they become airborne at different stages of their life cycle, including workplace, use, and disposal. Increasing awareness of the importance of physicochemical properties as determinants of toxicity of CNT/CNF and existing difficulties in interpreting results of mostly acute rodent inhalation studies to date necessitate a reexamination of standardized inhalation testing guidelines. The current literature on pulmonary exposure to CNT/CNF and associated effects is summarized; recommendations and conclusions are provided that address test guideline modifications for rodent inhalation studies that will improve dosimetric extrapolation modeling for hazard and risk characterization based on the analysis of exposure-dose-response relationships. Several physicochemical parameters for CNT/CNF, including shape, state of agglomeration/aggregation, surface properties, impurities, and density, influence toxicity. This requires an evaluation of the correlation between structure and pulmonary responses. Inhalation, using whole-body exposures of rodents, is recommended for acute to chronic pulmonary exposure studies. Dry powder generator methods for producing CNT/CNF aerosols are preferred, and specific instrumentation to measure mass, particle size and number distribution, and morphology in the exposure chambers are identified. Methods are discussed for establishing experimental exposure concentrations that correlate with realistic human exposures, such that unrealistically high experimental concentrations need to be identified that induce effects under mechanisms that are not relevant for workplace exposures. Recommendations for anchoring data to results seen for positive and negative benchmark materials are included, as well as periods for postexposure observation. A minimum data set of specific bronchoalveolar lavage parameters is recommended. Retained lung burden data need to be gathered such that exposure-dose-response correlations may be analyzed and potency comparisons between materials and mammalian species are obtained considering dose metric parameters for interpretation of results. Finally, a list of research needs is presented to fill data gaps for further improving design, analysis, and interpretation and extrapolation of results of rodent inhalation studies to refine meaningful risk assessments for humans.
Collapse
Affiliation(s)
- Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, New York, USA
| | - Vincent Castranova
- Formerly with the National Institute for Occupational Safety and Health, West Virginia University School of Pharmacy, Morgantown, West Virginia, USA
| | | | - Phil Sayre
- Formerly with the U.S. Environmental Protection Agency, Washington, DC, USA
| |
Collapse
|