1
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
2
|
Li AX, Zeng JJ, Martin TA, Ye L, Ruge F, Sanders AJ, Khan E, Dou QP, Davies E, Jiang WG. Striatins and STRIPAK complex partners in clinical outcomes of patients with breast cancer and responses to drug treatment. Chin J Cancer Res 2023; 35:365-385. [PMID: 37691891 PMCID: PMC10485918 DOI: 10.21147/j.issn.1000-9604.2023.04.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Objective Striatins (STRNs) family, which contains three multi-domain scaffolding proteins, are cornerstones of the striatins interacting phosphatase and kinase (STRIPAK) complex. Although the role of the STRIPAK complex in cancer has become recognized in recent years, its clinical significance in breast cancer has not been fully established. Methods Using a freshly frozen breast cancer tissue cohort containing both cancerous and adjacent normal mammary tissues, we quantitatively evaluated the transcript-level expression of all members within the STRIPAK complex along with some key interacting and regulatory proteins of STRNs. The expression profile of each molecule and the integrated pattern of the complex members were assessed against the clinical-pathological factors of the patients. The Cancer Genome Atlas (TCGA) dataset was used to evaluate the breast cancer patients' response to chemotherapies. Four human breast cancer cell lines, MDA-MB-231, MDA-MB-361, MCF-7, and SK-BR-3, were subsequently adopted for in vitro work. Results Here we found that high-level expressions of STRIP2, calmodulin, CCM3, MINK1 and SLMAP were respectively associated with shorter overall survival (OS) of patients. Although the similar pattern observed for STRN3, STRN4 and a contrary pattern observed for PPP2CA, PPP2CB and PPPR1A were not significant, the integrated expression profile of STRNs group and PPP2 group members constitutes a highly significant prognostic indicator for OS [P<0.001, hazard ratio (HR)=2.04, 95% confidence interval (95% CI), 1.36-3.07] and disease-free survival (DFS) (P=0.003, HR=1.40, 95% CI, 1.12-1.75). Reduced expression of STRN3 has an influence on the biological functions including adhesiveness and migration. In line with our clinical findings, the breast cancer cells responded to STRN3 knockdown with changes in their chemo-sensitivity, of which the response is also breast cancer subtype dependent. Conclusions Our results suggest a possible role of the STRIPAK complex in breast cancer development and prognosis. Among the members, the expression profile of STRN3 presents a valuable factor for assessing patients' responses to drug treatment.
Collapse
Affiliation(s)
- Amber Xinyu Li
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jimmy Jianyuan Zeng
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Tracey A Martin
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- School of Natural and Social Science, University of Gloucestershire, Francis Close Hall, Cheltenham GL50 4AZ, UK
| | - Elyas Khan
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit MI 48201, USA
| | - Q. Ping Dou
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit MI 48201, USA
| | - Eleri Davies
- Wales Breast Center, Cardiff and Vales University Health Board, University Llandough Hospital, Cardiff CF64 2XX, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
3
|
Tanti GK, Pandey P, Shreya S, Jain BP. Striatin family proteins: The neglected scaffolds. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119430. [PMID: 36638846 DOI: 10.1016/j.bbamcr.2023.119430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.
Collapse
Affiliation(s)
- Goutam Kumar Tanti
- Department of Neurology, School of Medicine, Technical University of Munich, Germany.
| | - Prachi Pandey
- National Institute of Plant Genome Research, New Delhi, India
| | - Smriti Shreya
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
4
|
Zhang X, Chen Q, He Y, Shi Q, Yin C, Xie Y, Yu H, Bao Y, Wang X, Tang C, Dong Z. STRIP2 motivates non-small cell lung cancer progression by modulating the TMBIM6 stability through IGF2BP3 dependent. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:19. [PMID: 36639675 PMCID: PMC9837939 DOI: 10.1186/s13046-022-02573-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Striatin interacting protein 2 (STRIP2) is a core component of the striatin-interacting phosphatase and kinase (STRIPAK) complexes, which is involved in tumor initiation and progression via the regulation of cell contractile and metastasis. However, the underlying molecular mechanisms of STRIP2 in non-small cell lung cancer (NSCLC) progression remain largely unknown. METHODS The expressions of STRIP2 and IGF2BP3 in human NSCLC specimens and NSCLC cell lines were detected using quantitative RT-PCR, western blotting, and immunohistochemistry (IHC) analyses. The roles and molecular mechanisms of STRIP2 in promoting NSCLC progression were investigated in vitro and in vivo. RESULTS Here, we found that STRIP2 expression was significantly elevated in NSCLC tissues and high STRIP2 expression was associated with a poor prognosis. Knockdown of STRIP2 suppressed tumor growth and metastasis in vitro and in vivo, while STRIP2 overexpression obtained the opposite effect. Mechanistically, P300/CBP-mediated H3K27 acetylation activation in the promoter of STRIP2 induced STRIP2 transcription, which interacted with insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and upregulated IGF2BP3 transcription. In addition, STRIP2-IGF2BP3 axis stimulated m6A modification of TMBIM6 mRNA and enhanced TMBIM6 stability. Consequently, TMBIM6 involved NSCLC cell proliferation, migration and invasion dependent on STRIP2 and IGF2BP3. In NSCLC patients, high co-expression of STRIP2, IGF2BP3 and TMBIM6 was associated with poor outcomes. CONCLUSIONS Our findings indicate that STRIP2 interacts with IGF2BP3 to regulate TMBIM6 mRNA stability in an m6A-dependent manner and may represent a potential prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xilin Zhang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qiuqiang Chen
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying He
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Qian Shi
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengyi Yin
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Yanping Xie
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Huanming Yu
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Ying Bao
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Xiang Wang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Chengwu Tang
- grid.411440.40000 0001 0238 8414Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| | - Zhaohui Dong
- grid.411440.40000 0001 0238 8414Department of Cardiothoracic Surgery, First Affiliated Hospital of Huzhou University, Huzhou, 313000 Zhejiang China
| |
Collapse
|
5
|
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol 2022; 12:1059513. [PMID: 36568222 PMCID: PMC9774001 DOI: 10.3389/fonc.2022.1059513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
The finely tuned integration of intra- and extracellular cues by components of the mitogen-activated protein kinase (MAPK) signaling pathways controls the mutually exclusive phenotypic manifestations of uncontrolled growth and tumor cell dissemination. The Ser/Thr kinase MAP4K4 is an upstream integrator of extracellular cues involved in both proliferation and cell motility control. Initially identified as an activator of the c-Jun N-terminal kinase (JNK), the discovery of diverse functions and additional effectors of MAP4K4 beyond JNK signaling has considerably broadened our understanding of this complex kinase. The implication of MAP4K4 in the regulation of cytoskeleton dynamics and cell motility provided essential insights into its role as a pro-metastatic kinase in cancer. However, the more recently revealed role of MAP4K4 as an activator of the Hippo tumor suppressor pathway has complicated the understanding of MAP4K4 as an oncogenic driver kinase. To develop a better understanding of the diverse functions of MAP4K4 and their potential significance in oncogenesis and tumor progression, we have collected and assessed the current evidence of MAP4K4 implication in molecular mechanisms that control proliferation and promote cell motility. A better understanding of these mechanisms is particularly relevant in the brain, where MAP4K4 is highly expressed and under pathological conditions either drives neuronal cell death in neurodegenerative diseases or cell dissemination in malignant tumors. We review established effectors and present novel interactors of MAP4K4, which offer mechanistic insights into MAP4K4 function and may inspire novel intervention strategies. We discuss possible implications of novel interactors in tumor growth and dissemination and evaluate potential therapeutic strategies to selectively repress pro-oncogenic functions of MAP4K4.
Collapse
Affiliation(s)
| | | | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Children’s Research Centre, Division of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Eisfeldt J, Schuy J, Stattin EL, Kvarnung M, Falk A, Feuk L, Lindstrand A. Multi-Omic Investigations of a 17-19 Translocation Links MINK1 Disruption to Autism, Epilepsy and Osteoporosis. Int J Mol Sci 2022; 23:ijms23169392. [PMID: 36012658 PMCID: PMC9408972 DOI: 10.3390/ijms23169392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes and, in symptomatic carriers, pinpoint the disease-causing mechanisms. Here, we report an individual with autism, epilepsy and osteoporosis and a de novo balanced reciprocal translocation: t(17;19) (p13;p11). The genomic DNA was analyzed by short-, linked- and long-read genome sequencing, as well as optical mapping. Transcriptional consequences were assessed by transcriptome sequencing of patient-specific neuroepithelial stem cells derived from induced pluripotent stem cells (iPSC). The translocation breakpoints were only detected by long-read sequencing, the first on 17p13, located between exon 1 and exon 2 of MINK1 (Misshapen-like kinase 1), and the second in the chromosome 19 centromere. Functional validation in induced neural cells showed that MINK1 expression was reduced by >50% in the patient’s cells compared to healthy control cells. Furthermore, pathway analysis revealed an enrichment of changed neural pathways in the patient’s cells. Altogether, our multi-omics experiments highlight MINK1 as a candidate monogenic disease gene and show the advantages of long-read genome sequencing in capturing centromeric translocations.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Jakob Schuy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77 Stockholm, Sweden
- Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 08 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Correspondence: ; Tel.: +46-70-543-6593
| |
Collapse
|
8
|
Migliavacca J, Züllig B, Capdeville C, Grotzer MA, Baumgartner M. Cooperation of Striatin 3 and MAP4K4 promotes growth and tissue invasion. Commun Biol 2022; 5:795. [PMID: 35941177 PMCID: PMC9360036 DOI: 10.1038/s42003-022-03708-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
MAP4K4 is associated with increased motility and reduced proliferation in tumor cells, but the regulation of this dichotomous functionality remained elusive. We find that MAP4K4 interacts with striatin 3 and 4 (STRN3/4) and that STRN3 and MAP4K4 exert opposing functions in Hippo signaling and clonal growth. However, depletion of either STRN3 or MAP4K4 in medulloblastoma cells reduces invasion, and loss of both proteins abrogates tumor cell growth in the cerebellar tissue. Mechanistically, STRN3 couples MAP4K4 to the protein phosphatase 2A, which inactivates growth repressing activities of MAP4K4. In parallel, STRN3 enables growth factor-induced PKCθ activation and direct phosphorylation of VASPS157 by MAP4K4, which both are necessary for efficient cell invasion. VASPS157 directed activity of MAP4K4 and STRN3 requires the CNH domain of MAP4K4, which mediates its interaction with striatins. Thus, STRN3 is a master regulator of MAP4K4 function, and disruption of its cooperation with MAP4K4 reactivates Hippo signaling and represses tissue invasion in medulloblastoma. Analysis of the MAP4K4-STRN3 cooperation in medulloblastoma reveals its opposing regulation of Hippo activation and tissue invasion in cancer.
Collapse
Affiliation(s)
- Jessica Migliavacca
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Buket Züllig
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Charles Capdeville
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | - Michael A Grotzer
- Division of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Martin Baumgartner
- Pediatric Molecular Neuro-Oncology Research, Division of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Zhang M, Ma J, Guo Q, Ding S, Wang Y, Pu H. CD8 + T Cell-Associated Gene Signature Correlates With Prognosis Risk and Immunotherapy Response in Patients With Lung Adenocarcinoma. Front Immunol 2022; 13:806877. [PMID: 35273597 PMCID: PMC8902308 DOI: 10.3389/fimmu.2022.806877] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
The presence of infiltrating CD8+ T lymphocytes in the tumor microenvironment of lung adenocarcinoma (LUAD) is correlated with improved patient prognosis, but underlying regulatory mechanisms remain unknown. To identify biomarkers to improve early diagnosis and treatment of LUAD, we downloaded 13 immune cell line-associated datasets from the GEO database. We identified CD8+ T cell-associated genes via weighted correlation network analysis. We constructed molecular subtypes based on CD8+ T cell-associated genes and constructed a multi-gene signature. We identified 252 CD8+ T cell-associated genes significantly enriched in immune function-related pathways and two molecular subtypes of LUAD (immune cluster 1 [IC1] and IC2) using our CD8+ T cell-associated gene signature. Patients with the IC2 subtype had a higher tumor mutation burden and lower immune infiltration scores, whereas those with the IC1 subtype were more sensitive to immune checkpoint inhibitors. Prioritizing the top candidate genes to construct a 10-gene signature, we validated our model using independent GSE and TCGA datasets to confirm its robustness and stable prognostic ability. Our risk model demonstrated good predictive efficacy using the Imvigor210 immunotherapy dataset. Thus, we established a novel and robust CD8+ T cell-associated gene signature, which could help assess prognostic risk and immunotherapy response in LUAD patients.
Collapse
Affiliation(s)
- Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Clinical Trial Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qiuyue Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuang Ding
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
10
|
Ito M, Hiwasa T, Oshima Y, Yajima S, Suzuki T, Nanami T, Sumazaki M, Shiratori F, Funahashi K, Takizawa H, Kashiwado K, Tochigi N, Shimada H. Identification of serum anti-striatin 4 antibodies as a common marker for esophageal cancer and other solid cancers. Mol Clin Oncol 2021; 15:237. [PMID: 34650804 DOI: 10.3892/mco.2021.2399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Solid cancers have a poor prognosis, and their morbidity and mortality after surgery is high. Even after radical surgery for esophageal cancer, there have been cases of early postoperative death. The present study therefore aimed to explore new tumor markers that can predict the early postoperative prognosis. To identify antibody markers, serological antigens were identified using recombinant cDNA expression cloning (SEREX). The results identified striatin 4 (STRN4) as the antigen recognized by serum IgG antibodies in patients with esophageal cancer. After performing an amplified luminescence proximity homogeneous assay-linked immunosorbent assay (AlphaLISA), it was revealed that when compared with healthy donors, serum anti-STRN4 antibody (STRN4-Ab) levels were significantly higher not only in patients with esophageal cancer but also to lesser extent, in those with gastric cancer, colorectal cancer, lung cancer and breast cancer. Compared with STRN4-Ab-negative patients with esophageal cancer, STRN4-Ab-positive patients had a poorer postoperative prognosis at early stages, suggesting that STRN4-Abs may be useful for predicting poor early-stage prognoses of patients with esophageal cancer. The positive diagnosis rates of esophageal cancer using the STRN4-Ab marker and conventional markers, including squamous cell carcinoma antigen and p53 antibody alone, were 26.4, 35.2 and 19.1% respectively; a result that increased up to 59.1% by combining all three markers. Serum STRN4-Ab may serve as a novel marker of esophageal cancer.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Ota-ku, Tokyo 143-8541, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Kimihiko Funahashi
- Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chuo-ku, Chiba 260-0025, Japan
| | - Koichi Kashiwado
- Department of Neurology, Kashiwado Hospital, Chuo-ku, Chiba 260-0854, Japan
| | - Naobumi Tochigi
- Department of Surgical Pathology, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Ota-ku, Tokyo 143-8541, Japan.,Department of Gastroenterological Surgery, Toho University School of Medicine, Ota-ku, Tokyo 143-8541, Japan
| |
Collapse
|
11
|
Zou Y, Zhong C, Hu Z, Duan S. MiR-873-5p: A Potential Molecular Marker for Cancer Diagnosis and Prognosis. Front Oncol 2021; 11:743701. [PMID: 34676171 PMCID: PMC8523946 DOI: 10.3389/fonc.2021.743701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
miR-873 is a microRNA located on chromosome 9p21.1. miR-873-5p and miR-873-3p are the two main members of the miR-873 family. Most studies focus on miR-873-5p, and there are a few studies on miR-873-3p. The expression level of miR-873-5p was down-regulated in 14 cancers and up-regulated in 4 cancers. miR-873-5p has many targeted genes, which have unique molecular functions such as catalytic activity, transcription regulation, and binding. miR-873-5p affects cancer development through the PIK3/AKT/mTOR, Wnt/β-Catenin, NF-κβ, and MEK/ERK signaling pathways. In addition, the target genes of miR-873-5p are closely related to the proliferation, apoptosis, migration, invasion, cell cycle, cell stemness, and glycolysis of cancer cells. The target genes of miR-873-5p are also related to the efficacy of several anti-cancer drugs. Currently, in cancer, the expression of miR-873-5p is regulated by a variety of epigenetic factors. This review summarizes the role and mechanism of miR-873-5p in human tumors shows the potential value of miR-873-5p as a molecular marker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuhao Zou
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Chenming Zhong
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Zekai Hu
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Shiwei Duan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Czauderna C, Poplawski A, O Rourke CJ, Castven D, Pérez-Aguilar B, Becker D, Heilmann-Heimbach S, Odenthal M, Amer W, Schmiel M, Drebber U, Binder H, Ridder DA, Schindeldecker M, Straub BK, Galle PR, Andersen JB, Thorgeirsson SS, Park YN, Marquardt JU. Epigenetic modifications precede molecular alterations and drive human hepatocarcinogenesis. JCI Insight 2021; 6:e146196. [PMID: 34375307 PMCID: PMC8492348 DOI: 10.1172/jci.insight.146196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Development of primary liver cancer is a multi-stage process. Detailed understanding of sequential epigenetic alterations is largely missing. Here, we performed Infinium Human Methylation 450k BeadChips and RNA sequencing analyses for genome-wide methylome and transcriptome profiling of cirrhotic liver (n=7), low- (n=4) and high-grade (n=9) dysplastic lesions, early (n=5) and progressed (n=3) hepatocellular carcinomas (HCC) synchronously detected in eight HCC patients with chronic hepatitis B infection. Integrative analyses of epigenetically driven molecular changes were identified and validated in two independent cohorts comprising 887 HCC. Mitochondrial DNA sequencing was further employed for clonality analyses and indicates multi-clonal origin in the majority of investigated HCC. Alterations in DNA methylation progressively increased from CL to dysplastic lesions and reached a maximum in early HCC. Associated early alterations identified by IPA pathway analyses involved apoptosis, immune regulation and stemness pathways, while late changes centered on cell survival, proliferation and invasion. We further validated putative 23 epi-drivers with concomitant expression changes and associated with overall survival. Functionally, Striatin 4 (STRN4) was demonstrated to be epigenetically regulated and inhibition of STRN4 significantly suppressed tumorigenicity of HCC cell lines.Overall, application of integrative genomic analyses defines epigenetic driver alterations and provides promising targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Carolin Czauderna
- Department of Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University, Mainz, Germany
| | - Colm J O Rourke
- Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Darko Castven
- Department of Medicine I, University Medical Center Mainz, Mainz, Germany
| | | | - Diana Becker
- Department of Medicine I, University Medical Center Mainz, Mainz, Germany
| | | | | | - Wafa Amer
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Marcel Schmiel
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Uta Drebber
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Harald Binder
- Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Dirk A Ridder
- Department of Pathology, University Medical Center Mainz, Mainz, Germany
| | | | - Beate K Straub
- Department of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Peter R Galle
- Department of Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Jesper B Andersen
- Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis (LEC), National Cancer Institute, NIH, Bethesda, United States of America
| | - Young Nyun Park
- Department of Pathology, Yonsei University, Seoul, Korea, Republic of
| | - Jens U Marquardt
- Department of Medicine I, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
13
|
MAP4K4 expression in cardiomyocytes: multiple isoforms, multiple phosphorylations and interactions with striatins. Biochem J 2021; 478:2121-2143. [PMID: 34032269 PMCID: PMC8203206 DOI: 10.1042/bcj20210003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022]
Abstract
The Ser/Thr kinase MAP4K4, like other GCKIV kinases, has N-terminal kinase and C-terminal citron homology (CNH) domains. MAP4K4 can activate c-Jun N-terminal kinases (JNKs), and studies in the heart suggest it links oxidative stress to JNKs and heart failure. In other systems, MAP4K4 is regulated in striatin-interacting phosphatase and kinase (STRIPAK) complexes, in which one of three striatins tethers PP2A adjacent to a kinase to keep it dephosphorylated and inactive. Our aim was to understand how MAP4K4 is regulated in cardiomyocytes. The rat MAP4K4 gene was not properly defined. We identified the first coding exon of the rat gene using 5′-RACE, we cloned the full-length sequence and confirmed alternative-splicing of MAP4K4 in rat cardiomyocytes. We identified an additional α-helix C-terminal to the kinase domain important for kinase activity. In further studies, FLAG-MAP4K4 was expressed in HEK293 cells or cardiomyocytes. The Ser/Thr protein phosphatase inhibitor calyculin A (CalA) induced MAP4K4 hyperphosphorylation, with phosphorylation of the activation loop and extensive phosphorylation of the linker between the kinase and CNH domains. This required kinase activity. MAP4K4 associated with myosin in untreated cardiomyocytes, and this was lost with CalA-treatment. FLAG-MAP4K4 associated with all three striatins in cardiomyocytes, indicative of regulation within STRIPAK complexes and consistent with activation by CalA. Computational analysis suggested the interaction was direct and mediated via coiled-coil domains. Surprisingly, FLAG-MAP4K4 inhibited JNK activation by H2O2 in cardiomyocytes and increased myofibrillar organisation. Our data identify MAP4K4 as a STRIPAK-regulated kinase in cardiomyocytes, and suggest it regulates the cytoskeleton rather than activates JNKs.
Collapse
|
14
|
Zhang S, Dong Y, Qiang R, Zhang Y, Zhang X, Chen Y, Jiang P, Ma X, Wu L, Ai J, Gao X, Wang P, Chen J, Chai R. Characterization of Strip1 Expression in Mouse Cochlear Hair Cells. Front Genet 2021; 12:625867. [PMID: 33889175 PMCID: PMC8056008 DOI: 10.3389/fgene.2021.625867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Striatin-interacting protein 1 (Strip1) is a core component of the striatin interacting phosphatase and kinase (STRIPAK) complex, which is involved in embryogenesis and development, circadian rhythms, type 2 diabetes, and cancer progression. However, the expression and role of Strip1 in the mammalian cochlea remains unclear. Here we studied the expression and function of Strip1 in the mouse cochlea by using Strip1 knockout mice. We first found that the mRNA and protein expression of Strip1 increases as mice age starting from postnatal day (P) 3 and reaches its highest expression level at P30 and that the expression of Strip1 can be detected by immunofluorescent staining starting from P14 only in cochlear HCs, and not in supporting cells (SCs). Next, we crossed Strip1 heterozygous knockout (Strip +/-) mice to obtain Strip1 homozygous knockout (Strip1-/-) mice for studying the role of Strip1 in cochlear HCs. However, no Strip1-/- mice were obtained and the ratio of Strip +/- to Strip1+/+ mice per litter was about 2:1, which suggested that homozygous Strip1 knockout is embryonic lethal. We measured hearing function and counted the HC number in P30 and P60 Strip +/- mice and found that they had normal hearing ability and HC numbers compared to Strip1+/+ mice. Our study suggested that Strip1 probably play important roles in HC development and maturation, which needs further study in the future.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Cryo-EM structure of the Hippo signaling integrator human STRIPAK. Nat Struct Mol Biol 2021; 28:290-299. [PMID: 33633399 PMCID: PMC8315899 DOI: 10.1038/s41594-021-00564-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a large, multisubunit protein phosphatase 2A (PP2A) assembly that integrates diverse cellular signals in the Hippo pathway to regulate cell proliferation and survival. The architecture and assembly mechanism of this critical complex are poorly understood. Using cryo-EM, we determine the structure of the human STRIPAK core comprising PP2AA, PP2AC, STRN3, STRIP1, and MOB4 at 3.2-Å resolution. Unlike the canonical trimeric PP2A holoenzyme, STRIPAK contains four copies of STRN3 and one copy of each the PP2AA-C heterodimer, STRIP1, and MOB4. The STRN3 coiled-coil domains form an elongated homotetrameric scaffold that links the complex together. An inositol hexakisphosphate (IP6) is identified as a structural cofactor of STRIP1. Mutations of key residues at subunit interfaces disrupt the integrity of STRIPAK, causing aberrant Hippo pathway activation. Thus, STRIPAK is established as a noncanonical PP2A complex with four copies of regulatory STRN3 for enhanced signal integration.
Collapse
|
16
|
Zhang Y, Gu X, Jiang F, Sun P, Li X. Altered expression of striatin-4 is associated with poor prognosis in bladder transitional cell carcinoma. Oncol Lett 2021; 21:331. [PMID: 33692863 PMCID: PMC7933759 DOI: 10.3892/ol.2021.12592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Striatin-4 (STRN4 or Zinedin) is a scaffolding protein belonging to the mammalian STRN family of proteins and consists of multiple functional signaling domains. Due to its numerous signaling complexes, STRN4 has been reported to be involved in the tumorigenesis of various cancer types, including colon cancer, liver cancer and prostate cancer. However, few studies on STRN4 have been conducted in bladder cancer, and its prognostic role in bladder cancer remains unknown. The present study aimed to investigate the expression levels of STRN4 in bladder transitional cell carcinoma and evaluate the prognostic role of STRN4. STRN4 expression in clinical specimens was analyzed using immunohistochemistry and reverse transcription-quantitative PCR. It was demonstrated that STRN4 expression was significantly associated with clinical parameters such as tumor size, muscle invasion depth and pathological tumor grade. Abnormal STRN4 expression was typically associated with worse overall survival time and outcome when compared with the low STRN4 expression group. Using multivariate analysis, it was reported that STRN4 was an independent prognostic biomarker for survival time in bladder transitional cell carcinoma. Although the specific biological mechanisms of STRN4 in bladder cancer still remain to be elucidated, STRN4 expression could be a prognostic indicator in bladder cancer.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fuquan Jiang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Pinghui Sun
- School of Public Health, Jilin University, Changchun, Jilin 130015, P.R. China
| | - Xu Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
17
|
Nader M, Khalil B, Kattuah W, Dzimiri N, Bakheet D. Striatin translocates to the cytosol of apoptotic cells and is proteolytically cleaved in a caspase 3-dependent manner. Heliyon 2020; 6:e04990. [PMID: 33005798 PMCID: PMC7509466 DOI: 10.1016/j.heliyon.2020.e04990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/11/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022] Open
Abstract
Striatin (STRN) is a multivalent protein holding great therapeutic potentials in view of its interaction with dynamic partners implicated in apoptosis. Although striatin-3 and striatin-4, that share high structural similarities with STRN, have been linked to apoptosis, the dynamics of STRN in apoptotic cells remain unclear. Herein, we report that the amount of STRN (110 kDa) is reduced in apoptotic cells, in response to various chemotherapeutic agents, thereby yielding a major polypeptide fragment at ~65 kDa, and three minor products at lower molecular weights. While STRN siRNA reduced the 65 kDa derivative fragment, the overexpression of a Myc-tagged STRN precipitated a novel fragment that was detected slightly higher than 65 kDa (due to the Myc-DDK tag on the cleaved fragment), confirming the cleavage of STRN during apoptosis. Interestingly, STRN cleavage was abrogated by the general caspase inhibitor Z-VAD.fmk. Cell fractionation revealed that the STRN pool, mainly distributed in the non-cytosolic fragment of naïve cells, translocates to the cytosol where it is proteolytically cleaved during apoptosis. Interestingly, the ectopic expression of caspase 3 in MCF-7 cells (deprived of caspase 3) induced STRN cleavage under apoptotic conditions. Inhibition of caspase 3 (Ac-DEVD-CHO) conferred a dose-dependent protection against the proteolytic cleavage of STRN. Collectively, our data provide cogent proofs that STRN translocates to the cytosol where it undergoes proteolytic cleavage in a caspase 3-dependent manner during apoptosis. Thus, this study projects the cleavage of STRN as a novel marker for apoptosis to serve pharmacological strategies targeting this particular form of cell death.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bariaa Khalil
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Wejdan Kattuah
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nduna Dzimiri
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dana Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Sarmasti Emami S, Zhang D, Yang X. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Cancers (Basel) 2020; 12:E2438. [PMID: 32867200 PMCID: PMC7564220 DOI: 10.3390/cancers12092438] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway is an emerging tumor suppressor signaling pathway involved in a wide range of cellular processes. Dysregulation of different components of the Hippo signaling pathway is associated with a number of diseases including cancer. Therefore, identification of the Hippo pathway regulators and the underlying mechanism of its regulation may be useful to uncover new therapeutics for cancer therapy. The Hippo signaling pathway includes a set of kinases that phosphorylate different proteins in order to phosphorylate and inactivate its main downstream effectors, YAP and TAZ. Thus, modulating phosphorylation and dephosphorylation of the Hippo components by kinases and phosphatases play critical roles in the regulation of the signaling pathway. While information regarding kinase regulation of the Hippo pathway is abundant, the role of phosphatases in regulating this pathway is just beginning to be understood. In this review, we summarize the most recent reports on the interaction of phosphatases and the Hippo pathway in tumorigenesis. We have also introduced challenges in clarifying the role of phosphatases in the Hippo pathway and future direction of crosstalk between phosphatases and the Hippo pathway.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (D.Z.)
| |
Collapse
|
19
|
Tang Y, Fang G, Guo F, Zhang H, Chen X, An L, Chen M, Zhou L, Wang W, Ye T, Zhou L, Nie P, Yu H, Lin M, Zhao Y, Lin X, Yuan Z, Jiao S, Zhou Z. Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell 2020; 38:115-128.e9. [PMID: 32589942 DOI: 10.1016/j.ccell.2020.05.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/23/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Loss of Hippo tumor-suppressor activity and hyperactivation of YAP are commonly observed in cancers. Inactivating mutations of Hippo kinases MST1/2 are uncommon, and it remains unclear how their activity is turned off during tumorigenesis. We identified STRN3 as an essential regulatory subunit of protein phosphatase 2A (PP2A) that recruits MST1/2 and promotes its dephosphorylation, which results in YAP activation. We also identified STRN3 upregulation in gastric cancer correlated with YAP activation and poor prognosis. Based on this mechanistic understanding and aided by structure-guided medicinal chemistry, we developed a highly selective peptide inhibitor, STRN3-derived Hippo-activating peptide, or SHAP, which disrupts the STRN3-PP2Aa interaction and reactivates the Hippo tumor suppressor, inhibits YAP activation, and has antitumor effects in vivo.
Collapse
Affiliation(s)
- Yang Tang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Tongji University Cancer Center, Postdoctoral Station of Clinical Medicine, Department of Medical Ultrasound, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai 200040, China
| | - Hui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxu Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Liwei An
- Tongji University Cancer Center, Postdoctoral Station of Clinical Medicine, Department of Medical Ultrasound, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Min Chen
- Tongji University Cancer Center, Postdoctoral Station of Clinical Medicine, Department of Medical Ultrasound, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Li Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tiantian Ye
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhou
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
20
|
Zheng Q, Zhang Y, Jiang J, Jia J, Fan F, Gong Y, Wang Z, Shi Q, Chen D, Huo Y. Exome-Wide Association Study Reveals Several Susceptibility Genes and Pathways Associated With Acute Coronary Syndromes in Han Chinese. Front Genet 2020; 11:336. [PMID: 32328087 PMCID: PMC7160370 DOI: 10.3389/fgene.2020.00336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies have identified more than 150 susceptibility loci for coronary artery disease (CAD); however, there is still a large proportion of missing heritability remaining to be investigated. This study sought to identify population-based genetic variation associated with acute coronary syndromes (ACS) in individuals of Chinese Han descent. We proposed a novel strategy integrating a well-developed risk prediction model into control selection in order to lower the potential misclassification bias and increase the statistical power. An exome-wide association analysis was performed for 1,669 ACS patients and 1,935 healthy controls. Promising variants were further replicated using the existing in silico dataset. Additionally, we performed gene- and pathway-based analyses to investigate the aggregate effect of multiple variants within the same genes or pathways. Although none of the association signals were consistent across studies after Bonferroni correction, one promising variant, rs10409124 at STRN4, showed potential impact on ACS in both European and East Asian populations. Gene-based analysis explored four genes (ANXA7, ZNF655, ZNF347, and ZNF750) that showed evidence for association with ACS after multiple test correction, and identification of ZNF655 was successfully replicated by another dataset. Pathway-based analysis revealed that 32 potential pathways might be involved in the pathogenesis of ACS. Our study identified several candidate genes and pathways associated with ACS. Future studies are needed to further validate these findings and explore these genes and pathways as potential therapeutic targets in ACS.
Collapse
Affiliation(s)
- Qiwen Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yanjun Gong
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zhi Wang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Qiuping Shi
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
High STRN Expression Promotes HCC Invasion and Migration but Not Cell Proliferation or Apoptosis through Facilitating Epithelial-Mesenchymal Transition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6152925. [PMID: 32280692 PMCID: PMC7125443 DOI: 10.1155/2020/6152925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023]
Abstract
A STRN-ALK fusion protein has been recently identified as a potential therapeutic target in multiple cancers; however, the role of STRN alone in regulating the biological function of hepatocellular carcinoma (HCC) remains unclear. In this study, we firstly detected an overexpression of STRN in HCC tissues compared to that in adjacent nontumour (ANT) tissues through IHC analysis, and the expression level of this protein was positively correlated with lymph node metastasis and TNM stage. In vitro, high expression of STRN was also confirmed in different HCC cell lines, and regulation of STRN expression in Huh7 cells did not significantly affect tumour cell proliferation or apoptosis but was positively correlated with tumour cell invasion and migration capacities. Moreover, both the knockdown and overexpression of STRN in Huh7 cells can lead to cell morphological changes that are accompanied with an alteration of epithelial-mesenchymal transition (EMT) molecular markers E-cadherin and Vimentin. Finally, STRN was further proved to be negatively related to E-cadherin expression but positively related to Vimentin expression in human HCC tissue samples. Taken together, STRN is upregulated in HCC and acts as a tumour promoter regulating cell invasion and migration through facilitating the EMT process.
Collapse
|
22
|
Rodriguez-Cupello C, Dam M, Serini L, Wang S, Lindgren D, Englund E, Kjellman P, Axelson H, García-Mariscal A, Madsen CD. The STRIPAK Complex Regulates Response to Chemotherapy Through p21 and p27. Front Cell Dev Biol 2020; 8:146. [PMID: 32258031 PMCID: PMC7089963 DOI: 10.3389/fcell.2020.00146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
The STRIPAK complex has been linked to a variety of biological processes taking place during embryogenesis and development, but its role in cancer has only just started to be defined. Here, we expand on previous work indicating a role for the scaffolding protein STRIP1 in cancer cell migration and metastasis. We show that cell cycle arrest and decreased proliferation are seen upon loss of STRIP1 in MDA-MB-231 cells due to the induction of cyclin dependent kinase inhibitors, including p21 and p27. We demonstrate that p21 and p27 induction is observed in a subpopulation of cells having low DNA damage response and that the p21high/γH2AXlow ratio within single cells can be rescued by depleting MST3&4 kinases. While the loss of STRIP1 decreases cell proliferation and tumor growth, cells treated with low dosage of chemotherapeutics in vitro paradoxically escape therapy-induced senescence and begin to proliferate after recovery. This corroborates with already known research on the dual role of p21 and indicates that STRIP1 also plays a contradictory role in breast cancer, suppressing tumor growth, but once treated with chemotherapeutics, allowing for possible recurrence and decreased patient survival.
Collapse
Affiliation(s)
- Carmen Rodriguez-Cupello
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Monica Dam
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Laura Serini
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Shan Wang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Emelie Englund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pontus Kjellman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alberto García-Mariscal
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chris D Madsen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Wang Z, Li Y, Cao J, Zhang W, Wang Q, Zhang Z, Gao Z, Ye Y, Jiang K, Wang S. MicroRNA Profile Identifies miR-6165 Could Suppress Gastric Cancer Migration and Invasion by Targeting STRN4. Onco Targets Ther 2020; 13:1859-1869. [PMID: 32184620 PMCID: PMC7060782 DOI: 10.2147/ott.s208024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background Recent studies showed that aberrant expression of miRNAs causes tumor-suppressing or promoting effects in various cancers including gastric cancer (GC). Our previous studies showed that lots of miRNAs and mRNA expressed differentially in GC and normal tissues. However, the critical miRNAs and mRNA need to be clarified. Materials and Methods Microarray sequencing was used to profile the differential expression of miRNAs and mRNA in GC and normal tissues. Bioinformatics analysis and database prediction were used to search the critical miRNAs and mRNA. Real-time quantitative polymerase chain reaction (RT-qPCR), luciferase reporter assay, immunohistochemistry (IHC), wound healing assay and transwell assay were used to clarify the relationship between the target miRNAs and mRNA. Statistical analysis was used to seek their value of diagnosis and prognosis. Results We identified microRNA-6165 (miR-6165) as a novel cancer-related miRNA in GC through high-throughput microarray sequencing. By bioinformatics analysis and luciferase reporter assay, we found STRN4 was the target of miR-6165. Via a series of cell experiments, we determined that miR-6165 suppressed GC cells migration and invasion by targeting STRN4. Also, we discovered the potential diagnosis and prognosis value of miR-6165 and STRN4. Conclusion It was found that miR-6165 might suppress GC migration and invasion by targeting STRN4 in vitro, and the further research should focus more on the potential diagnosis and prognosis value of miR-6165 and STRN4 in gastric cancer patients.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Yang Li
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Jian Cao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Quan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Zhen Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, People's Republic of China
| |
Collapse
|
24
|
Flavone-based arylamides as potential anticancers: Design, synthesis and in vitro cell-based/cell-free evaluations. Eur J Med Chem 2020; 187:111965. [DOI: 10.1016/j.ejmech.2019.111965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
|
25
|
Constantinou C, Spella M, Chondrou V, Patrinos GP, Papachatzopoulou A, Sgourou A. The multi-faceted functioning portrait of LRF/ZBTB7A. Hum Genomics 2019; 13:66. [PMID: 31823818 PMCID: PMC6905007 DOI: 10.1186/s40246-019-0252-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Transcription factors (TFs) consisting of zinc fingers combined with BTB (for broad-complex, tram-track, and bric-a-brac) domain (ZBTB) are a highly conserved protein family that comprises a multifunctional and heterogeneous group of TFs, mainly modulating cell developmental events and cell fate. LRF/ZBTB7A, in particular, is reported to be implicated in a wide variety of physiological and cancer-related cell events. These physiological processes include regulation of erythrocyte maturation, B/T cell differentiation, adipogenesis, and thymic insulin expression affecting consequently insulin self-tolerance. In cancer, LRF/ZBTB7A has been reported to act either as oncogenic or as oncosuppressive factor by affecting specific cell processes (proliferation, apoptosis, invasion, migration, metastasis, etc) in opposed ways, depending on cancer type and molecular interactions. The molecular mechanisms via which LRF/ZBTB7A is known to exert either physiological or cancer-related cellular effects include chromatin organization and remodeling, regulation of the Notch signaling axis, cellular response to DNA damage stimulus, epigenetic-dependent regulation of transcription, regulation of the expression and activity of NF-κB and p53, and regulation of aerobic glycolysis and oxidative phosphorylation (Warburg effect). It is a pleiotropic TF, and thus, alterations to its expression status become detrimental for cell survival. This review summarizes its implication in different cellular activities and the commonly invoked molecular mechanisms triggered by LRF/ZBTB7A’s orchestrated action.
Collapse
Affiliation(s)
- Caterina Constantinou
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.,Laboratory of Pharmacology, Department of Medicine, University of Patras, Patras, Greece
| | - Magda Spella
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.,Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Medical Faculty, University of Patras, Patras, Greece
| | - Vasiliki Chondrou
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | | | - Argyro Sgourou
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.
| |
Collapse
|
26
|
Xie Y, Zhao F, Zhang P, Duan P, Shen Y. miR-29b inhibits non-small cell lung cancer progression by targeting STRN4. Hum Cell 2019; 33:220-231. [PMID: 31813135 DOI: 10.1007/s13577-019-00305-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant tumor with a high fatality, low overall cure, and survival rates worldwide. When only palliative therapy is available, the disease leads to malignant proliferation. Previous studies showed miR-29b serves as an NSCLC suppressor by inhibiting cells proliferation, migration, and invasion. However, the mechanism underlying NSCLC progression remains elusive. In this study, we identified Striatin 4 (STRN4), a target of miR-29b, which serves as a pro-oncogenic protein by promoting cells proliferation, migration, and invasion in NSCLC. Besides, the STRN4 was highly expressed in NSCLC and negatively regulated by miR-29b. Down-regulation of STRN4 inhibits NSCLC cells proliferation, migration, invasion, and promotes apoptosis in vitro, whereas overexpression-induced enhanced cell migration and invasion could be reverved by miR-29b. Notably, overexpression of miR-29b and down-regulation of STRN4 by shRNA suppressed cellular proliferation and delayed tumor progression in vivo. Together, these findings identify a miR-29b/STRN4 regulatory pathway in NSCLC progression, which may provide a new sight for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuping Xie
- Department of Oncology, Chengdu City First People's Hospital, Chengdu, 610041, People's Republic of China
| | - Fen Zhao
- Department of Oncology, Chengdu City First People's Hospital, Chengdu, 610041, People's Republic of China
| | - Ping Zhang
- Department of Oncology, Chengdu City First People's Hospital, Chengdu, 610041, People's Republic of China
| | - Ping Duan
- Department of Oncology, Chengdu City First People's Hospital, Chengdu, 610041, People's Republic of China
| | - Yangmei Shen
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
27
|
Kück U, Radchenko D, Teichert I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem 2019; 400:1005-1022. [PMID: 31042639 DOI: 10.1515/hsz-2019-0173] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 01/17/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is evolutionary highly conserved and has been structurally and functionally described in diverse lower and higher eukaryotes. In recent years, this complex has been biochemically characterized better and further analyses in different model systems have shown that it is also involved in numerous cellular and developmental processes in eukaryotic organisms. Further recent results have shown that the STRIPAK complex functions as a macromolecular assembly communicating through physical interaction with other conserved signaling protein complexes to constitute larger dynamic protein networks. Here, we will provide a comprehensive and up-to-date overview of the architecture, function and regulation of the STRIPAK complex and discuss key issues and future perspectives, linked with human diseases, which may form the basis of further research endeavors in this area. In particular, the investigation of bi-directional interactions between STRIPAK and other signaling pathways should elucidate upstream regulators and downstream targets as fundamental parts of a complex cellular network.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Daria Radchenko
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ines Teichert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
28
|
Jiang F, Zheng Q, Chang L, Li X, Wang X, Gu X. Pro-oncogene Pokemon Promotes Prostate Cancer Progression by Inducing STRN4 Expression. J Cancer 2019; 10:1833-1845. [PMID: 31205540 PMCID: PMC6547993 DOI: 10.7150/jca.29471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/04/2019] [Indexed: 11/07/2022] Open
Abstract
Pokemon, also known as leukemia/lymphoma-related factor (LRF) is a pro-oncogenic protein highly expressed in several cancers. There have been few in vitro and animal studies about its malignant biological behavior and function, however, its role especially in prostate cancer has not been completely elucidated. Therefore, in this study, we identified that Pokemon is overexpressed in human prostate cancer tissue samples, and its suppression inhibits proliferation of prostate cancer cells, along with promotion of apoptosis. Furthermore, to explore the mechanism by which Pokemon promotes tumor progression, we observed that it binds to the promoter of STRN4 (striatin 4), a downstream target, and subsequently regulates its expression. In conclusion, our study indicated that Pokemon through stimulation of STRN4 expression promotes prostate tumor progression via a Pokemon /STRN4 axis.
Collapse
Affiliation(s)
- Fuquan Jiang
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Qingfan Zheng
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Liping Chang
- The First Affiliated Hospital, Changchun University of Chinese Traditional Medicine, Jilin, China
| | - Xu Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Xinsheng Wang
- Department of Urology, Tianjin First Center Hospital, Tianjin, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| |
Collapse
|
29
|
Abstract
The WD40 domain is one of the most abundant and interacting domains in the eukaryotic genome. In proteins the WD domain folds into a β-propeller structure, providing a platform for the interaction and assembly of several proteins into a signalosome. WD40 repeats containing proteins, in lower eukaryotes, are mainly involved in growth, cell cycle, development and virulence, while in higher organisms, they play an important role in diverse cellular functions like signal transduction, cell cycle control, intracellular transport, chromatin remodelling, cytoskeletal organization, apoptosis, development, transcriptional regulation, immune responses. To play the regulatory role in various processes, they act as a scaffold for protein-protein or protein-DNA interaction. So far, no WD40 domain has been identified with intrinsic enzymatic activity. Several WD40 domain-containing proteins have been recently characterized in prokaryotes as well. The review summarizes the vast array of functions performed by different WD40 domain containing proteins, their domain organization and functional conservation during the course of evolution.
Collapse
Affiliation(s)
- Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Shweta Pandey
- APSGMNS Govt P G College, Kawardha, Chhattisgarh, 491995, India
| |
Collapse
|
30
|
Zheng S, Sun P, Liu H, Li R, Long L, Xu Y, Chen S, Xu J. 17β-estradiol upregulates striatin protein levels via Akt pathway in human umbilical vein endothelial cells. PLoS One 2018; 13:e0202500. [PMID: 30138337 PMCID: PMC6107185 DOI: 10.1371/journal.pone.0202500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/04/2018] [Indexed: 11/19/2022] Open
Abstract
17β-estradiol (E2) has been shown to have beneficial effects on the cardiovascular system. We previously demonstrated that E2 increases striatin levels and inhibits migration in vascular smooth muscle cells. The objective of the present study was to investigate the effects of E2 on the regulation of striatin expression in human umbilical vein endothelial cells (HUVECs). We demonstrated that E2 increased striatin protein expression in a dose- and time-dependent manner in HUVECs. Pretreatment with ICI 182780 or the phosphatidylinositol-3 kinase inhibitor, wortmannin, abolished E2-mediated upregulation of striatin protein expression. Treatment with E2 resulted in Akt phosphorylation in a time-dependent manner. Moreover, silencing striatin significantly inhibited HUVEC migration, while striatin overexpression significantly promoted HUVEC migration. Finally, E2 enhanced HUVEC migration, which was inhibited by silencing striatin. In conclusion, our results demonstrated that E2-mediated upregulation of striatin promotes cell migration in HUVECs.
Collapse
Affiliation(s)
- Shuhui Zheng
- Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Peng Sun
- Department of Pathology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative innovation Center for Cancer Medicine, Guangzhou, China
| | - Haimei Liu
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Runmei Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Lingli Long
- Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yuxia Xu
- Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Suiqing Chen
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| | - Jinwen Xu
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou, China
| |
Collapse
|
31
|
MicroRNA-873 inhibits colorectal cancer metastasis by targeting ELK1 and STRN4. Oncotarget 2018; 10:4192-4204. [PMID: 31289617 PMCID: PMC6609243 DOI: 10.18632/oncotarget.24115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that directly bind to the 3ʹ-untranslated-region (3ʹUTR) of mRNA, thereby blocking gene expression post-transcriptionally. Accumulating evidence prove that microRNA-873 (miR-873) functions as a promoter or suppressor in various cancers, while whether it affects the progression of colorectal cancer (CRC) is yet unknown. Here we found that miR-873 was downregulated in human CRC clinical samples, mouse CRC specimens and cell lines with high metastatic potential. We also demonstrated that low miR-873 expression was closely associated with poor prognosis of CRC. Overexpressing miR-873 suppressed proliferation and metastasis of CRC cells both in vitro and in vivo, while inhibiting miR-873 expression promoted the proliferation, migration and invasion in vitro. Moreover, miR-873 exerted its function by perturbing the ERK-CyclinD1 pathway and the epithelial-mesenchymal transition (EMT) process. Furthermore, we revealed that miR-873 acted as a tumor-suppressive microRNA by directly binding to the 3ʹUTRs of ELK1 and STRN4 and suppressed their expression. Our study uncovered an inhibitory role of miR-873 in CRC progression and might provide a promising marker for CRC diagnosis and prognosis.
Collapse
|
32
|
Abstract
Primary sclerosing cholangitis (PSC) is a chronic disease leading to fibrotic scarring of the intrahepatic and extrahepatic bile ducts, causing considerable morbidity and mortality via the development of cholestatic liver cirrhosis, concurrent IBD and a high risk of bile duct cancer. Expectations have been high that genetic studies would determine key factors in PSC pathogenesis to support the development of effective medical therapies. Through the application of genome-wide association studies, a large number of disease susceptibility genes have been identified. The overall genetic architecture of PSC shares features with both autoimmune diseases and IBD. Strong human leukocyte antigen gene associations, along with several susceptibility genes that are critically involved in T-cell function, support the involvement of adaptive immune responses in disease pathogenesis, and position PSC as an autoimmune disease. In this Review, we survey the developments that have led to these gene discoveries. We also elaborate relevant interpretations of individual gene findings in the context of established disease models in PSC, and propose relevant translational research efforts to pursue novel insights.
Collapse
|
33
|
Hong C, Ning Y, Wang S, Wu H, Carroll RJ, Chen Y. PLMET: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalilzed Exponential Tilt Mixture Models. J Am Stat Assoc 2017; 112:1393-1404. [PMID: 29416190 PMCID: PMC5798902 DOI: 10.1080/01621459.2017.1280405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 10/01/2016] [Indexed: 10/20/2022]
Abstract
Motivated by analyses of DNA methylation data, we propose a semiparametric mixture model, namely the generalized exponential tilt mixture model, to account for heterogeneity between differentially methylated and non-differentially methylated subjects in the cancer group, and capture the differences in higher order moments (e.g. mean and variance) between subjects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the unknown nuisance function. To circumvent boundary and non-identifiability problems as in parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In addition, the test with simple asymptotic distribution has computational advantages compared with permutation-based test for high-dimensional genetic or epigenetic data. We propose a pseudolikelihood based expectation-maximization test, and show the proposed test follows a simple chi-squared limiting distribution. Simulation studies show that the proposed test controls Type I errors well and has better power compared to several current tests. In particular, the proposed test outperforms the commonly used tests under all simulation settings considered, especially when there are variance differences between two groups. The proposed test is applied to a real data set to identify differentially methylated sites between ovarian cancer subjects and normal subjects.
Collapse
Affiliation(s)
- Chuan Hong
- Department of Biostatistics, Harvard University School of Public Health,
Boston, MA 02115, USA
| | - Yang Ning
- Department of Statistical Science, Cornell University, Ithaca, NY 14853,
USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia
University, New York, NY 10027, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public
Health, Emory University, Atlanta, GA 30322, USA
| | - Raymond J. Carroll
- Department of Statistics, Texas A&M University, College Station, TX
77843-3143, USA
| | - Yong Chen
- Department of Biostatistics and Epidemiology, University of Pennsylvania,
Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncol Lett 2016; 12:5240-5246. [PMID: 28105232 DOI: 10.3892/ol.2016.5332] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/19/2016] [Indexed: 01/07/2023] Open
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) is a member of the ATPases associated with various cellular activities family of proteins and is highly conserved in a wide range of species. Recent studies have demonstrated that TRIP13 is critical for the inactivation of the spindle assembly checkpoint and is associated with the progression of certain cancers. In the present study, the role of TRIP13 in colorectal cancer (CRC) was examined. Reverse transcription-quantitative polymerase chain reaction analysis revealed that TRIP13 messenger RNA was highly expressed in multiple CRC tissues. The depletion of TRIP13 in CRC cells suppressed cell proliferation, migration and invasion. To determine whether the catalytic activity of TRIP13 was critical for cancer progression, an inactive mutant of TRIP13 was expressed in CRC cells. The invasion of cancer cells that expressed the mutant TRIP13 was significantly reduced compared with that of the wild type TRIP13-expressing cancer cells. These results indicate that TRIP13 could be a potential target for CRC treatment.
Collapse
|
35
|
Arriazu E, Pippa R, Odero MD. Protein Phosphatase 2A as a Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2016; 6:78. [PMID: 27092295 PMCID: PMC4822158 DOI: 10.3389/fonc.2016.00078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignant disorder of hematopoietic progenitor cells in which several genetic and epigenetic aberrations have been described. Despite progressive advances in our understanding of the molecular biology of this disease, the outcome for most patients is poor. It is, therefore, necessary to develop more effective treatment strategies. Genetic aberrations affecting kinases have been widely studied in AML; however, the role of phosphatases remains underexplored. Inactivation of the tumor-suppressor protein phosphatase 2A (PP2A) is frequent in AML patients, making it a promising target for therapy. There are several PP2A inactivating mechanisms reported in this disease. Deregulation or specific post-translational modifications of PP2A subunits have been identified as a cause of PP2A malfunction, which lead to deregulation of proliferation or apoptosis pathways, depending on the subunit affected. Likewise, overexpression of either SET or cancerous inhibitor of protein phosphatase 2A, endogenous inhibitors of PP2A, is a recurrent event in AML that impairs PP2A activity, contributing to leukemogenesis progression. Interestingly, the anticancer activity of several PP2A-activating drugs (PADs) depends on interaction/sequestration of SET. Preclinical studies show that pharmacological restoration of PP2A activity by PADs effectively antagonizes leukemogenesis, and that these drugs have synergistic cytotoxic effects with conventional chemotherapy and kinase inhibitors, opening new possibilities for personalized treatment in AML patients, especially in cases with SET-dependent inactivation of PP2A. Here, we review the role of PP2A as a druggable tumor suppressor in AML.
Collapse
Affiliation(s)
- Elena Arriazu
- Hematology/Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra , Pamplona , Spain
| | - Raffaella Pippa
- Centre for Gene Regulation and Expression, University of Dundee , Dundee , UK
| | - María D Odero
- Hematology/Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
36
|
Kück U, Beier AM, Teichert I. The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genet Biol 2015; 90:31-38. [PMID: 26439752 DOI: 10.1016/j.fgb.2015.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 02/06/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is a highly conserved eukaryotic protein complex that was recently described for diverse animal and fungal species. Here, we summarize our current knowledge about the composition and function of the STRIPAK complex from the ascomycete Sordaria macrospora, which we discovered by investigating sexually sterile mutants (pro), having a defect in fruiting body development. Mass spectrometry and yeast two-hybrid analysis defined core subunits of the STRIPAK complex, which have structural homologs in animal and other fungal organisms. These subunits (and their mammalian homologs) are PRO11 (striatin), PRO22 (STRIP1/2), SmMOB3 (Mob3), PRO45 (SLMAP), and PP2AA, the structural, and PP2Ac, the catalytic subunits of protein phosphatase 2A (PP2A). Beside fruiting body formation, the STRIPAK complex controls vegetative growth and hyphal fusion in S. macrospora. Although the contribution of single subunits to diverse cellular and developmental processes is not yet fully understood, functional analysis has already shown that mammalian homologs are able to substitute the function of distinct fungal STRIPAK subunits. This underscores the view that fungal model organisms serve as useful tools to get a molecular insight into cellular and developmental processes of eukaryotes in general. Future work will unravel the precise localization of single subunits within the cell and decipher their STRIPAK-related and STRIPAK-independent functions. Finally, evidence is accumulating that there is a crosstalk between STRIPAK and various signaling pathways, suggesting that eukaryotic development is dependent on STRIPAK signaling.
Collapse
Affiliation(s)
- Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Anna M Beier
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
37
|
Tanti GK, Pandey S, Goswami SK. SG2NA enhances cancer cell survival by stabilizing DJ-1 and thus activating Akt. Biochem Biophys Res Commun 2015; 463:524-31. [DOI: 10.1016/j.bbrc.2015.05.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023]
|