1
|
Cao X, Zhao L, Zhou J, Ding S, Sun Y, Ma Y, Ma Z, Liu H, Dong T, Luo A, Li Y, Fang B. Dexmedetomidine inhibits ferroptosis through the Akt/GSK3β/Nrf2 axis and alleviates adriamycin-induced cardiotoxicity. Life Sci 2025; 371:123609. [PMID: 40187641 DOI: 10.1016/j.lfs.2025.123609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The cardiotoxicity of Adriamycin(ADR) limits its clinical application, and its molecular mechanism is not very clear. At present, Dexrazoxane (DXZ) is the only approved drug to prevent ADR-induced cardiotoxicity (DIC), but it also has serious adverse reactions. Therefore, it is a key scientific challenge to find a drug with strong myocardial protection, few adverse reactions and no effect on the anti-tumor effect of ADR. In this study, we established the DIC model in rats. Cardiomyocyte hypertrophy and myocardial fibrosis increased significantly, and MDA and LDH increased significantly in serum. Dexmedetomidine (DEX) is a carbohydrate with multiple biological activities that can significantly improve the above DIC process. Echocardiography confirmed that DEX could reverse the changes of ESV, EDV, EF and FS induced by ADR. In vitro, experiments confirmed that DEX reversed the upregulation of ANP, BNP, MHC and Collagen III protein levels induced by ADR. DEX improves DIC by inhibiting ferroptosis. Erastin, a ferroptosis agonist, confirmed that DEX improved DIC by inhibiting ferroptosis. Mechanically, DEX increases the expression of Nrf2 in the nucleus through the Akt/Gsk3β signalling axis, thereby regulating ferroptosis in cardiomyocytes. In addition, DEX can improve DIC while not affecting the anti-tumor effect of ADR.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China; Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China; Hebei Key Laboratory of Panvascular Diseasesr, Hebei, China
| | - Liang Zhao
- Department of Basic Medicine, Chengde Medical College, Chengde, China; Hebei Key Laboratory of Nerve Injury and Repair, Hebei, China; Hebei Key Laboratory of Panvascular Diseasesr, Hebei, China; Chengde Medical University Discipline Construction Funds, Chengde Medical College, Hebei, China
| | - Jian Zhou
- Department of Basic Medicine, Chengde Medical College, Chengde, China
| | - Shi Ding
- Department of Basic Medicine, Chengde Medical College, Chengde, China
| | - Ying Sun
- Department of Basic Medicine, Chengde Medical College, Chengde, China
| | - Yang Ma
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zijian Ma
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Hancheng Liu
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Tianxin Dong
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Aijing Luo
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Liu F, Li S, Huang C, Bi Z, Xiang X, Zhang S, Yang R, Zheng L. Self-assembled nanoplatform-mediated co-delivery of brusatol to sensitize sorafenib for hepatocellular carcinoma treatment. RSC Adv 2025; 15:11675-11687. [PMID: 40230634 PMCID: PMC11995455 DOI: 10.1039/d5ra00108k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Sorafenib (Sor), recognized as a frontline multi-kinase inhibitor, constitutes the primary targeted therapy for hepatocellular carcinoma (HCC). Despite its potential, many HCC patients exhibit reduced responsiveness to Sor, thereby undermining its therapeutic efficacy. Recent studies highlight the importance of nuclear factor erythroid-2-related factor 2 (Nrf2) activation in HCC, which contributes to Sor resistance. Brusatol (Bru), a plant-derived Nrf2 inhibitor, counteracts this resistance but faces challenges due to its poor solubility in aqueous media. In this study, we developed a glutathione (GSH)-responsive nanoplatform that effectively dispersed in water for the co-delivery of Bru and Sor (B/S NP). This approach enhanced Bru's therapeutic efficacy and increased Sor sensitivity in HCC. Our nanoplatform significantly reduced Nrf2 expression, thereby increasing Sor sensitivity both in vitro and in vivo, while presenting a favorable biosafety profile. These findings suggest that the nanoplatform-mediated co-delivery of Bru and Sor offers an innovative approach to enhance Sor's effectiveness in HCC treatment.
Collapse
Affiliation(s)
- Fengrui Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
- Key Laboratory of Tongliang District People's Hospital Chongqing 402560 P. R. China
| | - Senlin Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Chengcheng Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Zhenfei Bi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Xiao Xiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Shuqi Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Ruihao Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University Chongqing 400038 P. R. China
| |
Collapse
|
3
|
Yang Z, Han T, Yang R, Zhang Y, Qin Y, Hou J, Huo F, Feng Z, Ding Y, Yang J, Zhou G, Wang S, Xie X, Lin P, Chen ZN, Wu J. Dicoumarol sensitizes hepatocellular carcinoma cells to ferroptosis induced by imidazole ketone erastin. Front Immunol 2025; 16:1531874. [PMID: 40007539 PMCID: PMC11852437 DOI: 10.3389/fimmu.2025.1531874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction Ferroptosis, an iron-dependent form of regulated cell death, is characterized by the lethal accumulation of lipid peroxides on cellular membranes. It not only inhibits tumor growth but also enhances immunotherapy responses and overcomes drug resistance in cancer therapy. The inhibition of the cystine-glutamate antiporter, system Xc-, induces ferroptosis. Imidazole ketone erastin (IKE), an inhibitor of the system Xc- functional subunit solute carrier family 7 member 11 (SLC7A11), is an effective and metabolically stable inducer of ferroptosis with potential in vivo applications. However, tumor cells exhibited differential sensitivity to IKE-induced ferroptosis. The intrinsic factors determining sensitivity to IKE-induced ferroptosis remain to be explored to improve its efficacy. Methods Bulk RNA-sequencing data from hepatocellular carcinoma (HCC) and normal liver tissues were collected from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differentially expressed genes were identified and intersected with the ferroptosis-related genes (FRGs) listed in the FerrDb database, yielding the identification of 13 distinct FRGs. Results A ferroptosis signature index model (Risk Score) was developed to predict HCC prognosis. And SLC7A11 and NAD(P)H quinone dehydrogenase 1 (NQO1) were identified as candidate FRGs indicating poor prognosis of HCC. Dicoumarol (DIC), an inhibitor of NQO1, was subsequently employed to assess its sensitizing effects on IKE in HCC treatment. In HCC cell lines and the subcutaneous xenograft model, the combined suppression of SLC7A11 and NQO1 significantly enhanced the inhibitory effect on tumor growth by inducing ferroptosis. Discussion In conclusion, our findings demonstrate that DIC sensitized HCC cells to IKE-induced ferroptosis in HCC. Moreover, the identification of potential drugs that enhance the susceptibility of HCC cells to ferroptosis could provide novel therapeutic strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Ziwei Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Tixin Han
- Shaanxi Key Laboratory of Bio-electromagnetic Detection and Intelligent Sensing, Military Biomedical Engineering School, Fourth Military Medical University, Xi'an, China
| | - Ruibin Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yinuo Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yifei Qin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
- Institutes of Biomedicine and Department of Cell Biology, Jinan University, Guangzhou, China
| | - Jialu Hou
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Fei Huo
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yaxin Ding
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jiali Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Gang Zhou
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Shijie Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xiaohang Xie
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Lin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jiao Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Chen Z, Zhang C, Fang Y, Zhang H, Luo J, Miao C, Li J, Peng J, Qiu Y, Xia Y, Luo Q. Olfactory mucosa-mesenchymal stem cells with overexpressed Nrf2 modulate angiogenesis and exert anti-inflammation effect in an in vitro traumatic brain injury model. Eur J Med Res 2025; 30:80. [PMID: 39910594 PMCID: PMC11796021 DOI: 10.1186/s40001-025-02344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of disability and mortality among children and adults in developed countries. Transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2) has antioxidant, anti-inflammatory and neuroprotective effects and is closely related to TBI. Olfactory mucosa-mesenchymal stem cells (OM-MSCs) could promote neural regeneration. At present, the effects of OM-MSCs with overexpressed Nrf2 in brain diseases remain to be explored. METHODS The OM-MSCs were prepared and transfected with Nrf2 overexpression plasmid. Those transfected cells were termed as OM-MSCs with Nrf2 overexpression (OM-MSCsNrf2) and co-cultured with rat pheochromocytoma cells PC12 or murine microglia BV2. The effects of OM-MSCsNrf2 on the survival and angiogenesis of PC12 cells were evaluated through cell counting kit-8 (CCK-8) and tube formation assay, and extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were calculated to reflect glycolysis. Immunofluorescence assay was applied to determine the effects of OM-MSCsNrf2 on microglial polarization, and the underlying molecular mechanisms were analyzed based on the quantification tests of RT-qPCR and immunoblotting. RESULTS Co-culture of OM-MSCsNrf2 and PC12 cells increased the levels of anti-inflammatory cytokines and pro-angiogenesis factors, enhanced the cell survival and angiogenesis. Moreover, we also observed elevated phosphorylation of PI3K/AKT and suppressed BAX protein expression. Meanwhile, OM-MSCsNrf2 inhibited the levels of pro-inflammatory genes and affected the glycolysis in PC12 cells. In the co-cultured system of OM-MSCsNrf2 and BV2 cells, M2 microglial polarization was observed, and the levels of M2 microglia-relevant genes and the phosphorylation of STAT6/AMPKα/SMAD3 were elevated. CONCLUSION This study proved the effects of OM-MSCsNrf2 on modulating PC12 and BV2 cells in vitro, which, however, necessitates further in vivo validation.
Collapse
Affiliation(s)
- Zigui Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Chunyuan Zhang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - Yuhua Fang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - He Zhang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - Jiawei Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China
| | - Changfeng Miao
- Department of Neurosurgery Second Branche, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Jiale Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China
| | - Yingqi Qiu
- Department of Clinical Research Center, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, China.
| | - Qisheng Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Guangxi Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Baise, 533000, China.
| |
Collapse
|
5
|
Wang X, Wei N, Zhang Y, Fang Y, Li Y, Li S, Wang Z, Sun C. Nanozyme-mediated glutathione depletion for enhanced ROS-based cancer therapies: a comprehensive review. Nanomedicine (Lond) 2025; 20:279-290. [PMID: 39726369 PMCID: PMC11792818 DOI: 10.1080/17435889.2024.2446138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Nanozymes can improve reactive oxygen species (ROS)-based cancer therapies by targeting cancer cells' antioxidant defense mechanisms, particularly glutathione (GSH) depletion, to overcome ROS-resistant cancer cells. Nanozymes, innovative enzyme-mimetic nanomaterials, can generate ROS, alter the tumor microenvironment (TME), and synergize with photodynamic therapy (PDT), chemodynamic therapy (CDT), radiotherapy, and immunotherapy. This review shows how nanozymes catalyze ROS generation, selectively deplete GSH, and target cancer elimination, offering clear advantages over standard therapies. Nanozymes selectively target cancer cells' antioxidant defenses to improve PDT, CDT, and radiation therapies. To maximize nanozyme-based cancer treatment efficacy, biodistribution, biocompatibility, and tumor heterogeneity must be assessed. To improve cancer treatment, multifunctional, stimuli-responsive nanozymes and synergistic combination drugs should be developed.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, People’s Republic of China
| | - Nan Wei
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Yang Zhang
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Yuan Fang
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Yijun Li
- Department of Pathology, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, People’s Republic of China
| | - Songguo Li
- Department of Pathology, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, People’s Republic of China
| | - Zhanggui Wang
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
| | - Chenglong Sun
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, people’s Republic of China
- Department of radiotherapy, Anhui No.2 Provincial People’s Hospital Clinical College, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
6
|
Long Y, Shi H, Ye J, Qi X. Exploring Strategies to Prevent and Treat Ovarian Cancer in Terms of Oxidative Stress and Antioxidants. Antioxidants (Basel) 2025; 14:114. [PMID: 39857448 PMCID: PMC11762571 DOI: 10.3390/antiox14010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is a state of imbalance between the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the antioxidant defence system in the body. Oxidative stress may be associated with a variety of diseases, such as ovarian cancer, diabetes mellitus, and neurodegeneration. The generation of oxidative stress in ovarian cancer, one of the common and refractory malignancies among gynaecological tumours, may be associated with several factors. On the one hand, the increased metabolism of ovarian cancer cells can lead to the increased production of ROS, and on the other hand, the impaired antioxidant defence system of ovarian cancer cells is not able to effectively scavenge the excessive ROS. In addition, chemotherapy and radiotherapy may elevate the oxidative stress in ovarian cancer cells. Oxidative stress can cause oxidative damage, promote the development of ovarian cancer, and even result in drug resistance. Therefore, studying oxidative stress in ovarian cancer is important for the prevention and treatment of ovarian cancer. Antioxidants, important markers of oxidative stress, might serve as one of the strategies for preventing and treating ovarian cancer. In this review, we will discuss the complex relationship between oxidative stress and ovarian cancer, as well as the role and therapeutic potential of antioxidants in ovarian cancer, thus guiding future research and clinical interventions.
Collapse
Affiliation(s)
| | | | | | - Xiaorong Qi
- Key Laboratory of Birth, Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (H.S.); (J.Y.)
| |
Collapse
|
7
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Hsu CM, Kao SY, Yen CH, Hsiao CE, Cho SF, Wang HC, Yeh TJ, Du JS, Wang MH, Hsieh TY, Hsiao SY, Tsai Y, Hung LC, Liu YC, Chang KC, Hsiao HH. Biomarker potential of nuclear Nrf2 activation in the ABC subtype of diffuse large B‑cell lymphoma. Oncol Lett 2025; 29:30. [PMID: 39512504 PMCID: PMC11542154 DOI: 10.3892/ol.2024.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive B-cell lymphoma characterized by distinct subtypes and heterogeneous treatment outcomes. Oxidative stress and the dysregulation of related regulatory genes are prevalent in DLBCL, prompting an investigation into the nuclear factor erythroid 2-related factor 2 (Nrf2)-kelch-like ECH-associated protein 1 (Keap1) signaling pathway and associated genes. The present study assessed pathological specimens and clinical data from 43 newly diagnosed patients with DLBCL, comparing the associations and correlations between the expression of Nrf2, Keap1, microtubule-associated protein 1 light chain 3β (LC3B) and nitrotyrosine and the activated B-cell (ABC) and germinal center B-cell (GCB) subtypes of DLBCL using immunohistochemistry and digital image analysis software. Nuclear Nrf2 activation was observed in 33.3% of patients with DLBCL ABC, demonstrating a higher prevalence of hepatitis B surface antigen positivity, calcium ions and significant body weight loss (P<0.05). Total Nrf2 expression was associated with the DLBCL GCB subtype and inversely correlated with Keap1 expression in the DLBCL ABC subtype. Furthermore, a positive correlation was demonstrated between Nrf2 and LC3, indicating that total Nrf2 is inhibited by Keap1 and regulates LC3 expression. The ABC subtype was also associated with lower white blood cell counts and more frequent chemotherapy courses than the GCB subtype. These findings suggest that nuclear Nrf2 could be a biomarker for DLBCL clinical diagnosis.
Collapse
Affiliation(s)
- Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
| | - Shih-Yu Kao
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
| | - Chia-Hung Yen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| | - Chi-En Hsiao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| | - Tsung-Jang Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| | - Min-Hong Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| | - Tzu-Yu Hsieh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| | - Samuel Yien Hsiao
- Center for Computational and Integrative Biology, University of Rutgers-Camden, Camden, NJ 08102, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung 404328, Taiwan, R.O.C
| | - Li-Chuan Hung
- Department of Long-Term Care and Health Management, Cheng Shiu University, Kaohsiung 833301, Taiwan, R.O.C
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
- Cellular Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan, R.O.C
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan, R.O.C
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan, R.O.C
| |
Collapse
|
9
|
Bae T, Kwak MK. Kelch-like ECH-associated Protein 1/Nuclear Factor Erythroid 2-related Factor 2 Pathway and Its Interplay with Oncogenes in Lung Tumorigenesis. J Cancer Prev 2024; 29:89-98. [PMID: 39790220 PMCID: PMC11706728 DOI: 10.15430/jcp.24.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, exhibits a complex role in cancer biology. Genetic mutations in the Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 system, which lead to NRF2 hyperactivation, are found in 20% to 30% of lung cancer cases. This review explores the intricate interplay between NRF2 and key oncogenic pathways in lung cancer, focusing on the interaction of KEAP1/NRF2 system with Kirsten rat sarcoma virus (KRAS), tumor protein P53 (TP53), epidermal growth factor receptor (EGFR), and phosphatidylinositol 3-kinases (PI3K)/AKT signaling. While NRF2 activation alone is insufficient to initiate tumorigenesis, it can significantly impact tumor initiation and progression when combined with oncogenic drivers such as KRAS. The review highlights the context-dependent effects of NRF2, from its protective role against chemical carcinogen-induced tumor initiation to its potential promotion of tumor growth in established cancers. These findings suggest the need for nuanced, stage-specific approaches to targeting the NRF2 pathway in cancer therapy.
Collapse
Affiliation(s)
- Taegeun Bae
- Integrated Research Institute for Pharmaceutical Sciences, Bucheon, Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, Bucheon, Korea
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
10
|
Oshikiri H, Taguchi K, Hirose W, Taniyama Y, Kamei T, Siegel D, Ross D, Kitson RRA, Baird L, Yamamoto M. Anticancer Effect of C19-Position Substituted Geldanamycin Derivatives Targeting NRF2-NQO1-activated Esophageal Squamous Cell Carcinoma. Mol Cell Biol 2024; 45:79-97. [PMID: 39717011 DOI: 10.1080/10985549.2024.2438817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
In esophageal squamous cell carcinoma, genetic activation of NRF2 increases resistance to chemotherapy and radiotherapy, which results in a significantly worse prognosis for patients. Therefore NRF2-activated cancers create an urgent clinical need to identify new therapeutic options. In this context, we previously identified the geldanamycin family of HSP90 inhibitors, which includes 17DMAG, to be synthetic lethal with NRF2 activity. As the first-generation of geldanamycin-derivative drugs were withdrawn from clinical trials due to hepatotoxicity, we designed second-generation compounds with C19-substituted structures in order to inhibit glutathione conjugation-mediated hepatotoxicity. In this study, using a variety of in vitro and in vivo cancer models, we found that C19-substituted 17DMAG compounds maintain their enhanced toxicity profile and synthetic lethal interaction with NRF2-NQO1-activated cancer cells. Importantly, using a xenograft mouse tumor model, we found that C19-substituted 17DMAG displayed significant anticancer efficacy against NRF2-NQO1-activated cancer cells without causing hepatotoxicity. These results clearly demonstrate the improved clinical potential for this new class of HSP90 inhibitor anticancer drugs, and suggest that patients with NRF2-NQO1-activated esophageal carcinoma may benefit from this novel therapeutic approach.
Collapse
Affiliation(s)
- Hiroyuki Oshikiri
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Taguchi
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Wataru Hirose
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Taniyama
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - David Siegel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David Ross
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Russell R A Kitson
- Department of Organic and Bioorganic Chemistry, Charles University, Hradec Králové, Czech Republic
| | - Liam Baird
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Ayala-Cosme EG, Yang D, Vences K, Davis LO, Borgini M. State-of-the-Art Nrf2 Inhibitors: Therapeutic Opportunities in Non-Cancer Diseases. ChemMedChem 2024; 19:e202400377. [PMID: 39083752 DOI: 10.1002/cmdc.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Nuclear factor erythroid 2-related factor (Nrf2) is a cytoprotective transcription factor that induces the transcription of genes responsible for the cell's response to oxidative stress. While Nrf2 activation has led to the development of clinically relevant therapeutics, the oncogenic role of Nrf2 in the proliferation of cancer cells has underscored the complex nature of Nrf2 and the necessity for the development of Nrf2 inhibitors. Although the application of Nrf2 inhibitors appears limited as anticancer agents, recent studies have begun to pinpoint the impairment of autophagy in diseases as a cellular marker that shifts Nrf2 from a protective to a deleterious state. Therefore, the cytoplasmic accumulation of Nrf2 can lead to the accumulation of lipid hydroperoxides and, ultimately, to ferroptosis. However, some studies aimed at elucidating the role of Nrf2 in non-cancer diseases have yielded conflicting results, attributed to differences in approaches used to inhibit or activate Nrf2, as well as variations in in vitro and/or in vivo disease models. Overall, these results highlight the necessity for a deeper evaluation of Nrf2's role in diseases, especially chronic diseases. In this review, we discuss diseases where Nrf2 inhibition holds potential for beneficial therapeutic effects and summarize recently reported Nrf2 inhibitors exploiting medicinal chemistry approaches suitable for targeting transcription factors like Nrf2.
Collapse
Affiliation(s)
- Emil G Ayala-Cosme
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Deborah Yang
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Kyara Vences
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Lindsey O Davis
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| | - Matteo Borgini
- Department of Chemistry and Biochemistry, Augusta University, Augusta, 30912, GA, U.S.A
| |
Collapse
|
12
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
14
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
15
|
Ham S, Choi BH, Kwak MK. NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 2024; 58:648-661. [PMID: 39540796 DOI: 10.1080/10715762.2024.2423690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.
Collapse
Affiliation(s)
- Suji Ham
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
16
|
Zhang Y, Chen Y, Mou H, Huang Q, Jian C, Tao Y, Tan F, Ou Y. Synergistic induction of ferroptosis by targeting HERC1-NCOA4 axis to enhance the photodynamic sensitivity of osteosarcoma. Redox Biol 2024; 76:103328. [PMID: 39216271 PMCID: PMC11402416 DOI: 10.1016/j.redox.2024.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Over the past 30 years, the survival rate for osteosarcoma (OS) has remained stagnant, indicating persistent challenges in diagnosis and treatment. Photodynamic therapy (PDT) has emerged as a novel and promising treatment modality for OS. Despite apoptosis being the primary mechanism attributed to PDT, it fails to overcome issues such as low efficacy and resistance. Ferroptosis, a Fe2+-dependent cell death process, has the potential to enhance PDT's efficacy by increasing reactive oxygen species (ROS) through the Fenton reaction. In this study, we investigated the anti-tumor mechanism of PDT and introduced an innovative therapeutic strategy that synergistically induces apoptosis and ferroptosis. Furthermore, we have identified HERC1 as a pivotal protein involved in the ubiquitination and degradation of NCOA4, while also uncovering a potential regulatory factor involving NRF2. Ultimately, by targeting the HERC1-NCOA4 axis during PDT, we successfully achieved full activation of ferroptosis, which significantly enhanced the anti-tumor efficacy of PDT. In conclusion, these findings provide new theoretical evidence for further characterizing mechanism of PDT and offer new molecular targets for the treatment of OS.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Yuxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Hai Mou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Qiu Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Changchun Jian
- Department of Orthopaedics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Yong Tao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Fuqiang Tan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
17
|
Lorenz L, Zenz T, Oliinyk D, Meier-Rosar F, Jenke R, Aigner A, Büch T. Vorinostat Treatment of Gastric Cancer Cells Leads to ROS-Induced Cell Inhibition and a Complex Pattern of Molecular Alterations in Nrf2-Dependent Genes. Pharmaceuticals (Basel) 2024; 17:1080. [PMID: 39204185 PMCID: PMC11357633 DOI: 10.3390/ph17081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Histone deacetylase inhibitors (HDACi) show high antineoplastic potential in preclinical studies in various solid tumors, including gastric carcinoma; however, their use in clinical studies has not yet yielded convincing efficacies. Thus, further studies on cellular/molecular effects of HDACi are needed, for improving clinical efficacy and identifying suitable combination partners. Here, we investigated the role of oxidative stress in gastric cancer cells upon treatment with HDACi. A particular focus was laid on the role of the Nrf2 pathway, which can mediate resistance to cell-inhibitory effects of reactive oxidative species (ROS). Using fluorescence-based ROS sensors, oxidative stress was measured in human gastric cancer cell lines. Activation of the Nrf2 pathway was monitored in luciferase reporter assays as well as by mRNA and proteomic expression analyses of Nrf2 regulators and Nrf2-induced genes. Furthermore, the effects of ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2-knockdown on HDACi-dependent antiproliferative effects were investigated in colorimetric formazan-based and clonogenic survival assays. HDACi treatment led to increased oxidative stress levels and consequently, treatment with NAC reduced cytotoxicity of HDACi. In addition, vorinostat treatment stimulated expression of a luciferase reporter under the control of an antioxidative response element, indicating activation of the Nrf2 system. This Nrf2 activation was only partially reversible by treatment with NAC, suggesting ROS independent pathways to contribute to HDACi-promoted Nrf2 activation. In line with its cytoprotective role, Nrf2 knockdown led to a sensitization against HDACi. Accordingly, the expression of antioxidant and detoxifying Nrf2 target genes was upregulated upon HDACi treatment. In conclusion, oxidative stress induction upon HDAC inhibition contributes to the antitumor effects of HDAC inhibitors, and activation of Nrf2 represents a potentially important adaptive response of gastric cancer cells in this context.
Collapse
Affiliation(s)
- Leoni Lorenz
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
| | - Tamara Zenz
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
| | - Denys Oliinyk
- Functional Proteomics, Research Center Lobeda, Jena University Hospital, 07747 Jena, Germany; (D.O.); (F.M.-R.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Florian Meier-Rosar
- Functional Proteomics, Research Center Lobeda, Jena University Hospital, 07747 Jena, Germany; (D.O.); (F.M.-R.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Robert Jenke
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, 04103 Leipzig, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, Leipzig University, 04107 Leipzig, Germany (T.Z.); (R.J.)
- Comprehensive Cancer Center Central Germany (CCCG), 04103 Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 07743 Jena, Germany
| |
Collapse
|
18
|
Ning S, Guo X, Zhu Y, Li C, Li R, Meng Y, Luo W, Lu D, Yin Y. The mechanism of NRF2 regulating cell proliferation and mesenchymal transformation in pulmonary hypertension. Int J Biol Macromol 2024; 275:133514. [PMID: 38944076 DOI: 10.1016/j.ijbiomac.2024.133514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pulmonary hypertension (PH) is a fatal disease with no existing curative drugs. NF-E2-related factor 2 (NRF2) a pivotal molecular in cellular protection, was investigated in PH models to elucidate its role in regulating abnormal phenotypes in pulmonary artery cells. We examined the expression of NRF2 in PH models and explored the role of NRF2 in regulating abnormal phenotypes in pulmonary artery cells. We determined the expression level of NRF2 in lung tissues of PH model decreased significantly. We found that NRF2 was reduced in rat pulmonary artery endothelial cells (rPAEC) under hypoxia, while it was overexpressed in rat pulmonary artery smooth muscle cells (rPASMC) under hypoxia. Next, the results showed that knockdown NRF2 in rPAEC promoted endothelial-mesenchymal transformation and upregulated reactive oxygen species level. After the rPASMC was treated with siRNA or activator, we found that NRF2 could accelerate cell migration by affecting MMP2/3/7, and promote cell proliferation by regulating PDGFR/ERK1/2 and mTOR/P70S6K pathways. Therefore, the study has shown that the clinical application of NRF2 activator in the treatment of pulmonary hypertension may cause side effects of promoting the proliferation and migration of rPASMC. Attention should be paid to the combination of NRF2 activators.
Collapse
Affiliation(s)
- Shasha Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xinyue Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Chenghui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ruixue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yinan Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Weiwei Luo
- Military Mental Cognition, Strategic Support Force Medical Center, No. 9 Anxiangbeili, Chaoyang District, Beijing 100101, China.
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Jiang Z, Ye S, Wu Y, Zhou C, Cao F, Tan N. Cyclopeptide RA-V from Rubia yunnanensis restores activity of Adagrasib against colorectal cancer by reducing the expression of Nrf2. Pharmacol Res 2024; 206:107252. [PMID: 38945380 DOI: 10.1016/j.phrs.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
Adagrasib (MRTX849), an approved and promising KRAS G12C inhibitor, has shown the promising results for treating patients with advanced non-small cell lung cancer (NSCLC) or colorectal cancer (CRC) harboring KRAS-activating mutations. However, emergence of the acquired resistance limits its long-term efficacy and clinical application. Further understanding of the mechanism of the acquired resistance is crucial for developing more new effective therapeutic strategies. Herein, we firstly found a new connection between the acquired resistance to MRTX849 and nuclear factor erythroid 2-related factor 2 (Nrf2). The expression levels of Nrf2 and GLS1 proteins were substantially elevated in different CRC cell lines with the acquired resistance to MRTX849 in comparison with their corresponding parental cell lines. Next, we discovered that RA-V, one of natural cyclopeptides isolated from the roots of Rubia yunnanensis, could restore the response of resistant CRC cells to MRTX849. The results of molecular mechanisms showed that RA-V suppressed Nrf2 protein through the ubiquitin-proteasome-dependent degradation, leading to the induction of oxidative and ER stress, and DNA damage in CRC cell lines. Consequently, RA-V reverses the resistance to MRTX849 by inhibiting the Nrf2/GLS1 axis, which shows the potential for further developing into one of novel adjuvant therapies of MRTX849.
Collapse
Affiliation(s)
- Zhuangzhuang Jiang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shuqing Ye
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yingwei Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chen Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Cao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
20
|
Luo QH, Chen HJ, Zhong QY, He HE, Huang YQ, Liu YC, Lan B, Wen YQ, Deng SL, Du XH, Lin BQ, Zhan YX. Prevention of supercritical carbon dioxide fluid extract from Chrysanthemum indicum Linnén on cutaneous squamous cell carcinomas progression following UV irradiation in mice. Exp Ther Med 2024; 28:330. [PMID: 38979021 PMCID: PMC11229401 DOI: 10.3892/etm.2024.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/26/2024] [Indexed: 07/10/2024] Open
Abstract
Chrysanthemum indicum Linnén (C. indicum), a medicinal and food herb with various bioactive components, may be of beneficial use in cosmetics and the treatment of skin-related diseases. However, to date, few studies have been reported on its potential preventive and therapeutic effects on skin cancer. Therefore, the present study aimed to investigate the effect and potential mechanism of action of supercritical carbon dioxide extract from C. indicum (CISCFE) on UV-induced skin cancer in a mouse model. Kunming mice were allocated randomly to five treatment groups: Sham, model, low concentration CISCFE, high concentration CISCFE and positive control nicotinamide groups. The dorsal skin of mice was irradiated with UV light for 31 weeks. Histopathological changes, ELISA assays, immunohistochemical analysis and western blotting were performed to investigate the potential therapeutic effects of CISCFE. The results showed that CISCFE alleviated skin oxidative and inflammatory damage in a UV-induced mouse model of skin cancer. Moreover, CISCFE suppressed abnormal activation of proto-oncogene c-Myc and the overexpression of Ki-67 and VEGF, and increased expression of the anti-oncogene PTEN, thereby reducing abnormal proliferation of the epidermis and blood vessels. Additionally, CISCFE increased the protein expression levels of NAD-dependent protein deacetylase sirtuin-1 (SIRT1), Kelch-like ECH associated protein 1 (Keap1) and inhibited the expression of nuclear factor 2 erythroid 2-related factor 2 (Nrf2), phosphorylated (p)-p62 (Ser 349), p-p65 and acetyl-p65 proteins in a UV-induced skin cancer mouse model. In summary, CISCFE exhibited potent anti-skin cancer activity, which may be attributed its potential effects on the p62/Keap1-Nrf2 and SIRT1/NF-κB pathways.
Collapse
Affiliation(s)
- Qi-Hong Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hong-Juan Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qing-Yuan Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hao-En He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ying-Qi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - You-Chen Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Bin Lan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yao-Qi Wen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Si-Liang Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xian-Hua Du
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Bao-Qin Lin
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ya-Xian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
21
|
Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int J Mol Sci 2024; 25:7631. [PMID: 39062873 PMCID: PMC11276737 DOI: 10.3390/ijms25147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
22
|
Terlikowska KM, Dobrzycka B, Terlikowski SJ. Modifications of Nanobubble Therapy for Cancer Treatment. Int J Mol Sci 2024; 25:7292. [PMID: 39000401 PMCID: PMC11242568 DOI: 10.3390/ijms25137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer development is related to genetic mutations in primary cells, where 5-10% of all cancers are derived from acquired genetic defects, most of which are a consequence of the environment and lifestyle. As it turns out, over half of cancer deaths are due to the generation of drug resistance. The local delivery of chemotherapeutic drugs may reduce their toxicity by increasing their therapeutic dose at targeted sites and by decreasing the plasma levels of circulating drugs. Nanobubbles have attracted much attention as an effective drug distribution system due to their non-invasiveness and targetability. This review aims to present the characteristics of nanobubble systems and their efficacy within the biomedical field with special emphasis on cancer treatment. In vivo and in vitro studies on cancer confirm nanobubbles' ability and good blood capillary perfusion; however, there is a need to define their safety and side effects in clinical trials.
Collapse
Affiliation(s)
- Katarzyna M Terlikowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| | - Bozena Dobrzycka
- Department of Gynaecology and Practical Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089 Bialystok, Poland
| | - Slawomir J Terlikowski
- Department of Obstetrics, Gynaecology and Maternity Care, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| |
Collapse
|
23
|
Pantazi V, Miklós V, Smith P, Oláh-Németh O, Pankotai-Bodó G, Teja Dondapati D, Ayaydin F, D'Angiolella V, Pankotai T. Prognostic potential of CUL3 ligase with differential roles in luminal A and basal type breast cancer tumors. Sci Rep 2024; 14:14912. [PMID: 38942922 PMCID: PMC11213933 DOI: 10.1038/s41598-024-65692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Breast cancer is a prevalent and significant cause of mortality in women, and manifests as six molecular subtypes. Its further histologic classification into non-invasive ductal or lobular carcinoma (DCIS) and invasive carcinoma (ILC or IDC) underscores its heterogeneity. The ubiquitin-proteasome system plays a crucial role in breast cancer, with inhibitors targeting the 26S proteasome showing promise in clinical treatment. The Cullin-RING ubiquitin ligases, including CUL3, have direct links to breast cancer. This study focuses on CUL3 as a potential biomarker, leveraging high-throughput sequencing, gene expression profiling, experimental and data analysis tools. Through comprehensive analysis using databases like GEPIA2 and UALCAN, as well as TCGA datasets, CUL3's expression and its association with prognostic values were assessed. Additionally, the impact of CUL3 overexpression was explored in MCF-7 and MDA-MB-231 breast cancer cell lines, revealing distinct differences in molecular and phenotypic characteristics. We further profiled its expression and localization in breast cancer tissues identifying prominent differences between luminal A and TNBC tumors. Conclusively, CUL3 was found to be associated with cell cycle progression, and DNA damage response, exhibiting diverse roles depending on the tumor's molecular type. It exhibits a tendency to act as an oncogene in triple-negative tumors and as a tumor suppressor in luminal A types, suggesting a potential significance in breast cancer progression and therapeutic directions.
Collapse
Affiliation(s)
- Vasiliki Pantazi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Vanda Miklós
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Paul Smith
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Orsolya Oláh-Németh
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Divya Teja Dondapati
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | | | - Tibor Pankotai
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
| |
Collapse
|
24
|
Liu J, Liu S, Li D, Li H, Zhang F. Prevalence and Associations of Co-occurrence of NFE2L2 Mutations and Chromosome 3q26 Amplification in Lung Cancer. Glob Med Genet 2024; 11:150-158. [PMID: 38628662 PMCID: PMC11018393 DOI: 10.1055/s-0044-1786004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Background NFE2L2 (nuclear factor erythroid-2-related factor-2) encodes a basic leucine zipper (bZIP) transcription factor and exhibits variations in various tumor types, including lung cancer. In this study, we comprehensively investigated the impact of simultaneous mutations on the survival of NFE2L2 -mutant lung cancer patients within specific subgroups. Methods A cohort of 1,103 lung cancer patients was analyzed using hybridization capture-based next-generation sequencing. Results The NFE2L2 gene had alterations in 3.0% (33/1,103) of lung cancer samples, including 1.5% (15/992) in adenocarcinoma and 16.2% (18/111) in squamous cell carcinoma. Thirty-four variations were found, mainly in exons 2 (27/34). New variations in exon 2 (p.D21H, p.V36_E45del, p.F37_E45del, p.R42P, p.E67Q, and p.L76_E78delinsQ) were identified. Some patients had copy number amplifications. Co-occurrence with TP53 (84.8%), CDKN2A (33.3%), KMT2B (33.3%), LRP1B (33.3%), and PIK3CA (27.3%) mutations was common. Variations of NFE2L2 displayed the tightest co-occurrence with IRF2 , TERC , ATR , ZMAT3 , and SOX2 ( p < 0.001). In The Cancer Genome Atlas Pulmonary Squamous Carcinoma project, patients with NFE2L2 variations and 3q26 amplification had longer median survival (63.59 vs. 32.04 months, p = 0.0459) and better overall survival. Conclusions NFE2L2 mutations display notable heterogeneity in lung cancer. The coexistence of NFE2L2 mutations and 3q26 amplification warrants in-depth exploration of their potential clinical implications and treatment approaches for affected patients.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sijie Liu
- Department of Thoracic Surgery, Beijing Aerospace General Hospital, Beijing, China
| | - Dan Li
- Department of General Surgery, Jingxing County Hospital of Hebei Province, Shijiazhuang, China
| | - Hongbin Li
- Department of Oncology, Rongcheng County People's Hospital, Baoding, China
| | - Fan Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Jebanesan DZP, Illangeswaran RSS, Rajamani BM, Vidhyadharan RT, Das S, Bijukumar NK, Balakrishnan B, Mathews V, Velayudhan SR, Balasubramanian P. Inhibition of NRF2 signaling overcomes acquired resistance to arsenic trioxide in FLT3-mutated Acute Myeloid Leukemia. Ann Hematol 2024; 103:1919-1929. [PMID: 38630133 DOI: 10.1007/s00277-024-05742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/01/2024] [Indexed: 05/14/2024]
Abstract
De novo acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD) have worse treatment outcomes. Arsenic trioxide (ATO) used in the treatment of acute promyelocytic leukemia (APL) has been reported to be effective in degrading the FLT3 protein in AML cell lines and sensitizing non-APL AML patient samples in-vitro. We have previously reported that primary cells from FLT3-ITD mutated AML patients were sensitive to ATO in-vitro compared to other non-M3 AML and molecular/pharmacological inhibition of NF-E2 related factor 2 (NRF2), a master regulator of antioxidant response improved the chemosensitivity to ATO and daunorubicin even in non FLT3-ITD mutated cell lines and primary samples. We examined the effects of molecular/pharmacological suppression of NRF2 on acquired ATO resistance in the FLT3-ITD mutant AML cell line (MV4-11-ATO-R). ATO-R cells showed increased NRF2 expression, nuclear localization, and upregulation of bonafide NRF2 targets. Molecular inhibition of NRF2 in this resistant cell line improved ATO sensitivity in vitro. Digoxin treatment lowered p-AKT expression, abrogating nuclear NRF2 localization and sensitizing cells to ATO. However, digoxin and ATO did not sensitize non-ITD AML cell line THP1 with high NRF2 expression. Digoxin decreased leukemic burden and prolonged survival in MV4-11 ATO-R xenograft mice. We establish that altering NRF2 expression may reverse acquired ATO resistance in FLT3-ITD AML.
Collapse
Affiliation(s)
- Daniel Zechariah Paul Jebanesan
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
- Manipal Academy of Higher Education, Manipal, India
| | | | - Bharathi M Rajamani
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | | | - Saswati Das
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | - Nayanthara K Bijukumar
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | - Balaji Balakrishnan
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vikram Mathews
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
| | - Shaji R Velayudhan
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India
- Adjunct Scientist, Centre for Stem Cell Research, A Unit of InStem Bengaluru, CMC Campus, Vellore, India
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College Vellore-Ranipet Campus, Tamil Nadu, Vellore, 632517, India.
| |
Collapse
|
26
|
Thatikonda V, Supper V, Wachter J, Kaya O, Kombara A, Bilgilier C, Ravichandran MC, Lipp JJ, Sharma R, Badertscher L, Boghossian AS, Rees MG, Ronan MM, Roth JA, Grosche S, Neumüller RA, Mair B, Mauri F, Popa A. Genetic dependencies associated with transcription factor activities in human cancer cell lines. Cell Rep 2024; 43:114175. [PMID: 38691456 DOI: 10.1016/j.celrep.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Transcription factors (TFs) are important mediators of aberrant transcriptional programs in cancer cells. In this study, we focus on TF activity (TFa) as a biomarker for cell-line-selective anti-proliferative effects, in that high TFa predicts sensitivity to loss of function of a given gene (i.e., genetic dependencies [GDs]). Our linear-regression-based framework identifies 3,047 pan-cancer and 3,952 cancer-type-specific candidate TFa-GD associations from cell line data, which are then cross-examined for impact on survival in patient cohorts. One of the most prominent biomarkers is TEAD1 activity, whose associations with its predicted GDs are validated through experimental evidence as proof of concept. Overall, these TFa-GD associations represent an attractive resource for identifying innovative, biomarker-driven hypotheses for drug discovery programs in oncology.
Collapse
Affiliation(s)
- Venu Thatikonda
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria.
| | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Johannes Wachter
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Onur Kaya
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Anju Kombara
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Ceren Bilgilier
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | | | - Jesse J Lipp
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Rahul Sharma
- Myllia Biotechnology GmbH, Am Kanal 27, Vienna 1110, Austria
| | | | | | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Grosche
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Federico Mauri
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria.
| |
Collapse
|
27
|
Haider S, Chakraborty S, Chowdhury G, Chakrabarty A. Opposing Interplay between Nuclear Factor Erythroid 2-Related Factor 2 and Forkhead BoxO 1/3 is Responsible for Sepantronium Bromide's Poor Efficacy and Resistance in Cancer cells: Opportunity for Combination Therapy in Triple Negative Breast Cancer. ACS Pharmacol Transl Sci 2024; 7:1237-1251. [PMID: 38751638 PMCID: PMC11091984 DOI: 10.1021/acsptsci.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Survivin, a cancer-cell-specific multifunctional protein, is regulated by many oncogenic signaling pathways and an effective therapeutic target. Although, several types of survivin-targeting agents have been developed over the past few decades, none of them received clinical approval. This could be because survivin expression is tightly controlled by the feedback interaction between different signaling molecules. Of the several signaling pathways that are known to regulate survivin expression, the phosphatidylinositol 3-kinase/AKT serine-threonine kinase/forkhead boxO (PI3K/AKT/FoxO) pathway is well-known for feedback loops constructed by cross-talk among different molecules. Using sepantronium bromide (YM155), the first of its class of survivin-suppressant, we uncovered the existence of an interesting cross-talk between Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) and FoxO transcription factors that also contributes to YM155 resistance in triple negative breast cancer (TNBC) cells. Pharmacological manipulation to interrupt this interaction not only helped restore/enhance the drug-sensitivity but also prompted effective immune clearance of cancer cells. Because the YM155-induced reactive oxygen species (ROS) initiates this feedback, we believe that it will be occurring for many ROS-producing chemotherapeutic agents. Our work provides a rational explanation for the poor efficacy of YM155 compared to standard chemotherapy in clinical trials. Finally, the triple drug combination approach used herein might help reintroducing YM155 into the clinical pipeline, and given the high survivin expression in TNBC cells in general, it could be effective in treating this subtype of breast cancer.
Collapse
Affiliation(s)
- Shaista Haider
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| | - Shayantani Chakraborty
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| | - Goutam Chowdhury
- Independent
Researcher, Greater Noida Gautam Buddha Nagar Uttar Pradesh 201308, India
| | - Anindita Chakrabarty
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| |
Collapse
|
28
|
Yu X, Li S, Ke S, Ye C, Wang Q, Wang H, Wang L. CSF2 Impairs Nrf2 Signaling through the Akt/Mtor Pathway in the Development of Bladder Cancer. J Cancer 2024; 15:3242-3253. [PMID: 38817867 PMCID: PMC11134447 DOI: 10.7150/jca.94343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024] Open
Abstract
Bladder Cancer (BCa) is one of the most common cancers of the urinary system. Colony-stimulating factor 2 (CSF2) is involved in many cancers, but not BCa. We investigated the effect of CSF2 on BCa in this study and the underlying molecular mechanisms. CSF2 mRNA levels in BCa were analyzed using the Cancer Genome Atlas (TCGA) database. Western blot was conducted to verify CSF2 expression in BCa tissue samples and cell lines. The effect of CSF2 on the growth of BCa cells was assessed by CCK8 and colony formation. To determine the migration and invasion capabilities of BCa cells, transwell analysis and wound healing assays were conducted. Next, western blot was used to explore the underlying mechanism. In the end, a xenografted BCa mouse model was established to examine the effects of CSF2 on tumorigenesis in vivo. Results showed that CSF2 mRNA was upregulated in BCa samples. Knocking down CSF2 significantly inhibited the proliferation and tumorigenesis of BCa cells in vitro and in vivo. Mechanism analysis revealed that CSF2 knockdown inhibited the proliferation and invasion of BCa cells via AKT/mTOR signaling. Based on these results, CSF2 promotes the proliferation and tumorigenesis of BCa.
Collapse
Affiliation(s)
- Xi Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shenglan Li
- Department of Radiography, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shuai Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Chenglin Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qinghua Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Huaxin Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| |
Collapse
|
29
|
Yang L, Chen Y, He S, Yu D. The crucial role of NRF2 in erythropoiesis and anemia: Mechanisms and therapeutic opportunities. Arch Biochem Biophys 2024; 754:109948. [PMID: 38452967 DOI: 10.1016/j.abb.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor crucial in cellular defense against oxidative and electrophilic stresses. Recent research has highlighted the significance of NRF2 in normal erythropoiesis and anemia. NRF2 regulates genes involved in vital aspects of erythroid development, including hemoglobin catabolism, inflammation, and iron homeostasis in erythrocytes. Disrupted NRF2 activity has been implicated in various pathologies involving abnormal erythropoiesis. In this review, we summarize the progress made in understanding the mechanisms of NRF2 activation in erythropoiesis and explore the roles of NRF2 in various types of anemia. This review also discusses the potential of targeting NRF2 as a new therapeutic approach to treat anemia.
Collapse
Affiliation(s)
- Lei Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Yong Chen
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China
| | - Duonan Yu
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610000, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225009, China; Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Nanning, Guangxi, 530000, China.
| |
Collapse
|
30
|
Wang H, Gao C, Li X, Chen F, Li G. Camptothecin enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. Sci Rep 2024; 14:7140. [PMID: 38532022 PMCID: PMC10966085 DOI: 10.1038/s41598-024-57874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Apatinib has been shown to apply to a variety of solid tumors, including advanced hepatocellular carcinoma. Preclinical and preliminary clinical results confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) inhibitors. In this study, we investigated camptothecin (CPT) enhances the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma. CPT combined with a PD-1 inhibitor enhances the anti-tumor effects of low-dose apatinib in hepatocellular carcinoma which was evaluated in making use of the H22 mouse model (n = 32), which was divided into four groups. Immunohistochemical staining and western blotting were used to detect nuclear factor erythroid 2-related factor 2 (Nrf2) as well as sequestosome 1 (p62), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), PD-1, and programmed cell death ligand 1 (PD-L1). The results showed that the average size of the tumor of the combination group (Group D) was significantly less than that of the apatinib + PD-1 inhibitor group (Group C). The expression levels of Nrf2, p62, VEGFA, VEGFR2, PD-1, and PD-L1 in the apatinib + PD-1 inhibitor group(Group C) were lower than those in the control group (Group A) (P < 0.05). The expression levels of these genes in the apatinib + PD-1 inhibitor group (Group C) were significantly lower in the combination group (Group D) (P < 0.05). There was no obvious difference in body weight and liver and kidney functions between the four groups of mice. In conclusion, CPT improves the anti-tumor effect of low-dose apatinib combined with PD-1 inhibitor on hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Congcong Gao
- Jinan Center for Disease Control and Prevention, Jinan, Shandong, 250000, People's Republic of China
| | - Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, People's Republic of China.
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Lixia, Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
31
|
Bae T, Hallis SP, Kwak MK. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med 2024; 56:501-514. [PMID: 38424190 PMCID: PMC10985007 DOI: 10.1038/s12276-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Oxygen is crucial for life and acts as the final electron acceptor in mitochondrial energy production. Cells adapt to varying oxygen levels through intricate response systems. Hypoxia-inducible factors (HIFs), including HIF-1α and HIF-2α, orchestrate the cellular hypoxic response, activating genes to increase the oxygen supply and reduce expenditure. Under conditions of excess oxygen and resulting oxidative stress, nuclear factor erythroid 2-related factor 2 (NRF2) activates hundreds of genes for oxidant removal and adaptive cell survival. Hypoxia and oxidative stress are core hallmarks of solid tumors and activated HIFs and NRF2 play pivotal roles in tumor growth and progression. The complex interplay between hypoxia and oxidative stress within the tumor microenvironment adds another layer of intricacy to the HIF and NRF2 signaling systems. This review aimed to elucidate the dynamic changes and functions of the HIF and NRF2 signaling pathways in response to conditions of hypoxia and oxidative stress, emphasizing their implications within the tumor milieu. Additionally, this review explored the elaborate interplay between HIFs and NRF2, providing insights into the significance of these interactions for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Taegeun Bae
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Steffanus Pranoto Hallis
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi‑do, 14662, Republic of Korea.
| |
Collapse
|
32
|
Gensluckner S, Wernly B, Datz C, Aigner E. Iron, Oxidative Stress, and Metabolic Dysfunction-Associated Steatotic Liver Disease. Antioxidants (Basel) 2024; 13:208. [PMID: 38397806 PMCID: PMC10886327 DOI: 10.3390/antiox13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Excess free iron is a substrate for the formation of reactive oxygen species (ROS), thereby augmenting oxidative stress. Oxidative stress is a well-established cause of organ damage in the liver, the main site of iron storage. Ferroptosis, an iron-dependent mechanism of regulated cell death, has recently been gaining attention in the development of organ damage and the progression of liver disease. We therefore summarize the main mechanisms of iron metabolism, its close connection to oxidative stress and ferroptosis, and its particular relevance to disease mechanisms in metabolic-dysfunction-associated fatty liver disease and potential targets for therapy from a clinical perspective.
Collapse
Affiliation(s)
- Sophie Gensluckner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Christian Datz
- Department of Medicine, General Hospital Oberndorf, Teaching Hospital of the Paracelsus Medical University, 5110 Oberndorf, Austria; (B.W.); (C.D.)
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
33
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
34
|
Iseda N, Itoh S, Toshida K, Nakayama Y, Ishikawa T, Tsutsui Y, Izumi T, Bekki Y, Yoshiya S, Toshima T, Yoshizumi T. Impact of albumin-lymphocyte-platelet-C-reactive protein index as a prognostic indicator of hepatocellular carcinoma after resection: Associated with nuclear factor erythroid 2-related factor 2. Hepatol Res 2024; 54:91-102. [PMID: 37632704 DOI: 10.1111/hepr.13958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
AIM To investigate the prognostic value of the preoperative albumin-lymphocyte-platelet-C-reactive protein (ALPC) index in patients with hepatocellular carcinoma (HCC) undergoing curative hepatectomy. We also evaluated the relationship between the ALPC index and the phosphorylated nuclear factor erythroid 2-related factor 2 (p-Nrf2) levels. METHODS Data were analyzed retrospectively from 256 patients who underwent resection for HCC. For cross-validation, patients were divided into the training and testing cohort. We assessed eight combinations of inflammatory markers for predictive value for recurrence. We examined the associations of the ALPC index with recurrence-free survival and overall survival in univariate and multivariate analyses (Cox proportional hazards model). Immunohistochemical staining of p-Nrf2 was performed on tumor samples of 317 patients who underwent hepatic resection for HCC. RESULTS A high preoperative ALPC index correlated with a high serum albumin concentration, small tumor size, low rate of poor differentiation, solitary tumor, early Barcelona Clinic Liver Cancer stage, and low rate of microscopic intrahepatic metastasis in the training dataset. A high preoperative ALPC index correlated with a high serum albumin concentration, high serum alpha-fetoprotein concentration, small tumor size, a low rate of poor differentiation and a low rate of microscopic intrahepatic metastasis in the testing dataset. A higher preoperative ALPC index was an independent predictor of longer recurrence-free survival and overall survival in the training and testing datasets. A high ALPC index was associated with negative p-Nrf2 expression in HCC tumor cells. CONCLUSIONS We showed that a high ALPC index was an independent prognostic factor for patients with HCC undergoing curative hepatic resection.
Collapse
Affiliation(s)
- Norifumi Iseda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Toshida
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuuki Nakayama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuma Ishikawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuriko Tsutsui
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuma Izumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Xing Z, Jiang X, Wu Y, Yu Z. Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy. Curr Cancer Drug Targets 2024; 24:890-909. [PMID: 38275055 DOI: 10.2174/0115680096273730231206054104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
36
|
Moubarak MM, Pagano Zottola AC, Larrieu CM, Cuvellier S, Daubon T, Martin OCB. Exploring the multifaceted role of NRF2 in brain physiology and cancer: A comprehensive review. Neurooncol Adv 2024; 6:vdad160. [PMID: 38221979 PMCID: PMC10785770 DOI: 10.1093/noajnl/vdad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Chronic oxidative stress plays a critical role in the development of brain malignancies due to the high rate of brain oxygen utilization and concomitant production of reactive oxygen species. The nuclear factor-erythroid-2-related factor 2 (NRF2), a master regulator of antioxidant signaling, is a key factor in regulating brain physiology and the development of age-related neurodegenerative diseases. Also, NRF2 is known to exert a protective antioxidant effect against the onset of oxidative stress-induced diseases, including cancer, along with its pro-oncogenic activities through regulating various signaling pathways and downstream target genes. In glioblastoma (GB), grade 4 glioma, tumor resistance, and recurrence are caused by the glioblastoma stem cell population constituting a small bulk of the tumor core. The persistence and self-renewal capacity of these cell populations is enhanced by NRF2 expression in GB tissues. This review outlines NRF2's dual involvement in cancer and highlights its regulatory role in human brain physiology and diseases, in addition to the development of primary brain tumors and therapeutic potential, with a focus on GB.
Collapse
Affiliation(s)
- Maya M Moubarak
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | | | | | | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| | | |
Collapse
|
37
|
Moghadam D, Zarei R, Rostami A, Samare-Najaf M, Ghojoghi R, Savardashtaki A, Jafarinia M, Vakili S, Irajie C. The Growth Inhibitory Effect of Resveratrol and Gallic Acid on Prostate Cancer Cell Lines through the Alteration of Oxidative Stress Balance: The Interplay between Nrf2, HO-1, and BACH1 Genes. Anticancer Agents Med Chem 2024; 24:1220-1232. [PMID: 38984567 DOI: 10.2174/0118715206317999240708062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND The association between oxidative stress and prostate cancer (PC) has been demonstrated both epidemiologically and experimentally. Balance in reactive oxygen species (ROS) levels depends on multiple factors, such as the expression of Nrf2, HO-1, and BACH1 genes. Natural polyphenols, such as resveratrol (RSV) and gallic acid (GA), affect cellular oxidative profiles. OBJECTIVE The present study investigated the possible effects of GA and RSV on the oxidative profiles of PC3 and DU145 cells, as well as Nrf2, HO-1, and BACH1 gene expression to achieve an understanding of the mechanisms involved. METHODS PC3 and DU145 cells were treated with ascending concentrations of RSV and GA for 72 h. Then cell growth and mRNA expression of Nrf2, HO-1, and BACH1 genes were analyzed by real-time PCR. Various spectrophotometric analyses were performed to measure oxidative stress markers. RESULTS RSV and GA significantly decreased the growth of PC3 and DU145 cells compared to the control group in a concentration-dependent manner. RSV and GA also decreased ROS production in PC3 cells, but in DU145 cells, only the latter polyphenol significantly decreased ROS content. In addition, RSV and GA had ameliorating effects on SOD, GR, GPX, and CAT activities and GSH levels in both cell lines. Also, RSV and GA induced HO- 1 and Nrf2 gene expression in both cell lines. BACH1 gene expression was induced by RSV only at lower concentrations, in contrast to GA in both cell lines. CONCLUSION Our data suggest that RSV and GA can prevent the growth of prostate cancer cells by disrupting oxidative stress-related pathways, such as changes in Nrf2, HO-1, and BACH1 gene expression.
Collapse
Affiliation(s)
- Delaram Moghadam
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirabbas Rostami
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Samare-Najaf
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rozita Ghojoghi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Hushpulian DM, Kaidery NA, Dutta D, Sharma SM, Gazaryan I, Thomas B. Emerging small molecule inhibitors of Bach1 as therapeutic agents: Rationale, recent advances, and future perspectives. Bioessays 2024; 46:e2300176. [PMID: 37919861 PMCID: PMC11260292 DOI: 10.1002/bies.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor Nrf2 is the master regulator of cellular stress response, facilitating the expression of cytoprotective genes, including those responsible for drug detoxification, immunomodulation, and iron metabolism. FDA-approved Nrf2 activators, Tecfidera and Skyclarys for patients with multiple sclerosis and Friedreich's ataxia, respectively, are non-specific alkylating agents exerting side effects. Nrf2 is under feedback regulation through its target gene, transcriptional repressor Bach1. Specifically, in Parkinson's disease and other neurodegenerative diseases with Bach1 dysregulation, excessive Bach1 accumulation interferes with Nrf2 activation. Bach1 is a heme sensor protein, which, upon heme binding, is targeted for proteasomal degradation, relieving the repression of Nrf2 target genes. Ideally, a combination of Nrf2 stabilization and Bach1 inhibition is necessary to achieve the full therapeutic benefits of Nrf2 activation. Here, we discuss recent advances and future perspectives in developing small molecule inhibitors of Bach1, highlighting the significance of the Bach1/Nrf2 signaling pathway as a promising neurotherapeutic strategy.
Collapse
Affiliation(s)
- Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninski prospect 33, Moscow, Russia
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Irina Gazaryan
- Department of Chemical Enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, 861 Bedford Road, Pleasantville, NY, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
39
|
Ge A, He Q, Zhao D, Li Y, Chen J, Deng Y, Xiang W, Fan H, Wu S, Li Y, Liu L, Wang Y. Mechanism of ferroptosis in breast cancer and research progress of natural compounds regulating ferroptosis. J Cell Mol Med 2024; 28:e18044. [PMID: 38140764 PMCID: PMC10805512 DOI: 10.1111/jcmm.18044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer is the most prevalent cancer worldwide and its incidence increases with age, posing a significant threat to women's health globally. Due to the clinical heterogeneity of breast cancer, the majority of patients develop drug resistance and metastasis following treatment. Ferroptosis, a form of programmed cell death dependent on iron, is characterized by the accumulation of lipid peroxides, elevated levels of iron ions and lipid peroxidation. The underlying mechanisms and signalling pathways associated with ferroptosis are intricate and interconnected, involving various proteins and enzymes such as the cystine/glutamate antiporter, glutathione peroxidase 4, ferroptosis inhibitor 1 and dihydroorotate dehydrogenase. Consequently, emerging research suggests that ferroptosis may offer a novel target for breast cancer treatment; however, the mechanisms of ferroptosis in breast cancer urgently require resolution. Additionally, certain natural compounds have been reported to induce ferroptosis, thereby interfering with breast cancer. Therefore, this review not only discusses the molecular mechanisms of multiple signalling pathways that mediate ferroptosis in breast cancer (including metastasis, invasion and proliferation) but also elaborates on the mechanisms by which natural compounds induce ferroptosis in breast cancer. Furthermore, this review summarizes potential compound types that may serve as ferroptosis inducers in future tumour cells, providing lead compounds for the development of ferroptosis-inducing agents. Last, this review proposes the potential synergy of combining natural compounds with traditional breast cancer drugs in the treatment of breast cancer, thereby suggesting future directions and offering new insights.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Qi He
- People's Hospital of Ningxiang CityNingxiangChina
| | - Da Zhao
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
- Hunan University of Chinese MedicineChangshaChina
| | - Yuwei Li
- Hunan University of Science and TechnologyXiangtanChina
| | - Junpeng Chen
- Hunan University of Science and TechnologyXiangtanChina
| | - Ying Deng
- People's Hospital of Ningxiang CityNingxiangChina
| | - Wang Xiang
- The First People's Hospital Changde CityChangdeChina
| | - Hongqiao Fan
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Shiting Wu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yan Li
- People's Hospital of Ningxiang CityNingxiangChina
| | - Lifang Liu
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Yue Wang
- The First Hospital of Hunan University of Chinese MedicineChangshaChina
| |
Collapse
|
40
|
Abstract
PURPOSE The transcription factor NF-E2-related factor 2 (NRF2) is a master regulator widely involved in essential cellular functions such as DNA repair. By clarifying the upstream and downstream links of NRF2 to DNA damage repair, we hope that attention will be drawn to the utilization of NRF2 as a target for cancer therapy. METHODS Query and summarize relevant literature on the role of NRF2 in direct repair, BER, NER, MMR, HR, and NHEJ in pubmed. Make pictures of Roles of NRF2 in DNA Damage Repair and tables of antioxidant response elements (AREs) of DNA repair genes. Analyze the mutation frequency of NFE2L2 in different types of cancer using cBioPortal online tools. By using TCGA, GTEx and GO databases, analyze the correlation between NFE2L2 mutations and DNA repair systems as well as the degree of changes in DNA repair systems as malignant tumors progress. RESULTS NRF2 plays roles in maintaining the integrity of the genome by repairing DNA damage, regulating the cell cycle, and acting as an antioxidant. And, it possibly plays roles in double stranded break (DSB) pathway selection following ionizing radiation (IR) damage. Whether pathways such as RNA modification, ncRNA, and protein post-translational modification affect the regulation of NRF2 on DNA repair is still to be determined. The overall mutation frequency of the NFE2L2 gene in esophageal carcinoma, lung cancer, and penile cancer is the highest. Genes (50 of 58) that are negatively correlated with clinical staging are positively correlated with NFE2L2 mutations or NFE2L2 expression levels. CONCLUSION NRF2 participates in a variety of DNA repair pathways and plays important roles in maintaining genome stability. NRF2 is a potential target for cancer treatment.
Collapse
Affiliation(s)
- Jiale Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
41
|
Protti G, Rubbi L, Gören T, Sabirli R, Civlan S, Kurt Ö, Türkçüer İ, Köseler A, Pellegrini M. The methylome of buccal epithelial cells is influenced by age, sex, and physiological properties. Physiol Genomics 2023; 55:618-633. [PMID: 37781740 DOI: 10.1152/physiolgenomics.00063.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Epigenetic modifications, particularly DNA methylation, have emerged as regulators of gene expression and are implicated in various biological processes and disease states. Understanding the factors influencing the epigenome is essential for unraveling its complexity. In this study, we aimed to identify how the methylome of buccal epithelial cells, a noninvasive and easily accessible tissue, is associated with demographic and health-related variables commonly used in clinical settings, such as age, sex, blood immune composition, hemoglobin levels, and others. We developed a model to assess the association of multiple factors with the human methylome and identify the genomic loci significantly impacted by each trait. We demonstrated that DNA methylation variation is accurately modeled by several factors. We confirmed the well-known impact of age and sex and unveiled novel clinical factors associated with DNA methylation, such as blood neutrophils, hemoglobin, red blood cell distribution width, high-density lipoprotein cholesterol, and urea. Genomic regions significantly associated with these traits were enriched in relevant transcription factors, drugs, and diseases. Among our findings, we showed that neutrophil-impacted loci were involved in neutrophil functionality and maturation. Similarly, hemoglobin-influenced sites were associated with several diseases, including aplastic anemia, and the genomic loci affected by urea were related to congenital anomalies of the kidney and urinary tract. Our findings contribute to a better understanding of the human methylome plasticity and provide insights into novel factors shaping DNA methylation patterns, highlighting their potential clinical implications as biomarkers and the importance of considering these physiological traits in future medical epigenomic investigations.NEW & NOTEWORTHY We have developed a quantitative model to assess how the human methylome is associated with several factors and to identify the genomic loci significantly impacted by each trait. We reported novel health-related factors driving DNA methylation patterns and new site-specific regulations that further elucidate methylome dynamics. Our study contributes to a better understanding of the plasticity of the human methylome and unveils novel physiological traits with a potential role in future medical epigenomic investigations.
Collapse
Affiliation(s)
- Giulia Protti
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| | - Tarik Gören
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Ramazan Sabirli
- Emergency Department, Bakircay University Faculty of Medicine Cigli Training and Research Hospital, Izmir, Turkey
| | - Serkan Civlan
- Department of Neurosurgery, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Özgür Kurt
- Department of Microbiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - İbrahim Türkçüer
- Emergency Department, Pamukkale University Medical Faculty, Denizli, Turkey
| | - Aylin Köseler
- Department of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
| |
Collapse
|
42
|
Nair AS, Jayan AP, Anandu KR, Saiprabha VN, Pappachen LK. Unraveling the prevalence of various signalling pathways in non-small-cell lung cancer: a review. Mol Cell Biochem 2023; 478:2875-2890. [PMID: 37014561 DOI: 10.1007/s11010-023-04704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Cancer has become a huge public health issue all around the world. The focus of research is on innovative cancer therapy techniques that include the disease's unique targets. Among the cancer-related deaths that occur, lung cancer is considered to be one of the major, accounting for about 1.6 million fatalities globally in 2012, or nearly 20% of all cancer deaths. Non-small-cell lung cancer, a type of lung cancer comprises upto 84% of lung cancer cases, demonstrating the need for a more effective treatment. A novel category of cancer management, known as targeted cancer medicines, has risen to prominence in recent years. Targeted cancer treatments, like traditional chemotherapy, employ pharmacological drugs to slow cancer development, enhance cell death, and prevent it from spreading. Targeted treatments, as the name implies, work by interfering with particular proteins implicated in cancer. Numerous research conducted in the last several decades have led to the conclusion that signalling pathways are involved in the growth of lung cancer. All malignant tumours are produced, spread, invade, and behave in various abnormal ways due to abnormal pathways. Numerous significant signalling pathways, including the RTK/RAS/MAP-Kinase pathway (hence often referred to as RTK-RAS for simplicity), PI3K/Akt signalling, and others, have been discovered as commonly genetically changed. The current developments in research on various signalling pathways, as well as the underlying mechanisms of the molecules implicated in these pathways, are innovatively summarised in this review. To give a good sense of the study that has been done so far, many routes are placed together. Thus, this review includes the detailed description regarding each pathways, the mutations formed, and the present treatment strategy to overcome the resistance.
Collapse
Affiliation(s)
- Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Ajay P Jayan
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - K R Anandu
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - V N Saiprabha
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
43
|
Nurzadeh M, Ghalandarpoor-Attar SM, Ghalandarpoor-Attar SN, Rabiei M. The sequestosome 1 protein: therapeutic vulnerabilities in ovarian cancer. Clin Transl Oncol 2023; 25:2783-2792. [PMID: 36964889 DOI: 10.1007/s12094-023-03148-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/04/2023] [Indexed: 03/26/2023]
Abstract
Ovarian cancer (OC) is the most deadly tumor that may develop in a woman's reproductive system. It is also one of the most common causes of death among those who have been diagnosed with cancer in women. An adapter protein known as sequestosome 1(SQSTM1) or p62 is primarily responsible for the transportation, degradation, and destruction of a wide variety of proteins. This adapter protein works in conjunction with the autophagy process as well as the ubiquitin proteasome degradation pathway. In addition, the ability of SQSTM1 to interact with multiple binding partners link SQSTM1 to various pathways in the context of antioxidant defense system and inflammation. In this review, we outline the processes underlying the control that SQSTM1 has on these pathways and how their dysregulation contributes to the development of OC. At the final, the therapeutic approaches based on SQSTM1 targeting have been discussed.
Collapse
Affiliation(s)
- Maryam Nurzadeh
- Fetomaternal Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Maryam Rabiei
- Obstetrics and Gynecology Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
45
|
Wang L, Zhou Y, Lin H, Hou K. Protective Effects of Relaxin 2 (RLXH2) against Hypoxia-Induced Oxidative Damage and Cell Death via Activation of The Nrf2/HO-1 Signalling Pathway in Gastric Cancer Cells. CELL JOURNAL 2023; 25:625-632. [PMID: 37718765 PMCID: PMC10520987 DOI: 10.22074/cellj.2023.2000342.1287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/05/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE This study aims to investigate the potential role of relaxin, a peptide hormone, in preventing cellular deterioration and death in gastric carcinoma cells under hypoxic conditions. It explores the effects of recombinant relaxin 2 (RLXH2) on growth, cell differentiation, invasive potential, and oxidative damage in these cells. MATERIALS AND METHODS In this experimental study, the NCI-N87 cell line was cultured under normal conditions and then subjected to hypoxia using cobalt chloride (CoCl2). The cells were treated with RLXH2, and various assays were performed to assess cellular deterioration, death, and oxidative stress. Western blot and quantitative real time polymerase chain reaction (qRT-PCR) were used to measure the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1, and the translocation of Nrf2 to the nucleus was confirmed through Western blot analysis. RESULTS This study demonstrates, for the first time, that RLXH2 significantly reduces the formation of reactive oxygen species (ROS) and the release of lactate dehydrogenase (LDH) in gastric cancer cells under hypoxic conditions. RLXH2 also enhances the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT), leading to a decrease in hypoxia-induced oxidative damage. RLXH2 promotes the translocation of Nrf2 to the nucleus, resulting in HO-1 expression. CONCLUSION Our findings suggest that RLXH2 plays a significant protective role against hypoxia-induced oxidative damage in gastric carcinoma cells through the Nrf2/HO-1 signalling pathway. This research contributes to a better understanding of the potential therapeutic applications of RLXH2 in gastric cancer treatment.
Collapse
Affiliation(s)
- Liguo Wang
- Department of General Surgery, Shidong Hospital, Yangpu District, Shanghai, China
| | - Yi Zhou
- Department of General Surgery, Shidong Hospital, Yangpu District, Shanghai, China
| | - Hui Lin
- Department of General Surgery, Shidong Hospital, Yangpu District, Shanghai, China
| | - Kezhu Hou
- Department of General Surgery, Shidong Hospital, Yangpu District, Shanghai, China.
| |
Collapse
|
46
|
Shan C, Liang Y, Wang K, Li P. Noncoding RNAs in cancer ferroptosis: From biology to clinical opportunity. Biomed Pharmacother 2023; 165:115053. [PMID: 37379641 DOI: 10.1016/j.biopha.2023.115053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Ferroptosis is a recently discovered pattern of programmed cell death that is nonapoptotic and irondependent. It is involved in lipid peroxidation dependent on reactive oxygen species. Ferroptosis has been verified to play a crucial regulatory role in a variety of pathological courses of disease, in particularly cancer. Emerging research has highlighted the potential of ferroptosis in tumorigenesis, cancer development and resistance to chemotherapy. However, the regulatory mechanism of ferroptosis remains unclear, which limits the application of ferroptosis in cancer treatment. Noncoding RNAs (ncRNAs) are noncoding transcripts that regulate gene expression in various ways to affect the malignant phenotypes of cancer cells. At present, the biological function and underlying regulatory mechanism of ncRNAs in cancer ferroptosis have been partially elucidated. Herein, we summarize the current knowledge of the central regulatory network of ferroptosis, with a focus on the regulatory functions of ncRNAs in cancer ferroptosis. The clinical application and prospects of ferroptosis-related ncRNAs in cancer diagnosis, prognosis and anticancer therapies are also discussed. Elucidating the function and mechanism of ncRNAs in ferroptosis, along with assessing the clinical significance of ferroptosis-related ncRNAs, provides new perspectives for understanding cancer biology and treatment approaches, which may benefit numerous cancer patients in the future.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
47
|
任 丽, 邹 明, 朱 行, 徐 文, 刘 刚, 孙 俊, 范 方, 张 从. [Curcumin suppresses proliferation, migration and invasion of papillary thyriod cancer B-CPAP cells through the Keap1-Nrf2 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1356-1362. [PMID: 37712272 PMCID: PMC10505584 DOI: 10.12122/j.issn.1673-4254.2023.08.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To observe the effects of curcumin on migration and invasion of papillary thyriod cancer B-CPAP cells. METHODS B-CPAP cells were treated with 5, 10, 15, or 20 μmol/L curcumin, and the changes in cell survival, migration and invasion were examined using MTT assay and Transwell assay. ROS levels in the treated cells were detected with a DCFH-DA probe. The expression levels of Nrf2 and Keap1 in the cells were determined using Western blotting and qRT-PCR. RESULTS Treatment with curcumin dose- and time-dependently suppressed the viability of B-CPAP cells (P < 0.05 or P < 0.01). Curcumin inhibited the migration and invasion (P < 0.001) and promoted ROS production in B-CPAP cells in a dose-dependent manner, and application of NAC effectively reversed curcumin- induced increase of ROS. Curcumin at 20 μmol/L significantly decreased the protein and mRNA expressions of Nrf2 and increased the expressions of Keap1 protein and mRNA (P < 0.05 or P < 0.01), causing also significantly reduced expression of Nrf2 protein in the cell nuclei (P < 0.05) without obviously affecting its expression in the cytoplasm (P > 0.05). CONCLUSION Curcumin inhibits the proliferation, migration and invasion of papillary thyriod cancer B-CPAP cells probably via the Keap1-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- 丽 任
- 蚌埠医学院检验医学院,安徽 蚌埠 233030School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - 明远 邹
- 蚌埠医学院临床医学院,安徽 蚌埠 233030School of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
| | - 行春 朱
- 蚌埠医学院临床医学院,安徽 蚌埠 233030School of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233030, China
| | - 文隽 徐
- 蚌埠医学院临床医学院,安徽 蚌埠 233030School of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233030Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233030, China
| | - 刚 刘
- 蚌埠医学院临床医学院,安徽 蚌埠 233030School of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
| | - 俊杰 孙
- 蚌埠医学院检验医学院,安徽 蚌埠 233030School of Laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| | - 方田 范
- 蚌埠医学院药学院//安徽省生化药物工程技术研究中心,安徽 蚌埠 233030School of Pharmacy/Anhui Biochemical Pharmaceutical Engineering Technology Research Center, Bengbu Medical College, Bengbu 233030, China
| | - 从利 张
- 第一附属医院麻醉科,安徽 蚌埠 233004Department of Anesthesia, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
48
|
TeSlaa T, Ralser M, Fan J, Rabinowitz JD. The pentose phosphate pathway in health and disease. Nat Metab 2023; 5:1275-1289. [PMID: 37612403 PMCID: PMC11251397 DOI: 10.1038/s42255-023-00863-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/12/2023] [Indexed: 08/25/2023]
Abstract
The pentose phosphate pathway (PPP) is a glucose-oxidizing pathway that runs in parallel to upper glycolysis to produce ribose 5-phosphate and nicotinamide adenine dinucleotide phosphate (NADPH). Ribose 5-phosphate is used for nucleotide synthesis, while NADPH is involved in redox homoeostasis as well as in promoting biosynthetic processes, such as the synthesis of tetrahydrofolate, deoxyribonucleotides, proline, fatty acids and cholesterol. Through NADPH, the PPP plays a critical role in suppressing oxidative stress, including in certain cancers, in which PPP inhibition may be therapeutically useful. Conversely, PPP-derived NADPH also supports purposeful cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) for signalling and pathogen killing. Genetic deficiencies in the PPP occur relatively commonly in the committed pathway enzyme glucose-6-phosphate dehydrogenase (G6PD). G6PD deficiency typically manifests as haemolytic anaemia due to red cell oxidative damage but, in severe cases, also results in infections due to lack of leucocyte oxidative burst, highlighting the dual redox roles of the pathway in free radical production and detoxification. This Review discusses the PPP in mammals, covering its roles in biochemistry, physiology and disease.
Collapse
Affiliation(s)
- Tara TeSlaa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jing Fan
- Morgride Institute for Research, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
49
|
Bogen KT. Ultrasensitive dose-response for asbestos cancer risk implied by new inflammation-mutation model. ENVIRONMENTAL RESEARCH 2023; 230:115047. [PMID: 36965808 DOI: 10.1016/j.envres.2022.115047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Alterations in complex cellular phenotype each typically involve multistep activation of an ultrasensitive molecular switch (e.g., to adaptively initiate an apoptosis, inflammasome, Nrf2-ARE anti-oxidant, or heat-shock activation pathway) that triggers expression of a suite of target genes while efficiently limiting false-positive switching from a baseline state. Such switches exhibit nonlinear signal-activation relationships. In contrast, a linear no-threshold (LNT) dose-response relationship is expected for damage that accumulates in proportion to dose, as hypothesized for increased risk of cancer in relation to genotoxic dose according to the multistage somatic mutation/clonal-expansion theory of cancer, e.g., as represented in the Moolgavkar-Venzon-Knudsen (MVK) cancer model by a doubly stochastic nonhomogeneous Poisson process. Mesothelioma and lung cancer induced by exposure to carcinogenic (e.g., certain asbestos) fibers in humans and experimental animals are thought to involve modes of action driven by mutations, cytotoxicity-associated inflammation, or both, rendering ambiguous expectations concerning the nature of model-implied shape of the low-dose response for above-background increase in risk of incurring these endpoints. A recent Inflammation Somatic Mutation (ISM) theory of cancer posits instead that tissue-damage-associated inflammation that epigenetically recruits, activates and orchestrates stem cells to engage in tissue repair does not merely promote cancer, but rather is a requisite co-initiator (acting together with as few as two somatic mutations) of the most efficient pathway to any type of cancer in any reparable tissue (Dose-Response 2019; 17(2):1-12). This theory is reviewed, implications of this theory are discussed in relation to mesothelioma and lung cancer associated with chronic asbestos inhalation, one of the two types of ISM-required mutations is here hypothesized to block or impede inflammation resolution (e.g., by doing so for GPCR-mediated signal transduction by one or more endogenous autacoid specialized pro-resolving mediators or SPMs), and supporting evidence for this hypothesis is discussed.
Collapse
Affiliation(s)
- Kenneth T Bogen
- 9832 Darcy Forest Drive, Silver Spring, MD, 20910, United States.
| |
Collapse
|
50
|
Wei X, Mao Y, Chen Z, Kang L, Xu B, Wang K. Exercise-induced myocardial hypertrophy preconditioning promotes fibroblast senescence and improves myocardial fibrosis through Nrf2 signaling pathway. Cell Cycle 2023; 22:1529-1543. [PMID: 37312565 PMCID: PMC10361137 DOI: 10.1080/15384101.2023.2215081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
This study aims to investigate how exercise-induced myocardial hypertrophy preconditioning affects cardiac fibroblasts in the context of myocardial fibrosis, a chronic disease that can cause cardiac arrhythmia and heart failure. Heart failure was induced in male C57BL/6 mice via Transverse aortic constriction, and some mice were given swimming exercise before surgery to test the effects of exercise-induced myocardial hypertrophy preconditioning on myocardial fibrosis. Myocardial tissue was evaluated for fibrosis, senescent cells, and apoptotic cells. Myocardial fibroblasts from rats were cultured and treated with norepinephrine to induce fibrosis which were then treated with si-Nrf2 and analyzed for markers of fibrosis, senescence, apoptosis, and cell proliferation. Exercise-induced myocardial hypertrophy preconditioning reduced myocardial fibrosis in mice, as shown by decreased mRNA expression levels of fibrosis-related indicators and increased cell senescence. In vitro data indicated that norepinephrine (NE) treatment increased fibrosis-related markers and reduced apoptotic and senescent cells, and this effect was reversed by pre-conditioning in PRE+NE group. Preconditioning activated Nrf2 and downstream signaling genes, promoting premature senescence in cardiac fibroblasts and tissues isolated from preconditioned mice. Moreover, Nrf2 knockdown reversed proapoptotic effects, restored cell proliferation, reduced senescence-related protein expression, and increased oxidative stress markers and fibrosis-related genes, indicating Nrf2's crucial role in regulating oxidative stress response of cardiac fibroblasts. Exercise-induced myocardial hypertrophy preconditioning improves myocardial fibrosis which is Nrf2-dependent, indicating the protective effect of hypertrophy preconditioning. These findings may contribute to the development of therapeutic interventions to prevent or treat myocardial fibrosis.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yajing Mao
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Zheng Chen
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Kun Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|