1
|
Quero FB, Troncoso-Bravo T, Farías MA, Kalergis AM. Cell-Based Therapeutic Strategies for Autoimmune Diseases. Immunotargets Ther 2025; 14:501-514. [PMID: 40322732 PMCID: PMC12047289 DOI: 10.2147/itt.s513629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Currently, the management of autoimmune disorders still being a challenge in terms of safety, efficiency, and specificity. Cell-based therapeutic strategies have emerged as a novel approach for autoimmune disease treatment, employing different cell therapy platforms, including tolerogenic dendritic cells, regulatory T cells, conventional and regulatory chimeric antigen receptor-T cells, mesenchymal and hematopoietic stem cells, each with their biological features. Here, we discuss the different cell therapy platforms, their immunological mechanisms of action, their therapeutic potential and benefits in autoimmune diseases, and challenges related to their production, scaling up, risks, and patient safety.
Collapse
Affiliation(s)
- Francisco B Quero
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tays Troncoso-Bravo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Ghahramanipour Z, Naseri B, Mardi A, Sohrabi S, Masoumi J, Baghbani E, Karimzadeh H, Baradaran B. Arginine vasopressin (AVP) treatment increases the expression of inhibitory immune checkpoint molecules in monocyte-derived dendritic cells. Immunol Res 2024; 73:6. [PMID: 39661295 DOI: 10.1007/s12026-024-09579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024]
Abstract
Arginine vasopressin (AVP) has disparate impacts on immune responses by divergent receptors on cells including DCs. This study was conducted with the aim of investigating the impact of AVP on the maturation and expression of the inhibitory immune checkpoint molecules in tolerogenic monocyte-derived DCs. CD14 marker was used to separate monocytes from peripheral blood mononuclear cells (PBMCs) by MACS method. To differentiate monocytes from DCs, we utilized GM-CSF and IL-4 cytokines. Tolerogenic DCs were generated using vitamin D3 and dexamethasone. We added LPS and AVP to the culture medium on day 6 after incubation of DCs at 37 °C. Finally, we assessed the surface molecules by flow cytometry and used real-time PCR to evaluate the expression of genes related to the inhibitory immune checkpoints. Based on the obtained data, AVP increased the expression of CD11c (P ≤ 0.0001), HLA-DR (P ≤ 0.01), and CD86 (P ≤ 0.01) in AVP-mDCs. Also, the expression of all the immune checkpoint genes including CTLA-4 (P ≤ 0.001), BTLA (P ≤ 0.001), PDL-1 (P ≤ 0.05), B7H7 (P ≤ 0.001), LAG3 (P ≤ 0.01), and VISTA (P ≤ 0.001) in AVP-mDCs was increased in comparison to the control group. Vasopressin caused the generation of mature and tolerogenic DCs. Our data may help to consider AVP-mDCs to take part in autoimmune disease therapy, transplanted tissue rejection impedance, and allergies.
Collapse
Affiliation(s)
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Karimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Morali K, Giacomello G, Vuono M, Gregori S. Leveraging current insights on IL-10-producing dendritic cells for developing effective immunotherapeutic approaches. FEBS Lett 2024. [PMID: 39266465 DOI: 10.1002/1873-3468.15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells involved in promoting and controlling immune responses. Different subsets of DC, named tolerogenic (tol)DC, play a critical role in the maintenance of tissue homeostasis and in fostering tolerance. These unique skills make tolDC especially attractive for strategies aimed at re-establishing/inducing tolerance in immune-mediated conditions. The generation of potent tolDC in vitro from peripheral blood monocytes has seen remarkable advancements. TolDC modulate T cell dynamics by favoring regulatory T cells (Tregs) and curbing effector/pathogenic T cells. Among the several methods developed for in vitro tolDC generation, IL-10 conditioning has been proven to be the most efficient, as IL-10-modulated tolDC were demonstrated to promote Tregs with the strongest suppressive activities. Investigating the molecular, metabolic, and functional profiles of tolDC uncovers essential pathways that facilitate their immunoregulatory functions. This Review provides an overview of current knowledge on the role of tolDC in health and disease, focusing on IL-10 production, functional characterization of in vitro generated tolDC, molecular and metabolic changes occurring in tolDC induced by tolerogenic agents, clinical applications of tolDC-based therapy, and finally new perspectives in the generation of effective tolDC.
Collapse
Affiliation(s)
- Konstantina Morali
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Giacomello
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- PhD Course in Medicina Traslazionale e Molecolare (DIMET), University of Milano Bicocca, Italy
| | - Michela Vuono
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- PhD Course in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Rodi M, de Lastic AL, Panagoulias I, Aggeletopoulou I, Kelaidonis K, Matsoukas J, Apostolopoulos V, Mouzaki A. Myelin Oligodendrocyte Glycoprotein (MOG)35-55 Mannan Conjugate Induces Human T-Cell Tolerance and Can Be Used as a Personalized Therapy for Multiple Sclerosis. Int J Mol Sci 2024; 25:6092. [PMID: 38892275 PMCID: PMC11172913 DOI: 10.3390/ijms25116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
We have previously performed preclinical studies with the oxidized mannan-conjugated peptide MOG35-55 (OM-MOG35-55) in vivo (EAE mouse model) and in vitro (human peripheral blood) and demonstrated that OM-MOG35-55 suppresses antigen-specific T cell responses associated with autoimmune demyelination. Based on these results, we developed different types of dendritic cells (DCs) from the peripheral blood monocytes of patients with multiple sclerosis (MS) or healthy controls presenting OM-MOG35-55 or MOG-35-55 to autologous T cells to investigate the tolerogenic potential of OM-MOG35-55 for its possible use in MS therapy. To this end, monocytes were differentiated into different DC types in the presence of IL-4+GM-CSF ± dexamethasone (DEXA) ± vitamin D3 (VITD3). At the end of their differentiation, the DCs were loaded with peptides and co-cultured with T cells +IL-2 for 4 antigen presentation cycles. The phenotypes of the DC and T cell populations were analyzed using flow cytometry and the secreted cytokines using flow cytometry or ELISA. On day 8, the monocytes had converted into DCs expressing the typical markers of mature or immature phenotypes. Co-culture of T cells with all DC types for 4 antigen presentation cycles resulted in an increase in memory CD4+ T cells compared to memory CD8+ T cells and a suppressive shift in secreted cytokines, mainly due to increased TGF-β1 levels. The best tolerogenic effect was obtained when patient CD4+ T cells were co-cultured with VITD3-DCs presenting OM-MOG35-55, resulting in the highest levels of CD4+PD-1+ T cells and CD4+CD25+Foxp3+ Τ cells. In conclusion, the tolerance induction protocols presented in this work demonstrate that OM-MOG35-55 could form the basis for the development of personalized therapeutic vaccines or immunomodulatory treatments for MS.
Collapse
Affiliation(s)
- Maria Rodi
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Anne-Lise de Lastic
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Ioanna Aggeletopoulou
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| | - Kostas Kelaidonis
- NewDrug P.C., Patras Science Park, 26504 Patras, Greece; (K.K.); (J.M.)
| | - John Matsoukas
- NewDrug P.C., Patras Science Park, 26504 Patras, Greece; (K.K.); (J.M.)
- Immunology and Translational Research, Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N1N4, Canada
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Vasso Apostolopoulos
- Immunology and Translational Research, Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia;
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Medical School, University of Patras, 26500 Patras, Greece; (M.R.); (A.-L.d.L.); (I.P.); (I.A.)
| |
Collapse
|
5
|
Benne N, Ter Braake D, Porenta D, Lau CYJ, Mastrobattista E, Broere F. Autoantigen-Dexamethasone Conjugate-Loaded Liposomes Halt Arthritis Development in Mice. Adv Healthc Mater 2024; 13:e2304238. [PMID: 38295848 DOI: 10.1002/adhm.202304238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Indexed: 02/13/2024]
Abstract
There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach. Here, this work uses anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol liposomes with enhanced loading of human proteoglycan-dexamethasone conjugates by cationic lysine tetramer addition. Antigen-pulsed tolerogenic dendritic cells induced by liposomal dexamethasone in vitro enhanced antigen-specific regulatory T cells to a similar extent as dexamethasone-induced tolerogenic dendritic cells. In an inflammatory adoptive transfer model, mice injected with antigen-dexamethasone liposomes have significantly higher antigen-specific type 1 regulatory T cells than mice injected with antigen only. The liposomes significantly inhibit the progression of arthritis compared to controls in preventative and therapeutic proteoglycan-induced arthritis mouse models. This coincides with systemic tolerance induction and an increase in IL10 expression in the paws of mice. In conclusion, a single administration of autoantigen and dexamethasone-loaded liposomes seems to be a promising antigen-specific treatment strategy for arthritis in mice.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Daniëlle Ter Braake
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Deja Porenta
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Chun Yin Jerry Lau
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| |
Collapse
|
6
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
7
|
Khabbazi A, Mahmoudi M, Esalatmanesh K, Asgari-Sabet M, Safary A. Vitamin D Status in Palindromic Rheumatism: A Propensity Score Matching Analysis. Lab Med 2024; 55:45-49. [PMID: 37204153 DOI: 10.1093/labmed/lmad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVE To determine whether there is a correlation between vitamin D levels and palindromic rheumatism (PR) as an at-risk phenotype of rheumatoid arthritis (RA). METHODS A total of 308 participants were enrolled in this cross-sectional study. We recorded their clinical characteristics and performed propensity-score matching (PSM). Serum 25(OH)D3 levels were determined via enzyme-linked immunosorbent assay. RESULTS Our PSM resulted in 48 patients with PR and 96 matched control individuals. The multivariate regression analysis we performed after the PSM did not show a significant increase in PR risk in patients with vitamin D deficiency/insufficiency. There was no significant correlation between levels of 25(OH)D3 and frequency/duration of attacks, number of joints affected, and duration of symptoms before diagnosis (P ≥ .05). Mean (SD) serum levels of 25(OH)D3 in patients with and without progression to RA were 28.7 (15.9) ng/mL and 25.1 (11.4) ng/mL, respectively. CONCLUSION Based on the results, we found no clear association between vitamin D serum levels and the risk, severity, and rate of PR progressing into RA.
Collapse
Affiliation(s)
- Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamal Esalatmanesh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoomeh Asgari-Sabet
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Zhang Y, Jiang X, Wang Q, Wu J, Zhou J. Dexamethasone alleviates pulmonary sarcoidosis by regulating the TGF-β/Smad3 signaling to promote Th17/Treg cell rebalance. Cell Immunol 2024; 395-396:104781. [PMID: 38159414 DOI: 10.1016/j.cellimm.2023.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/03/2023] [Accepted: 10/29/2023] [Indexed: 01/03/2024]
Abstract
Pulmonary sarcoidosis is an immune-mediated disorder closely related to Th17/Treg cell imbalance. Dexamethasone has been shown to regulate inflammation and immune responses in sarcoidosis patients. However, the underlying mechanisms of dexamethasone regulating Th17/Treg balance in sarcoidosis remain elusive. Herein, we elucidated the function role of TGF-β/Smad3 signaling in pulmonary sarcoidosis development and explored the underlying mechanism of dexamethasone in treating pulmonary sarcoidosis. We found that the TGF-β/Smad3 pathway was inactivated in pulmonary sarcoidosis patients. Propionibacterium acnes (PA) induced mouse model was generated to investigate the function of TGF-β/Smad3 signaling in vivo. Data indicated that IL17A inhibition with neutralizing antibody and activation of TGF-β/Smad3 signaling with SRI-011381 alleviated granuloma formation in the sarcoidosis mouse model. Moreover, we revealed that the Th17/Treg cell ratio was increased with PA treatment in mouse bronchoalveolar lavage fluid (BALF) and peripheral blood. The concentration of cytokines produced by Th17 cells (IL-17A, IL-23) was up-regulated in the BALF of PA-treated mice, while those produced by Tregs (IL-10, TGF-β1) presented significant reduction. The treatment of IL-17A neutralizing antibody or SRI-011381 was demonstrated to rescue the PA-induced changes in the concentration of IL-17A, IL-23, IL-10, and TGF-β1. Additionally, we demonstrated that dexamethasone treatment activated the TGF-β/Smad3 signaling in the lung tissues of pulmonary sarcoidosis mice. Dexamethasone was also revealed to promote the rebalancing of the Th17/Treg ratio and attenuated the granuloma formation in pulmonary sarcoidosis. In conclusion, dexamethasone activates the TGF-β/Smad3 signaling and induces Th17/Treg rebalance, alleviating pulmonary sarcoidosis, which suggests the potential of dexamethasone in treating pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, China; Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Xuan Jiang
- Department of Respiratory Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu 214000, China
| | - Qing Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Jiayi Wu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Juan Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, Jiangsu 226000, China.
| |
Collapse
|
9
|
Scotland BL, Shaw JR, Dharmaraj S, Caprio N, Cottingham AL, Joy Martín Lasola J, Sung JJ, Pearson RM. Cell and biomaterial delivery strategies to induce immune tolerance. Adv Drug Deliv Rev 2023; 203:115141. [PMID: 37980950 PMCID: PMC10842132 DOI: 10.1016/j.addr.2023.115141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The prevalence of immune-mediated disorders, including autoimmune conditions and allergies, is steadily increasing. However, current therapeutic approaches are often non-specific and do not address the underlying pathogenic condition, often resulting in impaired immunity and a state of generalized immunosuppression. The emergence of technologies capable of selectively inhibiting aberrant immune activation in a targeted, antigen (Ag)-specific manner by exploiting the body's intrinsic tolerance pathways, all without inducing adverse side effects, holds significant promise to enhance patient outcomes. In this review, we will describe the body's natural mechanisms of central and peripheral tolerance as well as innovative delivery strategies using cells and biomaterials targeting innate and adaptive immune cells to promote Ag-specific immune tolerance. Additionally, we will discuss the challenges and future opportunities that warrant consideration as we navigate the path toward clinical implementation of tolerogenic strategies to treat immune-mediated diseases.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Junsik J Sung
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, United States; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201, United States.
| |
Collapse
|
10
|
van Wigcheren GF, Cuenca-Escalona J, Stelloo S, Brake J, Peeters E, Horrevorts SK, Frölich S, Ramos-Tomillero I, Wesseling-Rozendaal Y, van Herpen CML, van de Stolpe A, Vermeulen M, de Vries IJM, Figdor CG, Flórez-Grau G. Myeloid-derived suppressor cells and tolerogenic dendritic cells are distinctively induced by PI3K and Wnt signaling pathways. J Biol Chem 2023; 299:105276. [PMID: 37739035 PMCID: PMC10628850 DOI: 10.1016/j.jbc.2023.105276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023] Open
Abstract
Imbalanced immune responses are a prominent hallmark of cancer and autoimmunity. Myeloid cells can be overly suppressive, inhibiting protective immune responses or inactive not controlling autoreactive immune cells. Understanding the mechanisms that induce suppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tolerogenic dendritic cells (TolDCs), can facilitate the development of immune-restoring therapeutic approaches. MDSCs are a major barrier for effective cancer immunotherapy by suppressing antitumor immune responses in cancer patients. TolDCs are administered to patients to promote immune tolerance with the intent to control autoimmune disease. Here, we investigated the development and suppressive/tolerogenic activity of human MDSCs and TolDCs to gain insight into signaling pathways that drive immunosuppression in these different myeloid subsets. Moreover, monocyte-derived MDSCs (M-MDSCs) generated in vitro were compared to M-MDSCs isolated from head-and-neck squamous cell carcinoma patients. PI3K-AKT signaling was identified as being crucial for the induction of human M-MDSCs. PI3K inhibition prevented the downregulation of HLA-DR and the upregulation of reactive oxygen species and MerTK. In addition, we show that the suppressive activity of dexamethasone-induced TolDCs is induced by β-catenin-dependent Wnt signaling. The identification of PI3K-AKT and Wnt signal transduction pathways as respective inducers of the immunomodulatory capacity of M-MDSCs and TolDCs provides opportunities to overcome suppressive myeloid cells in cancer patients and optimize therapeutic application of TolDCs. Lastly, the observed similarities between generated- and patient-derived M-MDSCs support the use of in vitro-generated M-MDSCs as powerful model to investigate the functionality of human MDSCs.
Collapse
Affiliation(s)
- Glenn F van Wigcheren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands; Oncode Institute, The Netherlands
| | - Jorge Cuenca-Escalona
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Suzan Stelloo
- Oncode Institute, The Netherlands; Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Julia Brake
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Eline Peeters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Sophie K Horrevorts
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Siebren Frölich
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Iván Ramos-Tomillero
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | | | | | - Michiel Vermeulen
- Oncode Institute, The Netherlands; Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands; Oncode Institute, The Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Dao Nyesiga G, Pool L, Englezou PC, Hylander T, Ohlsson L, Appelgren D, Sundstedt A, Tillerkvist K, Romedahl HR, Wigren M. Tolerogenic dendritic cells generated in vitro using a novel protocol mimicking mucosal tolerance mechanisms represent a potential therapeutic cell platform for induction of immune tolerance. Front Immunol 2023; 14:1045183. [PMID: 37901231 PMCID: PMC10613069 DOI: 10.3389/fimmu.2023.1045183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/25/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are mediators between innate and adaptive immunity and vital in initiating and modulating antigen-specific immune responses. The most important site for induction of tolerance is the gut mucosa, where TGF-β, retinoic acid, and aryl hydrocarbon receptors collaborate in DCs to induce a tolerogenic phenotype. To mimic this, a novel combination of compounds - the synthetic aryl hydrocarbon receptor (AhR) agonist IGN-512 together with TGF-β and retinoic acid - was developed to create a platform technology for induction of tolerogenic DCs intended for treatment of several conditions caused by unwanted immune activation. These in vitro-generated cells, designated ItolDCs, are phenotypically characterized by their low expression of co-stimulatory and activating molecules along with high expression of tolerance-associated markers such as ILT3, CD103, and LAP, and a weak pro-inflammatory cytokine profile. When co-cultured with T cells and/or B cells, ItolDC-cultures contain higher frequencies of CD25+Foxp3+ regulatory T cells (Tregs), CD49b+LAG3+ 'type 1 regulatory (Tr1) T cells, and IL-10-producing B cells and are less T cell stimulatory compared to cultures with matured DCs. Factor VIII (FVIII) and tetanus toxoid (TT) were used as model antigens to study ItolDC antigen-loading. ItolDCs can take up FVIII, process, and present FVIII peptides on HLA-DR. By loading both ItolDCs and mDCs with TT, antigen-specific T cell proliferation was observed. Cryo-preserved ItolDCs showed a stable tolerogenic phenotype that was maintained after stimulation with LPS, CD40L, or a pro-inflammatory cocktail. Moreover, exposure to other immune cells did not negatively impact ItolDCs' expression of tolerogenic markers. In summary, a novel protocol was developed supporting the generation of a stable population of human DCs in vitro that exhibited a tolerogenic phenotype with an ability to increase proportions of induced regulatory T and B cells in mixed cultures. This protocol has the potential to constitute the base of a tolDC platform for inducing antigen-specific tolerance in disorders caused by undesired antigen-specific immune cell activation.
Collapse
Affiliation(s)
- Gillian Dao Nyesiga
- Idogen AB, Lund, Sweden
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | | | | | | | - Lars Ohlsson
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, Sweden
| | - Daniel Appelgren
- Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
12
|
Wang Z, Zhang J, An F, Zhang J, Meng X, Liu S, Xia R, Wang G, Yan C. The mechanism of dendritic cell-T cell crosstalk in rheumatoid arthritis. Arthritis Res Ther 2023; 25:193. [PMID: 37798668 PMCID: PMC10552435 DOI: 10.1186/s13075-023-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by joint pain and swelling, synovial hyperplasia, cartilage damage, and bone destruction. The mechanisms of dendritic cell (DC) and T cell-mediated crosstalk have gradually become a focus of attention. DCs regulate the proliferation and differentiation of CD4+ T cell subtypes through different cytokines, surface molecules, and antigen presentation. DC-T cell crosstalk also blocks antigen presentation by DCs, ultimately maintaining immune tolerance. DC-T cell crosstalk mainly involves chemokines, surface molecules (TonEBP, NFATc1), the PD-L1/PD-1 signalling axis, and the TGF-β signalling axis. In addition, DC-T cell crosstalk in RA is affected by glycolysis, reactive oxygen species, vitamin D, and other factors. These factors lead to the formation of an extremely complex regulatory network involving various mechanisms. This article reviews the key immune targets of DC-T cell crosstalk and elucidates the mechanism of DC-T cell crosstalk in RA to provide a basis for the treatment of patients with RA.
Collapse
Affiliation(s)
- Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jinlong Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Shiqing Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Gang Wang
- Rheumatism and Orthopaedics Department, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
13
|
van Sleen Y, van der Geest KSM, Huckriede ALW, van Baarle D, Brouwer E. Effect of DMARDs on the immunogenicity of vaccines. Nat Rev Rheumatol 2023; 19:560-575. [PMID: 37438402 DOI: 10.1038/s41584-023-00992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Vaccines are important for protecting individuals at increased risk of severe infections, including patients undergoing DMARD therapy. However, DMARD therapy can also compromise the immune system, leading to impaired responses to vaccination. This Review focuses on the impact of DMARDs on influenza and SARS-CoV-2 vaccinations, as such vaccines have been investigated most thoroughly. Various data suggest that B cell depletion therapy, mycophenolate mofetil, cyclophosphamide, azathioprine and abatacept substantially reduce the immunogenicity of these vaccines. However, the effects of glucocorticoids, methotrexate, TNF inhibitors and JAK inhibitors on vaccine responses remain unclear and could depend on the dosage and type of vaccination. Vaccination is aimed at initiating robust humoral and cellular vaccine responses, which requires efficient interactions between antigen-presenting cells, T cells and B cells. DMARDs impair these cells in different ways and to different degrees, such as the prevention of antigen-presenting cell maturation, alteration of T cell differentiation and selective inhibition of B cell subsets, thus inhibiting processes that are necessary for an effective vaccine response. Innovative modified vaccination strategies are needed to improve vaccination responses in patients undergoing DMARD therapy and to protect these patients from the severe outcomes of infectious diseases.
Collapse
Affiliation(s)
- Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands.
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
14
|
Nagy NA, Lozano Vigario F, Sparrius R, van Capel TMM, van Ree R, Tas SW, de Vries IJM, Geijtenbeek TBH, Slütter B, de Jong EC. Liposomes loaded with vitamin D3 induce regulatory circuits in human dendritic cells. Front Immunol 2023; 14:1137538. [PMID: 37359530 PMCID: PMC10288978 DOI: 10.3389/fimmu.2023.1137538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Nanomedicine provides a promising platform for manipulating dendritic cells (DCs) and the ensuing adaptive immune response. For the induction of regulatory responses, DCs can be targeted in vivo with nanoparticles incorporating tolerogenic adjuvants and auto-antigens or allergens. Methods Here, we investigated the tolerogenic effect of different liposome formulations loaded with vitamin D3 (VD3). We extensively phenotyped monocyte-derived DCs (moDCs) and skin DCs and assessed DC-induced regulatory CD4+ T cells in coculture. Results Liposomal VD3 primed-moDCs induced the development of regulatory CD4+ T cells (Tregs) that inhibited bystander memory T cell proliferation. Induced Tregs were of the FoxP3+ CD127low phenotype, also expressing TIGIT. Additionally, liposome-VD3 primed moDCs inhibited the development of T helper 1 (Th1) and T helper 17 (Th17) cells. Skin injection of VD3 liposomes selectively stimulated the migration of CD14+ skin DCs. Discussion These results suggest that nanoparticulate VD3 is a tolerogenic tool for DC-mediated induction of regulatory T cell responses.
Collapse
Affiliation(s)
- Noémi Anna Nagy
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | | - Rinske Sparrius
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Toni M. M. van Capel
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Universitair Medische Centra (UMC), Department of Otorhinolaryngology, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W. Tas
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Universitair Medische Centra (UMC), Department of Rheumatology and Clinical Immunology, University of Amsterdam, Amsterdam, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teunis B. H. Geijtenbeek
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden, Netherlands
| | - Esther C. de Jong
- Amsterdam Universitair Medische Centra (UMC), Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
15
|
Suwa Y, Nagafuchi Y, Yamada S, Fujio K. The role of dendritic cells and their immunometabolism in rheumatoid arthritis. Front Immunol 2023; 14:1161148. [PMID: 37251399 PMCID: PMC10213288 DOI: 10.3389/fimmu.2023.1161148] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Dendritic cells (DCs) play crucial roles in the pathogenesis of rheumatoid arthritis (RA), a prototypic autoimmune disease characterized by chronic synovitis and joint destruction. Conventional dendritic cells (cDCs) with professional antigen-presenting functions are enriched in the RA synovium. In the synovium, the cDCs are activated and show both enhanced migratory capacities and T cell activation in comparison with peripheral blood cDCs. Plasmacytoid dendritic cells, another subtype of DCs capable of type I interferon production, are likely to be tolerogenic in RA. Monocyte-derived dendritic cells (moDCs), once called "inflammatory DCs", are localized in the RA synovium, and they induce T-helper 17 cell expansion and enhanced proinflammatory cytokine production. Recent studies revealed that synovial proinflammatory hypoxic environments are linked to metabolic reprogramming. Activation of cDCs in the RA synovium is accompanied by enhanced glycolysis and anabolism. In sharp contrast, promoting catabolism can induce tolerogenic DCs from monocytes. Herein, we review recent studies that address the roles of DCs and their immunometabolic features in RA. Immunometabolism of DCs could be a potential therapeutic target in RA.
Collapse
Affiliation(s)
- Yuichi Suwa
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Hilkens CMU, Diboll J, Cooke F, Anderson AE. In Vitro Generation of Human Tolerogenic Monocyte-Derived Dendritic Cells. Methods Mol Biol 2023; 2654:477-492. [PMID: 37106202 DOI: 10.1007/978-1-0716-3135-5_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Human monocyte-derived dendritic cells (moDC) are commonly used as a research tool to investigate interactions between antigen-presenting cells and T cells. Generation of these cells involves the isolation of CD14 positive monocytes from peripheral blood and their in vitro differentiation into immature moDC by the cytokines GM-CSF and IL-4. Their functional characteristics can then be manipulated by maturing these cells with a cocktail of agents, which can be tailored to induce either immune activating or tolerogenic properties. Here, we describe a protocol for the generation of moDC with stable tolerogenic function, referred to as tolerogenic dendritic cells. These cells have been developed as an immunotherapeutic tool for the treatment of autoimmune disease but have also proven useful to dissect mechanisms of T cell tolerance induction in vitro.
Collapse
Affiliation(s)
- Catharien M U Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Julie Diboll
- Translational & Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Fiona Cooke
- Translational & Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Amy E Anderson
- Translational & Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
17
|
Umbreen H, Zhang X, Tang KT, Lin CC. Regulation of Myeloid Dendritic Cells by Synthetic and Natural Compounds for the Treatment of Rheumatoid Arthritis. Int J Mol Sci 2022; 24:ijms24010238. [PMID: 36613683 PMCID: PMC9820359 DOI: 10.3390/ijms24010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Different subsets of dendritic cells (DCs) participate in the development of rheumatoid arthritis (RA). In particular, myeloid DCs play a key role in the generation of autoreactive T and B cells. Herein, we undertook a literature review on those synthetic and natural compounds that have therapeutic efficacy/potential for RA and act through the regulation of myeloid DCs. Most of these compounds inhibit both the maturation of DCs and their secretion of inflammatory cytokines and, subsequently, alter the downstream T-cell response (suppression of Th1 and Th17 responses while expanding the Treg response). The majority of the synthetic compounds are approved for the treatment of patients with RA, which is consistent with the importance of DCs in the pathogenesis of RA. All of the natural compounds are derived from plants. Their DC-modulating effect has been demonstrated both in vitro and in vivo. In addition, these natural products ameliorate arthritis in rodents and are potential therapeutics for human RA.
Collapse
Affiliation(s)
- Hira Umbreen
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Kuo-Tung Tang
- Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| | - Chi-Chien Lin
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (K.-T.T.); (C.-C.L.); Tel.: +886-4-23592525 (ext. 3334) (K.-T.T.); +886-4-23592525 (ext. 3003) (C.-C.L.); Fax: +886-4-23503285 (K.-T.T. & C.-C.L.)
| |
Collapse
|
18
|
Wan X, Bao L, Ma G, Long T, Li H, Zhang Y, Jiang H. Tolerogenic dendritic cells alleviate collagen-induced arthritis by forming microchimerism and affecting the expression of immune checkpoint molecules. Eur J Immunol 2022; 52:1980-1992. [PMID: 36213961 DOI: 10.1002/eji.202250068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Tolerogenic dendritic cells (tolDCs) have the potential to treat rheumatoid arthritis (RA) by inducing immune tolerance. However, the mechanism of intervention needs further study. Here, we investigated whether tolDCs formed microchimerism and their effect on the expression of immune checkpoint molecules after infusion of tolDCs into rats with collagen-induced arthritis (CIA). TolDCs derived from male SD rats were labeled with fluorescence and infused into female CIA rats. The fluorescence signals as well as the sex-determining region of Y-chromosome (SRY) gene revealed that tolDCs formed microchimerism in the mesenteric lymph nodes and ankle joints. We further explored the effect of tolDCs on the expression of immune checkpoint molecules in mesenteric lymph nodes and ankle joints. For stimulatory immune checkpoint molecules, the expressions of CD86 and CD40 decreased in mesenteric lymph nodes, and the expressions of CD40, CD40L, CD28, CD80, and CD86 also decreased in rat ankle joints. In contrast, the inhibitory immune checkpoint molecule PDL1 increased in mesenteric lymph nodes, and PD1, PDL1, and CTLA4 increased in ankle joints. In conclusion, our results suggested that intervention of tolDCs in CIA is associated with the formation of microchimerism and the effect on immune checkpoints.
Collapse
Affiliation(s)
- Xiufang Wan
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Lunmin Bao
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, People' Hospital of Anshun City, Anshun, China
| | - Guilan Ma
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, Guiyang Second people's Hospital, Guiyang, China
| | - Tiaoyu Long
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Honghong Li
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yundong Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China.,Department of Laboratory Medicine, People' Hospital of Anshun City, Anshun, China
| | - Hongmei Jiang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Sun D, Li C, Chen S, Zhang X. Emerging Role of Dendritic Cell Intervention in the Treatment of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7025634. [PMID: 36262975 PMCID: PMC9576373 DOI: 10.1155/2022/7025634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DCs) are the most important antigen-presenting cells and are pivotal in initiating effective adaptive immune responses to induce immune tolerance and maintain immune homeostasis. Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is chronic, intestinal inflammatory and autoimmune disorder. DCs participate in IBD pathogenesis. This review is aimed at briefly discussing the role of DCs in IBD and the relationship between them and highlighting the prominent role of these cells in the treatment of these disorders.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| | - Chenyang Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| | - Shuang Chen
- Department of Pediatrics and Department of Biomedical Science, Cedars Sinai Medical Center, Los Angeles, USA
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| |
Collapse
|
20
|
MicroRNA-10b promotes arthritis development by disrupting CD4 + T cell subtypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:733-750. [PMID: 35317281 PMCID: PMC8905251 DOI: 10.1016/j.omtn.2021.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammation-involved disorder and features the disruption of CD4+ T lymphocytes. Herein, we describe that microRNA-10b-5p (miR-10b) promotes RA progression by disrupting the balance between subsets of CD4+ T cells. MiR-10b-deficient mice protected against collagen antibody-induced arthritis (CAIA) model. RNA sequencing results indicated that disordered genes in miR-10b−/− CAIA model are closely associated with CD4+ T cells differentiation. Moreover, miR-10b mimics promoted Th1/Th17 and suppressed Th2/Treg cells differentiation, whereas miR-10b inhibitor induced contrary effects. In addition, GATA3 and PTEN was confirmed as two targets of miR-10b, and GATA3 siRNA could increase Th1 and reduce Th2 cells meanwhile PTEN siRNA could increase Th17 and decrease Treg cells. Furthermore, miR-10b inhibitor significantly ameliorated collagen-induced arthritis (CIA) development by attenuating the dysfunctional CD4+ T cell subpopulations. The present findings suggest that miR-10b could disrupt the balance of CD4+ T subsets, while suppressed miR-10b could attenuate the severity of experimental arthritis, which provided us a novel mechanistic and therapeutic insight into the RA.
Collapse
|
21
|
Huang Y, Lin S, Zhan F, Xiao L, Zhan Y, Wang R. OX40-Fc Fusion Protein Alleviates PD-1-Fc-Aggravated Rheumatoid Arthritis by Inhibiting Inflammatory Response. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6244175. [PMID: 35222687 PMCID: PMC8872694 DOI: 10.1155/2022/6244175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Researches have confirmed that the abnormal signals of OX40 and PD-1 lead to the changes of T cell biological behavior, thus participating the immunopathological process of RA. However, the pathogenesis of RA immunopathological process has not been clarified yet. METHODS 30 DBA/1 mice were randomly divided into 5 groups (6 mice per group): control group, collagen-induced arthritis (CIA) group, PD-1-Fc/CIA group, OX40-Fc/CIA group, and PD-1-Fc + OX40-Fc/CIA group. The pathological changes in mice joints were observed by H&E staining. The proportion of CD4+ T, CD8+ T, CD28+, and CD19+ cells in peripheral blood mononuclear cells (PBMCs) was detected by flow cytometry. Serum inflammatory factors (CRP, IL-2, IL-4, IL-1β, INF-γ) and bone metabolism-related genes (CTX-I, TRACP-5b, BALP) were detected by ELISA assay. Western blotting was applied to measure the NF-κB signaling pathway-related protein (p-IKKβ, p-IκBα, p50) expression in synovial tissue of mice joint. RESULTS Compared with the control group, CIA mice showed significant increases in arthritis score and pathological score. In the CIA group, a marked decrease was identified in the proportion of CD8+ T, CD19+, and CD68+ cells. Additionally, the CIA group was associated with upregulation of secretion of inflammatory factors in serum and expression of bone metabolism-related genes and NF-κB pathway-related proteins. Compared with the CIA group, the same indexes above showed a further aggravation in the PD-1-Fc group while all indexes improved in the OX40-Fc group. Besides, OX40-Fc fusion protein slowed down significantly the further deterioration of CIA mouse pathological process caused by PD-1-Fc fusion protein. CONCLUSION OX40-Fc fusion protein alleviates PD-1-Fc-aggravated RA by inhibiting inflammatory response. This research provides biological markers with clinical significance for diagnosis and prognosis of RA, as well as offers theoretical and experimental foundation to the new targets for immune intervention.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Shudian Lin
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Feng Zhan
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Lu Xiao
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Yuwei Zhan
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Ru Wang
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| |
Collapse
|
22
|
Cooke F, Neal M, Wood MJ, de Vries IJM, Anderson AE, Diboll J, Pratt AG, Stanway J, Nicorescu I, Moyse N, Hiles D, Caulfield D, Dickinson AM, Blamire AM, Thelwall P, Isaacs JD, Hilkens CMU. Fluorine labelling of therapeutic human tolerogenic dendritic cells for 19F-magnetic resonance imaging. Front Immunol 2022; 13:988667. [PMID: 36263039 PMCID: PMC9574244 DOI: 10.3389/fimmu.2022.988667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Tolerogenic dendritic cell (tolDC) therapies aim to restore self-tolerance in patients suffering from autoimmune diseases. Phase 1 clinical trials with tolDC have shown the feasibility and safety of this approach, but have also highlighted a lack of understanding of their distribution in vivo. Fluorine-19 magnetic resonance imaging (19F-MRI) promises an attractive cell tracking method because it allows for detection of 19F-labelled cells in a non-invasive and longitudinal manner. Here, we tested the suitability of nanoparticles containing 19F (19F-NP) for labelling of therapeutic human tolDC for detection by 19F-MRI. We found that tolDC readily endocytosed 19F-NP with acceptable effects on cell viability and yield. The MRI signal-to-noise ratios obtained are more than sufficient for detection of the administered tolDC dose (10 million cells) at the injection site in vivo, depending on the tissue depth and the rate of cell dispersal. Importantly, 19F-NP labelling did not revert tolDC into immunogenic DC, as confirmed by their low expression of typical mature DC surface markers (CD83, CD86), low secretion of pro-inflammatory IL-12p70, and low capacity to induce IFN-γ in allogeneic CD4+ T cells. In addition, the capacity of tolDC to secrete anti-inflammatory IL-10 was not diminished by 19F-NP labelling. We conclude that 19F-NP is a suitable imaging agent for tolDC. With currently available technologies, this imaging approach does not yet approach the sensitivity required to detect small numbers of migrating cells, but could have important utility for determining the accuracy of injecting tolDC into the desired target tissue and their efflux rate.
Collapse
Affiliation(s)
- Fiona Cooke
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Mary Neal
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthew J Wood
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Division of Rheumatology, Rush University Medical Centre, Chicago, IL, United States
| | - I Jolanda M de Vries
- Department of Tumour Immunology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Amy E Anderson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Julie Diboll
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Arthur G Pratt
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom.,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - James Stanway
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Ioana Nicorescu
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| | - Nicholas Moyse
- Newcastle Advanced Therapies, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Dawn Hiles
- Newcastle Advanced Therapies, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David Caulfield
- Newcastle Advanced Therapies, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Anne M Dickinson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew M Blamire
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pete Thelwall
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John D Isaacs
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom.,Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Catharien M U Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Newcastle upon Tyne, United Kingdom
| |
Collapse
|
23
|
Hafkamp FMJ, Groot Kormelink T, de Jong EC. Targeting DCs for Tolerance Induction: Don't Lose Sight of the Neutrophils. Front Immunol 2021; 12:732992. [PMID: 34675923 PMCID: PMC8523850 DOI: 10.3389/fimmu.2021.732992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.
Collapse
Affiliation(s)
| | | | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Wang B, Zhou Q, Li T, Li S, Greasley A, Skaro A, Quan D, Min W, Liu K, Zheng X. Preventing alloimmune rejection using circular RNA FSCN1-silenced dendritic cells in heart transplantation. J Heart Lung Transplant 2021; 40:584-594. [PMID: 34052126 DOI: 10.1016/j.healun.2021.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND While heart transplantation is used as a standard treatment for heart failure, transplant rejection continues to pose a challenge. Recent evidence has shown that circular RNA (circRNA) is a new type of gene regulator in cell development. Our aim was to demonstrate that treatment with tolerogenic dendritic cells (Tol-DCs) generated by circular RNA FSCN1 (circFSCN1) silencing could prevent alloimmune rejection and prolong heart graft survival in heart transplantation. METHODS Bone marrow-derived DCs were transfected with circFSCN1 siRNA in vitro. The circFSCN1 level was measured by qRT-PCR. DC maturation was determined by flow cytometry. Mixed lymphocyte reactions (MLRs) were conducted to assess the function of DCs to activate T cells and to generate regulatory T cells (Tregs). In situ RNA hybridization and fluorescent microscopy were performed to detect the distribution of circFSCN1 in DCs. A heterotopic allogeneic murine heart transplantation was conducted where recipients were pre-treated with donor derived circFSCN1-silenced Tol-DCs. Heartbeat was monitored to assess immune rejection. RESULTS Exonic circFSCN1 was highly expressed in the cytoplasm of mature DCs. Knockdown of circFSCN1 using siRNA arrested DCs at an immature state, impaired DC's ability to activate T cells and enhanced Treg generation. Treatment with circFSCN1-silenced Tol-DCs prevented alloimmune rejection, prolonged allograft survival, reduced fibrosis, and induced Tregs in vivo. CONCLUSIONS Knockdown of circFSCN1 induces Tol-DCs and treatment with these Tol-DCs prevents alloimmune rejection and prolongs allograft survival. This is a promising therapeutic target to combat transplant rejection in heart transplantation and increases our understanding of circRNA in the immune system.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jilin University, Changchun, China; Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Qinfeng Zhou
- Department of Surgery, Western University, London, Ontario Canada
| | - Toni Li
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada; School of Medicine, Queen's University, Kingston, Canada
| | - Shuailong Li
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jilin University, Changchun, China; Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Adam Greasley
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Anton Skaro
- Department of Surgery, Western University, London, Ontario Canada
| | - Douglas Quan
- Department of Surgery, Western University, London, Ontario Canada
| | - Weiping Min
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada; Department of Surgery, Western University, London, Ontario Canada; Lawson Health Research Institute, London, Ontario Canada; Department of Oncology, Western University, London, Ontario Canada
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jilin University, Changchun, China
| | - Xiufen Zheng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada; Department of Surgery, Western University, London, Ontario Canada; Lawson Health Research Institute, London, Ontario Canada; Department of Oncology, Western University, London, Ontario Canada.
| |
Collapse
|
25
|
Schittenhelm L, Robertson J, Pratt AG, Hilkens CM, Morrison VL. Dendritic cell integrin expression patterns regulate inflammation in the rheumatoid arthritis joint. Rheumatology (Oxford) 2021; 60:1533-1542. [PMID: 33123735 PMCID: PMC7937020 DOI: 10.1093/rheumatology/keaa686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/19/2020] [Indexed: 11/14/2022] Open
Abstract
Objectives Immune dysregulation contributes to the development of RA. Altered surface expression patterns of integrin adhesion receptors by immune cells is one mechanism by which this may occur. We investigated the role of β2 integrin subunits CD11a and CD11b in dendritic cell (DC) subsets of RA patients. Methods Total β2 integrin subunit expression and its conformation (‘active’ vs ‘inactive’ state) were quantified in DC subsets from peripheral blood (PB) and SF of RA patients as well as PB from healthy controls. Ex vivo stimulation of PB DC subsets and in vitro-generated mature and tolerogenic monocyte-derived DCs (moDCs) were utilized to model the clinical findings. Integrin subunit contribution to DC function was tested by analysing clustering and adhesion, and in co-cultures to assess T cell activation. Results A significant reduction in total and active CD11a expression in DCs in RA SF compared with PB and, conversely, a significant increase in CD11b expression was found. These findings were modelled in vitro using moDCs: tolerogenic moDCs showed higher expression of active CD11a and reduced levels of active CD11b compared with mature moDCs. Finally, blockade of CD11b impaired T cell activation in DC–T cell co-cultures. Conclusion For the first time in RA, we show opposing expression of CD11a and CD11b in DCs in environments of inflammation (CD11alow/CD11bhigh) and steady state/tolerance (CD11ahigh/CD11blow), as well as a T cell stimulatory role for CD11b. These findings highlight DC integrins as potential novel targets for intervention in RA.
Collapse
Affiliation(s)
- Leonie Schittenhelm
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK.,Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK
| | - Jamie Robertson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Arthur G Pratt
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Catharien M Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK
| | - Vicky L Morrison
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK
| |
Collapse
|
26
|
Benito-Villalvilla C, Pérez-Diego M, Angelina A, Kisand K, Rebane A, Subiza JL, Palomares O. Allergoid-mannan conjugates reprogram monocytes into tolerogenic dendritic cells via epigenetic and metabolic rewiring. J Allergy Clin Immunol 2021; 149:212-222.e9. [PMID: 34153371 DOI: 10.1016/j.jaci.2021.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Allergoid-mannan conjugates are novel vaccines for allergen-specific immunotherapy being currently assayed in phase 2 clinical trials. Allergoid-mannan conjugates target dendritic cells (DCs) and generate functional forkhead box P3 (FOXP3)-positive Treg cells, but their capacity to reprogram monocyte differentiation remains unknown. OBJECTIVE We studied whether allergoid-mannan conjugates could reprogram monocyte differentiation into tolerogenic DCs and the underlying molecular mechanisms. METHODS Monocytes from nonatopic and allergic subjects were differentiated into DCs under conventional protocols in the absence or presence of allergoid-mannan conjugates. ELISA, real-time quantitative PCR, coculture, flow cytometry, and suppression assay were performed. Metabolic and epigenetic techniques were also used. RESULTS Monocyte differentiation from nonatopic and allergic subjects into DCs in the presence of allergoid-mannan conjugates yields stable tolerogenic DCs. Lipopolysaccharide-stimulated mannan-tolDCs show a significantly lower cytokine production, lower TNF-α/IL-10 ratio, and higher expression of the tolerogenic molecules PDL1, IDO, SOCS1, SOCS3, and IL10; and they induce higher numbers of functional FOXP3+ Treg cells than conventional DC counterparts. Mannan-tolDCs shift glucose metabolism from Warburg effect and lactate production to mitochondrial oxidative phosphorylation. They also display epigenetic reprogramming involving specific histone marks within tolerogenic loci and lower expression levels of histone deacetylase genes. Mannan-tolDCs significantly increase the expression of the anti-inflammatory miRNA-146a/b and decrease proinflammatory miRNA-155. CONCLUSIONS Allergoid-mannan conjugates reprogram monocyte differentiation into stable tolerogenic DCs via epigenetic and metabolic reprogramming. Our findings shed light on the novel mechanisms by which allergoid-mannan conjugates might contribute to allergen tolerance induction during allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Mario Pérez-Diego
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain.
| |
Collapse
|
27
|
Mansilla MJ, Presas-Rodríguez S, Teniente-Serra A, González-Larreategui I, Quirant-Sánchez B, Fondelli F, Djedovic N, Iwaszkiewicz-Grześ D, Chwojnicki K, Miljković Đ, Trzonkowski P, Ramo-Tello C, Martínez-Cáceres EM. Paving the way towards an effective treatment for multiple sclerosis: advances in cell therapy. Cell Mol Immunol 2021; 18:1353-1374. [PMID: 33958746 PMCID: PMC8167140 DOI: 10.1038/s41423-020-00618-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a leading cause of chronic neurological disability in young to middle-aged adults, affecting ~2.5 million people worldwide. Currently, most therapeutics for MS are systemic immunosuppressive or immunomodulatory drugs, but these drugs are unable to halt or reverse the disease and have the potential to cause serious adverse events. Hence, there is an urgent need for the development of next-generation treatments that, alone or in combination, stop the undesired autoimmune response and contribute to the restoration of homeostasis. This review analyzes current MS treatments as well as different cell-based therapies that have been proposed to restore homeostasis in MS patients (tolerogenic dendritic cells, regulatory T cells, mesenchymal stem cells, and vaccination with T cells). Data collected from preclinical studies performed in the experimental autoimmune encephalomyelitis (EAE) model of MS in animals, in vitro cultures of cells from MS patients and the initial results of phase I/II clinical trials are analyzed to better understand which parameters are relevant for obtaining an efficient cell-based therapy for MS.
Collapse
Affiliation(s)
- M J Mansilla
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - S Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Teniente-Serra
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I González-Larreategui
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - B Quirant-Sánchez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - F Fondelli
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - N Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - D Iwaszkiewicz-Grześ
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - K Chwojnicki
- Department of Anaesthesiology & Intensive Care, Medical University of Gdańsk, Gdańsk, Poland
| | - Đ Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - P Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland.,Poltreg S.A., Gdańsk, Poland
| | - C Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - E M Martínez-Cáceres
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
28
|
van Wigcheren GF, Roelofs D, Figdor CG, Flórez-Grau G. Three distinct tolerogenic CD14 + myeloid cell types to actively manage autoimmune disease: Opportunities and challenges. J Autoimmun 2021; 120:102645. [PMID: 33901801 DOI: 10.1016/j.jaut.2021.102645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Current treatment for patients with autoimmune disorders including rheumatoid arthritis, multiple sclerosis and type 1 diabetes, often consists of long-term drug regimens that broadly dampen immune responses. These non-specific treatments are frequently associated with severe side effects creating an urgent need for safer and more effective therapy to promote peripheral tolerance in autoimmune diseases. Cell-based immunotherapy may offer an encouraging alternative, where tolerogenic CD14+ myeloid cells are infused to inhibit autoreactive effector cells. In this review, we compared in depth three promising tolerogenic CD14+ candidates for the treatment of autoimmune disease: 1) tolerogenic dendritic cells, 2) monocytic myeloid-derived suppressor cells and 3) CD14+ type 2 conventional dendritic cells. TolDC-based therapy has entered clinical testing whereas evidence from the latter two cell types m-MDSCs and CD14+ cDC2s is predominantly coming from cancer immunology research. These three cell types have distinct cellular properties and immunosuppressive mechanisms offering unique opportunities to be explored. However, these cells differ in stage of development towards immunotherapy each facing additional hurdles. Therefore, we speculate on the potential benefits and risks of these cell types as novel cell-based immunotherapies to control autoimmune disease in patients.
Collapse
Affiliation(s)
- Glenn F van Wigcheren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Oncode Institute, the Netherlands
| | - Daphne Roelofs
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Oncode Institute, the Netherlands.
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
29
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
30
|
Examination of Novel Immunomodulatory Effects of L-Sulforaphane. Nutrients 2021; 13:nu13020602. [PMID: 33673203 PMCID: PMC7917832 DOI: 10.3390/nu13020602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
The dietary isothiocyanate L-sulforaphane (LSF), derived from cruciferous vegetables, is reported to have several beneficial biological properties, including anti-inflammatory and immunomodulatory effects. However, there is limited data on how LSF modulates these effects in human immune cells. The present study was designed to investigate the immunomodulatory effects of LSF (10 µM and 50 µM) on peripheral blood mononuclear cell (PBMC) populations and cytokine secretion in healthy adult volunteers (n = 14), in the presence or absence of bacterial (lipopolysaccharide) and viral (imiquimod) toll-like receptor (TLRs) stimulations. Here, we found that LSF reduced pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and chemokines monocyte chemoattractant protein (MCP)-1 irrespective of TLR stimulations. This result was associated with LSF significantly reducing the proportion of natural killer (NK) cells and monocytes while increasing the proportions of dendritic cells (DCs), T cells and B cells. We found a novel effect of LSF in relation to reducing cluster of differentiation (CD) 14+ monocytes while simultaneously increasing monocyte-derived DCs (moDCs: lineage-Human Leukocyte Antigen-DR isotype (HLA-DR)+CD11blow-high CD11chigh). LSF was also shown to induce a 3.9-fold increase in the antioxidant response element (ARE) activity in a human monocyte cell line (THP-1). Our results provide important insights into the immunomodulatory effects of LSF, showing in human PBMCs an ability to drive differentiation of monocytes towards an immature monocyte-derived dendritic cell phenotype with potentially important biological functions. These findings provide insights into the potential role of LSF as a novel immunomodulatory drug candidate and supports the need for further preclinical and phase I clinical studies.
Collapse
|
31
|
Tavasolian F, Hosseini AZ, Soudi S, Naderi M, Sahebkar A. A Systems Biology Approach for miRNA-mRNA Expression Patterns Analysis in Rheumatoid Arthritis. Comb Chem High Throughput Screen 2021; 24:195-212. [DOI: 10.2174/1386207323666200605150024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/22/2020] [Accepted: 04/04/2020] [Indexed: 11/22/2022]
Abstract
Objective:
Considering the molecular complexity and heterogeneity of rheumatoid
arthritis (RA), the identification of novel molecular contributors involved in RA initiation and
progression using systems biology approaches will open up potential therapeutic strategies. The
bioinformatics method allows the detection of associated miRNA-mRNA as both therapeutic and
prognostic targets for RA.
Methods:
This research used a system biology approach based on a systematic re-analysis of the
RA-related microarray datasets in the NCBI Gene Expression Omnibus (GEO) database to find out
deregulated miRNAs. We then studied the deregulated miRNA-mRNA using Enrichr and
Molecular Signatures Database (MSigDB) to identify novel RA-related markers followed by an
overview of miRNA-mRNA interaction networks and RA-related pathways.
Results:
This research mainly focused on mRNA and miRNA interactions in all tissues and
blood/serum associated with RA to obtain a comprehensive knowledge of RA. Recent systems
biology approach analyzed seven independent studies and presented important RA-related
deregulated miRNAs (miR-145-5p, miR-146a-5p, miR-155-5p, miR-15a-5p, miR-29c-3p, miR-
103a-3p, miR-125a-5p, miR-125b-5p, miR-218); upregulation of miR-125b is shown in the study
(GSE71600). While the findings of the Enrichr showed cytokine and vitamin D receptor pathways
and inflammatory pathways. Further analysis revealed a negative correlation between the vitamin
D receptor (VDR) and miR-125b in RA-associated gene expression.
Conclusion:
Since vitamin D is capable of regulating the immune homeostasis and decreasing the
autoimmune process through its receptor (VDR), it is regarded as a potential target for RA.
According to the results obtained, a comparative correlation between negative expression of the
vitamin D receptor (VDR) and miR-125b was suggested in RA. The increasing miR-125b
expression would reduce the VitD uptake through its receptor.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Christofi M, Le Sommer S, Mölzer C, Klaska IP, Kuffova L, Forrester JV. Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cell Mol Life Sci 2020; 78:2857-2876. [PMID: 33074350 PMCID: PMC8004500 DOI: 10.1007/s00018-020-03672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Cell therapies for autoimmune diseases using tolerogenic dendritic cells (tolDC) have been promisingly explored. A major stumbling block has been generating stable tolDC, with low risk of converting to mature immunogenic DC (mDC), exacerbating disease. mDC induction involves a metabolic shift to lactate production from oxidative phosphorylation (OXPHOS) and β-oxidation, the homeostatic energy source for resting DC. Inhibition of glycolysis through the administration of 2-deoxy glucose (2-DG) has been shown to prevent autoimmune disease experimentally but is not clinically feasible. We show here that treatment of mouse bone marrow-derived tolDC ex vivo with low-dose 2-DG (2.5 mM) (2-DGtolDC) induces a stable tolerogenic phenotype demonstrated by their failure to engage lactate production when challenged with mycobacterial antigen (Mtb). ~ 15% of 2-DGtolDC express low levels of MHC class II and 30% express CD86, while they are negative for CD40. 2-DGtolDC also express increased immune checkpoint molecules PDL-1 and SIRP-1α. Antigen-specific T cell proliferation is reduced in response to 2-DGtolDC in vitro. Mtb-stimulated 2-DGtolDC do not engage aerobic glycolysis but respond to challenge via increased OXPHOS. They also have decreased levels of p65 phosphorylation, with increased phosphorylation of the non-canonical p100 pathway. A stable tolDC phenotype is associated with sustained SIRP-1α phosphorylation and p85-AKT and PI3K signalling inhibition. Further, 2-DGtolDC preferentially secrete IL-10 rather than IL-12 upon Mtb-stimulation. Importantly, a single subcutaneous administration of 2-DGtolDC prevented experimental autoimmune uveoretinitis (EAU) in vivo. Inhibiting glycolysis of autologous tolDC prior to transfer may be a useful approach to providing stable tolDC therapy for autoimmune/immune-mediated diseases.
Collapse
Affiliation(s)
- M Christofi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - S Le Sommer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - C Mölzer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - I P Klaska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - L Kuffova
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - J V Forrester
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| |
Collapse
|
33
|
Harrison SR, Jutley G, Li D, Sahbudin I, Filer A, Hewison M, Raza K. Vitamin D and early rheumatoid arthritis. BMC Rheumatol 2020; 4:38. [PMID: 32728658 PMCID: PMC7384217 DOI: 10.1186/s41927-020-00134-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have linked rheumatoid arthritis (RA) risk and disease activity with vitamin D-deficiency (low serum 25-hydroxyvitamin D (25OHD)), but a causal role for vitamin D in RA is still unclear, with conflicting results from many previous studies, partly due to heterogeneity in study design and patient populations. In this study we aimed to (1) analyse serum 25OHD in early inflammatory arthritis, (2) compare 25OHD with disease activity and fatigue in early RA and (3) determine whether low 25OHD is associated with progression to RA. METHODS An analysis of 790 patients recruited to the Birmingham Early Inflammatory Arthritis Cohort and followed longitudinally to determine clinical outcomes. The following were recorded at baseline: demographic data, duration of symptoms, duration of early morning stiffness (EMS), tender and swollen joint counts, Visual Analogue Scale (VAS) pain/fatigue/EMS, PHQ-9, HAQ and FACIT-Fatigue scores, DAS28-ESR, DAS28-CRP, CRP, ESR, anti-CCP antibody status, rheumatoid factor status, and serum 25OHD (ng/ml). Diagnosis was recorded at 0 and 12 months onwards as either RA, Undifferentiated Inflammatory Arthritis (UIA; synovitis not meeting other classification/diagnostic criteria), Clinically Suspect Arthralgia (CSA; arthralgia of an inflammatory type without synovitis), or Other. RESULTS Baseline demographic data were similar between all groups, with median symptom duration of 16.8-34.0 days. Baseline 25OHD was not significantly different between groups [median, interquartile range (IQR): RA 46.7, 30.0-73.3; UIA 51.4, 30.0-72.3; CSA 47.7, 30.3-73.0; Other 39.9, 28.6-62.2]. In RA (n = 335), there were no significant differences between 25OHD and measures of disease activity or fatigue. No association between 25OHD and progression from UIA or CSA to RA was observed. CONCLUSIONS There was no clear association between serum 25OHD and baseline diagnosis, RA disease activity, or progression from UIA or CSA to RA. Future studies of other vitamin D metabolites may better define the complex role of vitamin D in RA.
Collapse
Affiliation(s)
- Stephanie R. Harrison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT UK
- Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, B18 7QH UK
| | - Gurpreet Jutley
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Danyang Li
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Ilfita Sahbudin
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Andrew Filer
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT UK
| | - Karim Raza
- Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, B18 7QH UK
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
34
|
Harrison SR, Li D, Jeffery LE, Raza K, Hewison M. Vitamin D, Autoimmune Disease and Rheumatoid Arthritis. Calcif Tissue Int 2020; 106:58-75. [PMID: 31286174 PMCID: PMC6960236 DOI: 10.1007/s00223-019-00577-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Vitamin D has been reported to influence physiological systems that extend far beyond its established functions in calcium and bone homeostasis. Prominent amongst these are the potent immunomodulatory effects of the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). The nuclear vitamin D receptor (VDR) for 1,25-(OH)2D3 is expressed by many cells within the immune system and resulting effects include modulation of T cell phenotype to suppress pro-inflammatory Th1 and Th17 CD4+ T cells and promote tolerogenic regulatory T cells. In addition, antigen-presenting cells have been shown to express the enzyme 1α-hydroxylase that converts precursor 25-hydroxyvitamin D3 (25-OHD3) to 1,25-(OH)2D3, so that immune microenvironments are able to both activate and respond to vitamin D. As a consequence of this local, intracrine, system, immune responses may vary according to the availability of 25-OHD3, and vitamin D deficiency has been linked to various autoimmune disorders including rheumatoid arthritis (RA). The aim of this review is to explore the immune activities of vitamin D that impact autoimmune disease, with specific reference to RA. As well as outlining the mechanisms linking vitamin D with autoimmune disease, the review will also describe the different studies that have linked vitamin D status to RA, and the current supplementation studies that have explored the potential benefits of vitamin D for prevention or treatment of RA. The overall aim of the review is to provide a fresh perspective on the potential role of vitamin D in RA pathogenesis and treatment.
Collapse
Affiliation(s)
- Stephanie R Harrison
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, B15 2TT, UK
- Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, B18 7QH, UK
| | - Danyang Li
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Louisa E Jeffery
- Institute of Translation Medicine, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Karim Raza
- Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, B18 7QH, UK
- Institute of Inflammation and Ageing, Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence and MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT, UK.
| |
Collapse
|
35
|
Spiering R, Jansen MAA, Wood MJ, Fath AA, Eltherington O, Anderson AE, Pratt AG, van Eden W, Isaacs JD, Broere F, Hilkens CMU. Targeting of tolerogenic dendritic cells to heat-shock proteins in inflammatory arthritis. J Transl Med 2019; 17:375. [PMID: 31727095 PMCID: PMC6857208 DOI: 10.1186/s12967-019-2128-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Autologous tolerogenic dendritic cells (tolDC) are a promising therapeutic strategy for inflammatory arthritis (IA) as they can regulate autoantigen-specific T cell responses. Here, we investigated two outstanding priorities for clinical development: (i) the suitability of using heat-shock proteins (HSP), abundant in inflamed synovia, as surrogate autoantigens to be presented by tolDC and (ii) identification of functional biomarkers that confirm tolDC regulatory activity. Methods Cell proliferation dye-labelled human peripheral blood mononuclear cells of IA (rheumatoid arthritis (RA) and psoriatic arthritis (PsA)) patients or healthy donors were cultured with HSP40-, HSP60- and HSP70-derived peptides or recall antigens (e.g. tuberculin purified protein derivative (PPD)) in the presence or absence of tolDC or control DC for 9 days. Functional characteristics of proliferated antigen-specific T-cells were measured using flow cytometry, gene expression profiling and cytokine secretion immunoassays. Repeated measures analysis of variance (ANOVA) with Bonferroni correction for comparisons between multiple groups and paired Student t test for comparisons between two groups were used to determine significance. Results All groups showed robust CD4+ T-cell responses towards one or more HSP-derived peptide(s) as assessed by a stimulation index > 2 (healthy donors: 78%, RA: 73%, PsA: 90%) and production of the cytokines IFNγ, IL-17A and GM-CSF. Addition of tolDC but not control DC induced a type 1 regulatory (Tr1) phenotype in the antigen-specific CD4+ T-cell population, as identified by high expression of LAG3, CD49b and secretion of IL-10. Furthermore, tolDC inhibited bystander natural killer (NK) cell activation in a TGFβ dependent manner. Conclusions HSP-specific CD4+ T-cells are detectable in the majority of RA and PsA patients and can be converted into Tr1 cells by tolDC. HSP-loaded tolDC may therefore be suitable for directing T regulatory responses to antigens in inflamed synovia of IA patients. Tr1 markers LAG3, CD49b and IL-10 are suitable biomarkers for future tolDC clinical trials.
Collapse
Affiliation(s)
- Rachel Spiering
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Manon A A Jansen
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Matthew J Wood
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Anshorulloh A Fath
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Oliver Eltherington
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Anderson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - John D Isaacs
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.,Department of Clinical Sciences of Companion Animals, Faculty Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharien M U Hilkens
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. .,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK. .,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Ahad A, Stevanin M, Smita S, Mishra GP, Gupta D, Waszak S, Sarkar UA, Basak S, Gupta B, Acha-Orbea H, Raghav SK. NCoR1: Putting the Brakes on the Dendritic Cell Immune Tolerance. iScience 2019; 19:996-1011. [PMID: 31522122 PMCID: PMC6744395 DOI: 10.1016/j.isci.2019.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/19/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Understanding the mechanisms fine-tuning immunogenic versus tolerogenic balance in dendritic cells (DCs) is of high importance for therapeutic approaches. We found that NCoR1-mediated direct repression of the tolerogenic program in conventional DCs is essential for induction of an optimal immunogenic response. NCoR1 depletion upregulated a wide variety of tolerogenic genes in activated DCs, which consequently resulted in increased frequency of FoxP3+ regulatory T cells. Mechanistically, NCoR1 masks the PU.1-bound super-enhancers on major tolerogenic genes after DC activation that are subsequently bound by nuclear factor-κB. NCoR1 knockdown (KD) reduced RelA nuclear translocation and activity, whereas RelB was unaffected, providing activated DCs a tolerogenic advantage. Moreover, NCoR1DC−/- mice depicted enhanced Tregs in draining lymph nodes with increased disease burden upon bacterial and parasitic infections. Besides, adoptive transfer of activated NCoR1 KD DCs in infected animals showed a similar phenotype. Collectively, our results demonstrated NCoR1 as a promising target to control DC-mediated immune tolerance. NCoR1 directly represses tolerogenic program in mouse cDCs Depletion of NCoR1 in cDCs enhanced Treg development ex vivo and in vivo NCoR1 masks PU.1-bound super-enhancers on tolerogenic genes in cDCs NCoR1DC−/− animals depicted enhanced Treg frequency and infection load
Collapse
Affiliation(s)
- Abdul Ahad
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Mathias Stevanin
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges CH-1066, Switzerland
| | - Shuchi Smita
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Gyan Prakash Mishra
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Dheerendra Gupta
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India
| | - Sebastian Waszak
- European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology (NII), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bhawna Gupta
- Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges CH-1066, Switzerland.
| | - Sunil Kumar Raghav
- Immuno-genomics & Systems Biology Laboratory, Institute of Life Sciences (ILS), Bhubaneswar, Odisha 751023, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
37
|
Wu J, Liu M, Mang G, Yu S, Chen Q, Li T, Wang Y, Meng Y, Tang X, Zheng Y, Sun Y, Zhang M, Yu B. Protosappanin A protects against experimental autoimmune myocarditis, and induces metabolically reprogrammed tolerogenic DCs. Pharmacol Res 2019; 146:104269. [PMID: 31078745 DOI: 10.1016/j.phrs.2019.104269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune myocarditis is an immune-mediated myocardial injury that evolves into dilated cardiomyopathy (DCM). Protosappanin A (PrA), an immunosuppressive compound, induces immune tolerance in cardiac transplantation. However, whether PrA confers protective immunosuppression on experimental autoimmune myocarditis (EAM) is unknown. In this study, PrA treatment remarkably suppressed cardiac inflammatory cell infiltration and ameliorated cardiac remodeling in EAM mice. Additionally, PrA treatment reduced splenic T cells response, and induced expansion of immunosuppressive regulatory T cells (Tregs). Meanwhile, PrA induced the splenic dendritic cells (DCs) into a tolerogenic state with reduced co-stimulatory molecules, increased the production of tolerogenic cytokines in vivo. PrA also reprogrammed the metabolism of splenic DCs to a more glycolytic phenotype. To further investigate the effect of PrA on the functional and metabolic phenotype of DCs, the compound was added into the in vitro culture of MyHC-α-loaded DCs. These cells switched to a tolerogenic state and a metabolic profile similar to that found in cells during in ex vivo experiments. Treatment with glycolytic inhibitor 2-DG significantly reversed PrA-mediated DC tolerogenic properties, suggesting that glycolysis is indispensable for PrA-conditioned DCs to maintain their tolerogenic properties. Notably, PrA-conditioned DC vaccinations dampened EAM progress, and promoted Tregs expansion. Similarly, tolerogenic and metabolic patterns were also observed in PrA-modified human DC. In conclusion, PrA endows DC with a tolerogenic profile via glycolytic reprogramming, thereby inducing expansion of immunosuppressive Tregs, and preventing EAM progress. Our results suggested that PrA may confer immunosuppressive and protective effects on EAM by metabolically reprogramming DCs, which could contribute to the development of a new potential immunotherapy for the treatment of EAM and immune-related disorders.
Collapse
Affiliation(s)
- Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Mingyang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Tingting Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yongchen Wang
- Department of General Practice, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ying Meng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - XinYue Tang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yong Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| |
Collapse
|
38
|
Mosanya CH, Isaacs JD. Tolerising cellular therapies: what is their promise for autoimmune disease? Ann Rheum Dis 2019; 78:297-310. [PMID: 30389690 PMCID: PMC6390030 DOI: 10.1136/annrheumdis-2018-214024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/22/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
The current management of autoimmunity involves the administration of immunosuppressive drugs coupled to symptomatic and functional interventions such as anti-inflammatory therapies and hormone replacement. Given the chronic nature of autoimmunity, however, the ideal therapeutic strategy would be to reinduce self-tolerance before significant tissue damage has accrued. Defects in, or defective regulation of, key immune cells such as regulatory T cells have been documented in several types of human autoimmunity. Consequently, it has been suggested that the administration of ex vivo generated, tolerogenic immune cell populations could provide a tractable therapeutic strategy. Several potentially tolerogenic cellular therapies have been developed in recent years; concurrent advances in cell manufacturing technologies promise scalable, affordable interventions if safety and efficacy can be demonstrated. These therapies include mesenchymal stromal cells, tolerogenic dendritic cells and regulatory T cells. Each has advantages and disadvantages, particularly in terms of the requirement for a bespoke versus an 'off-the-shelf' treatment but also their suitability in particular clinical scenarios. In this review, we examine the current evidence for these three types of cellular therapy, in the context of a broader discussion around potential development pathway(s) and their likely future role. A brief overview of preclinical data is followed by a comprehensive discussion of human data.
Collapse
Affiliation(s)
- Chijioke H Mosanya
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Zhou H, Hu B, Zhaopeng Z, Liu J, Zhong Q, Fan Y, Li L. Elevated circulating T cell subsets and cytokines expression in patients with rheumatoid arthritis. Clin Rheumatol 2019; 38:1831-1839. [PMID: 30809737 DOI: 10.1007/s10067-019-04465-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/12/2019] [Accepted: 02/03/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study aimed to assess the role of different subsets of circulating follicular helper T cells (Tfh), central memory (TCM), effector memory (TEM), Naïve T, chemokines, and cytokines in the pathogenesis of rheumatoid arthritis (RA). METHODS Blood samples from RA patients (n = 44) and healthy controls (n = 37) were analyzed. The frequencies of circulating Tfh, TCM, TEM, and Naïve T cell subsets were enumerated, and the expression of co-stimulatory molecules, such as inducible co-stimulator (ICOS) and programmed death-1 (PD1), on these cells was evaluated by flow cytometry. The disease state in RA patients was assessed using the DAS28. Concentrations of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), anti-cyclic citrullinated peptide (anti-CCP), and rheumatoid factor (RF) were measured. Cytokines and chemokines, such as IL-1β, TNF-α, IL-4, IL-6, IL-9, IL-17A, MCP-1, IL-10, IL-12p70, and IL-21, were measured by a cytometric beads array assay. RESULTS The percentages of circulating PD1+ICOS+ Tfh, PD1+ICOS+ TEM, and PD1+ICOS+ TCM of PBMCs from RA patients were higher than those in healthy controls. Furthermore, expression of circulating PD1+ICOS+ Tfh, PD1+ICOS+ TEM, and PD1+ICOS+ TCM showed a positive correlation with DAS28. In addition, increased levels of IL-1β, IL-6, and MCP-1 were detected in the patients with RA compared to healthy controls. CONCLUSIONS Elevated circulating T cell subsets and cytokines expression profile were observed in RA patients. IL-6, MCP-1, and IL-1β were significantly increased in RA, and PD1+ICOS+ TEM, PD1+ICOS+ TCM, and PD1+ICOS+ Tfh cell subsets were positively correlated with disease activity DAS28. Therefore, PD1+ICOS+ TEM, PD1+ICOS+ TCM, and PD1+ICOS+ Tfh cells might serve an important role in the progression of RA.
Collapse
Affiliation(s)
- Haiyan Zhou
- Department of Clinical Research Centre, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, 550004, Guizhou Province, People's Republic of China.
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China.
- Department of Immunology and Rheumatology, The Third Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China.
| | - Bailong Hu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zheng Zhaopeng
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jun Liu
- Department of Immunology and Rheumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Qin Zhong
- Department of Clinical Research Centre, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Youyang Fan
- Department of Immunology and Rheumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Long Li
- Department of Immunology and Rheumatology, The Third Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China.
- Department of Immunology and Rheumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China.
| |
Collapse
|
40
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
41
|
Švajger U, Rožman P. Induction of Tolerogenic Dendritic Cells by Endogenous Biomolecules: An Update. Front Immunol 2018; 9:2482. [PMID: 30416505 PMCID: PMC6212600 DOI: 10.3389/fimmu.2018.02482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The importance of microenvironment on dendritic cell (DC) function and development has been strongly established during the last two decades. Although DCs with general tolerogenic characteristics have been isolated and defined as a particular sub-population, it is predominantly their unequivocal biological plasticity, which allows for unparalleled responsiveness to environmental ques and shaping of their tolerogenic characteristics when interacting with tolerance-inducing biomolecules. Dendritic cells carry receptors for a great number of endogenous factors, which, after ligation, can importantly influence the development of their activation state. For this there is ample evidence merely by observation of DC characteristics isolated from various anatomical niches, e.g., the greater immunosuppressive potential of DCs isolated from intestine compared to conventional blood DCs. Endogenous biomolecules present in these environments most likely play a major role as a determinant of their phenotype and function. In this review, we will concisely summarize in what way various, tolerance-inducing endogenous factors influence DC biology, the development of their particular tolerogenic state and their subsequent actions in context of immune response inhibition and induction of regulatory T cells.
Collapse
Affiliation(s)
- Urban Švajger
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Rožman
- Department for Therapeutic Services, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| |
Collapse
|
42
|
Navarro-Barriuso J, Mansilla MJ, Martínez-Cáceres EM. Searching for the Transcriptomic Signature of Immune Tolerance Induction-Biomarkers of Safety and Functionality for Tolerogenic Dendritic Cells and Regulatory Macrophages. Front Immunol 2018; 9:2062. [PMID: 30298066 PMCID: PMC6160751 DOI: 10.3389/fimmu.2018.02062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The last years have witnessed a breakthrough in the development of cell-based tolerance-inducing cell therapies for the treatment of autoimmune diseases and solid-organ transplantation. Indeed, the use of tolerogenic dendritic cells (tolDC) and regulatory macrophages (Mreg) is currently being tested in Phase I and Phase II clinical trials worldwide, with the aim of finding an effective therapy able to abrogate the inflammatory processes causing these pathologies without compromising the protective immunity of the patients. However, there exists a wide variety of different protocols to generate human tolDC and Mreg and, consequently, the characteristics of each product are heterogeneous. For this reason, the identification of biomarkers able to define their functionality (tolerogenicity) is of great relevance, on the one hand, to guarantee the safety of tolDC and Mreg before administration and, on the other hand, to compare the results between different cell products and laboratories. In this article, we perform an exhaustive review of protocols generating human tolDC and Mreg in the literature, aiming to elucidate if there are any common transcriptomic signature or potential biomarkers of tolerogenicity among the different approaches. However, and although several effectors seem to be induced in common in some of the most reported protocols to generate both tolDC or Mreg, the transcriptomic profile of these cellular products strongly varies depending on the approach used to generate them.
Collapse
Affiliation(s)
- Juan Navarro-Barriuso
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María José Mansilla
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva M Martínez-Cáceres
- Division of Immunology, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
43
|
Wei HJ, Letterio JJ, Pareek TK. Development and Functional Characterization of Murine Tolerogenic Dendritic Cells. J Vis Exp 2018. [PMID: 29863666 DOI: 10.3791/57637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system operates by maintaining a tight balance between coordinating responses against foreign antigens and maintaining an unresponsive state against self-antigens as well as antigens derived from commensal organisms. The disruption of this immune homeostasis can lead to chronic inflammation and to the development of autoimmunity. Dendritic cells (DCs) are the professional antigen-presenting cells of the innate immune system involved in activating naïve T cells to initiate immune responses against foreign antigens. However, DCs can also be differentiated into TolDCs that act to maintain and promote T cell tolerance and to suppress effector cells contributing to the development of either autoimmune or chronic inflammation conditions. The recent advancement in our understanding of TolDCs suggests that DC tolerance can be achieved by modulating their differentiation conditions. This phenomenon has led to tremendous growth in developing TolDC therapies for numerous immune disorders caused due to break in immune tolerance. Successful studies in preclinical autoimmunity murine models have further validated the immunotherapeutic utility of TolDCs in the treatment of autoimmune disorders. Today, TolDCs have become a promising immunotherapeutic tool in the clinic for reinstating immune tolerance in various immune disorders by targeting pathogenic autoimmune responses while leaving protective immunity intact. Although an array of strategies has been proposed by multiple labs to induce TolDCs, there is no consistency in characterizing the cellular and functional phenotype of these cells. This protocol provides a step-by-step guide for the development of bone marrow-derived DCs in large numbers, a unique method used to differentiate them into TolDCs with a synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-difluoro-propyl-amide (CDDO-DFPA), and the techniques used to confirm their phenotype, including analyses of essential molecular signatures of TolDCs. Finally, we show a method to assess TolDC function by testing their immunosuppressive response in vitro and in vivo in a preclinical model of multiple sclerosis.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- Department of Biochemistry, School of Medicine, Case Western Reserve University
| | - John J Letterio
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland
| | - Tej K Pareek
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Case Western Reserve University; Angie Fowler Cancer Institute, Rainbow Babies & Children's Hospital, University Hospitals, Cleveland;
| |
Collapse
|
44
|
Engman C, Garciafigueroa Y, Phillips BE, Trucco M, Giannoukakis N. Co-Stimulation-Impaired Bone Marrow-Derived Dendritic Cells Prevent Dextran Sodium Sulfate-Induced Colitis in Mice. Front Immunol 2018; 9:894. [PMID: 29774025 PMCID: PMC5943510 DOI: 10.3389/fimmu.2018.00894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) are important in the onset and severity of inflammatory bowel disease (IBD). Tolerogenic DC induce T-cells to become therapeutic Foxp3+ regulatory T-cells (Tregs). We therefore asked if experimental IBD could be prevented by administration of bone marrow-derived DC generated under conventional GM-CSF/IL-4 conditions but in the presence of a mixture of antisense DNA oligonucleotides targeting the primary transcripts of CD40, CD80, and CD86. These cell products (which we call AS-ODN BM-DC) have demonstrated tolerogenic activity in preventing type 1 diabetes and preserving beta cell mass in new-onset type 1 diabetes in the NOD mouse strain, in earlier studies. In addition to measuring efficacy in prevention of experimental IBD, we also sought to identify possible mechanism(s) of action. Weight, behavior, stool frequency, and character were observed daily for 7–10 days in experimental colitis in mice exposed to dextran sodium sulfate (DSS) following injection of the AS-ODN BM-DC. After euthanasia, the colons were processed for histology while spleen and mesenteric lymph nodes (MLNs) were made into single cells to measure Foxp3+ Treg as well as IL-10+ regulatory B-cell (Breg) population frequency by flow cytometry. AS-ODN BM-DC prevented DSS-induced colitis development. Recipients of these cells exhibited significant increases in Foxp3+ Treg and IL-10+ Breg in MLN and spleen. Histological examination of colon sections of colitis-free mice remained largely architecturally physiologic and mostly free of leukocyte infiltration when compared with DSS-treated animals. Although DSS colitis is mainly an innate immunity-driven condition, our study adds to the growing body of evidence showing that Foxp3+ Treg and IL-10 Bregs can suppress a mainly innate-driven inflammation. The already-established safety of human DC generated from monocytic progenitors in the presence of the mixture of antisense DNA targeting the primary transcripts of CD40, CD80, and CD86 in humans offers the potential to adapt them for clinical IBD therapy.
Collapse
Affiliation(s)
- Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett Eugene Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Serrano I, Luque A, Aran JM. Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol 2018; 9:892. [PMID: 29760704 PMCID: PMC5936965 DOI: 10.3389/fimmu.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function. In fact, monocyte-derived dendritic cells (Mo-DCs), an integral component of the MPS, play a fundamental role both in the regulation of antigen-specific adaptive responses and in the development of immunologic memory and tolerance, particularly in inflammatory settings. Due to their high plasticity, Mo-DCs can be modeled in vitro toward a tolerogenic phenotype for the treatment of aberrant immune-inflammatory conditions such as autoimmune diseases and allotransplantation, with the phenotypic outcome of these cells depending on the immunomodulatory agent employed. Yet, recent immunotherapy trials have emphasized the drawbacks and challenges facing tolerogenic Mo-DC generation for clinical use, such as reduced therapeutic efficacy and limited in vivo stability of the tolerogenic activity. In this review, we will underline the potential relevance and advantages of APPs for tolerogenic DC production with respect to currently employed immunomodulatory/immunosuppressant compounds. A further understanding of the mechanisms of action underlying the moonlighting immunomodulatory activities exhibited by several APPs over DCs could lead to more efficacious, safe, and stable protocols for precision tolerogenic immunotherapy.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Luque
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
46
|
Conventional DCs from Male and Female Lupus-Prone B6.NZM Sle1/Sle2/Sle3 Mice Express an IFN Signature and Have a Higher Immunometabolism That Are Enhanced by Estrogen. J Immunol Res 2018; 2018:1601079. [PMID: 29850618 PMCID: PMC5925037 DOI: 10.1155/2018/1601079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
Type I interferons (IFN) are pathogenic in systemic lupus erythematosus (SLE) and were proposed to control the immunometabolism of dendritic cells (DCs). We previously reported that DCs from female lupus-prone mice constitutively overexpress IFN-responsive genes resembling the IFN signature found in SLE patients. As SLE has higher incidence in women than men, more so in women of reproductive age, estrogens are suggested to affect lupus pathogenesis. We investigated the effects of sex and estrogens on the IFN signature in conventional GM-CSF-bone marrow-derived DCs (cDCs), from male and female Triple Congenic B6.NZM.Sle1/Sle2/Sle3 (TCSle) lupus-prone mice or from wild-type C57BL/6 mice, generated with titrations of 17-beta-estradiol (E2). We found that cDCs from prediseased TCSle male mice express the IFN signature as female TCSle cDCs do. Estrogens are necessary but not sufficient to express this IFN signature, but high doses of E2 can compensate for other steroidal components. E2 stimulation, regardless of sex, modulates type I IFN-dependent and type I IFN-independent activation of cDCs in response to TLR stimulation. Finally, we found that TCSle cDCs from both sexes have elevated markers of immunometabolism and estrogens enhance the metabolic pathways in cDCs, suggesting a mechanistic link between estrogens, immunometabolism, and the IFN signature in lupus.
Collapse
|
47
|
Allen RP, Bolandparvaz A, Ma JA, Manickam VA, Lewis JS. Latent, Immunosuppressive Nature of Poly(lactic- co-glycolic acid) Microparticles. ACS Biomater Sci Eng 2018; 4:900-918. [PMID: 30555893 PMCID: PMC6290919 DOI: 10.1021/acsbiomaterials.7b00831] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Use of biomaterials to spatiotemporally control the activation of immune cells is at the forefront of biomedical engineering research. As more biomaterial strategies are employed for immunomodulation, understanding the immunogenicity of biodegradable materials and their byproducts is paramount in tailoring systems for immune activation or suppression. Poly(D,L-lactic-co-glycolic acid) (PLGA), one of the most commonly studied polymers in tissue engineering and drug delivery, has been previously described on one hand as an immune adjuvant, and on the other as a nonactivating material. In this study, the effect of PLGA microparticles (MPs) on the maturation status of murine bone marrow-derived dendritic cells (DCs), the primary initiators of adaptive immunity, was investigated to decipher the immunomodulatory properties of this biomaterial. Treatment of bone marrow-derived DCs from C57BL/6 mice with PLGA MPs led to a time dependent decrease in the maturation level of these cells, as quantified by decreased expression of the positive stimulatory molecules MHCII, CD80, and CD86 as well as the ability to resist maturation following challenge with lipopolysaccharide (LPS). Moreover, this immunosuppression was dependent on the molecular weight of the PLGA used to fabricate the MPs, as higher molecular weight polymers required longer incubation to produce comparable dampening of maturation molecules. These phenomena were correlated to an increase in lactic acid both intracellularly and extracellularly during DC/PLGA MP coculture, which is postulated to be the primary agent behind the observed immune inhibition. This hypothesis is supported by our results demonstrating that resistance to LPS stimulation may be due to the ability of PLGA MP-derived lactic acid to inhibit the phosphorylation of TAK1 and therefore prevent NF-κB activation. This work is significant as it begins to elucidate how PLGA, a prominent biomaterial with broad applications ranging from tissue engineering to pharmaceutics, could modulate the local immune environment and offers insight on engineering PLGA to exploit its evolving immunogenicity.
Collapse
Affiliation(s)
- Riley P. Allen
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Amir Bolandparvaz
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Jeffrey A. Ma
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Vishal A. Manickam
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
48
|
Ilic N, Gruden-Movsesijan A, Cvetkovic J, Tomic S, Vucevic DB, Aranzamendi C, Colic M, Pinelli E, Sofronic-Milosavljevic L. Trichinella spiralis Excretory-Secretory Products Induce Tolerogenic Properties in Human Dendritic Cells via Toll-Like Receptors 2 and 4. Front Immunol 2018; 9:11. [PMID: 29416536 PMCID: PMC5787699 DOI: 10.3389/fimmu.2018.00011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Trichinella spiralis, as well as its muscle larvae excretory–secretory products (ES L1), given either alone or via dendritic cells (DCs), induce a tolerogenic immune microenvironment in inbred rodents and successfully ameliorate experimental autoimmune encephalomyelitis. ES L1 directs the immunological balance away from T helper (Th)1, toward Th2 and regulatory responses by modulating DCs phenotype. The ultimate goal of our work is to find out if it is possible to translate knowledge obtained in animal model to humans and to generate human tolerogenic DCs suitable for therapy of autoimmune diseases through stimulation with ES L1. Here, the impact of ES L1 on the activation of human monocyte-derived DCs is explored for the first time. Under the influence of ES L1, DCs acquired tolerogenic (semi-matured) phenotype, characterized by low expression of HLA-DR, CD83, and CD86 as well as moderate expression of CD40, along with the unchanged production of interleukin (IL)-12 and elevated production of IL-10 and transforming growth factor (TGF)-β, compared to controls. The interaction with DCs involved toll-like receptors (TLR) 2 and 4, and this interaction was mainly responsible for the phenotypic and functional properties of ES L1-treated DCs. Importantly, ES L1 potentiated Th2 polarizing capacity of DCs, and impaired their allo-stimulatory and Th1/Th17 polarizing properties. Moreover, ES L1-treated DCs promoted the expansion of IL-10- and TGF-β- producing CD4+CD25hiFoxp3hi T cells in indolamine 2, 3 dioxygenase (IDO)-1-dependent manner and increased the suppressive potential of the primed T cell population. ES L1-treated DCs retained the tolerogenic properties, even after the challenge with different pro-inflammatory stimuli, including those acting via TLR3 and, especially TLR4. These results suggest that the induction of tolerogenic properties of DCs through stimulation with ES L1 could represent an innovative approach for the preparation of tolerogenic DC for treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Nataša Ilic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Cvetkovic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Sergej Tomic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Carmen Aranzamendi
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands.,Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Miodrag Colic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Elena Pinelli
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|
49
|
Lamurias A, Ferreira JD, Clarke LA, Couto FM. Generating a Tolerogenic Cell Therapy Knowledge Graph from Literature. Front Immunol 2017; 8:1656. [PMID: 29238346 PMCID: PMC5712582 DOI: 10.3389/fimmu.2017.01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/13/2017] [Indexed: 11/13/2022] Open
Abstract
Tolerogenic cell therapies provide an alternative to conventional immunosuppressive treatments of autoimmune disease and address, among other goals, the rejection of organ or stem cell transplants. Since various methodologies can be followed to develop tolerogenic therapies, it is important to be aware and up to date on all available studies that may be relevant to their improvement. Recently, knowledge graphs have been proposed to link various sources of information, using text mining techniques. Knowledge graphs facilitate the automatic retrieval of information about the topics represented in the graph. The objective of this work was to automatically generate a knowledge graph for tolerogenic cell therapy from biomedical literature. We developed a system, ICRel, based on machine learning to extract relations between cells and cytokines from abstracts. Our system retrieves related documents from PubMed, annotates each abstract with cell and cytokine named entities, generates the possible combinations of cell–cytokine pairs cooccurring in the same sentence, and identifies meaningful relations between cells and cytokines. The extracted relations were used to generate a knowledge graph, where each edge was supported by one or more documents. We obtained a graph containing 647 cell–cytokine relations, based on 3,264 abstracts. The modules of ICRel were evaluated with cross-validation and manual evaluation of the relations extracted. The relation extraction module obtained an F-measure of 0.789 in a reference database, while the manual evaluation obtained an accuracy of 0.615. Even though the knowledge graph is based on information that was already published in other articles about immunology, the system we present is more efficient than the laborious task of manually reading all the literature to find indirect or implicit relations. The ICRel graph will help experts identify implicit relations that may not be evident in published studies.
Collapse
Affiliation(s)
- Andre Lamurias
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - João D Ferreira
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luka A Clarke
- BioISI: Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco M Couto
- LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
50
|
Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity. Front Immunol 2017; 8:1764. [PMID: 29375543 PMCID: PMC5770648 DOI: 10.3389/fimmu.2017.01764] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) are central players in the initiation and control of responses, regulating the balance between tolerance and immunity. Tolerogenic DCs are essential in the maintenance of central and peripheral tolerance by induction of clonal T cell deletion and T cell anergy, inhibition of memory and effector T cell responses, and generation and activation of regulatory T cells. Therefore, tolerogenic DCs are promising candidates for specific cellular therapy of allergic and autoimmune diseases and for treatment of transplant rejection. Studies performed in rodents have demonstrated the efficacy and feasibility of tolerogenic DCs for tolerance induction in various inflammatory diseases. In the last years, numerous protocols for the generation of human monocyte-derived tolerogenic DCs have been established and some first phase I trials have been conducted in patients suffering from autoimmune disorders, demonstrating the safety and efficiency of this cell-based immunotherapy. This review gives an overview about methods and protocols for the generation of human tolerogenic DCs and their mechanisms of tolerance induction with the focus on interleukin-10-modulated DCs. In addition, we will discuss the prerequisites for optimal clinical grade tolerogenic DC subsets and results of clinical trials with tolerogenic DCs in autoimmune diseases.
Collapse
Affiliation(s)
- Matthias P Domogalla
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Patricia V Rostan
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Verena K Raker
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|