1
|
Boukouaci W, Lansiaux P, Lambert NC, Picard C, Clave E, Cras A, Marjanovic Z, Farge D, Tamouza R. Non-Classical HLA Determinants of the Clinical Response after Autologous Stem Cell Transplantation for Systemic Sclerosis. Int J Mol Sci 2022; 23:ijms23137223. [PMID: 35806227 PMCID: PMC9266677 DOI: 10.3390/ijms23137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Systemic Sclerosis (SSc) is a chronic autoimmune disease with high morbidity and mortality. Autologous Hematopoietic Stem Cell Transplantation (AHSCT) is the best therapeutic option for rapidly progressive SSc, allowing increased survival with regression of skin and lung fibrosis. The immune determinants of the clinical response after AHSCT have yet to be well characterized. In particular, the pivotal role of the Human Leukocyte Antigen (HLA) system is not well understood, including the role of non-classical immuno-modulatory HLA-E and HLA-G molecules in developing tolerance and the role of Natural Killer cells (NK) in the immunomodulation processes. We retrospectively tested whether the genetic and/or circulating expression of the non-classical HLA-E and HLA-G loci, as well as the imputed classical HLA determinants of HLA-E expression, influence the observed clinical response to AHSCT at 12- and 24-month follow-up. In a phenotypically well-defined sample of 46 SSc patients classified as clinical responders or non-responders, we performed HLA genotyping using next-generation sequencing and circulating levels of HLA-G and quantified HLA-E soluble isoforms by ELISA. The -21HLA-B leader peptide dimorphism and the differential expression level of HLA-A and HLA-C alleles were imputed. We observed a strong trend towards better clinical response in HLA-E*01:03 or HLA-G 14bp Del allele carriers, which are known to be associated with high expression of the corresponding molecules. At 12-month post-AHSCT follow-up, higher circulating levels of soluble HLA-E were associated with higher values of modified Rodnan Skin Score (mRSS) (p = 0.0275), a proxy of disease severity. In the non-responder group, the majority of patients carried a double dose of the HLA-B Threonine leader peptide, suggesting a non-efficient inhibitory effect of the HLA-E molecules. We did not find any correlation between the soluble HLA-G levels and the observed clinical response after AHSCT. High imputed expression levels of HLA-C alleles, reflecting more efficient NK cell inhibition, correlated with low values of the mRSS 3 months after AHSCT (p = 0.0087). This first pilot analysis of HLA-E and HLA-G immuno-modulatory molecules suggests that efficient inhibition of NK cells contributes to clinical response after AHSCT for SSc. Further studies are warranted in larger patient cohorts to confirm our results.
Collapse
Affiliation(s)
- Wahid Boukouaci
- Translational Neuropsychiatry Laboratory, Institut National de la Santé et de la Recherche Médicale (IN-SERM, U955), Institut Mondor de Recherche Biomédicale, Université Paris Est Creteil, F-94010 Creteil, France;
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04): CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-Immunes Systémiques Rares D’ILE-de-France, Hôpital St-Louis, Assistance-Publique Hôpitaux de Paris, F-75010 Paris, France;
- URP-3518: Recherche Clinique en Hématologie, Immunologie et Transplantation, Institut de Recherche Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Nathalie C. Lambert
- UMRs 1097 Arthrites Autoimmunes, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, F-13288 Marseille, France;
| | - Christophe Picard
- UMR7268 ADES (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), Université Aix-Marseille, Etablissement Français du Sang, Centre National de la Recherche Scientifique (CNRS), F-13005 Marseille, France;
| | - Emmanuel Clave
- EMiLy (Ecotaxie, Microenvironnement et Developpement Lymphocytaire), Inserm U1160, Institut de Recherche Saint Louis, Université de Paris, F-75010 Paris, France;
| | - Audrey Cras
- Cell Therapy Unit, Saint Louis Hospital, Assistance-Publique Hôpitaux de Paris, F-75010 Paris, France;
- UMR1140, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, F-75006 Paris, France
| | - Zora Marjanovic
- Department of Hematology, Hopital Saint Antoine, F-75012 Paris, France;
| | - Dominique Farge
- URP-3518: Recherche Clinique en Hématologie, Immunologie et Transplantation, Institut de Recherche Saint-Louis, Université Paris Cité, F-75010 Paris, France
- UMRs 1097 Arthrites Autoimmunes, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, F-13288 Marseille, France;
- Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada
- Correspondence: (D.F.); (R.T.)
| | - Ryad Tamouza
- Translational Neuropsychiatry Laboratory, Institut National de la Santé et de la Recherche Médicale (IN-SERM, U955), Institut Mondor de Recherche Biomédicale, Université Paris Est Creteil, F-94010 Creteil, France;
- Fondation FondaMental, Département Médico-Universitaire de Psychiatrie et d’Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Assistance-Publique Hôpitaux de Paris, F-94010 Creteil, France
- Correspondence: (D.F.); (R.T.)
| |
Collapse
|
2
|
Negrini S, Contini P, Murdaca G, Puppo F. HLA-G in Allergy: Does It Play an Immunoregulatory Role? Front Immunol 2022; 12:789684. [PMID: 35082780 PMCID: PMC8784385 DOI: 10.3389/fimmu.2021.789684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Allergy is an inflammatory process determined by a cascade of immune events characterized by T-helper 2 lymphocytes polarization leading to interleukin-4 upregulation, IgE secretion, and mast cell and eosinophil activation. HLA-G molecules, both in membrane-bound and in soluble forms, are known to play a key immunoregulatory role and their involvement in allergic diseases is supported by increasing literature data. HLA-G expression and secretion is specifically induced in peripheral blood mononuclear cells of allergic patients after in vitro incubation with the causal allergen. Elevated levels of soluble HLA-G molecules are detected in serum of patients with allergic rhinitis correlating with allergen-specific IgE levels, clinical severity, drug consumption and response to allergen-specific immunotherapy. HLA-G genetic polymorphisms confer susceptibility to allergic asthma development and high levels of soluble HLA-G molecules are found in plasma and bronchoalveolar lavage fluid of patients with allergic asthma correlating with allergen-specific IgE levels. Interestingly, allergic pregnant women have lower plasma sHLA-G levels than non-allergic women during the 3rd trimester of pregnancy and at delivery. Finally, in allergic patients with atopic dermatitis HLA-G molecules are expressed by T cells, monocytes-macrophages and Langerhans cells infiltrating the dermis. Although at present is difficult to completely define the role of HLA-G molecules in allergic diseases, it may be suggested that they are specifically expressed and secreted by immune cells during the allergic reaction in an attempt to suppress allergic inflammation.
Collapse
Affiliation(s)
| | | | | | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Amodio G, Mandelli A, Curto R, Rancoita PMV, Stabilini A, Bonfanti R, de Pellegrin M, Bosi E, Di Serio C, Battaglia M, Gregori S. Altered Frequency and Phenotype of HLA-G-Expressing DC-10 in Type 1 Diabetes Patients at Onset and in Subjects at Risk to Develop the Disease. Front Immunol 2021; 12:750162. [PMID: 34659254 PMCID: PMC8517474 DOI: 10.3389/fimmu.2021.750162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 01/21/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease resulting in progressive destruction of β-cells. Several factors affecting lymphocyte and antigen-presenting cells, including dendritic cells (DCs), contribute to defective maintenance of tolerance in T1D. DC-10 are a subset of human DCs involved in IL-10-mediated tolerance. A precise monitoring of DC-10 in the peripheral blood is possible thanks to the discovery of specific biomarkers. DC-10, being cells that naturally express HLA-G, may be used for the appropriate staging of the disease. By enumerating and phenotypically characterizing DC-10 in the peripheral blood of subjects at different stages of T1D development-first-degree relatives (FDRs) of T1D patients, without (Abneg) or with (Abpos) autoantibodies, T1D patients at onset, and age-matched healthy controls (HCs)-we showed that DC-10 contain a high proportion of HLA-G-expressing cells as compared with monocytes. We reported that a low frequency of DC-10 during disease development is paralleled with the increased proportion of pro-inflammatory cDC2 cells. Moreover, DC-10 number and phenotype differ from Abneg FDRs, Abpos FDRs, and T1D patients compared with HCs, and DC-10 from T1D patients express low levels of CD83. Finally, multiple regression analysis, considering DC-10 and HLA-G-related parameters, showed that Abneg FDRs are more similar to subjects with autoimmunity than to HCs. This is the first demonstration that impairment in DC-10 number and phenotype, specifically CD83 expression, is associated with risk of developing T1D, suggesting a possible use of CD83+ DC-10 to stratify individuals at risk of T1D in conjunction with classical prognostic factors.
Collapse
Affiliation(s)
- Giada Amodio
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Mandelli
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosalia Curto
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola M. V. Rancoita
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Stabilini
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Bonfanti
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pediatrics and Neonatology, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Emanuele Bosi
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy
- TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| | - Clelia Di Serio
- University Center for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Manuela Battaglia
- Immune-Mediated Diseases Unit: From Pathogenesis to Treatment, Diabetes Research Institute (DRI), Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Kirschen GW, AlAshqar A, Miyashita-Ishiwata M, Reschke L, El Sabeh M, Borahay MA. Vascular biology of uterine fibroids: connecting fibroids and vascular disorders. Reproduction 2021; 162:R1-R18. [PMID: 34034234 DOI: 10.1530/rep-21-0087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Fibroids are benign tumors caused by the proliferation of myometrial smooth muscle cells in the uterus that can lead to symptoms such as abdominal pain, constipation, urinary retention, and infertility. While traditionally thought of as a disease process intrinsic to the uterus, accumulating evidence suggests that fibroid growth may be linked with the systemic vasculature system, although cell-intrinsic factors are certainly of principal importance in their inception. Fibroids are associated with essential hypertension and preeclampsia, as well as atherosclerosis, for reasons that are becoming increasingly elucidated. Factors such as the renin-angiotensin-aldosterone system, estrogen, and endothelial dysfunction all likely play a role in fibroid pathogenesis. In this review, we lay out a framework for reconceptualizing fibroids as a systemic vascular disorder, and discuss how pharmaceutical agents and other interventions targeting the vasculature may aid in the novel treatment of fibroids.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | | | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Arnaiz-Villena A, Juarez I, Suarez-Trujillo F, López-Nares A, Vaquero C, Palacio-Gruber J, Martin-Villa JM. HLA-G: Function, polymorphisms and pathology. Int J Immunogenet 2021; 48:172-192. [PMID: 33001562 DOI: 10.1111/iji.12513] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
HLA-G immune modulatory genes and molecules are presently being studied by a widespread number of research groups. In the present study, we do not aim to be exhaustive since the number of manuscripts published every year is overwhelming. Instead, our aim is pointing out facts about HLA-G function, polymorphism and pathology that have been confirmed by several different researchers, together with exposing aspects that may have been overlooked or not sufficiently remarked in this productive field of study. On the other hand, we question whether performing mainly studies on HLA-G and disease associations is going to give a clear answer in the future, since 40 years of study of classical HLA molecules association with disease has still given no definite answer on this issue.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Adrián López-Nares
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Christian Vaquero
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Jose M Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
6
|
Contini P, Murdaca G, Puppo F, Negrini S. HLA-G Expressing Immune Cells in Immune Mediated Diseases. Front Immunol 2020; 11:1613. [PMID: 32983083 PMCID: PMC7484697 DOI: 10.3389/fimmu.2020.01613] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
HLA-G is a HLA class Ib antigen that possesses immunomodulatory properties. HLA-G-expressing CD4+ and CD8+ T lymphocytes, NK cells, monocytes, and dendritic cells with immunoregulatory functions are present in small percentages of patients with physiologic conditions. Quantitative and qualitative derangements of HLA-G+ immune cells have been detected in several conditions in which the immune system plays an important role, such as infectious, neoplastic, and autoimmune diseases as well as in complications from transplants and pregnancy. These observations strongly support the hypothesis that HLA-G+ immune cells may be implicated in the complex mechanisms underlying the pathogenesis of these disorders.
Collapse
Affiliation(s)
| | | | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | | |
Collapse
|
7
|
Negrini S, Contini P, Pupo F, Greco M, Murdaca G, Puppo F. Expression of membrane-bound human leucocyte antigen-G in systemic sclerosis and systemic lupus erythematosus. Hum Immunol 2020; 81:162-167. [PMID: 31848026 DOI: 10.1016/j.humimm.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Human leucocyte antigen-G (HLA-G) is a nonclassical class I major histocompatibility complex (MHC) molecule characterized by complex immunoregulatory and tolerogenic functions. Membrane-bound HLA-G is expressed on the surface of different cell populations in both physiological and pathological conditions. Systemic sclerosis (SSc) is a multisystem autoimmune disease characterized by widespread tissue fibrosis, vascular lesions and immunological alterations. Systemic lupus erythematosus is the prototypic systemic autoimmune disease affecting virtually any organ system, such as skin, joints, central nervous system, or kidneys. In SSc and SLE patients, the membrane expression of HLA-G on monocytes (0.88 ± 1.54 and 0.43 ± 0.75, respectively), CD4+ (0.42 ± 0.78 and 0.63 ± 0.48, respectively), CD8+ (2.65 ± 3.47 and 1.29 ± 1.34, respectively) and CD4+ CD8+ double-positive cells (13.87 ± 15.97 and 3.79 ± 3.11, respectively) was significantly higher than in healthy controls (0.12 ± 0.07; 0.01 ± 0.01; 0.14 ± 0.20 and 0.32 ± 0.38, respectively) (p < 0.0001). Our results show that in SSc and SLE the membrane expression of HLA-G by different subpopulations of peripheral blood mononuclear cells (PBMC) is increased, suggesting a potential role of HLA-G molecules in the complex immunological pathogenesis of these two autoimmune disorders.
Collapse
Affiliation(s)
- Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Contini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Pupo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
8
|
Di Cristofaro J, Karlmark KR, Kanaan SB, Azzouz DF, El Haddad M, Hubert L, Farge-Bancel D, Granel B, Harlé JR, Hachulla E, Pardoux E, Roudier J, Picard C, Lambert NC. Soluble HLA-G Expression Inversely Correlates With Fetal Microchimerism Levels in Peripheral Blood From Women With Scleroderma. Front Immunol 2018; 9:1685. [PMID: 30158921 PMCID: PMC6104483 DOI: 10.3389/fimmu.2018.01685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/09/2018] [Indexed: 01/22/2023] Open
Abstract
Women with scleroderma (SSc) maintain significantly higher quantities of persisting fetal microchimerism (FMc) from complete or incomplete pregnancies in their peripheral blood compared to healthy women. The non-classical class-I human leukocyte antigen (HLA) molecule HLA-G plays a pivotal role for the implantation and maintenance of pregnancy and has often been investigated in offspring from women with pregnancy complications. However data show that maternal HLA-G polymorphisms as well as maternal soluble HLA-G (sHLA-G) expression could influence pregnancy outcome. Here, we aimed to investigate the underlying role of maternal sHLA-G expression and HLA-G polymorphisms on the persistence of FMc. We measured sHLA-G levels by enzyme linked immunosorbent assay in plasma samples from 88 healthy women and 74 women with SSc. Male Mc was quantified by DYS14 real-time PCR in blood samples from 58 women who had previously given birth to at least one male child. Furthermore, eight HLA-G 5'URR/3'UTR polymorphisms, previously described as influencing HLA-G expression, were performed on DNA samples from 96 healthy women and 106 women with SSc. Peripheral sHLA-G was at lower concentration in plasma from SSc (76.2 ± 48.3 IU/mL) compared to healthy women (117.5 ± 60.1 IU/mL, p < 0.0001), independently of clinical subtypes, autoantibody profiles, disease duration, or treatments. Moreover, sHLA-G levels were inversely correlated to FMc quantities (Spearman correlation, p < 0.01). Finally, women with SSc had lower sHLA-G independently of the eight HLA-G 5'URR/3'UTR polymorphisms, although they were statistically more often homozygous than heterozygous for HLA-G polymorphism genotypes -716 (G/T), -201 (G/A), 14 bp (ins/del), and +3,142 (G/A) than healthy women. In conclusion, women with SSc display less sHLA-G expression independently of the eight HLA-G polymorphisms tested. This decreased production correlates with higher quantities of persisting FMc commonly observed in blood from SSc women. These results shed some lights on the contribution of the maternal HLA-G protein to long-term persistent fetal Mc and initiate new perspectives in this field.
Collapse
Affiliation(s)
- Julie Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, "Biologie des Groupes Sanguins", Marseille, France
| | - Karlin R Karlmark
- Aix Marseille Univ, INSERM, Autoimmune Arthritis (AA), Marseille, France
| | - Sami B Kanaan
- Aix Marseille Univ, INSERM, Autoimmune Arthritis (AA), Marseille, France
| | - Doua F Azzouz
- Aix Marseille Univ, INSERM, Autoimmune Arthritis (AA), Marseille, France
| | - Marina El Haddad
- Aix Marseille Univ, INSERM, Autoimmune Arthritis (AA), Marseille, France
| | - Lucas Hubert
- Immunogenetics Laboratory, EFS-Alpes Méditerranée, Marseille, France.,Antibody Therapeutics and Immunotargeting, CRCM, INSERM U1068, Institut Paoli Calmettes, Aix-Marseille Université, Marseille, France.,UM 105, CNRS UMR7258, Marseille, France
| | - Dominique Farge-Bancel
- Unité de Médecine Interne Maladies Auto-immunes et Pathologie Vasculaire (UF 04) Hôpital Saint Louis, AP-HP, Centre de Référence des Maladies auto-immunes systémiques Rares d'Île-de-France, FAI2R, EA 3518, Institut Universitaire d'Hématologie, Paris, France
| | - Brigitte Granel
- UMR-S 1076 Endothélium, Pathologies Vasculaires et Cibles Thérapeutiques - Faculté de Pharmacie, Marseille, France.,AP-HM, Pôle de Médecine Interne, Centre de Compétence PACA Ouest pour la prise en charge des maladies autoimmunes systémiques, Marseille, France
| | - Jean Robert Harlé
- AP-HM, Pôle de Médecine Interne, Centre de Compétence PACA Ouest pour la prise en charge des maladies autoimmunes systémiques, Marseille, France
| | - Eric Hachulla
- Service de Médecine Interne, Centre National de Référence de la Sclérodermie Systémique, Hôpital Claude Huriez, Lille, France
| | - Etienne Pardoux
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Jean Roudier
- Aix Marseille Univ, INSERM, Autoimmune Arthritis (AA), Marseille, France.,Rhumatologie, IML, AP-HM, Hôpital Sainte Marguerite, Marseille, France
| | - Christophe Picard
- Aix Marseille Univ, CNRS, EFS, ADES, "Biologie des Groupes Sanguins", Marseille, France.,Immunogenetics Laboratory, EFS-Alpes Méditerranée, Marseille, France
| | - Nathalie C Lambert
- Aix Marseille Univ, INSERM, Autoimmune Arthritis (AA), Marseille, France
| |
Collapse
|