1
|
Codazzi V, Salvatore V, Ragogna F, Marzinotto I, Anselmo A, Baldoni N, Pastore MR, Martinenghi S, Stabilini A, Bosi E, Giustina A, Piemonti L, Libman I, Ismail HM, Redondo MJ, Lampasona V, Monti P, Giovenzana A, Petrelli A. Metabolic, genetic and immunological features of relatives of type 1 diabetes patients with elevated insulin resistance. J Endocrinol Invest 2025; 48:765-775. [PMID: 39656436 PMCID: PMC11876269 DOI: 10.1007/s40618-024-02497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 03/04/2025]
Abstract
PURPOSE Insulin resistance plays a pivotal role in the preclinical stages of type 1 diabetes (T1D). OBJECTIVE This study aims at exploring the genetic, metabolic, and immunological features associated with insulin resistance among individuals at risk of developing T1D. METHODS We retrospectively selected relatives of individuals with T1D from participants in the TrialNet Pathway to Prevention study. They were categorized into two groups: high-H (n = 27) and low-H (n = 30), based on the upper and lower quartiles of insulin resistance assessed using the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). Genetic predisposition was determined using the T1D Genetic Risk Score 1 (GRS1). Additionally, glucose control was evaluated through an oral glucose tolerance test and levels of metabolic hormones and inflammatory cytokines were measured in the serum. Flow cytometry analysis was employed to assess frequency and phenotype of islet-specific CD8 T cells. RESULTS While GRS1 were similar between the low-H and high-H groups, high-H individuals displayed a distinct metabolic profile, characterized by compensatory hyperinsulinemia, even while maintaining normoglycemia. Circulating cytokine levels were similar between the two groups. However, immune profiling revealed a central memory and activated profile of GAD65-specific CD8 T cells, along with an increased frequency of insulin-specific CD8 T cells in high-H individuals. The enrichment in insulin-specific CD8 T cells was independent of body mass. CONCLUSION These findings highlight the intricate interplay between insulin resistance, genetic factors, and immune activation in the context of T1D susceptibility, indicating potential connections between insulin resistance and immune responses specific to islet cells.
Collapse
Affiliation(s)
- V Codazzi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - V Salvatore
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - F Ragogna
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - I Marzinotto
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Anselmo
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - N Baldoni
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - M R Pastore
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - S Martinenghi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Stabilini
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - E Bosi
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Giustina
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - L Piemonti
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - I Libman
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - H M Ismail
- Indiana University School of Medicine, Indianapolis, USA
| | - M J Redondo
- Texas Children's Hospital, Baylor College of Medicine, Houston, USA
| | - V Lampasona
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - P Monti
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Giovenzana
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| | - A Petrelli
- IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy.
- University of Milan and Pio Albergo Trivulzio, Milan, Italy.
| |
Collapse
|
2
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
3
|
Noble JA. Fifty years of HLA-associated type 1 diabetes risk: history, current knowledge, and future directions. Front Immunol 2024; 15:1457213. [PMID: 39328411 PMCID: PMC11424550 DOI: 10.3389/fimmu.2024.1457213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate. The HLA region of the genome has been repeatedly shown to be the most important genetic risk factor for T1D, and the original reported associations have been replicated, refined, and expanded. Even with the remarkable progress through 50 years and over 5,000 reports, a comprehensive understanding of all effects of HLA on T1D remains elusive. This report represents a summary of the field as it evolved and as it stands now, enumerating many past and present challenges, and suggests possible paradigm shifts for moving forward with future studies in hopes of finally understanding all the ways in which HLA influences the pathophysiology of T1D.
Collapse
Affiliation(s)
- Janelle A. Noble
- Children’s Hospital Oakland Research Institute,
Oakland, CA, United States
- University of California San Francisco, Oakland,
CA, United States
| |
Collapse
|
4
|
Sharma R, Amdare NP, Ghosh A, Schloss J, Sidney J, Garforth SJ, Lopez Y, Celikgil A, Sette A, Almo SC, DiLorenzo TP. Structural and biochemical analysis of highly similar HLA-B allotypes differentially associated with type 1 diabetes. J Biol Chem 2024; 300:107702. [PMID: 39173948 PMCID: PMC11422593 DOI: 10.1016/j.jbc.2024.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease involving T cell-mediated destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. CD8+ T cells, responding to beta cell peptides presented by class I major histocompatibility complex (MHC) molecules, are important effectors leading to beta cell elimination. Human leukocyte antigen (HLA) B∗39:06, B∗39:01, and B∗38:01 are closely related class I MHC allotypes that nonetheless show differential association with T1D. HLA-B∗39:06 is the most predisposing of all HLA class I molecules and is associated with early age at disease onset. B∗39:01 is also associated with susceptibility to T1D, but to a lesser extent, though differing from B∗39:06 by only two amino acids. HLA-B∗38:01, in contrast, is associated with protection from the disease. Upon identifying a peptide that binds to both HLA-B∗39:06 and B∗39:01, we determined the respective X-ray structures of the two allotypes presenting this peptide to 1.7 Å resolution. The peptide residues available for T cell receptor contact and those serving as anchors were identified. Analysis of the F pocket of HLA-B∗39:06 and B∗39:01 provided an explanation for the distinct peptide C terminus preferences of the two allotypes. Structure-based modeling of the protective HLA-B∗38:01 suggested a potential reason for its peptide preferences and its reduced propensity to present 8-mer peptides compared to B∗39:06. Notably, the three allotypes showed differential binding to peptides derived from beta cell autoantigens. Taken together, our findings should facilitate identification of disease-relevant candidate T cell epitopes and structure-guided therapeutics to interfere with peptide binding.
Collapse
Affiliation(s)
- Ruby Sharma
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yessenia Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, La Jolla, California, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
5
|
Quickfall M, Cocks M, Long HM, Di Rosa F, Andrews R, Narendran P, Hesketh K, Wadley AJ. EXTOD-Immune: a randomised controlled trial to investigate whether a remotely monitored, home-based exercise intervention can reduce disease activity in people with type 1 diabetes. BMJ Open Sport Exerc Med 2024; 10:e002144. [PMID: 39224197 PMCID: PMC11367371 DOI: 10.1136/bmjsem-2024-002144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which the adaptive immune system targets insulin-producing β-cells of pancreatic islets, leading to dependence on exogenous insulin therapy. Cytotoxic (CD8+) T-cells specific for islet antigens are major players in T1D autoimmunity. Data indicate that regular exercise may preserve β-cell function in people recently diagnosed with T1D, but the role of islet-reactive CD8+ T-cells is unclear. In a randomised crossover design, this study will determine the impact of a 12-week exercise programme on the frequency and proliferative state of islet-reactive CD8+ T-cells in the peripheral blood of 20 adults diagnosed with T1D within the past 3 years. The exercise intervention will consist of three high-intensity interval training sessions per week (6-10 1 min intervals >80% maximum heart rate, with 1 min rest), the duration of which will incrementally increase from 14 to 22 min. Habitual physical activity and diet will be maintained during control and washout periods. At weeks 0, 12, 24 and 36, a fasting blood sample will be collected to quantify the frequency, phenotype and proliferative activity of islet-reactive CD8+ T-cells (primary outcome) and various clinical parameters. Glycaemic control will also be evaluated using 14-day continuous glucose monitoring at the start and end of each study arm. Findings may provide a rationale for conducting large-scale trials to evaluate the implementation of exercise into routine clinical care, particularly for people recently diagnosed with T1D when maintenance of β-cell function is critical to counteract disease progression. Trial registration number: ISRCTN79006041.
Collapse
Affiliation(s)
- Megan Quickfall
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Matthew Cocks
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Heather M Long
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Rome, Italy
- The Francis Crick Institute, London, UK
| | - Robert Andrews
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Parth Narendran
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Katie Hesketh
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Sartoris S, Del Pozzo G. Exploring the HLA complex in autoimmunity: From the risk haplotypes to the modulation of expression. Clin Immunol 2024; 265:110266. [PMID: 38851519 DOI: 10.1016/j.clim.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The genes mapping at the HLA region show high density, strong linkage disequilibrium and high polymorphism, which affect the association of HLA class I and class II genes with autoimmunity. We focused on the HLA haplotypes, genomic structures consisting of an array of specific alleles showing some degrees of genetic association with different autoimmune disorders. GWASs in many pathologies have identified variants in either the coding loci or the flanking regulatory regions, both in linkage disequilibrium in haplotypes, that are frequently associated with increased risk and may influence gene expression. We discuss the relevance of the HLA gene expression because the level of surface heterodimers determines the number of complexes presenting self-antigen and, thus, the strength of pathogenic autoreactive T cells immune response.
Collapse
Affiliation(s)
- Silvia Sartoris
- Dept. of Medicine, Section of Immunology University of Verona School of Medicine, Verona, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" National Research Council (CNR), Naples, Italy.
| |
Collapse
|
7
|
Alves Abrantes JJP, Veríssimo de Azevedo JC, Fernandes FL, Duarte Almeida V, Custódio De Oliveira LA, Ferreira de Oliveira MT, Galvão De Araújo JM, Lanza DCF, Bezerra FL, Andrade VS, Araújo de Medeiros Fernandes TA, Fernandes JV. Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed Rep 2024; 20:81. [PMID: 38628629 PMCID: PMC11019645 DOI: 10.3892/br.2024.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2023] [Indexed: 04/19/2024] Open
Abstract
The etiopathogenesis of type 1 diabetes mellitus (T1DM) is a complex multifactorial process that involves an intricate network of genetic, epigenetic, immunological, and environmental factors. Despite the advances in recent years, some aspects of the mechanisms involved in triggering the disease are still unclear. Infections with certain viruses have been suggested as possible environmental triggers for the autoimmune process that leads to selective and progressive destruction of pancreatic β-cells and insufficiency of insulin production, which is its hallmark. In this review, advances in knowledge and evidence that suggest the participation of certain viruses in the mechanisms of disease initiation and progression are described. It has been accepted that environmental factors, including viruses, can initiate and possibly sustain, accelerate, or slow down the autoimmune process and consequently damage insulin-producing pancreatic β-cells. Although the role of these agents, especially human enteroviruses, has been exhaustively studied as the most likely triggers of the activation of autoimmunity that destroys pancreatic islets and leads to T1DM, certain doubts remain. Clinical epidemiological and experimental studies in humans and animals provide consistent and increasing evidence that persistent viral infections, especially with human enteroviruses and rotavirus infections, are associated with an increased risk of the disease in individuals genetically predisposed to autoimmunity.
Collapse
Affiliation(s)
| | | | - Fernando Liberalino Fernandes
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | - Valéria Duarte Almeida
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | | | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| |
Collapse
|
8
|
Ren X, Amarajeewa AWP, Jayasinghe MDT, Garstka MA. Differences in F pocket impact on HLA I genetic associations with autoimmune diabetes. Front Immunol 2024; 15:1342335. [PMID: 38596688 PMCID: PMC11003304 DOI: 10.3389/fimmu.2024.1342335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Human leukocyte antigen (HLA) I molecules present antigenic peptides to activate CD8+ T cells. Type 1 Diabetes (T1D) is an auto-immune disease caused by aberrant activation of the CD8+ T cells that destroy insulin-producing pancreatic β cells. Some HLA I alleles were shown to increase the risk of T1D (T1D-predisposing alleles), while some reduce this risk (T1D-protective alleles). Methods Here, we compared the T1D-predisposing and T1D-protective allotypes concerning peptide binding, maturation, localization and surface expression and correlated it with their sequences and energetic profiles using experimental and computational methods. Results T1D-predisposing allotypes had more peptide-bound forms and higher plasma membrane levels than T1D-protective allotypes. This was related to the fact that position 116 within the F pocket was more conserved and made more optimal contacts with the neighboring residues in T1D-predisposing allotypes than in protective allotypes. Conclusion Our work uncovers that specific polymorphisms in HLA I molecules potentially influence their susceptibility to T1D.
Collapse
Affiliation(s)
- Xu Ren
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Endocrinology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - A. W. Peshala Amarajeewa
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | | | - Malgorzata A. Garstka
- Department of Urology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Core Research Laboratory, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Endocrinology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Thompson PJ, Pipella J, Rutter GA, Gaisano HY, Santamaria P. Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia 2023; 66:1971-1982. [PMID: 37488322 PMCID: PMC10542715 DOI: 10.1007/s00125-023-05970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.
Collapse
Affiliation(s)
- Peter J Thompson
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Jasmine Pipella
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Guy A Rutter
- CRCHUM and Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Diabetes, Endocrinology and Medicine, Faculty of Medicine, Imperial College, London, UK.
- LKC School of Medicine, Nanyang Technological College, Singapore, Republic of Singapore.
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Pere Santamaria
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
11
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
12
|
Arif S, Domingo-Vila C, Pollock E, Christakou E, Williams E, Tree TIM. Monitoring islet specific immune responses in type 1 diabetes clinical immunotherapy trials. Front Immunol 2023; 14:1183909. [PMID: 37283770 PMCID: PMC10240960 DOI: 10.3389/fimmu.2023.1183909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
The number of immunotherapeutic clinical trials in type 1 diabetes currently being conducted is expanding, and thus there is a need for robust immune-monitoring assays which are capable of detecting and characterizing islet specific immune responses in peripheral blood. Islet- specific T cells can serve as biomarkers and as such can guide drug selection, dosing regimens and immunological efficacy. Furthermore, these biomarkers can be utilized in patient stratification which can then benchmark suitability for participation in future clinical trials. This review focusses on the commonly used immune-monitoring techniques including multimer and antigen induced marker assays and the potential to combine these with single cell transcriptional profiling which may provide a greater understanding of the mechanisms underlying immuno-intervention. Although challenges remain around some key areas such as the need for harmonizing assays, technological advances mean that multiparametric information derived from a single sample can be used in coordinated efforts to harmonize biomarker discovery and validation. Moreover, the technologies discussed here have the potential to provide a unique insight on the effect of therapies on key players in the pathogenesis of T1D that cannot be obtained using antigen agnostic approaches.
Collapse
|
13
|
Okada M, Zhang V, Loaiza Naranjo JD, Tillett BJ, Wong FS, Steptoe RJ, Bergot AS, Hamilton-Williams EE. Islet-specific CD8 + T cells gain effector function in the gut lymphoid tissues via bystander activation not molecular mimicry. Immunol Cell Biol 2023; 101:36-48. [PMID: 36214093 PMCID: PMC10092732 DOI: 10.1111/imcb.12593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/14/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022]
Abstract
Type 1 diabetes (T1D) is caused by aberrant activation of autoreactive T cells specific for the islet beta cells. How islet-specific T cells evade tolerance to become effector T cells is unknown, but it is believed that an altered gut microbiota plays a role. Possible mechanisms include bystander activation of autoreactive T cells in the gut or "molecular mimicry" from cross-reactivity between gut microbiota-derived peptides and islet-derived epitopes. To investigate these mechanisms, we use two islet-specific CD8+ T cell clones and the non-obese diabetic mouse model of type 1 diabetes. Both insulin-specific G9C8 cells and IGRP-specific 8.3 cells underwent early activation and proliferation in the pancreatic draining lymph nodes but not in the Peyer's patches or mesenteric lymph nodes. Mutation of the endogenous epitope for G9C8 cells abolished their CD69 upregulation and proliferation, ruling out G9C8 cell activation by a gut microbiota derived peptide and molecular mimicry. However, previously activated islet-specific effector memory cells but not naïve cells migrated into the Peyer's patches where they increased their cytotoxic function. Oral delivery of butyrate, a microbiota derived anti-inflammatory metabolite, reduced IGRP-specific cytotoxic function. Thus, while initial activation of islet-specific CD8+ T cells occurred in the pancreatic lymph nodes, activated cells trafficked through the gut lymphoid tissues where they gained additional effector function via non-specific bystander activation influenced by the gut microbiota.
Collapse
Affiliation(s)
- Mirei Okada
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Vivian Zhang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jeniffer D Loaiza Naranjo
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Bree J Tillett
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - F Susan Wong
- Division of Infection and Immunity and Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
14
|
Al-Ghamdi BA, Al-Shamrani JM, El-Shehawi AM, Al-Johani I, Al-Otaibi BG. Role of mitochondrial DNA in diabetes Mellitus Type I and Type II. Saudi J Biol Sci 2022; 29:103434. [PMID: 36187456 PMCID: PMC9523097 DOI: 10.1016/j.sjbs.2022.103434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
Morbidity and mortality from diabetes mellitus and associated illnesses is a major problem across the globe. Anti-diabetic medicines must be improved despite existing breakthroughs in treatment approaches. Diabetes has been linked to mitochondrial dysfunction. As a result, particular mitochondrial diabetes kinds like MIDD (maternally inherited diabetes & deafness) and DAD (diabetic autonomic dysfunction) have been identified and studied (diabetes and Deafness). Some mutations as in mitochondrial DNA (mtDNA), that encodes for a significant portion of mitochondrial proteins as well as mitochondrial tRNA essential for mitochondrial protein biosynthesis, are responsible for hereditary mitochondrial diseases. Tissue-specificity and heteroplasmy have a role in the harmful phenotype of mtDNA mutations, making it difficult to generalise findings from one study to another. There are a huge increase in the number for mtDNA mutations related with human illnesses that have been identified using current sequencing technologies. In this study, we make a list on mtDNA mutations linked with diseases and diabetic illnesses and explore the methods by which they contribute to the pathology's emergence.
Collapse
Affiliation(s)
- Bandar Ali Al-Ghamdi
- Department of Cardiology and Cardiac Surgery, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia.,Department of Biotechnology, Taif University, Taif City, Saudi Arabia
| | | | | | - Intisar Al-Johani
- Department of Biotechnology, Taif University, Taif City, Saudi Arabia
| | | |
Collapse
|
15
|
Raghav A, Ashraf H, Jeong GB. Engineered Extracellular Vesicles in Treatment of Type 1 Diabetes Mellitus: A Prospective Review. Biomedicines 2022; 10:3042. [PMID: 36551798 PMCID: PMC9775549 DOI: 10.3390/biomedicines10123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Insulin replacement is an available treatment for autoimmune type 1 diabetes mellitus (T1DM). There are multiple limitations in the treatment of autoimmune diseases such as T1DM by immunosuppression using drugs and chemicals. The advent of extracellular vesicle (EV)-based therapies for the treatment of various diseases has attracted much attention to the field of bio-nanomedicine. Tolerogenic nanoparticles can induce immune tolerance, especially in autoimmune diseases. EVs can deliver cargo to specific cells without restrictions. Accordingly, EVs can be used to deliver tolerogenic nanoparticles, including iron oxide-peptide-major histocompatibility complex, polyethylene glycol-silver-2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester, and carboxylated poly (lactic-co-glycolic acid) nanoparticles coupled with or encapsulating an antigen, to effectively treat autoimmune T1DM. The present work highlights the advances in exosome-based delivery of tolerogenic nanoparticles for the treatment of autoimmune T1DM.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Sponsored by Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, India
| | - Hamid Ashraf
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N. Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
16
|
Pereira LMS, França EDS, Costa IB, Jorge EVO, Mattos PJDSM, Freire ABC, Ramos FLDP, Monteiro TAF, Macedo O, Sousa RCM, Dos Santos EJM, Freitas FB, Costa IB, Vallinoto ACR. HLA-B*13, B*35 and B*39 Alleles Are Closely Associated With the Lack of Response to ART in HIV Infection: A Cohort Study in a Population of Northern Brazil. Front Immunol 2022; 13:829126. [PMID: 35371095 PMCID: PMC8966405 DOI: 10.3389/fimmu.2022.829126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Immune reconstitution failure after HIV treatment is a multifactorial phenomenon that may also be associated with a single polymorphism of human leukocyte antigen (HLA); however, few reports include patients from the Brazilian Amazon. Our objective was to evaluate the association of the immunogenic profile of the “classical” HLA-I and HLA-II loci with treatment nonresponse in a regional cohort monitored over 24 months since HIV diagnosis. Materials and Methods Treatment-free participants from reference centers in the state of Pará, Brazil, were enrolled. Infection screening was performed using enzyme immunoassays (Murex AG/AB Combination DiaSorin, UK) and confirmed by immunoblots (Bio-Manguinhos, FIOCRUZ). Plasma viral load was quantified by real-time PCR (ABBOTT, Chicago, Illinois, USA). CD4+/CD8+ T lymphocyte quantification was performed by immunophenotyping and flow cytometry (BD Biosciences, San Jose, CA, USA). Infection was monitored via test and logistics platforms (SISCEL and SICLOM). Therapeutic response failure was inferred based on CD4+ T lymphocyte quantification after 1 year of therapy. Loci A, B and DRB1 were genotyped using PCR-SSO (One Lambda Inc., Canoga Park, CA, USA). Statistical tests were applied using GENEPOP, GraphPad Prism 8.4.3 and BioEstat 5.3. Results Of the 270 patients monitored, 134 responded to treatment (CD4+ ≥ 500 cells/µL), and 136 did not respond to treatment (CD4+ < 500 cells/µL). The allele frequencies of the loci were similar to heterogeneous populations. The allelic profile of locus B was statistically associated with treatment nonresponse, and the B*13, B*35 and B*39 alleles had the greatest probabilistic influence. The B*13 allele had the highest risk of treatment nonresponse, and carriers of the allele had a detectable viral load and a CD4+ T lymphocyte count less than 400 cells/µL with up to 2 years of therapy. The B*13 allele was associated with a switch in treatment regimens, preferably to efavirenz (EFZ)-based regimens, and among those who switched regimens, half had a history of coinfection with tuberculosis. Conclusions The allelic variants of the B locus are more associated with non-response to therapy in people living with HIV (PLHIV) from a heterogeneous population in the Brazilian Amazon.
Collapse
Affiliation(s)
| | | | - Iran Barros Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | | | | | | | | | | | - Olinda Macedo
- Retrovirus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rita Catarina Medeiros Sousa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,School of Medicine, Federal University of Pará, Belém, Brazil
| | - Eduardo José Melo Dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Igor Brasil Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
17
|
Azoury ME, Samassa F, Buitinga M, Nigi L, Brusco N, Callebaut A, Giraud M, Irla M, Lalanne AI, Carré A, Afonso G, Zhou Z, Brandao B, Colli ML, Sebastiani G, Dotta F, Nakayama M, Eizirik DL, You S, Pinto S, Mamula MJ, Verdier Y, Vinh J, Buus S, Mathieu C, Overbergh L, Mallone R. CD8 + T Cells Variably Recognize Native Versus Citrullinated GRP78 Epitopes in Type 1 Diabetes. Diabetes 2021; 70:2879-2891. [PMID: 34561224 PMCID: PMC8660990 DOI: 10.2337/db21-0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022]
Abstract
In type 1 diabetes, autoimmune β-cell destruction may be favored by neoantigens harboring posttranslational modifications (PTMs) such as citrullination. We studied the recognition of native and citrullinated glucose-regulated protein (GRP)78 peptides by CD8+ T cells. Citrullination modulated T-cell recognition and, to a lesser extent, HLA-A2 binding. GRP78-reactive CD8+ T cells circulated at similar frequencies in healthy donors and donors with type 1 diabetes and preferentially recognized either native or citrullinated versions, without cross-reactivity. Rather, the preference for native GRP78 epitopes was associated with CD8+ T cells cross-reactive with bacterial mimotopes. In the pancreas, a dominant GRP78 peptide was instead preferentially recognized when citrullinated. To further clarify these recognition patterns, we considered the possibility of citrullination in the thymus. Citrullinating peptidylarginine deiminase (Padi) enzymes were expressed in murine and human medullary epithelial cells (mTECs), with citrullinated proteins detected in murine mTECs. However, Padi2 and Padi4 expression was diminished in mature mTECs from NOD mice versus C57BL/6 mice. We conclude that, on one hand, the CD8+ T cell preference for native GRP78 peptides may be shaped by cross-reactivity with bacterial mimotopes. On the other hand, PTMs may not invariably favor loss of tolerance because thymic citrullination, although impaired in NOD mice, may drive deletion of citrulline-reactive T cells.
Collapse
Affiliation(s)
| | | | - Mijke Buitinga
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Laura Nigi
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Noemi Brusco
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Aïsha Callebaut
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthieu Giraud
- Centre de Recherche en Transplantation et Immunologie, INSERM UMR1064, Université de Nantes, Nantes, France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM, CNRS, Aix-Marseille University, Marseille, France
| | - Ana Ines Lalanne
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexia Carré
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Barbara Brandao
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L Colli
- Medical Faculty, Center for Diabetes Research and Welbio, Université Libre de Bruxelles, Brussels, Belgium
| | - Guido Sebastiani
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Dotta
- Toscana Life Sciences, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Decio L Eizirik
- Medical Faculty, Center for Diabetes Research and Welbio, Université Libre de Bruxelles, Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Sheena Pinto
- Division of Developmental Immunology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Soren Buus
- Department of International Health, Immunology and Microbiology, Panum Institute, Copenhagen, Denmark
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lut Overbergh
- Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
18
|
The Role of Mitochondrial Mutations and Chronic Inflammation in Diabetes. Int J Mol Sci 2021; 22:ijms22136733. [PMID: 34201756 PMCID: PMC8268113 DOI: 10.3390/ijms22136733] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus and related disorders significantly contribute to morbidity and mortality worldwide. Despite the advances in the current therapeutic methods, further development of anti-diabetic therapies is necessary. Mitochondrial dysfunction is known to be implicated in diabetes development. Moreover, specific types of mitochondrial diabetes have been discovered, such as MIDD (maternally inherited diabetes and deafness) and DAD (diabetes and Deafness). Hereditary mitochondrial disorders are caused by certain mutations in the mitochondrial DNA (mtDNA), which encodes for a substantial part of mitochondrial proteins and mitochondrial tRNA necessary for mitochondrial protein synthesis. Study of mtDNA mutations is challenging because the pathogenic phenotype associated with such mutations depends on the level of its heteroplasmy (proportion of mtDNA copies carrying the mutation) and can be tissue-specific. Nevertheless, modern sequencing methods have allowed describing and characterizing a number of mtDNA mutations associated with human disorders, and the list is constantly growing. In this review, we provide a list of mtDNA mutations associated with diabetes and related disorders and discuss the mechanisms of their involvement in the pathology development.
Collapse
|
19
|
Alshiekh S, Geraghty DE, Agardh D. High-resolution genotyping of HLA class I loci in children with type 1 diabetes and celiac disease. HLA 2021; 97:505-511. [PMID: 33885207 DOI: 10.1111/tan.14280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES HLA-DQ2 and DQ8 contribute to the strongest risk haplotypes for type 1 diabetes (T1D) and celiac disease (CD). The variation in genetic risk association is likely linked to different HLA class II loci susceptibility, but association studies of HLA class I alleles are scarce. The aim was to investigate HLA class I A, B, and C alleles polymorphisms in children with only T1D, CD, and a subgroup with both T1D and CD (T1D w/CD). MATERIALS AND METHODS HLA class I A, B, and C genes were genotyped using next-generation targeted sequencing. A conditional analysis was performed on 68 children with T1D, 219 children with CD and seven children with T1D w/CD enrolled from a birth cohort study at high genetic risk children from the South of Sweden. RESULTS Among 1764 HLA class I allele variants, A*29:02:01 in T1D w/CD was associated with both T1D (OR = 21.42 [1.05, 1322.4], p = 0.0231) and CD (OR = 35 [2.36, 529.12], p = 0.0051) along with C*05:01:01 with both T1D (OR = 5.54 [1.06, 24.8], p = 0.02) and CD (OR = 6.84 [1.46, 26.01], p = 0.0077). No independent effects of HLA-B allele associations were observed in T1D w/CD. CONCLUSION Although the distribution of HLA class I alleles differs between children with T1D and CD, the A*29:02:01 and C*05:01:01 alleles showed shared risk association of both diseases.
Collapse
Affiliation(s)
- Shehab Alshiekh
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
20
|
Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front Immunol 2021; 12:667989. [PMID: 33953728 PMCID: PMC8089389 DOI: 10.3389/fimmu.2021.667989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Munich, Germany
| | - James D. Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lut Overbergh
- Laboratory Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Jessica L. Dunne
- Janssen Research and Development, LLC, Raritan, NJ, United States
| |
Collapse
|
21
|
Mannering SI, Bhattacharjee P. Insulin's other life: an autoantigen in type 1 diabetes. Immunol Cell Biol 2021; 99:448-460. [PMID: 33524197 DOI: 10.1111/imcb.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
One hundred years ago, Frederick Banting, John Macleod, Charles Best and James Collip, and their collaborators, discovered insulin. This discovery paved the way to saving countless lives and ushered in the "Insulin Era." Since the discovery of insulin, we have made enormous strides in understanding its role in metabolism and diabetes. Insulin has played a dramatic role in the treatment of people with diabetes; particularly type 1 diabetes (T1D). Insulin replacement is a life-saving therapy for people with T1D and some with type 2 diabetes. T1D is an autoimmune disease caused by the T-cell-mediated destruction of the pancreatic insulin-producing beta cells that leads to a primary insulin deficiency. It has become increasingly clear that insulin, and its precursors preproinsulin (PPI) and proinsulin (PI), can play another role-not as a hormone but as an autoantigen in T1D. Here we review the role played by the products of the INS gene as autoantigens in people with T1D. From many elegant animal studies, it is clear that T-cell responses to insulin, PPI and PI are essential for T1D to develop. Here we review the evidence that autoimmune responses to insulin and PPI arise in people with T1D and discuss the recently described neoepitopes derived from the products of the insulin gene. Finally, we look forward to new approaches to deliver epitopes derived from PPI, PI and insulin that may allow immune tolerance to pancreatic beta cells to be restored in people with, or at risk of, T1D.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| |
Collapse
|
22
|
Carré A, Richardson SJ, Larger E, Mallone R. Presumption of guilt for T cells in type 1 diabetes: lead culprits or partners in crime depending on age of onset? Diabetologia 2021; 64:15-25. [PMID: 33084970 PMCID: PMC7717061 DOI: 10.1007/s00125-020-05298-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022]
Abstract
Available evidence provides arguments both for and against a primary pathogenic role for T cells in human type 1 diabetes. Genetic susceptibility linked to HLA Class II lends strong support. Histopathology documents HLA Class I hyperexpression and islet infiltrates dominated by CD8+ T cells. While both hallmarks are near absent in autoantibody-positive donors, the variable insulitis and residual beta cells of recent-onset donors suggests the existence of a younger-onset endotype with more aggressive autoimmunity and an older-onset endotype with more vulnerable beta cells. Functional arguments from ex vivo and in vitro human studies and in vivo 'humanised' mouse models are instead neutral or against a T cell role. Clinical support is provided by the appearance of islet autoantibodies before disease onset. The faster C-peptide loss and superior benefits of immunotherapies in individuals with younger-onset type 1 diabetes reinforce the view of age-related endotypes. Clarifying the relative role of T cells will require technical advances in the identification of their target antigens, in their detection and phenotyping in the blood and pancreas, and in the study of the T cell/beta cell crosstalk. Critical steps toward this goal include the understanding of the link with environmental triggers, the description of T cell changes along the natural history of disease, and their relationship with age and the 'benign' islet autoimmunity of healthy individuals. Graphical abstract.
Collapse
Affiliation(s)
- Alexia Carré
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| | - Etienne Larger
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The role of T cells specific for islet autoantigens is proven in pathogenesis of type 1 diabetes. Recently, there has been rapid expansion in the number of T-cell subsets identified, this has coincided with an increase in the repertoire of reported islet antigens mainly through the discovery of novel epitopes. A discussion of how these marry together is now warranted and timely. RECENT FINDINGS In this review, we will discuss the autoreactivity against neo-epitopes. We then explore the growing array of T-cell subsets for both CD4 T cells, including follicular and peripheral T helper cells, and CD8 T cells, discussing evolution from naïve to exhausted phenotypes. Finally, we detail how subsets correlate with disease stage and loss of β-cell function and are impacted by immunotherapy. SUMMARY The expanding list of T-cell subsets may be potentially encouraging in terms of elucidating disease mechanisms and have a role as biomarkers for disease progression. Furthermore, T-cell subsets can be used in stratifying patients for clinical trials and for monitoring immunotherapy outcomes. However, the definition of subsets needs to be refined in order to ensure that there is a uniform approach in designating T-cell subset attributes that is globally applied.
Collapse
Affiliation(s)
- Sefina Arif
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London
| | - Irma Pujol-Autonell
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London
- Biomedical Research Centre at Guy's and St Thomas' Hospitals and King's College London, London, UK
| | - Martin Eichmann
- Peter Gorer Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London
- Current address: Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
24
|
Zhang J, Khasanova E, Zhang L. Bioinformatics analysis of gene expression profiles of Inclusion body myositis. Scand J Immunol 2020; 91:e12887. [PMID: 32259312 DOI: 10.1111/sji.12887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 11/27/2022]
Abstract
Inclusion body myositis (IBM) is a disease with a poor prognosis and limited treatment options. This study aimed at exploring gene expression profile alterations, investigating the underlying mechanisms and identifying novel targets for IBM. We analysed two microarray datasets (GSE39454 and GSE128470) derived from the Gene Expression Omnibus (GEO) database. The GEO2R tool was used to screen out differentially expressed genes (DEGs) between IBM and normal samples. Gene Ontology(GO)function and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery to identify the pathways and functional annotation of DEGs. Finally, protein-protein interaction (PPI) networks were constructed using STRING and Cytoscape, in order to identify hub genes. A total of 144 upregulated DEGs and one downregulated DEG were identified. The GO enrichment analysis revealed that the immune response was the most significantly enriched term within the DEGs. The KEGG pathway analysis identified 22 significant pathways, the majority of which could be divided into the immune and infectious diseases. Following the construction of PPI networks, ten hub genes with high degrees of connectivity were picked out, namely PTPRC, IRF8, CCR5, VCAM1, HLA-DRA, TYROBP, C1QB, HLA-DRB1, CD74 and CXCL9. Our research hypothesizes that autoimmunity plays an irreplaceable role in the pathogenesis of IBM. The novel DEGs and pathways identified in this study may provide new insight into the underlying mechanisms of IBM at the molecular level.
Collapse
Affiliation(s)
- Jiuchang Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Elona Khasanova
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liming Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Abstract
In a cross-sectional study of individuals with type 1 diabetes mellitus, those who were designated to be slow disease progressors had an increased proportion of autoreactive, islet-specific CD8+ T cells expressing an ‘exhausted’ phenotype. By contrast, rapid disease progressors had increased numbers of islet-specific CD8+ T cells with a transitional memory phenotype.
Collapse
Affiliation(s)
- F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, UK.
| | - Li Wen
- Section of Endocrinology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Bender C, Rajendran S, von Herrath MG. New Insights Into the Role of Autoreactive CD8 T Cells and Cytokines in Human Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:606434. [PMID: 33469446 PMCID: PMC7813992 DOI: 10.3389/fendo.2020.606434] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022] Open
Abstract
Since the establishment of the network for pancreatic organ donors with diabetes (nPOD), we have gained unprecedented insight into the pathology of human type 1 diabetes. Many of the pre-existing "dogmas", mostly derived from studies of animal models and sometimes limited human samples, have to be revised now. For example, we have learned that autoreactive CD8 T cells are present even in healthy individuals within the exocrine pancreas. Furthermore, their "attraction" to islets probably relies on beta-cell intrinsic events, such as the over-expression of MHC class I and resulting presentation of autoantigens such as (prepro)insulin. In addition, we are discovering other signs of beta-cell dysfunction, possibly at least in part due to stress, such as the over-expression of certain cytokines. This review summarizes the latest developments focusing on cytokines and autoreactive CD8 T cells in human type 1 diabetes pathogenesis.
Collapse
|