1
|
Walker CS, Aitken JF, Vazhoor Amarsingh G, Zhang S, Cooper GJS. Amylin: emergent therapeutic opportunities in overweight, obesity and diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01125-9. [PMID: 40360789 DOI: 10.1038/s41574-025-01125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
The identification of amylin as a glucoregulatory peptide hormone with roles in meal-ending satiation sparked a surge of experimental development, which culminated in the amylin mimetic drug pramlintide. Pramlintide was approved by the FDA in 2005 for the treatment of type 1 diabetes mellitus and insulin-requiring type 2 diabetes, and was also explored as a novel anti-obesity treatment. Despite this exciting potential, efforts to develop an amylin-based anti-obesity therapeutic stalled owing to challenges around dosage frequency, safety and formulation. Generally, anti-obesity therapies have displayed modest efficacy and mixed safety profiles, leaving a clear unmet clinical need that requires addressing. Advances in peptide chemistry have reinvigorated the amylin field by enabling the manufacture of effective new amylin-based molecules, resulting in therapeutics that are now on the cusp of approval. At present, there are growing concerns around GLP1 receptor agonist-based therapeutics, in particular their association with loss of lean body mass. Additionally, treatment of patients with overweight or obesity without associated comorbidities is increasingly common. The widespread pharmacotherapy of otherwise healthy populations with overweight or obesity with the goal of improving future health requires further regulatory and ethical consideration. This Review describes how amylin controls energy homeostasis and provides a current overview of amylin-based therapeutic development.
Collapse
Affiliation(s)
| | - Jacqueline F Aitken
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Shaoping Zhang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
- School of Medical Sciences, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Welling MS, van Rossum EFC, van den Akker ELT. Antiobesity Pharmacotherapy for Patients With Genetic Obesity Due to Defects in the Leptin-Melanocortin Pathway. Endocr Rev 2025; 46:418-446. [PMID: 39929239 PMCID: PMC12063102 DOI: 10.1210/endrev/bnaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 05/10/2025]
Abstract
Lifestyle interventions are the cornerstone of obesity treatment. However, insufficient long-term effects are observed in patients with genetic obesity disorders, as their hyperphagia remains untreated. Hence, patients with genetic obesity often require additional pharmacotherapy to effectively manage and treat their hyperphagia and obesity. Recent advancements in antiobesity pharmacotherapy have expanded the range of available antiobesity medications (AOM). This includes the targeted AOM setmelanotide, approved for specific genetic obesity disorders, as well as nontargeted AOMs such as naltrexone-bupropion and glucagon-like peptide-1 analogues. Targeted AOMs have demonstrated significant weight loss, reduced obesity-related comorbidities, and improved hyperphagia and quality of life in patients with specific genetic obesity disorders. Small observational studies have shown that similar benefits from nontargeted AOMs or off-label pharmacotherapies can be achieved in patients with specific genetic obesity disorders, compared to common multifactorial obesity. In the future, novel and innovative pharmacotherapeutical options, including combination therapies and possibly gene therapy, will emerge, offering promising effects on body weight, hyperphagia, and, most importantly, quality of life for patients with a variety of genetic obesity disorders.
Collapse
Affiliation(s)
- Mila S Welling
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University of Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University of Medical Center Rotterdam, Rotterdam 3015 GD, The Netherlands
| |
Collapse
|
3
|
Morath V, Maurer S, Feuchtinger A, Walser R, Schlapschy M, Bolze F, Metzler T, Bruder J, Steiger K, Walch A, Klingenspor M, Skerra A. Long-Acting Human PASylated Leptin Reaches the Murine Central Nervous System and Offers Potential for Optimized Replacement Therapy. Mol Pharm 2025. [PMID: 40335095 DOI: 10.1021/acs.molpharmaceut.4c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Despite the multifaceted role of leptin for energy homeostasis and its broad therapeutic potential, the FDA/EMA-approved metreleptin constitutes the only leptin drug to date. To translate the promising results from previous studies on murine PASylated leptin with improved solubility and extended plasma half-life using PASylation technology─a biological alternative to PEGylation─we have developed a second-generation human leptin drug candidate and tested it rigorously in vitro and in vivo. To this end, the exposed hydrophobic Trp residue at position 100 in human leptin was replaced by Gln, which, together with the genetic fusion with a 600-residue PAS polypeptide, yielded a protein with high solubility, folding stability and receptor-stimulatory activity. In a pharmacokinetic (PK) study with wild-type mice, this modified human leptin showed an extended plasma half-life of 18.8 ± 3.6 h after subcutaneous (s.c.) injection. Furthermore, leptin-deficient mice were dosed s.c. with the modified human leptin carrying two different PAS fusion tags, PAS#1 or P/A#1, each comprising 600 residues. After only four doses, the disease phenotype, including morbid adiposity, hyperphagia, and hepatic steatosis, was completely reversed by both PASylated leptin versions, but not by the non-PASylated leptin if administered at the same dose. To assess its tissue distribution, P/A(200)-huLeptinW100Q was doubly labeled with two fluorescent dyes, which were specifically attached to the leptin and the PAS moiety, respectively. Analysis of relevant mouse organs by light sheet fluorescence microscopy after clearance revealed colocalized signals in the kidney and liver, thus indicating general stability of the PAS-leptin fusion protein in vivo. However, discrete signals were observed in the hypothalamic region, only with leptin detectable in the choroid plexus, which implies cleavage of the PAS tag during transcytosis across the physiological barriers. This study should pave the way toward a second-generation leptin drug enabling prolonged dosing intervals.
Collapse
Affiliation(s)
- Volker Morath
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- Department of Nuclear Medicine, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Stefanie Maurer
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Rebecca Walser
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Martin Schlapschy
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Florian Bolze
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Johanna Bruder
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan 85354, Germany
- EKFZ─Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich 81675, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
4
|
Brush M, Auh S, Cochran E, Tuska R, Koh C, Kleiner DE, Lightbourne M, Brown RJ. Effects of Metreleptin in Patients With Generalized Lipodystrophy Before vs After the Onset of Severe Metabolic Disease. J Clin Endocrinol Metab 2025; 110:e1051-e1061. [PMID: 38757950 PMCID: PMC11913101 DOI: 10.1210/clinem/dgae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Leptin replacement therapy with metreleptin improves metabolic abnormalities in patients with generalized lipodystrophy (GLD). OBJECTIVE Determine how timing of metreleptin initiation in the clinical course of GLD affects long-term metabolic health. METHODS Retrospective analysis of patients ≥6 months old with congenital (n = 47) or acquired (n = 16) GLD treated with metreleptin at the National Institutes of Health since 2001. Least squares means for glycated hemoglobin (HbA1c), insulin area under the curve from oral glucose tolerance tests, triglycerides, urine protein excretion, platelets, transaminases, and aspartate aminotransferase (AST) to Platelet Ratio Index for early and late treatment groups, defined by baseline metabolic health, were analyzed during median 72 (24-108) months' follow-up. RESULTS Compared to late groups, early groups based on metabolic status had higher mean ± SEM insulin area under the curve (20 831 ± 1 vs 11 948 ± 1), lower HbA1c (5.3 ± 0.3 vs 6.8 ± 0.3%), triglycerides (101 ± 1 vs 193 ± 1 mg/dL), urine protein excretion (85 ± 1.5 vs 404 ± 1.4 mg/24 h), alanine aminotransferase (30 ± 1 vs 53 ± 1 U/L), AST (23 ± 1 vs 40 ± 1 U/L), and AST to Platelet Ratio Index (0.22 ± 1.3 vs 0.78 ± 1.3), and higher platelets (257 ± 24 vs 152 ± 28 K/µL) during follow-up (P < .05). Compared to patients ≥6 years old at baseline, patients <6 years had lower HbA1c (4.5 ± 0.5 vs 6.4 ± 0.2%) and higher AST (40 ± 1vs 23 ± 1 U/L) during follow (P < .05). CONCLUSION Patients with GLD who initiated metreleptin before the onset of severe metabolic complications had better long-term control of diabetes, proteinuria, and hypertriglyceridemia. Early treatment may also result is less severe progression of liver fibrosis, but further histological studies are needed to determine the effects of metreleptin therapy on liver disease.
Collapse
Affiliation(s)
- Maiah Brush
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sungyoung Auh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca Tuska
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Koh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David E Kleiner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marissa Lightbourne
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Kennedy R, Macrohon CRL, David MLGV, Lee M, Salama AKS, Shariff A. Acquired Generalized Lipodystrophy as an Adverse Event of Combined Immune Checkpoint Inhibitor Therapy. JCEM CASE REPORTS 2025; 3:luaf023. [PMID: 39935494 PMCID: PMC11809239 DOI: 10.1210/jcemcr/luaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 02/13/2025]
Abstract
Acquired generalized lipodystrophy (AGL) is rarely associated with immune checkpoint inhibitors (ICIs). A few cases report associations with inhibitors to programmed cell death protein 1 (PD-1 inhibitors); however, association with combined immunotherapies has not been reported. We present a 48-year-old female with recurrent malignant melanoma who underwent 23 cycles of nivolumab, a PD-1 inhibitor, and 11 cycles of combined cytotoxic T lymphocyte associated antigen 4 (CTLA-4) inhibitor and PD-1 inhibitor ipilimumab-nivolumab. During the latter course of combination therapy, she experienced progressive weight loss and a dramatic change in body habitus over 3 to 6 months. Physical examination showed generalized loss of subcutaneous fat with protruding veins and muscular definition. Metabolic workup showed new-onset diabetes mellitus, a very low high-density lipoprotein, severe hypertriglyceridemia, and undetectable leptin/adiponectin levels. Whole-body fluorodeoxyglucose positron emission tomography performed for restaging and response assessment revealed generalized soft tissue edema and diffuse hepatic steatosis. An excisional skin biopsy identified changes consistent with involutional lipoatrophy/lipodystrophy. Treatment included insulin (average total daily dose 0.13-0.26 Units/kg/day) and a combination of lipid-lowering therapy (statins, fenofibrate, icosapent ethyl), which led to marked improvement in triglycerides and symptoms. This case further underscores the emerging challenges with endocrinopathies associated with checkpoint inhibitors.
Collapse
Affiliation(s)
- Randol Kennedy
- Department of Endocrinology, Duke University Medical Center, Durham, NC 27710-1000, USA
| | | | | | - Meg Lee
- Department of Endocrinology, Duke University Medical Center, Durham, NC 27710-1000, USA
| | - April K S Salama
- Department of Endocrinology, Duke University Medical Center, Durham, NC 27710-1000, USA
| | - Afreen Shariff
- Department of Endocrinology, Duke University Medical Center, Durham, NC 27710-1000, USA
| |
Collapse
|
6
|
He J, Luo X, Liu J, Sun M, Zhang C. Adverse drug events associated with metreleptin administration: a real-world pharmacovigilance study from 2014 to 2024 using the FAERS database. Expert Opin Drug Saf 2024:1-12. [PMID: 39695107 DOI: 10.1080/14740338.2024.2444575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND This study analyzed adverse drug event (ADE) signals associated with metreleptin using the FDA Adverse Event Reporting System (FAERS) to provide insights for safe clinical use. RESEARCH DESIGN AND METHODS Data from 1 January 2014, to 31 March 2024, were extracted. Signal intensity for adverse events was assessed using reporting odds ratio (ROR), Medicines and Healthcare Products Regulatory Agency (MHRA), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS) methods. Time-to-onset (TTO) correlations were evaluated using the Weibull shape parameter (WSP). Logistic regression identified potential hospitalization risk factors. RESULTS 4,000 ADE reports were identified, with 1,025 significant events mainly involving females (66.73%) and reported by healthcare professionals (67.80%), primarily from the United States (84.10%). 101 preferred term (PT) signals were confirmed by all methods, with 57 PTs not listed on the drug label. Overall TTO was 547 days (IQR: 113-1325), with gastrointestinal disorders and investigations as hospitalization risk factors. CONCLUSIONS This study provides critical insights into the TTO of ADEs related to metreleptin, informing safe clinical application and emphasizing the importance of monitoring potential side effects.
Collapse
Affiliation(s)
- Jinhao He
- Department of Pharmacy, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xuehu Luo
- Department of Pharmacy, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jie Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, China
| |
Collapse
|
7
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Angelidi AM, Stefanakis K, Chou SH, Valenzuela-Vallejo L, Dipla K, Boutari C, Ntoskas K, Tokmakidis P, Kokkinos A, Goulis DG, Papadaki HA, Mantzoros CS. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr Rev 2024; 45:676-708. [PMID: 38488566 DOI: 10.1210/endrev/bnae011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 09/18/2024]
Abstract
Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantinos Stefanakis
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Sharon H Chou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Serres 62100, Greece
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Konstantinos Ntoskas
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Panagiotis Tokmakidis
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
- Department of Internal Medicine, 251 Air Force General Hospital, Athens 11525, Greece
| | - Alexander Kokkinos
- First Propaedeutic Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, School of Medicine, University of Crete, Heraklion 71500, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02115, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (BWH), Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
10
|
Vigouroux C, Mosbah H, Vatier C. Leptin replacement therapy in the management of lipodystrophy syndromes. ANNALES D'ENDOCRINOLOGIE 2024; 85:201-204. [PMID: 38871500 DOI: 10.1016/j.ando.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipodystrophy syndromes are rare diseases of genetic or acquired origin, characterized by quantitative and qualitative defects in adipose tissue. The metabolic consequences of lipodystrophy syndromes, such as insulin resistant diabetes, hypertriglyceridemia and hepatic steatosis, are frequently very difficult to treat, resulting in significant risks of acute and/or chronic complications and of decreased quality of life. The production of leptin by lipodystrophic adipose tissue is decreased, more severely in generalized forms of lipodystrophy, where adipose tissue is absent from almost all body fat depots, than in partial forms of the disease, where lipoatrophy affects only some parts of the body and can be associated with increased body fat in other anatomical regions. Several lines of evidence in preclinical and clinical models have shown that leptin replacement therapy could improve the metabolic complications of lipodystrophy syndromes. Metreleptin, a recombinant leptin analogue, was approved as an orphan drug to treat the metabolic complications of leptin deficiency in patients with generalized lipodystrophy in the USA or with either generalized or partial lipodystrophy in Japan and Europe. In this brief review, we will discuss the benefits and limitations of this therapy, and the new expectations arising from the recent development of a therapeutic monoclonal antibody able to activate the leptin receptor.
Collapse
Affiliation(s)
- Corinne Vigouroux
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France.
| | - Héléna Mosbah
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France; Service endocrinologie, diabétologie, nutrition, centre de compétence PRISIS, CHU La Milétrie, Poitiers, France; Université Paris Cité, ECEVE UMR 1123, Inserm, Paris, France
| | - Camille Vatier
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France
| |
Collapse
|
11
|
Giannakogeorgou A, Roden M. Role of lifestyle and glucagon-like peptide-1 receptor agonists for weight loss in obesity, type 2 diabetes and steatotic liver diseases. Aliment Pharmacol Ther 2024; 59 Suppl 1:S52-S75. [PMID: 38813830 DOI: 10.1111/apt.17848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 05/31/2024]
Abstract
BACKGROUND The current obesity pandemic has given rise to associated comorbidities and complications, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). During the last decade, certain glucagon-like peptide 1 receptor agonists (GLP-1RA), originally developed as antihyperglycemic drugs, also demonstrated efficacy for weight loss. AIMS To review shared pathophysiologic features of common metabolic diseases and compare therapeutic strategies to reduce body weight and related complications. METHODS We performed an extensive literature research to describe the effects of lifestyle modification, first-generation anti-obesity drugs, and GLP-1RA on weight loss in humans with obesity, type 2 diabetes and MASLD. RESULTS Until recently, treatment of obesity has been limited to lifestyle modification, which offer moderate degree and sustainability of weight loss. The few approved first-generation anti-obesity drugs are either limited to short term use or to certain forms of obesity. Some GLP-1RA significantly decrease caloric intake and body weight. Liraglutide and semaglutide have therefore been approved for treating people with obesity. They also lead to a reduction of hepatic fat content and inflammation in people with biopsy-confirmed MASLD. Possible limitations comprise adverse effects, treatment adherence and persistence. CONCLUSION Certain GLP-1RA are superior to lifestyle modification and first-generation anti-obesity drugs in inducing weight loss. They have therefore markedly changed the portfolio of obesity treatment with additional beneficial effects on steatotic liver disease.
Collapse
Affiliation(s)
- Anna Giannakogeorgou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
12
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
13
|
Bhatia R, Chennupathi P, Rosenstein ED, Advani S. Spontaneous Remission of Acquired Generalized Lipodystrophy Presenting in the Postpartum Period. JCEM CASE REPORTS 2024; 2:luae009. [PMID: 38314238 PMCID: PMC10836637 DOI: 10.1210/jcemcr/luae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 02/06/2024]
Abstract
Acquired generalized lipodystrophy (AGL) is a rare condition characterized by the diffuse loss of adipose tissue resulting in hyperglycemia, severe insulin resistance, and sequelae of metabolic disease. Here, we report the case of a 32-year-old woman who developed uncontrolled hyperglycemia and significant weight loss within 2 months postpartum. Upon endocrine evaluation, she was found to have generalized loss of adiposity, hypoleptinemia, and persistent hyperglycemia despite aggressive insulin administration. Glycemic response was obtained with U-500 intramuscular insulin, pioglitazone, and metformin-sitagliptin. At 14 months postpartum, the patient achieved spontaneous remission with normoglycemia off medication and restoration of adipose tissue deposition. Autoimmune workup revealed positive antinuclear antibodies (ANA) and anti-U1-ribonucleoprotein (anti-U1-RNP) titers, suggestive of an autoimmune etiology to her condition. This case of AGL represents the first reported case of spontaneous remission and the first to develop in the postpartum period.
Collapse
Affiliation(s)
- Ranvir Bhatia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prathyusha Chennupathi
- Division of Rheumatology, Overlook Medical Center, Atlantic Health System, Summit, NJ 07901, USA
| | - Elliot D Rosenstein
- Division of Rheumatology, Overlook Medical Center, Atlantic Health System, Summit, NJ 07901, USA
- Atlantic Medical Group, Atlantic Health System, Morristown, NJ 07960, USA
| | - Sonoo Advani
- Atlantic Medical Group, Atlantic Health System, Morristown, NJ 07960, USA
- Division of Endocrinology, Overlook Medical Center, Atlantic Health System, Summit, NJ 07901, USA
| |
Collapse
|
14
|
Tiwari M, Mcilroy GD. From scarcity to solutions: Therapeutic strategies to restore adipose tissue functionality in rare disorders of lipodystrophy. Diabet Med 2023; 40:e15214. [PMID: 37638531 DOI: 10.1111/dme.15214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
AIMS Lipodystrophy is a rare disorder characterised by abnormal or deficient adipose tissue formation and distribution. It poses significant challenges to affected individuals, including the development of severe metabolic complications like diabetes and fatty liver disease. These conditions are often chronic, debilitating and life-threatening, with limited treatment options and a lack of specialised expertise. This review aims to raise awareness of lipodystrophy disorders and highlights therapeutic strategies to restore adipose tissue functionality. METHODS Extensive research has been conducted, including both historical and recent advances. We have examined and summarised the literature to provide an overview of potential strategies to restore adipose tissue functionality and treat/reverse metabolic complications in lipodystrophy disorders. RESULTS A wealth of basic and clinical research has investigated various therapeutic approaches for lipodystrophy. These include ground-breaking methods such as adipose tissue transplantation, innovative leptin replacement therapy, targeted inhibition of lipolysis and cutting-edge gene and cell therapies. Each approach shows great potential in addressing the complex challenges posed by lipodystrophy. CONCLUSIONS Lipodystrophy disorders require urgent attention and innovative treatments. Through rigorous basic and clinical research, several promising therapeutic strategies have emerged that could restore adipose tissue functionality and reverse the severe metabolic complications associated with this condition. However, further research and collaboration between academics, clinicians, patient advocacy groups and pharmaceutical companies will be crucial in transforming these scientific breakthroughs into effective and viable treatment options for individuals and families affected by lipodystrophy. Fostering such interdisciplinary partnerships could pave the way for a brighter future for those battling this debilitating disorder.
Collapse
Affiliation(s)
- Mansi Tiwari
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - George D Mcilroy
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
15
|
Tschöp MH, Friedman JM. Seeking satiety: From signals to solutions. Sci Transl Med 2023; 15:eadh4453. [PMID: 37992155 DOI: 10.1126/scitranslmed.adh4453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Remedies for the treatment of obesity date to Hippocrates, when patients with obesity were directed to "reduce food and avoid drinking to fullness" and begin "running during the night." Similar recommendations have been repeated ever since, despite the fact that they are largely ineffective. Recently, highly effective therapeutics were developed that may soon enable physicians to manage body weight in patients with obesity in a manner similar to the way that blood pressure is controlled in patients with hypertension. These medicines have grown out of a revolution in our understanding of the molecular and neural control of appetite and body weight, reviewed here.
Collapse
Affiliation(s)
- Matthias H Tschöp
- Helmholtz Munich and Technical University Munich, Munich, 85758 Germany
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
16
|
Altarejos JY, Pangilinan J, Podgrabinska S, Akinci B, Foss-Freitas M, Neidert AH, Ray Y, Zheng W, Kim S, Kamat V, Huang M, Min S, Mastaitis J, Dominguez-Gutierrez G, Kim JH, Stevis P, Huang T, Zambrowicz B, Olson WC, Godin S, Bradley E, Gewitz AD, Baker M, Hench R, Davenport MS, Chenevert TL, DiPaola F, Yancopoulos GD, Murphy AJ, Herman GA, Musser BJ, Dansky H, Harp J, Gromada J, Sleeman MW, Oral EA, Olenchock BA. Preclinical, randomized phase 1, and compassionate use evaluation of REGN4461, a leptin receptor agonist antibody for leptin deficiency. Sci Transl Med 2023; 15:eadd4897. [PMID: 37992152 DOI: 10.1126/scitranslmed.add4897] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Deficiency in the adipose-derived hormone leptin or leptin receptor signaling causes class 3 obesity in individuals with genetic loss-of-function mutations in leptin or its receptor LEPR and metabolic and liver disease in individuals with hypoleptinemia secondary to lipoatrophy such as in individuals with generalized lipodystrophy. Therapies that restore leptin-LEPR signaling may resolve these metabolic sequelae. We developed a fully human monoclonal antibody (mAb), REGN4461 (mibavademab), that activates the human LEPR in the absence or presence of leptin. In obese leptin knockout mice, REGN4461 normalized body weight, food intake, blood glucose, and insulin sensitivity. In a mouse model of generalized lipodystrophy, REGN4461 alleviated hyperphagia, hyperglycemia, insulin resistance, dyslipidemia, and hepatic steatosis. In a phase 1, randomized, double-blind, placebo-controlled two-part study, REGN4461 was well tolerated with an acceptable safety profile. Treatment of individuals with overweight or obesity with REGN4461 decreased body weight over 12 weeks in those with low circulating leptin concentrations (<8 ng/ml) but had no effect on body weight in individuals with higher baseline leptin. Furthermore, compassionate-use treatment of a single patient with atypical partial lipodystrophy and a history of undetectable leptin concentrations associated with neutralizing antibodies to metreleptin was associated with noteable improvements in circulating triglycerides and hepatic steatosis. Collectively, these translational data unveil an agonist LEPR mAb that may provide clinical benefit in disorders associated with relatively low leptin concentrations.
Collapse
Affiliation(s)
- Judith Y Altarejos
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jeffrey Pangilinan
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Simona Podgrabinska
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Baris Akinci
- Izmir Biomedicine and Genome Center, 35340 Izmir, Turkey
| | - Maria Foss-Freitas
- Brehm Center for Diabetes Research, Caswell Diabetes Institute, and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam H Neidert
- Brehm Center for Diabetes Research, Caswell Diabetes Institute, and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yonaton Ray
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wenjun Zheng
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Steven Kim
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vishal Kamat
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Meilin Huang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Soo Min
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jason Mastaitis
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Jee-Hae Kim
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Panayiotis Stevis
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Brian Zambrowicz
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William C Olson
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Stephen Godin
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elizabeth Bradley
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew D Gewitz
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Mark Baker
- Brehm Center for Diabetes Research, Caswell Diabetes Institute, and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita Hench
- Brehm Center for Diabetes Research, Caswell Diabetes Institute, and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew S Davenport
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L Chenevert
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank DiPaola
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gary A Herman
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Bret J Musser
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Hayes Dansky
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Joyce Harp
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jesper Gromada
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Mark W Sleeman
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elif A Oral
- Brehm Center for Diabetes Research, Caswell Diabetes Institute, and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin A Olenchock
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
17
|
Funcke JB, Moepps B, Roos J, von Schnurbein J, Verstraete K, Fröhlich-Reiterer E, Kohlsdorf K, Nunziata A, Brandt S, Tsirigotaki A, Dansercoer A, Suppan E, Haris B, Debatin KM, Savvides SN, Farooqi IS, Hussain K, Gierschik P, Fischer-Posovszky P, Wabitsch M. Rare Antagonistic Leptin Variants and Severe, Early-Onset Obesity. N Engl J Med 2023; 388:2253-2261. [PMID: 37314706 DOI: 10.1056/nejmoa2204041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hormone absence or inactivity is common in congenital disease, but hormone antagonism remains controversial. Here, we characterize two novel homozygous leptin variants that yielded antagonistic proteins in two unrelated children with intense hyperphagia, severe obesity, and high circulating levels of leptin. Both variants bind to the leptin receptor but trigger marginal, if any, signaling. In the presence of nonvariant leptin, the variants act as competitive antagonists. Thus, treatment with recombinant leptin was initiated at high doses, which were gradually lowered. Both patients eventually attained near-normal weight. Antidrug antibodies developed in the patients, although they had no apparent effect on efficacy. No severe adverse events were observed. (Funded by the German Research Foundation and others.).
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Barbara Moepps
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Julian Roos
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Julia von Schnurbein
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Kenneth Verstraete
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Elke Fröhlich-Reiterer
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Katja Kohlsdorf
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Adriana Nunziata
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Stephanie Brandt
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Alexandra Tsirigotaki
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Ann Dansercoer
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Elisabeth Suppan
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Basma Haris
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Klaus-Michael Debatin
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Savvas N Savvides
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - I Sadaf Farooqi
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Khalid Hussain
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Peter Gierschik
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Pamela Fischer-Posovszky
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| | - Martin Wabitsch
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine (J.-B.F., J.R., J.S., K.K., A.N., S.B., P.F.-P., M.W.), the Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products (B.M., P.G.), and the Department of Pediatrics and Adolescent Medicine (K.-M.D.), Ulm University Medical Center, Ulm, Germany; the Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas (J.-B.F.); the Unit for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium (K.V., A.T., A.D., S.N.S.); the Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria (E.F.-R., E.S.); the Division of Endocrinology, Department of Pediatrics, Sidra Medicine, Doha, Qatar (B.H., K.H.); and Wellcome Trust-Medical Research Council Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom (I.S.F.)
| |
Collapse
|
18
|
Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, Stanciu GD, Szilagyi A, Pogonea I, Bordeianu G, Soroceanu RP, Andrițoiu CV, Anghel MM, Munteanu D, Cernescu IT, Tamba BI. 360-Degree Perspectives on Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1119. [PMID: 37374323 PMCID: PMC10304508 DOI: 10.3390/medicina59061119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Alarming statistics show that the number of people affected by excessive weight has surpassed 2 billion, representing approximately 30% of the world's population. The aim of this review is to provide a comprehensive overview of one of the most serious public health problems, considering that obesity requires an integrative approach that takes into account its complex etiology, including genetic, environmental, and lifestyle factors. Only an understanding of the connections between the many contributors to obesity and the synergy between treatment interventions can ensure satisfactory outcomes in reducing obesity. Mechanisms such as oxidative stress, chronic inflammation, and dysbiosis play a crucial role in the pathogenesis of obesity and its associated complications. Compounding factors such as the deleterious effects of stress, the novel challenge posed by the obesogenic digital (food) environment, and the stigma associated with obesity should not be overlooked. Preclinical research in animal models has been instrumental in elucidating these mechanisms, and translation into clinical practice has provided promising therapeutic options, including epigenetic approaches, pharmacotherapy, and bariatric surgery. However, more studies are necessary to discover new compounds that target key metabolic pathways, innovative ways to deliver the drugs, the optimal combinations of lifestyle interventions with allopathic treatments, and, last but not least, emerging biological markers for effective monitoring. With each passing day, the obesity crisis tightens its grip, threatening not only individual lives but also burdening healthcare systems and societies at large. It is high time we took action as we confront the urgent imperative to address this escalating global health challenge head-on.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Cătălin-Cezar Caratașu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Levon Gabrielian
- Department of Anatomy and Pathology, The University of Adelaide, Adelaide 5000, Australia;
| | - Otilia Elena Frăsinariu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Elisabeta Checheriță
- 2nd Dental Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Ina Pogonea
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Gabriela Bordeianu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Petru Soroceanu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Specialization of Nutrition and Dietetics, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Maria Mihalache Anghel
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Diana Munteanu
- Institute of Mother and Child, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2062 Chisinau, Moldova;
| | - Irina Teodora Cernescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| |
Collapse
|
19
|
Würfel M, Blüher M, Stumvoll M, Ebert T, Kovacs P, Tönjes A, Breitfeld J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines 2023; 11:biomedicines11051427. [PMID: 37239098 DOI: 10.3390/biomedicines11051427] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Adipokines provide an outstanding role in the comprehensive etiology of obesity and may link adipose tissue dysfunction to further metabolic and cardiovascular complications. Although several adipokines have been identified in terms of their physiological roles, many regulatory circuits remain unclear and translation from experimental studies to clinical applications has yet to occur. Nevertheless, due to their complex metabolic properties, adipokines offer immense potential for their use both as obesity-associated biomarkers and as relevant treatment strategies for overweight, obesity and metabolic comorbidities. To provide an overview of the current clinical use of adipokines, this review summarizes clinical studies investigating the potential of various adipokines with respect to diagnostic and therapeutic treatment strategies for obesity and linked metabolic disorders. Furthermore, an overview of adipokines, for which a potential for clinical use has been demonstrated in experimental studies to date, will be presented. In particular, promising data revealed that fibroblast growth factor (FGF)-19, FGF-21 and leptin offer great potential for future clinical application in the treatment of obesity and related comorbidities. Based on data from animal studies or other clinical applications in addition to obesity, adipokines including adiponectin, vaspin, resistin, chemerin, visfatin, bone morphogenetic protein 7 (BMP-7) and tumor necrosis factor alpha (TNF-α) provide potential for human clinical application.
Collapse
Affiliation(s)
- Marleen Würfel
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Thomas Ebert
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| | - Jana Breitfeld
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, Liebigstr. 18, 04103 Leipzig, Germany
| |
Collapse
|
20
|
Chakhtoura M, Haber R, Ghezzawi M, Rhayem C, Tcheroyan R, Mantzoros CS. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. EClinicalMedicine 2023; 58:101882. [PMID: 36992862 PMCID: PMC10041469 DOI: 10.1016/j.eclinm.2023.101882] [Citation(s) in RCA: 191] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Obesity is an epidemic and a public health threat. Medical weight management remains one of the options for the treatment of excess weight and recent advances have revolutionized how we treat, and more importantly how we will be treating obesity in the near future. Metreleptin and Setmelanotide are currently indicated for rare obesity syndromes, and 5 other medications (orlistat, phentermine/topiramate, naltrexone/bupropion, liraglutide, semaglutide) are approved for non-syndromic obesity. Tirzepatide is about to be approved, and other drugs, with exciting novel mechanisms of action primarily based on incretins, are currently being investigated in different phases of clinical trials. The majority of these compounds act centrally, to reduce appetite and increase satiety, and secondarily, in the gastrointestinal tract to slow gastric emptying. All anti-obesity medications improve weight and metabolic parameters, with variable potency and effects depending on the specific drug. The currently available data do not support a reduction in hard cardiovascular outcomes, but it is almost certain that such data are forthcoming in the very near future. The choice of the anti-obesity medication needs to take into consideration the patient's clinical and biochemical profile, co-morbidities, and drug contra-indications, as well as expected degree of weight loss and improvements in cardio-renal and metabolic risk. It also remains to be seen whether precision medicine may offer personalized solutions to individuals with obesity, and whether it may represent the future of medical weight management along with the development of novel, very potent, anti-obesity medications currently in the pipeline. Funding None.
Collapse
Affiliation(s)
- Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rachelle Haber
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Raya Tcheroyan
- Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Christos S. Mantzoros
- Beth Israel Deaconess Medical Center and Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
- Corresponding author. Harvard Medical School, AN-249, 330 Brookline Ave, Boston, MA 02215, USA.
| |
Collapse
|
21
|
Calcaterra V, Magenes VC, Rossi V, Fabiano V, Mameli C, Zuccotti G. Lipodystrophies in non-insulin-dependent children: Treatment options and results from recombinant human leptin therapy. Pharmacol Res 2023; 187:106629. [PMID: 36566927 DOI: 10.1016/j.phrs.2022.106629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Lipodystrophy is a general definition containing different pathologies which, except for those observed in insulin-treated subjects falling outside the scope of this paper, are characterized by total or partial lack of body fat, that, according to the amount of missing adipose tissue, are divided in generalized or partial lipodystrophy. These diseases are characterized by leptin deficiency, which often leads to metabolic derangement, causing insulin resistance, dyslipidemia, and increasing cardiovascular risk. In this narrative review, we presentend the clinical presentation of different types of lipodystrophies and metabolic unbalances related to disease in children and adolescents, focusing on the main treatment options and the novel results from recombinant human leptin (metreleptin) therapy. Milestones in the management of lipodystrophy include lifestyle modification as diet and physical activity, paired with hypoglycemic drugs, insulin, hypolipidemic drugs, and other drugs with the aim of treating lipodystrophy complications. Metreleptin has been recently approved for pediatric patients with general lipodystrophy (GL)> 2 years of age and for children with partial lipodystrophy (PL)> 12 years of age not controlled with conventional therapies. New therapeutic strategies are currently being investigated, especially for patients with PL forms, specifically, liver-targeted therapies. Further studies are needed to achieve the most specific and precise treatment possible.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy.
| | | | - Virginia Rossi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy
| | - Valentina Fabiano
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, 20154 Milan, Italy; Department of Biomedical and Clinical Sciences, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
22
|
Xu Y, Zhu H, Li W, Chen D, Xu Y, Xu A, Ye D. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: from experimental insights to clinical studies. Pharmacol Ther 2022; 240:108284. [PMID: 36162728 DOI: 10.1016/j.pharmthera.2022.108284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 15% of women of reproductive age worldwide. It is the most prevalent endocrine disorder with marked risks for female infertility, type 2 diabetes mellitus (T2DM), psychiatric disorders and gynecological cancers. Although the pathophysiology of PCOS remains largely elusive, growing evidence suggests a close link with obesity and its related metabolic disorders. As a highly active endocrine cell population, hypertrophic adipocytes in obesity have disturbed production of a vast array of adipokines, biologically active peptides that exert pleiotropic effects on homeostatic regulation of glucose and lipid metabolism. In parallel with their crucial roles in the pathophysiology of obesity-induced metabolic diseases, adipokines have recently been identified as promising targets for novel therapeutic strategies for multiple diseases. Current treatments for PCOS are suboptimal with insufficient alleviation of all symptoms. Novel findings in adipokine-targeted agents may provide important insight into the development of new drugs for PCOS. This Review presents an overview of the current understanding of mechanisms that link PCOS to obesity and highlights emerging evidence of adipose-ovary crosstalk as a pivotal mediator of PCOS pathogenesis. We summarize recent findings of preclinical and clinical studies that reveal the therapeutic potential of adipokine-targeted novel approaches to PCOS and its related metabolic disorders. We also discuss the critical gaps in knowledge that need to be addressed to guide the development of adipokine-based novel therapies for PCOS.
Collapse
Affiliation(s)
- Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiqiu Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Danxia Chen
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
23
|
Mosbah H, Akinci B, Araújo-Vilar D, Carrion Tudela J, Ceccarini G, Collas P, Farooqi IS, Fernández-Pombo A, Jéru I, Karpe F, Krause K, Maffei M, Miehle K, Oral E, Perez de Tudela N, Prieur X, Rochford J, Sanders R, Santini F, Savage DB, von Schnurbein J, Semple R, Stears A, Sorkina E, Vantyghem MC, Vatier C, Vidal-Puig A, Vigouroux C, Wabitsch M. Proceedings of the annual meeting of the European Consortium of Lipodystrophies (ECLip) Cambridge, UK, 7-8 April 2022. ANNALES D'ENDOCRINOLOGIE 2022; 83:461-468. [PMID: 36206842 DOI: 10.1016/j.ando.2022.07.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Lipodystrophy syndromes are rare diseases with defects in the development or maintenance of adipose tissue, frequently leading to severe metabolic complications. They may be genetic or acquired, with variable clinical forms, and are largely underdiagnosed. The European Consortium of Lipodystrophies, ECLip, is a fully functional non-profit network of European centers of excellence working in the field of lipodystrophies. It provides a favorable environment to promote large Europe-wide and international collaborations to increase the basic scientific understanding and clinical management of these diseases. It works with patient advocacy groups to increase public awareness. The network also promotes a European Patient Registry of lipodystrophies, as a collaborative research platform for consortium members. The annual congress organized gives an update of the findings of network research groups, highlighting clinical and fundamental aspects. The talks presented during the meeting in Cambridge, UK, in 2022 are summarized in these minutes.
Collapse
Affiliation(s)
- Héléna Mosbah
- Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine University Hospital, Endocrinology Department, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France; Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Baris Akinci
- Division of Endocrinology and Metabolism, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - David Araújo-Vilar
- UETeM-Molecular Pathology Group. Department of Medicine, IDIS-CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Carrion Tudela
- Asociación Internacional de Familiares y Afectados de Lipodistrofias, Calle San Cristobal 7, 30850 Totana, Murcia, España
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Department of Clinical and Experimental Medicine, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Philippe Collas
- Department of Molecular Medicine, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway; Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Antía Fernández-Pombo
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Isabelle Jéru
- Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France; Assistance Publique-Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière University Hospital, Department of Genetics, Paris, France
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK; National Institute for Health and Care Research, Oxford Biomedical Research Centre, Oxford University Hospitals Foundation Trust, Oxford, UK
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Margherita Maffei
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Konstanze Miehle
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Elif Oral
- Division of Metabolism, Endocrinology & Diabetes and Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA
| | - Naca Perez de Tudela
- Asociación Internacional de Familiares y Afectados de Lipodistrofias, Calle San Cristobal 7, 30850 Totana, Murcia, España
| | - Xavier Prieur
- Nantes Université, CNRS, Inserm, l'institut du thorax, 44000 Nantes, France
| | - Justin Rochford
- The Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Department of Clinical and Experimental Medicine, Endocrinology Unit, University Hospital of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - David B Savage
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia von Schnurbein
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Robert Semple
- Centre for Cardiovascular Science, The University of Edinburgh, and MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, UK
| | - Anna Stears
- Institute of Metabolic Science, University of Cambridge, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Ekaterina Sorkina
- Endocrinology Research Centre, 11, ulitsa Dmitriya Ulianova, 117036 Moscow, Russia
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology, and Metabolism, CHU Lille, and Inserm, Institut Pasteur Lille, Lille University, U1190 - EGID, 59000 Lille, France
| | - Camille Vatier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine University Hospital, Endocrinology Department, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France; Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, MDU MRC, and Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Corinne Vigouroux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine University Hospital, Endocrinology Department, National Reference Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France; Sorbonne University, Inserm UMR_S 938, Saint-Antoine Research Centre, Cardiometabolism and Nutrition University Hospital Institute (ICAN), Paris, France.
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
24
|
Raman V, Gupta A, Ashraf AP, Breidbart E, Gourgari E, Kamboj M, Kohn B, Krishnan S, Lahoti A, Matlock K, Mehta S, Mistry S, Miller R, Page L, Reynolds D, Han JC. Pharmacologic Weight Management in the Era of Adolescent Obesity. J Clin Endocrinol Metab 2022; 107:2716-2728. [PMID: 35932277 DOI: 10.1210/clinem/dgac418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Pediatric obesity is a serious health problem in the United States. While lifestyle modification therapy with dietary changes and increased physical activity are integral for the prevention and treatment of mild to moderate obesity in youth, only a modest effect on sustained weight reduction is observed in children and young adults with severe obesity. This underscores the need for additional evidence-based interventions for children and adolescents with severe obesity, including pharmacotherapy, before considering invasive procedures such as bariatric surgery. EVIDENCE ACQUISITION This publication focuses on recent advances in pharmacotherapy of obesity with an emphasis on medications approved for common and rarer monogenic forms of pediatric obesity. EVIDENCE SYNTHESIS We review medications currently available in the United States, both those approved for weight reduction in children and "off-label" medications that have a broad safety margin. CONCLUSION It is intended that this review will provide guidance for practicing clinicians and will encourage future exploration for successful pharmacotherapy and other interventions for obesity in youth.
Collapse
Affiliation(s)
- Vandana Raman
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84113, USA
| | - Anshu Gupta
- Department of Pediatrics, Children's Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Ambika P Ashraf
- Division of Pediatric Endocrinology & Diabetes, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Emily Breidbart
- Department of Pediatrics, Division Pediatric Endocrinology and Diabetes, NYU Grossman School of Medicine, New York, New York 10016, USA
| | - Evgenia Gourgari
- Department of Pediatrics, Division of Pediatric Endocrinology, Georgetown University, Washington, District of Columbia 20007, USA
| | - Manmohan Kamboj
- Division of Pediatric Endocrinology, Nationwide Children's Hospital at The Ohio State University, Columbus, Ohio 43205, USA
| | - Brenda Kohn
- Department of Pediatrics, Division Pediatric Endocrinology and Diabetes, NYU Grossman School of Medicine, New York, New York 10016, USA
| | - Sowmya Krishnan
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Amit Lahoti
- Department of Pediatrics, University of Tennessee Health Sciences Center, Le Bonheur Children's Hospital, Memphis, Tennessee 38163, USA
| | - Kristal Matlock
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Shilpa Mehta
- Department of Pediatrics, Division of Pediatric Endocrinology, New York Medical College, Valhalla, New York 10595, USA
| | - Sejal Mistry
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah 84108, USA
| | - Ryan Miller
- Department of Pediatrics, University of Maryland School of Medicine , Baltimore, Maryland 21093, USA
| | - Laura Page
- Department of Pediatrics, Division of Endocrinology, Department of Pediatrics, Duke University, Durham, North Carolina 27710, USA
| | - Danielle Reynolds
- Diabetes and Endocrinology Center, University of South Florida, Tampa, Florida 33620, USA
| | - Joan C Han
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
25
|
Abstract
Lipodystrophy constitutes a spectrum of diseases characterized by a generalized or partial absence of adipose tissue. Underscoring the role of healthy fat in maintenance of metabolic homeostasis, fat deficiency in lipodystrophy typically leads to profound metabolic disturbances including insulin resistance, hypertriglyceridemia, and ectopic fat accumulation. While rare, recent genetic studies indicate that lipodystrophy is more prevalent than has been previously thought, suggesting considerable underdiagnosis in clinical practice. In this article, we provide an overview of the etiology and management of generalized and partial lipodystrophy disorders. We bring together the latest scientific evidence and clinical guidelines and expose key gaps in knowledge. Through improved recognition of the lipodystrophy disorders, patients (and their affected family members) can be appropriately screened for cardiometabolic, noncardiometabolic, and syndromic abnormalities and undergo treatment with targeted interventions. Notably, insights gained through the study of this rare and extreme phenotype can inform our knowledge of more common disorders of adipose tissue overload, including generalized obesity.
Collapse
Affiliation(s)
- Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Correspondence: Lindsay T. Fourman, MD, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, 5LON207, Boston, MA 02114, USA.
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
26
|
Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022; 21:201-223. [PMID: 34815532 PMCID: PMC8609996 DOI: 10.1038/s41573-021-00337-8] [Citation(s) in RCA: 520] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/27/2022]
Abstract
Enormous progress has been made in the last half-century in the management of diseases closely integrated with excess body weight, such as hypertension, adult-onset diabetes and elevated cholesterol. However, the treatment of obesity itself has proven largely resistant to therapy, with anti-obesity medications (AOMs) often delivering insufficient efficacy and dubious safety. Here, we provide an overview of the history of AOM development, focusing on lessons learned and ongoing obstacles. Recent advances, including increased understanding of the molecular gut-brain communication, are inspiring the pursuit of next-generation AOMs that appear capable of safely achieving sizeable and sustained body weight loss.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | | |
Collapse
|
27
|
Apperley LJ, Blackburn J, Erlandson-Parry K, Gait L, Laing P, Senniappan S. Childhood obesity: A review of current and future management options. Clin Endocrinol (Oxf) 2022; 96:288-301. [PMID: 34750858 DOI: 10.1111/cen.14625] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023]
Abstract
Obesity is becoming increasingly prevalent in paediatric populations worldwide. In addition to increasing prevalence, the severity of obesity is also continuing to rise. Taken together, these findings demonstrate a worrying trend and highlight one of the most significant challenges to public health. Childhood obesity affects multiple organs in the body and is associated with both significant morbidity and ultimately premature mortality. The prevalence of complications associated with obesity, including dyslipidaemia, hypertension, fatty liver disease and psychosocial complications are becoming increasingly prevalent within the paediatric populations. Treatment guidelines currently focus on intervention with lifestyle and behavioural modifications, with pharmacotherapy and surgery reserved for patients who are refractory to such treatment. Research into adult obesity has established pharmacological novel therapies, which have been approved and established in clinical practice; however, the research and implementation of such therapies in paediatric populations have been lagging behind. Despite the relative lack of widespread research in comparison to the adult population, newer therapies are being trialled, which should allow a greater availability of treatment options for childhood obesity in the future. This review summarizes the current evidence for the management of obesity in terms of medical and surgical options. Both future therapeutic agents and those which cause weight loss but have an alternative indication are also included and discussed as part of the review. The review summarizes the most recent research for each intervention and demonstrates the potential efficacy and limitations of each treatment option.
Collapse
Affiliation(s)
- Louise J Apperley
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - James Blackburn
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | - Lucy Gait
- Department of Paediatric Clinical Psychology, Alder Hey Children's Hospital, Liverpool, UK
| | - Peter Laing
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK
| |
Collapse
|
28
|
Fernández-Pombo A, Sánchez-Iglesias S, Cobelo-Gómez S, Hermida-Ameijeiras Á, Araújo-Vilar D. Familial partial lipodystrophy syndromes. Presse Med 2021; 50:104071. [PMID: 34610417 DOI: 10.1016/j.lpm.2021.104071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Lipodystrophies are a heterogeneous group of rare conditions characterised by the loss of adipose tissue. The most common forms are the familial partial lipodystrophy (FPLD) syndromes, which include a set of disorders, usually autosomal dominant, due to different pathogenetic mechanisms leading to improper fat distribution (loss of fat in the limbs and gluteal region and variable regional fat accumulation). Affected patients are prone to suffering serious morbidity via the development of metabolic complications associated to insulin resistance and an inability to properly store lipids. Although no well-defined diagnostic criteria have been established for lipodystrophy, there are certain clues related to medical history, physical examination and body composition evaluation that may suggest FPLD prior to confirmatory genetic analysis. Its treatment must be fundamentally oriented towards the control of the metabolic abnormalities. In this sense, metreleptin therapy, the newer classes of hypoglycaemic agents and other investigational drugs are showing promising results. This review aims to summarise the current knowledge of FPLD syndromes and to describe their clinical and molecular picture, diagnostic approaches and recent treatment modalities.
Collapse
Affiliation(s)
- Antía Fernández-Pombo
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - Sofía Sánchez-Iglesias
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Silvia Cobelo-Gómez
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Álvaro Hermida-Ameijeiras
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Internal Medicine, University Clinical Hospital of Santiago de Compostela, 15706, Spain
| | - David Araújo-Vilar
- UETeM-Molecular Pathology of Rare Diseases Group, Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS-CiMUS, University of Santiago de Compostela, Santiago de Compostela 15782, Spain; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, 15706, Spain.
| |
Collapse
|
29
|
Abstract
Lipodystrophy syndromes (LS) constitute a group of rare diseases of the adipose tissue, characterized by a complete or selective deficiency of the fat mass. These disorders are associated with important insulin resistance, cardiovascular and metabolic comorbidities that impact patient's survival and quality of life. Management is challenging and includes diet, physical activity, and specific pharmacological treatment of LS-associated comorbidities. Because of a common pathophysiology involving decreased concentration of the adipokine leptin, efforts have been made to develop therapeutic strategies with leptin replacement therapy. Metreleptin, a recombinant human leptin analogue, has been proposed in hypoleptinemic patients since the beginning of 2000's. The treatment leads to an improvement in metabolic parameters, more important in generalized than in partial LS forms. In this review, the current knowledge about the development of the drug, its outcomes in the treatment of lipodystrophic patients as well as the peculiarities of its use will be presented.
Collapse
|
30
|
Akinci B, Subauste A, Ajluni N, Esfandiari NH, Meral R, Neidert AH, Eraslan A, Hench R, Rus D, Mckenna B, Hussain HK, Chenevert TL, Tayeh MK, Rupani AR, Innis JW, Mantzoros CS, Conjeevaram HS, Burant CL, Oral EA. Metreleptin therapy for nonalcoholic steatohepatitis: Open-label therapy interventions in two different clinical settings. MED 2021; 2:814-835. [DOI: 10.1016/j.medj.2021.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne) 2021; 12:585887. [PMID: 34084149 PMCID: PMC8167040 DOI: 10.3389/fendo.2021.585887] [Citation(s) in RCA: 508] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
The peptide hormone leptin regulates food intake, body mass, and reproductive function and plays a role in fetal growth, proinflammatory immune responses, angiogenesis and lipolysis. Leptin is a product of the obese (ob) gene and, following synthesis and secretion from fat cells in white adipose tissue, binds to and activates its cognate receptor, the leptin receptor (LEP-R). LEP-R distribution facilitates leptin's pleiotropic effects, playing a crucial role in regulating body mass via a negative feedback mechanism between adipose tissue and the hypothalamus. Leptin resistance is characterized by reduced satiety, over-consumption of nutrients, and increased total body mass. Often this leads to obesity, which reduces the effectiveness of using exogenous leptin as a therapeutic agent. Thus, combining leptin therapies with leptin sensitizers may help overcome such resistance and, consequently, obesity. This review examines recent data obtained from human and animal studies related to leptin, its role in obesity, and its usefulness in obesity treatment.
Collapse
Affiliation(s)
- Milan Obradovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Soskic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
32
|
Adachi M, Muroya K, Hanakawa J, Asakura Y. Metreleptin worked in a diabetic woman with a history of hematopoietic stem cell transplantation (HSCT) during infancy: further support for the concept of 'HSCT-associated lipodystrophy'. Endocr J 2021; 68:399-407. [PMID: 33229817 DOI: 10.1507/endocrj.ej20-0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A 17-year-old woman with a history of childhood leukemia and hematopoietic stem cell transplantation (HSCT), preceded by total body irradiation, developed diabetes, dyslipidemia, fatty liver, and marked insulin resistance. Based on Dunnigan phenotype, HSCT-associated lipodystrophy was suspected. Because of rapid deterioration of diabetes control, metreleptin was introduced at 23 years of age upon receipt of her caregiver's documented consent. This trial was initially planned as a prospective 18 month-long study, with regular assessments of the patient's physical activity, food intake, and body composition analysis. However, because an abrupt and transient attenuation of the metreleptin effect occurred 16 months after the treatment initiation, the entire course of 28 months is reported here. Over the period, her HbA1c decreased from 10.9% to 6.7% despite no significant increase of physical activity and with a stable food intake. Decreased levels of triglyceride and non-HDL cholesterol were found. Her liver function improved, indicating the amelioration of fatty liver. In addition, a 25% reduction in the subcutaneous fat area at umbilical level was found, accompanied by a decrease in fat percentage of both total-body and trunk. The formation of neutralizing antibodies to metreleptin may be responsible for the transient loss of efficacy, considering a sudden elevation in her serum leptin level. In conclusion, metreleptin is useful for the management of HSCT-associated lipodystrophy, supporting the concept that adipose tissue dysfunction is responsible for diverse post-HSCT metabolic aberrations.
Collapse
Affiliation(s)
- Masanori Adachi
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama 232-8555, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama 232-8555, Japan
| | - Junko Hanakawa
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama 232-8555, Japan
| | - Yumi Asakura
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama 232-8555, Japan
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW As a chronic and relapsing disease, obesity impairs metabolism and causes cardiovascular diseases. Although behavioral modification is important for the treatment of obesity, it is difficult to achieve an ideal weight or sustain the process of long-term weight loss. Therefore, the obesity control guidelines strongly recommend lifestyle interventions along with medical treatment for patients who are overweight. There is sufficient evidence supporting that pharmacotherapy in combination with behavior-based interventions can result in significant weight loss and improved cardiometabolism. RECENT FINDINGS Recent meta-analyses of new anti-obesity drugs and their weight-loss efficacy have shown that the overall placebo-subtracted weight reduction (%) for at least 12 months ranged from 2.9 to 6.8% for the following drugs: phentermine/topiramate (6.8%), liraglutide (5.4%), naltrexone/bupropion (4.0%), orlistat (2.9%), and lorcaserin (3.1%). However, very recently, on February 13, 2020, the US Food and Drug Administration (FDA) ordered the withdrawal of lorcaserin from markets, as a clinical trial to assess drug safety showed an increased risk of cancer. Currently, the anti-obesity medications that have been approved by the FDA for chronic weight management are orlistat, phentermine/topiramate, naltrexone/bupropion, and liraglutide. However, they are costly and may have adverse effects in some individuals. Therefore, drug therapy should be initiated in obese individuals after weighing its benefits and risks. One of the strategies for long-term obesity control is that anti-obesity medications should be tailored for specific patients depending on their chronic conditions, comorbidities, and preferences.
Collapse
Affiliation(s)
- Young Jin Tak
- Department of Family Medicine, Pusan National University Hospital, Busan, 49241, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Sang Yeoup Lee
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, South Korea.
- Department of Medical Education, Pusan National University School of Medicine, Yangsan, 50612, South Korea.
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, 50612, South Korea.
| |
Collapse
|
34
|
Abstract
Severe insulin resistance syndromes are a heterogeneous group of rare disorders characterized by profound insulin resistance, substantial metabolic abnormalities, and a variety of clinical manifestations and complications. The etiology of these syndromes may be hereditary or acquired, due to defects in insulin potency and action, cellular responsiveness to insulin, and/or aberrations in adipose tissue function or development. Over the past decades, advances in medical technology, particularly in genomic technologies and genetic analyses, have provided insights into the underlying pathophysiological pathways and facilitated the more precise identification of several of these conditions. However, the exact cellular and molecular mechanisms of insulin resistance have not yet been fully elucidated for all syndromes. Moreover, in clinical practice, many of the syndromes are often misdiagnosed or underdiagnosed. The majority of these disorders associate with an increased risk of severe complications and mortality; thus, early identification and personalized clinical management are of the essence. This Review aims to categorize severe insulin resistance syndromes by disease process, including insulin receptor defects, signaling defects, and lipodystrophies. We also highlight several complex syndromes and emphasize the need to identify patients, investigate underlying disease mechanisms, and develop specific treatment regimens.
Collapse
Affiliation(s)
- Angeliki M. Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Filippaios
- Department of Medicine, Lowell General Hospital, Lowell, Massachusetts, USA
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Perakakis N, Farr OM, Mantzoros CS. Leptin in Leanness and Obesity: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:745-760. [PMID: 33573745 DOI: 10.1016/j.jacc.2020.11.069] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Leptin has emerged over the past 2 decades as a key hormone secreted by adipose tissue that conveys information on energy stores. Leptin is considered an important regulator of both neuroendocrine function and energy homeostasis. Numerous studies (mainly preclinical and much less in humans) have investigated the mechanisms of leptin's actions both in the healthy state as well as in a wide range of metabolic diseases. In this review, the authors present leptin physiology and review the main findings from animal studies, observational and interventional studies, and clinical trials in humans that have investigated the role of leptin in metabolism and cardiometabolic diseases (energy deficiency, obesity, diabetes, cardiovascular diseases, nonalcoholic fatty liver disease). The authors discuss the similarities and discrepancies between animal and human biology and present clinical applications of leptin, directions for future research, and current approaches for the development of the next-generation leptin analogs.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Medicine, Boston VA Healthcare System, Boston, Massachusetts, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia M Farr
- Department of Medicine, Boston VA Healthcare System, Boston, Massachusetts, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System, Boston, Massachusetts, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
36
|
Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol Metab 2020; 46:101090. [PMID: 32987188 PMCID: PMC8085566 DOI: 10.1016/j.molmet.2020.101090] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Glucagon-like peptide-1 receptor (GLP-1R) agonists are approved to treat type 2 diabetes and obesity. They elicit robust improvements in glycemic control and weight loss, combined with cardioprotection in individuals at risk of or with pre-existing cardiovascular disease. These attributes make GLP-1 a preferred partner for next-generation therapies exhibiting improved efficacy yet retaining safety to treat diabetes, obesity, non-alcoholic steatohepatitis, and related cardiometabolic disorders. The available clinical data demonstrate that the best GLP-1R agonists are not yet competitive with bariatric surgery, emphasizing the need to further improve the efficacy of current medical therapy. Scope of review In this article, we discuss data highlighting the physiological and pharmacological attributes of potential peptide and non-peptide partners, exemplified by amylin, glucose-dependent insulinotropic polypeptide (GIP), and steroid hormones. We review the progress, limitations, and future considerations for translating findings from preclinical experiments to competitive efficacy and safety in humans with type 2 diabetes and obesity. Major conclusions Multiple co-agonist combinations exhibit promising clinical efficacy, notably tirzepatide and investigational amylin combinations. Simultaneously, increasing doses of GLP-1R agonists such as semaglutide produces substantial weight loss, raising the bar for the development of new unimolecular co-agonists. Collectively, the available data suggest that new co-agonists with robust efficacy should prove superior to GLP-1R agonists alone to treat metabolic disorders. GLP-1 is a preferred partner for co-agonist development. Co-agonist combinations must exhibit improved weight loss beyond GLP-1 alone. Unimolecular coagonists must exhibit retained or improved cardioprotection. Obesity represents an optimal condition for the development of new GLP-1 co-agonists.
Collapse
Affiliation(s)
- Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Department of Medicine, Mt. Sinai Hospital, Toronto, Ontario, M5G 1X5 Canada.
| |
Collapse
|
37
|
Akinci B, Meral R, Rus D, Hench R, Neidert AH, DiPaola F, Westerhoff M, Taylor SI, Oral EA. The complicated clinical course in a case of atypical lipodystrophy after development of neutralizing antibody to metreleptin: treatment with setmelanotide. Endocrinol Diabetes Metab Case Rep 2020; 2020:EDM190139. [PMID: 32213649 PMCID: PMC7159256 DOI: 10.1530/edm-19-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
SUMMARY A patient with atypical partial lipodystrophy who had a transient initial response to metreleptin experienced acute worsening of her metabolic state when neutralizing antibodies against metreleptin appeared. Because her metabolic status continued to deteriorate, a therapeutic trial with melanocortin-4 receptor agonist setmelanotide, that is believed to function downstream from leptin receptor in the leptin signaling system, was undertaken in an effort to improve her metabolic status for the first time in a patient with lipodystrophy. To achieve this, a compassionate use (investigational new drug application; IND) was initiated (NCT03262610). Glucose control, body fat by dual-energy X-ray absorptiometry and MRI, and liver fat by proton density fat fraction were monitored. Daily hunger scores were assessed by patient filled questionnaires. Although there was a slight decrease in hunger scales and visceral fat, stimulating melanocortin-4 receptor by setmelanotide did not result in any other metabolic benefit such as improvement of hypertriglyceridemia or diabetes control as desired. Targeting melanocortin-4 receptor to regulate energy metabolism in this setting was not sufficient to obtain a significant metabolic benefit. However, complex features of our case make it difficult to generalize these observations to all cases of lipodystrophy. It is still possible that melanocortin-4 receptor agonistic action may offer some therapeutic benefits in leptin-deficient patients. LEARNING POINTS A patient with atypical lipodystrophy with an initial benefit with metreleptin therapy developed neutralizing antibodies to metreleptin (Nab-leptin), which led to substantial worsening in metabolic control. The neutralizing activity in her serum persisted for longer than 3 years. Whether the worsening in her metabolic state was truly caused by the development of Nab-leptin cannot be fully ascertained, but there was a temporal relationship. The experience noted in our patient at least raises the possibility for concern for substantial metabolic worsening upon emergence and persistence of Nab-leptin. Further studies of cases where Nab-leptin is detected and better assay systems to detect and characterize Nab-leptin are needed. The use of setmelanotide, a selective MC4R agonist targeting specific neurons downstream from the leptin receptor activation, was not effective in restoring metabolic control in this complex patient with presumed diminished leptin action due to Nab-leptin. Although stimulating the MC4R pathway was not sufficient to obtain a significant metabolic benefit in lowering triglycerides and helping with her insulin resistance as was noted with metreleptin earlier, there was a mild reduction in reported food intake and appetite. Complex features of our case make it difficult to generalize our observation to all leptin-deficient patients. It is possible that some leptin-deficient patients (especially those who need primarily control of food intake) may still theoretically benefit from MC4R agonistic action, and further studies in carefully selected patients may help to tease out the differential pathways of metabolic regulation by the complex network of leptin signaling system.
Collapse
Affiliation(s)
- Baris Akinci
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
- Division of Endocrinology and Metabolism, Dokuz Eylul University, Izmir, Turkey
| | - Rasimcan Meral
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Diana Rus
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita Hench
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam H Neidert
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank DiPaola
- Division of Pediatric Gastroenterology, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria Westerhoff
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Simeon I Taylor
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elif A Oral
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Özen S, Akıncı B, Oral EA. Current Diagnosis, Treatment and Clinical Challenges in the Management of Lipodystrophy Syndromes in Children and Young People. J Clin Res Pediatr Endocrinol 2020; 12:17-28. [PMID: 31434462 PMCID: PMC7127888 DOI: 10.4274/jcrpe.galenos.2019.2019.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipodystrophy is a heterogeneous group of disorders characterized by lack of body fat in characteristic patterns, which can be genetic or acquired. Lipodystrophy is associated with insulin resistance that can develop in childhood and adolescence, and usually leads to severe metabolic complications. Diabetes mellitus, hypertriglyceridemia, and hepatic steatosis ordinarily develop in these patients, and most girls suffer from menstrual abnormalities. Severe complications develop at a relatively young age, which include episodes of acute pancreatitis, renal failure, cirrhosis, and complex cardiovascular diseases, and all of these are associated with serious morbidity. Treatment of lipodystrophy consists of medical nutritional therapy, exercise, and the use of anti-hyperglycemic and lipid-lowering agents. New treatment modalities, such as metreleptin replacement, promise much in the treatment of metabolic abnormalities secondary to lipodystrophy. Current challenges in the management of lipodystrophy in children and adolescents include, but are not limited to: (1) establishing specialized centers with experience in providing care for lipodystrophy presenting in childhood and adolescence; (2) optimizing algorithms that can provide some guidance for the use of standard and novel therapies to ensure adequate metabolic control and to prevent complications; (3) educating patients and their parents about lipodystrophy management; (4) improving patient adherence to chronic therapies; (5) reducing barriers to access to novel treatments; and (5) improving the quality of life of these patients and their families.
Collapse
Affiliation(s)
- Samim Özen
- Ege University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey,* Address for Correspondence: Ege University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Phone: +90 232 390 12 30 E-mail:
| | - Barış Akıncı
- Dokuz Eylül University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, İzmir, Turkey,University of Michigan Medical School, Department of Medicine, and Brehm Center for Diabetes, Division of Metabolism, Endocrinology, and Diabetes, Michigan, USA
| | - Elif A. Oral
- University of Michigan Medical School, Department of Medicine, and Brehm Center for Diabetes, Division of Metabolism, Endocrinology, and Diabetes, Michigan, USA
| |
Collapse
|
39
|
Bagias C, Xiarchou A, Bargiota A, Tigas S. Familial Partial Lipodystrophy (FPLD): Recent Insights. Diabetes Metab Syndr Obes 2020; 13:1531-1544. [PMID: 32440182 PMCID: PMC7224169 DOI: 10.2147/dmso.s206053] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Lipodystrophies are a heterogeneous group of congenital or acquired disorders, characterized by partial or generalized loss of adipose tissue. Familial partial lipodystrophy (FPLD) presents with genetic and phenotypic variability with insulin resistance, hypertriglyceridemia and hepatic steatosis being the cardinal metabolic features. The severity of the metabolic derangements is in proportion with the degree of lipoatrophy. The underpinning pathogenetic mechanism is the limited capacity of adipose tissue to store lipids leading to lipotoxicity, low-grade inflammation, altered adipokine secretion and ectopic fat tissue accumulation. Advances in molecular genetics have led to the discovery of new genes and improved our knowledge of the regulation of adipose tissue biology. Diagnosis relies predominantly on clinical findings, such as abnormal fat tissue topography and signs of insulin resistance and is confirmed by genetic analysis. In addition to anthropometry and conventional imaging, new techniques such as color-coded imaging of fat depots allow more accurate assessment of the regional fat distribution and differentiation of lipodystrophic syndromes from common metabolic syndrome phenotype. The treatment of patients with lipodystrophy has proven to be challenging. The use of a human leptin analogue, metreleptin, has recently been approved in the management of FPLD with evidence suggesting improved metabolic profile, satiety, reproductive function and self-perception. Preliminary data on the use of glucagon-like peptide 1 receptor agonists (GLP1 Ras) and sodium-glucose co-transporter 2 (SGLT2) inhibitors in cases of FPLD have shown promising results with reduction in total insulin requirements and improvement in glycemic control. Finally, investigational trials for new therapeutic agents in the management of FPLD are underway.
Collapse
Affiliation(s)
- Christos Bagias
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
| | - Angeliki Xiarchou
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
| | | | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, Ioannina, Greece
- Correspondence: Stelios Tigas Department of Endocrinology, University of Ioannina, Ioannina45110, GreeceTel +30 2651007800 Email
| |
Collapse
|
40
|
Bruder-Nascimento T, Kress TC, Belin de Chantemele EJ. Recent advances in understanding lipodystrophy: a focus on lipodystrophy-associated cardiovascular disease and potential effects of leptin therapy on cardiovascular function. F1000Res 2019; 8:F1000 Faculty Rev-1756. [PMID: 31656583 PMCID: PMC6798323 DOI: 10.12688/f1000research.20150.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Lipodystrophy is a disease characterized by a partial or total absence of adipose tissue leading to severe metabolic derangements including marked insulin resistance, type 2 diabetes, hypertriglyceridemia, and steatohepatitis. Lipodystrophy is also a source of major cardiovascular disorders which, in addition to hepatic failure and infection, contribute to a significant reduction in life expectancy. Metreleptin, the synthetic analog of the adipocyte-derived hormone leptin and current therapy of choice for patients with lipodystrophy, successfully improves metabolic function. However, while leptin has been associated with hypertension, vascular diseases, and inflammation in the context of obesity, it remains unknown whether its daily administration could further impair cardiovascular function in patients with lipodystrophy. The goal of this short review is to describe the cardiovascular phenotype of patients with lipodystrophy, speculate on the etiology of the disorders, and discuss how the use of murine models of lipodystrophy could be beneficial to address the question of the contribution of leptin to lipodystrophy-associated cardiovascular disease.
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pediatrics, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J. Belin de Chantemele
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Medicine, Section of Cardiology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
41
|
Polyzos SA, Perakakis N, Mantzoros CS. Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metabolism 2019; 96:66-82. [PMID: 31071311 DOI: 10.1016/j.metabol.2019.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/17/2023]
Abstract
Lipodystrophy is a group of clinically heterogeneous, inherited or acquired, disorders characterized by complete or partial absence of subcutaneous adipose tissue that may occur simultaneously with the pathological, ectopic, accumulation of fat in other regions of the body, including the liver. Fatty liver adds significantly to hepatic and extra-hepatic morbidity in patients with lipodystrophy. Lipodystrophy is strongly associated with severe insulin resistance and related comorbidities, such as hyperglycemia, hyperlipidemia and nonalcoholic fatty liver disease (NAFLD), but other hepatic diseases may co-exist in some types of lipodystrophy, including autoimmune hepatitis in acquired lipodystrophies, or viral hepatitis in human immunodeficiency virus (HIV)-associated lipodystrophy. The aim of this review is to summarize evidence linking lipodystrophy with hepatic disease and to provide a special focus on potential therapeutic perspectives of leptin replacement therapy and adiponectin upregulation in lipodystrophy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Perakakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Kushchayeva YS, Kushchayev SV, Startzell M, Cochran E, Auh S, Dai Y, Lightbourne M, Skarulis M, Brown RJ. Thyroid Abnormalities in Patients With Extreme Insulin Resistance Syndromes. J Clin Endocrinol Metab 2019; 104:2216-2228. [PMID: 30657911 PMCID: PMC6482021 DOI: 10.1210/jc.2018-02289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Insulin and leptin may increase growth and proliferation of thyroid cells, underlying an association between type 2 diabetes and papillary thyroid cancer (PTC). Patients with extreme insulin resistance due to lipodystrophy or insulin receptor mutations (INSR) are treated with high-dose insulin and recombinant leptin (metreleptin), which may increase the risk of thyroid neoplasia. OBJECTIVE The aim of this study was to analyze thyroid structural abnormalities in patients with lipodystrophy and INSR mutations and to assess whether insulin, IGF-1, and metreleptin therapy contribute to the thyroid growth and neoplasia in this population. DESIGN Thyroid ultrasound characteristics were analyzed in 81 patients with lipodystrophy and 11 with INSR (5 homozygous; 6 heterozygous). Sixty patients were taking metreleptin. RESULTS The prevalence of thyroid nodules in children with extreme insulin resistance (5 of 30, 16.7%) was significantly higher than published prevalence for children (64 of 3202; 2%), with no difference between lipodystrophy and INSR. Body surface area-adjusted thyroid volume was larger in INSR homozygotes vs heterozygotes or lipodystrophy (10.4 ± 5.1, 3.9 ± 1.5, and 6.2 ± 3.4 cm2, respectively. Three patients with lipodystrophy and one INSR heterozygote had PTC. There were no differences in thyroid ultrasound features in patients treated vs not treated with metreleptin. CONCLUSION Children with extreme insulin resistance had a high prevalence of thyroid nodules, which were not associated with metreleptin treatment. Patients with homozygous INSR mutation had thyromegaly, which may be a novel phenotypic feature of this disease. Further studies are needed to determine the etiology of thyroid abnormalities in patients with extreme insulin resistance.
Collapse
Affiliation(s)
- Yevgeniya S Kushchayeva
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland
| | | | - Megan Startzell
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland
| | - Elaine Cochran
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland
| | - Sungyoung Auh
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland
| | - Yuhai Dai
- Clinical Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland
| | - Marissa Lightbourne
- National Institute of Child Health and Human Development/National Institutes of Health, Bethesda, Maryland
| | - Monica Skarulis
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland
| | - Rebecca J Brown
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, Bethesda, Maryland
- Correspondence and Reprint Requests: Rebecca J. Brown, MD, National Institutes of Health, Building 10, Room 6-5940, 10 Center Drive, Bethesda, Maryland 20892. E-mail:
| |
Collapse
|
43
|
|
44
|
Takeyari S, Takakuwa S, Miyata K, Yamamoto K, Nakayama H, Ohata Y, Fujiwara M, Kitaoka T, Kubota T, Namba N, Sakai N, Ozono K. Metreleptin treatment for congenital generalized lipodystrophy type 4 (CGL4): a case report. Clin Pediatr Endocrinol 2019; 28:1-7. [PMID: 30745727 PMCID: PMC6356095 DOI: 10.1297/cpe.28.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023] Open
Abstract
Congenital generalized lipodystrophy type 4 (CGL4) is a rare disease caused by mutations in the gene polymerase I and transcript release factor (PTRF), the main symptoms of which are systemic reductions in adipose tissue and muscular dystrophy. The strategy of treating CGL4 is to improve the insulin resistance and hypertriglyceridemia that result from systemic reductions in adipose tissue. Metreleptin, a synthetic analog of human leptin, is effective against generalized lipodystrophies; however, there are no reports of the use of metreleptin in the treatment of CGL4. Herein, we discuss the treatment of a six-year-old boy diagnosed with CGL4 due to a homozygous mutation in PTRF with metreleptin. His serum triglyceride level and homeostasis model assessment of insulin resistance (HOMA-IR) value decreased after two months of metreleptin treatment. However, the efficacy of metreleptin gradually decreased, and the treatment was suspended because anaphylaxis occurred after the dosage administered was increased. Subsequently, his serum triglyceride level and HOMA-IR value significantly increased. Anti-metreleptin-neutralizing antibodies were detected in his serum, which suggested that these antibodies reduced the efficacy of metreleptin and caused increased hypersensitivity. Thus, metreleptin appeared to be efficacious in the treatment of CGL4 in the short term, although an adverse immune response resulted in treatment suspension. Further studies are needed to evaluate metreleptin treatments for CGL4.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takakuwa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Pediatrics, Hyogo Prefectural Nishinomiya Hospital, Hyogo, Japan
| | - Kei Miyata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,The Japan Environment and Children's Study, Osaka Unit Center, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,The 1 Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Osaka, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
45
|
Shibata Y, Nakatsuka A, Eguchi J, Miyamoto S, Masuda Y, Awazawa M, Takaki A, Yoshida R, Yagi T, Wada J. Acquired partial lipoatrophy as graft-versus-host disease and treatment with metreleptin: two case reports. J Med Case Rep 2018; 12:368. [PMID: 30545408 PMCID: PMC6293520 DOI: 10.1186/s13256-018-1901-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction Acquired partial lipoatrophy has been reported after bone marrow transplantation during childhood; however, no adult cases have previously been reported. We herein report two adult cases of acquired partial lipoatrophy after transplantation. Case presentation A 28-year-old Japanese woman developed diabetic ketoacidosis and received insulin therapy after bone marrow transplantation. She manifested partial lipoatrophy of the extremities, prominent insulin resistance, hyperglycemia, hypertriglyceridemia, and fatty liver. A 40-year-old Japanese woman underwent liver transplantation from a living donor for alcoholic liver disease after abstinence from alcohol. She newly developed non-alcoholic steatohepatitis and diabetes. Non-alcoholic steatohepatitis progressed to liver failure, and a second liver transplantation from a brain-dead donor was performed at 42 years of age. She demonstrated loss of subdermal fat of the upper and lower extremities, prominent insulin resistance, hyperglycemia, and hypertriglyceridemia. In both cases, the injection of recombinant methionyl human leptin reversed all of the metabolic abnormalities. Conclusions Acquired partial lipoatrophy after transplantation is a manifestation of chronic graft-versus-host disease in adults. This entity is associated with diabetes with prominent insulin resistance and severe hypertriglycemia and can be successfully treated with metreleptin for the long term.
Collapse
Affiliation(s)
- Yusuke Shibata
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Atsuko Nakatsuka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoshi Miyamoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yukari Masuda
- Department of Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoharu Awazawa
- Department of Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the therapeutic approach for lipodystrophy syndromes with conventional treatment options and metreleptin therapy in detail and to point out the current investigational treatments in development. RECENT FINDINGS The observation of leptin deficiency in patients with lipodystrophy and the potential of leptin replacement to rescue metabolic abnormalities in animal models of lipodystrophy were followed by the first clinical study of leptin therapy in patients with severe lipodystrophy. This and several other long-term studies demonstrated important benefits of recombinant human leptin (metreleptin) to treat metabolic abnormalities of lipodystrophy. These studies ultimately led to the recent FDA approval of metreleptin for the treatment of generalized lipodystrophy and EMA approval for both generalized and partial lipodystrophy. Additional research efforts in progress focus on novel treatment options, predominantly for patients with partial lipodystrophy. Current treatment of generalized lipodystrophy includes metreleptin replacement as an adjunct to diet and standard treatment approach for metabolic consequences of lipodystrophy. Beyond metreleptin, a number of different compounds and treatment modalities are being studied for the treatment of partial lipodystrophy.
Collapse
Affiliation(s)
- Baris Akinci
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
- Division of Endocrinology, Department of Internal Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Rasimcan Meral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA
| | - Elif Arioglu Oral
- Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, 1000 Wall Street, Room 5313, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
47
|
Püschel J, Miehle K, Müller K, Villringer A, Stumvoll M, Fasshauer M, Schlögl H. Beneficial effects of leptin substitution on impaired eating behavior in lipodystrophy are sustained beyond 150 weeks of treatment. Cytokine 2018; 113:400-404. [PMID: 30539782 DOI: 10.1016/j.cyto.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022]
Abstract
AIM Metreleptin treatment in lipodystrophy patients improves eating behavior with increased satiety and reduced hunger. However, no data are available whether effects are maintained beyond 52 weeks of treatment. METHODS A prospective study with measurements at baseline and at >150 weeks of metreleptin treatment was performed. Five female lipodystrophy patients with indication for metreleptin were included. Behavioral aspects of hunger- and satiety regulation were assessed by validated eating behavior questionnaires and visual analog scales assessing hunger and satiety feelings before and after a standardized meal. RESULTS Hunger rated on visual analog scales at 120 min after the meal significantly decreased from 46 ± 10 mm at baseline to 17 ± 6 mm at long-term assessment. Furthermore, satiety at 5 and 120 min after the meal significantly increased from baseline to long-term assessment (5 min: 70 ± 7 mm to 87 ± 3 mm; 120 min: 43 ± 10 mm to 79 ± 8 mm). On the Three Factor Eating Questionnaire, the mean value of factor 3 (hunger) significantly decreased from 9.2 ± 0.2 at baseline to 2.6 ± 1.5 at long-term assessment. In the Inventory of Eating Behavior and Weight Problems Questionnaire, mean values for scale 2 (strength and triggering of desire to eat) and scale 7 (cognitive restraint of eating) significantly decreased from baseline (31.6 ± 4.8 and 11.4 ± 2.2, respectively) to long-term assessment (14.0 ± 2.1 and 10.0 ± 1.9). CONCLUSION First evidence is presented that long-term metreleptin treatment of >150 weeks has sustained effects on eating behavior with increased satiety, as well as reduced hunger and hunger-related measures.
Collapse
Affiliation(s)
- Janett Püschel
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; IFB AdiposityDiseases, University of Leipzig, 04103 Leipzig, Germany
| | - Konstanze Miehle
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Karsten Müller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Arno Villringer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Day Clinic of Cognitive Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Mathias Fasshauer
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany; IFB AdiposityDiseases, University of Leipzig, 04103 Leipzig, Germany; Institute of Nutritional Science, Justus-Liebig-University, 35390 Giessen, Germany
| | - Haiko Schlögl
- Department of Medicine, University Hospital Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Obesity is a global health crisis with detrimental effects on all organ systems leading to worsening disease state and rising costs of care. Persons with obesity failing lifestyle therapies need to be escalated to appropriate pharmacological treatment modalities, medical devices, and/or bariatric surgery if criteria are met and more aggressive intervention is needed. The progression of severe obesity in the patient population coupled with related co-morbidities necessitates the development of novel therapies for the treatment of obesity. This development is preceded by increased understanding of the underpinnings of energy regulation and neurohormonal pathways involved in energy homeostasis. RECENT FINDINGS Though there are approved anti-obesity drugs available in the USA, newer drugs are now in the pipeline for development given the urgent need. This review focuses on anti-obesity drugs in the pipeline including centrally acting agents (setmelanotide, neuropeptide Y antagonist [velneperit], zonisamide-bupropion [Empatic], cannabinoid type-1 receptor blockers), gut hormones and incretin targets (new glucagon-like-peptide-1 [GLP-1] analogues [semaglutide and oral equivalents], amylin mimetics [davalintide, dual amylin and calcitonin receptor agonists], dual action GLP-1/glucagon receptor agonists [oxyntomodulin], triple agonists [tri-agonist 1706], peptide YY, leptin analogues [combination pramlintide-metreleptin]), and other novel targets (methionine aminopeptidase 2 inhibitor [beloranib], lipase inhibitor [cetilistat], triple monoamine reuptake inhibitor [tesofensine], fibroblast growth factor 21), including anti-obesity vaccines (ghrelin, somatostatin, adenovirus36). With these new drugs in development, anti-obesity therapeutics have potential to vastly expand allowing better treatment options and personalized approach to obesity care.
Collapse
Affiliation(s)
- Gitanjali Srivastava
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine, 720 Harrison Avenue, 8th Floor, Suite 801, Boston, MA, 02118, USA
| | - Caroline Apovian
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine, 720 Harrison Avenue, 8th Floor, Suite 801, Boston, MA, 02118, USA.
| |
Collapse
|
49
|
Araújo-Vilar D, Domingo-Jiménez R, Ruibal Á, Aguiar P, Ibáñez-Micó S, Garrido-Pumar M, Martínez-Olmos MÁ, López-Soler C, Guillín-Amarelle C, González-Rodríguez M, Rodríguez-Núñez A, Álvarez-Escudero J, Liñares-Paz M, González-Méndez B, Rodríguez-García S, Sánchez-Iglesias S. Association of metreleptin treatment and dietary intervention with neurological outcomes in Celia's encephalopathy. Eur J Hum Genet 2018; 26:396-406. [PMID: 29367704 DOI: 10.1038/s41431-017-0052-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Celia's encephalopathy (progressive encephalopathy with/without lipodystrophy, PELD) is a recessive neurodegenerative disease that is fatal in childhood. It is caused by a c.985C>T variant in the BSCL2/seipin gene that results in an aberrant seipin protein. We evaluated neurological development before and during treatment with human recombinant leptin (metreleptin) plus a dietary intervention rich in polyunsaturated fatty acids (PUFA) in the only living patient. A 7 years and 10 months old girl affected by PELD was treated at age 3 years with metreleptin, adding at age 6 omega-3 fatty acid supplementation. Her mental age was evaluated using the Battelle Developmental Inventory Screening Test (BDI), and brain PET/MRI was performed before treatment and at age 5, 6.5, and 7.5 years. At age 7.5 years, the girl remains alive and leads a normal life for her mental age of 30 months, which increased by 4 months over the last 18 months according to BDI. PET images showed improved glucose uptake in the thalami, cerebellum, and brainstem. This patient showed a clear slowdown in neurological regression during leptin replacement plus a high PUFA diet. The aberrant BSCL2 transcript was overexpressed in SH-SY5Y cells and was treated with docosahexaenoic acid (200 µM) plus leptin (0.001 mg/ml) for 24 h. The relative expression of aberrant BSCL2 transcript was measured by qPCR. In vitro studies showed significant reduction (32%) in aberrant transcript expression. This therapeutic approach should be further studied in this devastating disease.
Collapse
Affiliation(s)
- David Araújo-Vilar
- Thyroid and Metabolic Diseases Unit, Biomedical Research Institute (CIMUS)-IDIS, School of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain. .,Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosario Domingo-Jiménez
- Section of Neuropediatrics, Division of Pediatrics, Hospital Clínico Universitario Virgen de la Arrixaca-IMIB Arrixaca, Murcia, Spain
| | - Álvaro Ruibal
- Division of Nuclear Medicine, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Fundación Tejerina, Madrid, Spain.,Molecular Imaging and Medical Physics, Universidade de Santiago de Compostela. IDIS, Santiago de Compostela, Spain
| | - Pablo Aguiar
- Division of Nuclear Medicine, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Molecular Imaging and Medical Physics, Universidade de Santiago de Compostela. IDIS, Santiago de Compostela, Spain
| | - Salvador Ibáñez-Micó
- Section of Neuropediatrics, Division of Pediatrics, Hospital Clínico Universitario Virgen de la Arrixaca-IMIB Arrixaca, Murcia, Spain
| | - Miguel Garrido-Pumar
- Division of Nuclear Medicine, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Ángel Martínez-Olmos
- Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Cristina Guillín-Amarelle
- Thyroid and Metabolic Diseases Unit, Biomedical Research Institute (CIMUS)-IDIS, School of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María González-Rodríguez
- Division of Endocrinology and Nutrition, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antonio Rodríguez-Núñez
- Pediatric Intensive Care Unit, Pediatric Area, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Julián Álvarez-Escudero
- Anesthesia and Reanimation Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mercedes Liñares-Paz
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Blanca González-Méndez
- Thyroid and Metabolic Diseases Unit, Biomedical Research Institute (CIMUS)-IDIS, School of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Silvia Rodríguez-García
- Thyroid and Metabolic Diseases Unit, Biomedical Research Institute (CIMUS)-IDIS, School of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Sánchez-Iglesias
- Thyroid and Metabolic Diseases Unit, Biomedical Research Institute (CIMUS)-IDIS, School of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
50
|
Miehle K, von Schnurbein J, Fasshauer M, Stumvoll M, Borck G, Wabitsch M. Lipodystrophie-Erkrankungen. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0162-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|