1
|
Hills MH, Ma L, Fang A, Chiremba T, Malloy S, Scott AR, Perera AG, Yu CR. Molecular, cellular, and developmental organization of the mouse vomeronasal organ at single cell resolution. eLife 2024; 13:RP97356. [PMID: 39656606 PMCID: PMC11630819 DOI: 10.7554/elife.97356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and VRs, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.
Collapse
Affiliation(s)
- Max Henry Hills
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Limei Ma
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Ai Fang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Thelma Chiremba
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Seth Malloy
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Allison R Scott
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Anoja G Perera
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - C Ron Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Cell Biology and Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
2
|
Hills M, Ma L, Fang A, Chiremba T, Malloy S, Scott A, Perera A, Yu CR. Molecular, Cellular, and Developmental Organization of the Mouse Vomeronasal organ at Single Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581574. [PMID: 39253476 PMCID: PMC11383295 DOI: 10.1101/2024.02.22.581574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors and a population of canonical olfactory sensory neurons in the VNO. High resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and vomeronasal receptors, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.
Collapse
Affiliation(s)
- Max Hills
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Ai Fang
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Thelma Chiremba
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Seth Malloy
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 PMCID: PMC11833509 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
AlSabah AA, Alsalmi M, Massie R, Bilodeau MC, Campeau PM, McGraw S, D'Agostino MD. An adult patient with Tatton-Brown-Rahman syndrome caused by a novel DNMT3A variant and axonal polyneuropathy. Am J Med Genet A 2024; 194:e63484. [PMID: 38041495 DOI: 10.1002/ajmg.a.63484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Tatton-Brown-Rahman syndrome (TBRS) is a rare autosomal dominant overgrowth syndrome first reported in 2014 and caused by pathogenic variants in the DNA methyltransferase 3A (DNMT3A) gene. All individuals reported to date share a phenotype of somatic overgrowth, dysmorphic features, and intellectual disability. Peripheral neuropathy was not described in these cases. We report an adult patient with TBRS caused by a novel pathogenic DNMT3A variant (NM_175629.2: c.2036G>A, p.(Arg688His)) harboring an axonal length-dependent sensory-motor polyneuropathy. Extensive laboratory and molecular genetic work-up failed to identify alternative causes for this patient's neuropathy. We propose that axonal neuropathy may be a novel, age-dependent phenotypic feature in adults with TBRS and suggest that this syndrome should be considered in the differential diagnosis of patients with overgrowth, cognitive and psychiatric difficulties, and peripheral neuropathy.
Collapse
Affiliation(s)
- Al-Alya AlSabah
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Mohammed Alsalmi
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Rami Massie
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Marie-Claude Bilodeau
- Clinique de Psychiatrie, Santé Mentale et Dépendances, CIUSSS MCQ, Hôpital Sainte-Croix, Drummondville, Quebec, Canada
| | - Philippe M Campeau
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Serge McGraw
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Université de Montreal, Montreal, Quebec, Canada
| | - Maria Daniela D'Agostino
- Division of Medical Genetics, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Kamarck ML, Trimmer C, Murphy NR, Gregory KM, Manoel D, Logan DW, Saraiva LR, Mainland JD. Identifying candidate genes underlying isolated congenital anosmia. Clin Genet 2024; 105:376-385. [PMID: 38148624 PMCID: PMC10932857 DOI: 10.1111/cge.14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.
Collapse
Affiliation(s)
- Marissa L. Kamarck
- Monell Chemical Senses Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | - Luis R. Saraiva
- Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University; Doha, Qatar
| | - Joel D. Mainland
- Monell Chemical Senses Center, Philadelphia, PA
- University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Strekalova T, Moskvin O, Jain AY, Gorbunov N, Gorlova A, Sadovnik D, Umriukhin A, Cespuglio R, Yu WS, Tse ACK, Kalueff AV, Lesch KP, Lim LW. Molecular signature of excessive female aggression: study of stressed mice with genetic inactivation of neuronal serotonin synthesis. J Neural Transm (Vienna) 2023; 130:1113-1132. [PMID: 37542675 PMCID: PMC10460733 DOI: 10.1007/s00702-023-02677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Singapore Medical School, BluMaiden Biosciences, Singapore, Singapore
| | - Aayushi Y Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Daria Sadovnik
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, Beliv Plateau, Claude-Bernard Lyon-1 University, Bron, France
| | - Wing Shan Yu
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anna Chung Kwan Tse
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
7
|
Li J, Bandekar SJ, Araç D. The structure of fly Teneurin-m reveals an asymmetric self-assembly that allows expansion into zippers. EMBO Rep 2023; 24:e56728. [PMID: 37165720 PMCID: PMC10240212 DOI: 10.15252/embr.202256728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023] Open
Abstract
Teneurins are conserved cell adhesion molecules essential for embryogenesis and neural development in animals. Key to teneurin function is the ability of its extracellular region to form homophilic interactions in cis and/or in trans. However, our molecular understanding of teneurin homophilic interaction remains largely incomplete. Here, we showed that an extracellular fragment of Teneurin-m, the major teneurin homolog in flies, behaves as a homodimer in solution. The structure of Teneurin-m revealed that the transthyretin-related domain from one protomer and the β-propeller domain from the other mediates Teneurin-m self-association, which is abolished by point mutation of conserved residues. Strikingly, this architecture generates an asymmetric oligomerization interface that enables expansion of Teneurin-m into long zipper arrays reminiscent of protocadherins. An alternatively spliced site that exists only in vertebrates and regulates homophilic interaction in mammalian teneurins overlaps with the fly Teneurin-m self-association interface. Our work provides a molecular understanding of teneurin homophilic interaction and sheds light on its role in teneurin function throughout evolution.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoILUSA
- The University of Chicago Neuroscience Institute, University of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
| | - Sumit J. Bandekar
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoILUSA
- The University of Chicago Neuroscience Institute, University of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
| | - Demet Araç
- Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoILUSA
- The University of Chicago Neuroscience Institute, University of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
| |
Collapse
|
8
|
Xu Y, Huang F, Guo W, Feng K, Zhu L, Zeng Z, Huang T, Cai YD. Characterization of chromatin accessibility patterns in different mouse cell types using machine learning methods at single-cell resolution. Front Genet 2023; 14:1145647. [PMID: 36936430 PMCID: PMC10014730 DOI: 10.3389/fgene.2023.1145647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Chromatin accessibility is a generic property of the eukaryotic genome, which refers to the degree of physical compaction of chromatin. Recent studies have shown that chromatin accessibility is cell type dependent, indicating chromatin heterogeneity across cell lines and tissues. The identification of markers used to distinguish cell types at the chromosome level is important to understand cell function and classify cell types. In the present study, we investigated transcriptionally active chromosome segments identified by sci-ATAC-seq at single-cell resolution, including 69,015 cells belonging to 77 different cell types. Each cell was represented by existence status on 20,783 genes that were obtained from 436,206 active chromosome segments. The gene features were deeply analyzed by Boruta, resulting in 3897 genes, which were ranked in a list by Monte Carlo feature selection. Such list was further analyzed by incremental feature selection (IFS) method, yielding essential genes, classification rules and an efficient random forest (RF) classifier. To improve the performance of the optimal RF classifier, its features were further processed by autoencoder, light gradient boosting machine and IFS method. The final RF classifier with MCC of 0.838 was constructed. Some marker genes such as H2-Dmb2, which are specifically expressed in antigen-presenting cells (e.g., dendritic cells or macrophages), and Tenm2, which are specifically expressed in T cells, were identified in this study. Our analysis revealed numerous potential epigenetic modification patterns that are unique to particular cell types, thereby advancing knowledge of the critical functions of chromatin accessibility in cell processes.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Lin Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Zhenbing Zeng, ; Tao Huang, ; Yu-Dong Cai,
| |
Collapse
|
9
|
AlMazrouei G, Kanaan GA, Sabri A. Isolated congenital anosmia unaccompanied by a syndrome or familial history. OTOLARYNGOLOGY CASE REPORTS 2022. [DOI: 10.1016/j.xocr.2022.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak. Nat Commun 2022; 13:4887. [PMID: 36068211 PMCID: PMC9448747 DOI: 10.1038/s41467-022-32164-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Wild yak (Bos mutus) and domestic yak (Bos grunniens) are adapted to high altitude environment and have ecological, economic, and cultural significances on the Qinghai-Tibetan Plateau (QTP). Currently, the genetic and cellular bases underlying adaptations of yak to extreme conditions remains elusive. In the present study, we assembled two chromosome-level genomes, one each for wild yak and domestic yak, and screened structural variants (SVs) through the long-read data of yak and taurine cattle. The results revealed that 6733 genes contained high-FST SVs. 127 genes carrying special type of SVs were differentially expressed in lungs of the taurine cattle and yak. We then constructed the first single-cell gene expression atlas of yak and taurine cattle lung tissues and identified a yak-specific endothelial cell subtype. By integrating SVs and single-cell transcriptome data, we revealed that the endothelial cells expressed the highest proportion of marker genes carrying high-FST SVs in taurine cattle lungs. Furthermore, we identified pathways which were related to the medial thickness and formation of elastic fibers in yak lungs. These findings provide new insights into the high-altitude adaptation of yak and have important implications for understanding the physiological and pathological responses of large mammals and humans to hypoxia. The genetic bases of yak adaptations to extreme conditions remains elusive. This study compares yak and cattle at a genomic and transcriptomic level, revealing a new type of endothelial cell and candidate genes related with elastic fiber formation in yak lungs that might contribute to high altitude adaptation.
Collapse
|
11
|
Jansen van Rensburg M, Crous A, Abrahamse H. Promoting Immortalized Adipose-Derived Stem Cell Transdifferentiation and Proliferation into Neuronal-Like Cells through Consecutive 525 nm and 825 nm Photobiomodulation. Stem Cells Int 2022; 2022:2744789. [PMID: 36106176 PMCID: PMC9467736 DOI: 10.1155/2022/2744789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Neuronal cells can be generated from adipose-derived stem cells (ADSCs) through biological or chemical inducers. Research has shown that this process may be optimized by the introduction of laser irradiation in the form of photobiomodulation (PBM) to cells. This in vitro study is aimed at generating neuronal-like cells with inducers, chemical or biological, and at furthermore treating these transdifferentiating cells with consecutive PBM of a 525 nm green (G) laser and 825 nm near-infrared (NIR) laser light with a fluence of 10 J/cm2. Cells were exposed to induction type 1 (IT1): 3-isobutyl-1-methylxanthine (IBMX) (0.5 mM)+indomethacin (200 μM)+insulin (5 μg/ml) for 14 days, preinduced with β-mercaptoethanol (BME) (1 mM) for two days, and then incubated with IT2: β-hydroxyanisole (BHA) (100 μM)+retinoic acid (RA) (10-6 M)+epidermal growth factor (EGF) (10 ng/ml)+basic fibroblast growth factor (bFGF) (10 ng/ml) for 14 days and preinduced with β-mercaptoethanol (BME) (1 mM) for two days and then incubated with indomethacin (200 μM)+RA (1 μM)+forskolin (10 μM) for 14 days. The results were evaluated through morphological observations, viability, proliferation, and migration studies, 24 h, 48 h, and 7 days post-PBM. The protein detection of an early neuronal marker, neuron-specific enolase (NSE), and late, ciliary neurotrophic factor (CNTF), was determined with enzyme-linked immunosorbent assays (ELISAs). The genetic expression was also explored through real-time PCR. Results indicated differentiation in all experimental groups; however, cells that were preinduced showed higher proliferation and a higher differentiation rate than the group that was not preinduced. Within the preinduced groups, results indicated that cells treated with IT2 and consecutive PBM upregulated differentiation the most morphologically and physiologically.
Collapse
Affiliation(s)
- Madeleen Jansen van Rensburg
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| |
Collapse
|
12
|
Alotaibi NH, Alrashed M, Drad MK, Abu-Safieh L, Almobarak AA, Baz B, Farzan RA, Alsuhaibani MS, Al-Alsheikh Y. Isolated Congenital Anosmia: Case Report and Literature Review. EAR, NOSE & THROAT JOURNAL 2022:1455613221111496. [PMID: 35931064 DOI: 10.1177/01455613221111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Isolated congenital anosmia (ICA) is a rare entity worldwide with poorly understood genetic variation. The diagnosis of ICA is made by exclusion of acquired causes of anosmia. Additionally, magnetic resonance imaging in ICA is essential for diagnosis, as it shows reduced or absent development of olfactory bulbs and shallow olfactory sulci. Here, we present the case of a 21-year-old man who presented to our clinic with complete anosmia since birth. The patient's history was negative for acquired causes of anosmia, and the physical examinations of the ears, nose, throat, head, and neck were all not remarkable. Smell testing revealed complete anosmia. The CT imaging was unremarkable; however, magnetic resonance imaging of the anterior brain and olfactory region showed bilaterally absent olfactory bulbs and olfactory tracts, with a shallow olfactory groove. The patient was then subjected to whole exome sequencing. Bioinformatics analysis was performed on the 37 genes associated with olfactory dysfunction, in which a missense variant was identified in the HS6ST1(NM_004807.3) gene was identified, which insilico tools predicted to be likely pathogenic. The results of this patient's genetic analysis add to the possible genetic culprits reported in ICA cases. Additional genetic analyses are required to validate mutations and understand the heterogeneity of disease representation.
Collapse
Affiliation(s)
- Naif H Alotaibi
- Department of Otolaryngology-Head & Neck, King Faisal Specialist Hospital and Research Center (KFSH&RC), Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Chair of Medical and Molecular Genetics Research, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed K Drad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Leen Abu-Safieh
- Bioinformatics and Computational Biology Department, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz A Almobarak
- Department of Otolaryngology-Head & Neck, King Faisal Specialist Hospital and Research Center (KFSH&RC), Riyadh, Saudi Arabia
| | - Batoul Baz
- National Centre for Genomic Technologies and Bioinformatics, King AbdulAziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Raed A Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, king Saud University, Riyadh, Saudi Arabia
| | - Mohanned S Alsuhaibani
- Department of Neuroradiology, King Faisal Specialist Hospital and Research center, Riyadh, Saudi Arabia
| | - Yazeed Al-Alsheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Zhang X, Lin PY, Liakath-Ali K, Südhof TC. Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands. Nat Commun 2022; 13:2297. [PMID: 35484136 PMCID: PMC9050732 DOI: 10.1038/s41467-022-29751-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Extensive studies concluded that homophilic interactions between pre- and postsynaptic teneurins, evolutionarily conserved cell-adhesion molecules, encode the specificity of synaptic connections. However, no direct evidence is available to demonstrate that teneurins are actually required on both pre- and postsynaptic neurons for establishing synaptic connections, nor is it known whether teneurins are localized to synapses. Using super-resolution microscopy, we demonstrate that Teneurin-3 assembles into presynaptic nanoclusters of approximately 80 nm in most excitatory synapses of the hippocampus. Presynaptic deletions of Teneurin-3 and Teneurin-4 in the medial entorhinal cortex revealed that they are required for assembly of entorhinal cortex-CA1, entorhinal cortex-subiculum, and entorhinal cortex-dentate gyrus synapses. Postsynaptic deletions of teneurins in the CA1 region, however, had no effect on synaptic connections from any presynaptic input. Our data suggest that different from the current prevailing view, teneurins promote the establishment of synaptic connections exclusively as presynaptic cell-adhesion molecules, most likely via their nanomolar-affinity binding to postsynaptic latrophilins.
Collapse
Affiliation(s)
- Xuchen Zhang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| | - Pei-Yi Lin
- grid.168010.e0000000419368956Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA USA
| | - Kif Liakath-Ali
- grid.168010.e0000000419368956Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA USA
| | - Thomas C. Südhof
- grid.168010.e0000000419368956Howard Hughes Medical Institute, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA USA
| |
Collapse
|
14
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
15
|
Deller M, Gellrich J, Lohrer EC, Schriever VA. Genetics of congenital olfactory dysfunction: a systematic review of the literature. Chem Senses 2022; 47:6847567. [PMID: 36433800 DOI: 10.1093/chemse/bjac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Olfaction, as one of our 5 senses, plays an important role in our daily lives. It is connected to proper nutrition, social interaction, and protection mechanisms. Disorders affecting this sense consequently also affect the patients' general quality of life. Because the underlying genetics of congenital olfactory disorders (COD) have not been thoroughly investigated yet, this systematic review aimed at providing information on genes that have previously been reported to be mutated in patients suffering from COD. This was achieved by systematically reviewing existing literature on 3 databases, namely PubMed, Ovid Medline, and ISI Web of Science. Genes and the type of disorder, that is, isolated and/or syndromic COD were included in this study, as were the patients' associated abnormal features, which were categorized according to the affected organ(-system). Our research yielded 82 candidate genes/chromosome loci for isolated and/or syndromic COD. Our results revealed that the majority of these are implicated in syndromic COD, a few accounted for syndromic and isolated COD, and the least underly isolated COD. Most commonly, structures of the central nervous system displayed abnormalities. This study is meant to assist clinicians in determining the type of COD and detecting potentially abnormal features in patients with confirmed genetic variations. Future research will hopefully expand this list and thereby further improve our understanding of COD.
Collapse
Affiliation(s)
- Matthias Deller
- Charité-Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
| | - Janine Gellrich
- Abteilung Neuropädiatrie Medizinische Fakultät Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Elisabeth C Lohrer
- Abteilung Neuropädiatrie Medizinische Fakultät Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Valentin A Schriever
- Charité-Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany.,Abteilung Neuropädiatrie Medizinische Fakultät Carl Gustav Carus, Technische Universität, Dresden, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany
| |
Collapse
|
16
|
Vogel P, Read RW, Hansen GM, Powell DR. Histopathology is required to identify and characterize myopathies in high-throughput phenotype screening of genetically engineered mice. Vet Pathol 2021; 58:1158-1171. [PMID: 34269122 DOI: 10.1177/03009858211030541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of mouse models that replicate the genetic and pathological features of human disease is important in preclinical research because these types of models enable the completion of meaningful pharmacokinetic, safety, and efficacy studies. Numerous relevant mouse models of human disease have been discovered in high-throughput screening programs, but there are important specific phenotypes revealed by histopathology that are not reliably detected by any other physiological or behavioral screening tests. As part of comprehensive phenotypic analyses of over 4000 knockout (KO) mice, histopathology identified 12 lines of KO mice with lesions indicative of an autosomal recessive myopathy. This report includes a brief summary of histological and other findings in these 12 lines. Notably, the inverted screen test detected muscle weakness in only 4 of these 12 lines (Scyl1, Plpp7, Chkb, and Asnsd1), all 4 of which have been previously recognized and published. In contrast, 6 of 8 KO lines showing negative or inconclusive findings on the inverted screen test (Plppr2, Pnpla7, Tenm1, Srpk3, Sidt2, Yif1b, Mrs2, and Pnpla2) had not been previously identified as having myopathies. These findings support the need to include histopathology in phenotype screening protocols in order to identify novel genetic myopathies that are not clinically evident or not detected by the inverted screen test.
Collapse
Affiliation(s)
- Peter Vogel
- 5417St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert W Read
- 57636Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | | | - David R Powell
- 57636Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| |
Collapse
|
17
|
Villegas-Mirón P, Acosta S, Nye J, Bertranpetit J, Laayouni H. Chromosome X-wide Analysis of Positive Selection in Human Populations: Common and Private Signals of Selection and its Impact on Inactivated Genes and Enhancers. Front Genet 2021; 12:714491. [PMID: 34646300 PMCID: PMC8502928 DOI: 10.3389/fgene.2021.714491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The ability of detecting adaptive (positive) selection in the genome has opened the possibility of understanding the genetic basis of population-specific adaptations genome-wide. Here, we present the analysis of recent selective sweeps, specifically in the X chromosome, in human populations from the third phase of the 1,000 Genomes Project using three different haplotype-based statistics. We describe instances of recent positive selection that fit the criteria of hard or soft sweeps, and detect a higher number of events among sub-Saharan Africans than non-Africans (Europe and East Asia). A global enrichment of neural-related processes is observed and numerous genes related to fertility appear among the top candidates, reflecting the importance of reproduction in human evolution. Commonalities with previously reported genes under positive selection are found, while particularly strong new signals are reported in specific populations or shared across different continental groups. We report an enrichment of signals in genes that escape X chromosome inactivation, which may contribute to the differentiation between sexes. We also provide evidence of a widespread presence of soft-sweep-like signatures across the chromosome and a global enrichment of highly scoring regions that overlap potential regulatory elements. Among these, enhancers-like signatures seem to present putative signals of positive selection which might be in concordance with selection in their target genes. Also, particularly strong signals appear in regulatory regions that show differential activities, which might point to population-specific regulatory adaptations.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Acosta
- Department Pathology and Experimental Therapeutics, Medical School, University of Barcelona, Barcelona, Spain
| | - Jessica Nye
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain.,Bioinformatics Studies, ESCI-UPF, Barcelona, Spain
| |
Collapse
|
18
|
Bengani H, Grozeva D, Moyon L, Bhatia S, Louros SR, Hope J, Jackson A, Prendergast JG, Owen LJ, Naville M, Rainger J, Grimes G, Halachev M, Murphy LC, Spasic-Boskovic O, van Heyningen V, Kind P, Abbott CM, Osterweil E, Raymond FL, Roest Crollius H, FitzPatrick DR. Identification and functional modelling of plausibly causative cis-regulatory variants in a highly-selected cohort with X-linked intellectual disability. PLoS One 2021; 16:e0256181. [PMID: 34388204 PMCID: PMC8362966 DOI: 10.1371/journal.pone.0256181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/01/2021] [Indexed: 11/18/2022] Open
Abstract
Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.
Collapse
Affiliation(s)
- Hemant Bengani
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Detelina Grozeva
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Institute of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Lambert Moyon
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Shipra Bhatia
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Susana R. Louros
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Jilly Hope
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Jackson
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Liusaidh J. Owen
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Magali Naville
- Ecole Normale Supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
| | - Jacqueline Rainger
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
| | - Graeme Grimes
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mihail Halachev
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura C. Murphy
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Olivera Spasic-Boskovic
- East Midlands and East of England NHS Genomic Laboratory Hub, Molecular Genetics, Adden brooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge, Cambridge, United Kingdom
| | | | - Peter Kind
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine M. Abbott
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Genomic and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Osterweil
- Centre for Discovery Brain Sciences, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| | - F. Lucy Raymond
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - David R. FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh (UoE), Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Mohseni M, Babanejad M, Booth KT, Jamali P, Jalalvand K, Davarnia B, Ardalani F, Khoshaeen A, Arzhangi S, Ghodratpour F, Beheshtian M, Jahanshad F, Otukesh H, Bahrami F, Seifati SM, Bazazzadegan N, Habibi F, Behravan H, Mirzaei S, Keshavarzi F, Nikzat N, Mehrjoo Z, Thiele H, Nothnagel M, Azaiez H, Smith RJ, Kahrizi K, Najmabadi H. Exome sequencing utility in defining the genetic landscape of hearing loss and novel-gene discovery in Iran. Clin Genet 2021; 100:59-78. [PMID: 33713422 PMCID: PMC8195868 DOI: 10.1111/cge.13956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.
Collapse
Affiliation(s)
- Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, USA
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Organization, Semnan, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behzad Davarnia
- Department of Anatomy and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fariba Ardalani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Hasan Otukesh
- Department of Pediatric Neurology, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Seyed Morteza Seifati
- Medical Biotechnology Research Center, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Habibi
- Genetic Counseling Center of Welfare Organization, Rasht, Guilan, Iran
| | - Hanieh Behravan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sepide Mirzaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Keshavarzi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nooshin Nikzat
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Mehrjoo
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- University Hospital Cologne, Cologne, Germany
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
20
|
Pirozzi F, Lee B, Horsley N, Burkardt DD, Dobyns WB, Graham JM, Dentici ML, Cesario C, Schallner J, Porrmann J, Di Donato N, Sanchez-Lara PA, Mirzaa GM. Proximal variants in CCND2 associated with microcephaly, short stature, and developmental delay: A case series and review of inverse brain growth phenotypes. Am J Med Genet A 2021; 185:2719-2738. [PMID: 34087052 DOI: 10.1002/ajmg.a.62362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023]
Abstract
Cyclin D2 (CCND2) is a critical cell cycle regulator and key member of the cyclin D2-CDK4 (DC) complex. De novo variants of CCND2 clustering in the distal part of the protein have been identified as pathogenic causes of brain overgrowth (megalencephaly, MEG) and severe cortical malformations in children including the megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome. Megalencephaly-associated CCND2 variants are localized to the terminal exon and result in accumulation of degradation-resistant protein. We identified five individuals from three unrelated families with novel variants in the proximal region of CCND2 associated with microcephaly, mildly simplified cortical gyral pattern, symmetric short stature, and mild developmental delay. Identified variants include de novo frameshift variants and a dominantly inherited stop-gain variant segregating with the phenotype. This is the first reported association between proximal CCND2 variants and microcephaly, to our knowledge. This series expands the phenotypic spectrum of CCND2-related disorders and suggests that distinct classes of CCND2 variants are associated with reciprocal effects on human brain growth (microcephaly and megalencephaly due to possible loss or gain of protein function, respectively), adding to the growing paradigm of inverse phenotypes due to dysregulation of key brain growth genes.
Collapse
Affiliation(s)
- Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benson Lee
- Division of Medical Genetics, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Nicole Horsley
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Deepika D Burkardt
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William B Dobyns
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - John M Graham
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Maria L Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy.,Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Claudia Cesario
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jens Schallner
- Department of Neuropediatrics, School of Medicine, Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Nataliya Di Donato
- Institute for Clinical Genetics, University Hospital, TU Dresden, Dresden, Germany
| | - Pedro A Sanchez-Lara
- Medical Genetics Institute, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Division of Medical Genetics, Department of Pediatrics, University of Washington, Seattle, Washington, USA.,Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Zhang L, He Y, Lei K, Fang Z, Li Q, Su J, Nie Z, Xu Y, Jin L. Gene expression profiling of early Parkinson's disease patient reveals redox homeostasis. Neurosci Lett 2021; 753:135893. [PMID: 33857551 DOI: 10.1016/j.neulet.2021.135893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is slowly progressive. Due to the lack of specific and sensitive biomarkers, the majority of PD patients are in the advanced stages when diagnosed. This study aimed to investigate biomarkers for early PD diagnosis. We first selected differential mRNAs by analysis of a Gene Expression Omnibus (GEO) data set. Next, we performed RNA sequencing to select differential mRNAs. After an integrated analysis of GEO and RNAseq data, we identified the PD early diagnosis biomarkers associated with oxidative stress. By function analysis, cellular response to hormone stimulus and response to the oxygen-containing compound was involved in the top Gene Set Enrichment Analysis (GSEA)s of the two cohorts. Moreover, SOCS7 was included in these GSEAs coincidentally. Further, by analyzing SOCS7 and its physical interactors, we found they mainly participate in immunity and redox homeostasis related processes, which might play a significant role in PD. Thus, our results suggest SOCS7 might be the potential diagnostic marker for PD.
Collapse
Affiliation(s)
- Liwen Zhang
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China; National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, 201203, Shanghai, PR China; Department of Data & Analytics, WuXi Diagnostics Limited Corporation, 200131, Shanghai, PR China
| | - Yijing He
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China
| | - Kecheng Lei
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 30322, Atlanta, GA, USA
| | - Zhuo Fang
- Department of Data & Analytics, WuXi Diagnostics Limited Corporation, 200131, Shanghai, PR China
| | - Qian Li
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, 201203, Shanghai, PR China; Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, 200065, Shanghai, PR China
| | - Jun Su
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, 201203, Shanghai, PR China; Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, 200065, Shanghai, PR China
| | - Zhiyu Nie
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Yichun Xu
- National Engineering Research Center for Biochip at Shanghai, Shanghai Biochip Limited Corporation, 201203, Shanghai, PR China; Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, 200065, Shanghai, PR China.
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| |
Collapse
|
22
|
Teneurins: Role in Cancer and Potential Role as Diagnostic Biomarkers and Targets for Therapy. Int J Mol Sci 2021; 22:ijms22052321. [PMID: 33652578 PMCID: PMC7956758 DOI: 10.3390/ijms22052321] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Teneurins have been identified in vertebrates as four different genes (TENM1-4), coding for membrane proteins that are mainly involved in embryonic and neuronal development. Genetic studies have correlated them with various diseases, including developmental problems, neurological disorders and congenital general anosmia. There is some evidence to suggest their possible involvement in cancer initiation and progression, and drug resistance. Indeed, mutations, chromosomal alterations and the deregulation of teneurins expression have been associated with several tumor types and patient survival. However, the role of teneurins in cancer-related regulatory networks is not fully understood, as both a tumor-suppressor role and pro-tumoral functions have been proposed, depending on tumor histotype. Here, we summarize and discuss the literature data on teneurins expression and their potential role in different tumor types, while highlighting the possibility of using teneurins as novel molecular diagnostic and prognostic biomarkers and as targets for cancer treatments, such as immunotherapy, in some tumors.
Collapse
|
23
|
Mainland JD, Barlow LA, Munger SD, Millar SE, Vergara MN, Jiang P, Schwob JE, Goldstein BJ, Boye SE, Martens JR, Leopold DA, Bartoshuk LM, Doty RL, Hummel T, Pinto JM, Trimmer C, Kelly C, Pribitkin EA, Reed DR. Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chem Senses 2020; 45:493-502. [PMID: 32556127 PMCID: PMC7545248 DOI: 10.1093/chemse/bjaa038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.
Collapse
Affiliation(s)
| | - Linda A Barlow
- Department of Cell & Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Steven D Munger
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Natalia Vergara
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Bradley J Goldstein
- Department of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, 40 Duke Medicine Cir Clinic 1F, Durham, NC, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Donald A Leopold
- Division of Otolaryngology Head and Neck Surgery, University of Vermont Medical Center, Burlington, VT, USA
| | - Linda M Bartoshuk
- Department of Food Science and Human Nutrition, Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, 3400 Spruce Street, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstrasse, Dresden, Germany
| | - Jayant M Pinto
- Section of Otolaryngology—Head and Neck Surgery, Department of Surgery, The University of Chicago, MC, Chicago, IL, USA
| | | | | | - Edmund A Pribitkin
- Department of Otolaryngology—Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
24
|
Ma X, Huang M, Zheng M, Dai C, Song Q, Zhang Q, Li Q, Gu X, Chen H, Jiang G, Yu Y, Liu X, Li S, Wang G, Chen H, Lu L, Gao X. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer's disease. J Control Release 2020; 327:688-702. [PMID: 32931898 DOI: 10.1016/j.jconrel.2020.09.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Despite the various mechanisms that involved in the pathogenesis of Alzheimer's disease (AD), neuronal damage and synaptic dysfunction are the key events leading to cognition impairment. Therefore, neuroprotection and neurogenesis would provide essential alternatives to the rescue of AD cognitive function. Here we demonstrated that extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs-derived EVs, abbreviated as EVs) entered the brain quickly and efficiently following intranasal administration, and majorly accumulated in neurons within the central nervous system (CNS). Proteomics analysis showed that EVs contained multiple proteins possessing neuroprotective and neurogenesis activities, and neuronal RNA sequencing showed genes enrichment in neuroprotection and neurogenesis following the treatment with EVs. As a result, EVs exerted powerful neuroprotective effect on Aβ1-42 oligomer or glutamate-induced neuronal toxicity, effectively ameliorated neurologic damage in the whole brain areas, remarkably increased newborn neurons and powerfully rescued memory deficits in APP/PS1 transgenic mice. EVs also reduced Aβ deposition and decreased microglia activation although in a less extent. Collectively, here we provide direct evidence that ADSCs-derived EVs may potentially serve as an alternative for AD therapy through alleviating neuronal damage and promoting neurogenesis.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Yu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Xuesong Liu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Gang Wang
- Department of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Li J, Xie Y, Cornelius S, Jiang X, Sando R, Kordon SP, Pan M, Leon K, Südhof TC, Zhao M, Araç D. Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism. Nat Commun 2020; 11:2140. [PMID: 32358586 PMCID: PMC7195488 DOI: 10.1038/s41467-020-16029-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
The trans-synaptic interaction of the cell-adhesion molecules teneurins (TENs) with latrophilins (LPHNs/ADGRLs) promotes excitatory synapse formation when LPHNs simultaneously interact with FLRTs. Insertion of a short alternatively-spliced region within TENs abolishes the TEN-LPHN interaction and switches TEN function to specify inhibitory synapses. How alternative-splicing regulates TEN-LPHN interaction remains unclear. Here, we report the 2.9 Å resolution cryo-EM structure of the TEN2-LPHN3 complex, and describe the trimeric TEN2-LPHN3-FLRT3 complex. The structure reveals that the N-terminal lectin domain of LPHN3 binds to the TEN2 barrel at a site far away from the alternatively spliced region. Alternative-splicing regulates the TEN2-LPHN3 interaction by hindering access to the LPHN-binding surface rather than altering it. Strikingly, mutagenesis of the LPHN-binding surface of TEN2 abolishes the LPHN3 interaction and impairs excitatory but not inhibitory synapse formation. These results suggest that a multi-level coincident binding mechanism mediated by a cryptic adhesion complex between TENs and LPHNs regulates synapse specificity. The trans-synaptic interaction of the cell-adhesion molecules teneurins (TENs) with latrophilins (LPHNs) promotes excitatory synapse formation. Here authors report the high resolution cryo-EM structure of the TEN2-LPHN3 complex, describe the trimeric TEN2-LPHN3-FLRT3 complex and show how alternative-splicing regulates the TEN2-LPHN3 interaction.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Shaleeka Cornelius
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xian Jiang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Szymon P Kordon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Man Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA. .,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
26
|
Del Toro D, Carrasquero-Ordaz MA, Chu A, Ruff T, Shahin M, Jackson VA, Chavent M, Berbeira-Santana M, Seyit-Bremer G, Brignani S, Kaufmann R, Lowe E, Klein R, Seiradake E. Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell 2020; 180:323-339.e19. [PMID: 31928845 PMCID: PMC6978801 DOI: 10.1016/j.cell.2019.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance. Crystal structures reveal binding site for Latrophilin on the Teneurin YD shell A ternary Latrophilin-Teneurin-FLRT complex forms in vitro and in vivo Latrophilin controls cortical migration by binding to Teneurins and FLRTs Latrophilin elicits repulsion of cortical cell bodies/small neurites but not axons
Collapse
Affiliation(s)
- Daniel Del Toro
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany; Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | | | - Amy Chu
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Tobias Ruff
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Meriam Shahin
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Verity A Jackson
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | | | | | - Goenuel Seyit-Bremer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Sara Brignani
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Rainer Kaufmann
- Center for Structural Systems Biology, University of Hamburg, Hamburg 22607, Germany; Department of Physics, University of Hamburg, Hamburg 20355, Germany
| | - Edward Lowe
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK.
| |
Collapse
|
27
|
Dahary D, Golan Y, Mazor Y, Zelig O, Barshir R, Twik M, Iny Stein T, Rosner G, Kariv R, Chen F, Zhang Q, Shen Y, Safran M, Lancet D, Fishilevich S. Genome analysis and knowledge-driven variant interpretation with TGex. BMC Med Genomics 2019; 12:200. [PMID: 31888639 PMCID: PMC6937949 DOI: 10.1186/s12920-019-0647-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/15/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The clinical genetics revolution ushers in great opportunities, accompanied by significant challenges. The fundamental mission in clinical genetics is to analyze genomes, and to identify the most relevant genetic variations underlying a patient's phenotypes and symptoms. The adoption of Whole Genome Sequencing requires novel capacities for interpretation of non-coding variants. RESULTS We present TGex, the Translational Genomics expert, a novel genome variation analysis and interpretation platform, with remarkable exome analysis capacities and a pioneering approach of non-coding variants interpretation. TGex's main strength is combining state-of-the-art variant filtering with knowledge-driven analysis made possible by VarElect, our highly effective gene-phenotype interpretation tool. VarElect leverages the widely used GeneCards knowledgebase, which integrates information from > 150 automatically-mined data sources. Access to such a comprehensive data compendium also facilitates TGex's broad variant annotation, supporting evidence exploration, and decision making. TGex has an interactive, user-friendly, and easy adaptive interface, ACMG compliance, and an automated reporting system. Beyond comprehensive whole exome sequence capabilities, TGex encompasses innovative non-coding variants interpretation, towards the goal of maximal exploitation of whole genome sequence analyses in the clinical genetics practice. This is enabled by GeneCards' recently developed GeneHancer, a novel integrative and fully annotated database of human enhancers and promoters. Examining use-cases from a variety of TGex users world-wide, we demonstrate its high diagnostic yields (42% for single exome and 50% for trios in 1500 rare genetic disease cases) and critical actionable genetic findings. The platform's support for integration with EHR and LIMS through dedicated APIs facilitates automated retrieval of patient data for TGex's customizable reporting engine, establishing a rapid and cost-effective workflow for an entire range of clinical genetic testing, including rare disorders, cancer predisposition, tumor biopsies and health screening. CONCLUSIONS TGex is an innovative tool for the annotation, analysis and prioritization of coding and non-coding genomic variants. It provides access to an extensive knowledgebase of genomic annotations, with intuitive and flexible configuration options, allows quick adaptation, and addresses various workflow requirements. It thus simplifies and accelerates variant interpretation in clinical genetics workflows, with remarkable diagnostic yield, as exemplified in the described use cases. TGex is available at http://tgex.genecards.org/.
Collapse
Affiliation(s)
- Dvir Dahary
- Clinical Genetics, LifeMap Sciences Inc., Marshfield, MA, 02050, USA.
| | - Yaron Golan
- Clinical Genetics, LifeMap Sciences Inc., Marshfield, MA, 02050, USA
| | - Yaron Mazor
- Clinical Genetics, LifeMap Sciences Inc., Marshfield, MA, 02050, USA
| | - Ofer Zelig
- Clinical Genetics, LifeMap Sciences Inc., Marshfield, MA, 02050, USA
| | - Ruth Barshir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsippi Iny Stein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Rosner
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Birth Defect Prevention Research Institute, Maternal and Child Health Hospital, Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530002, China.,Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.,Department of Neurology, Harvard Medical School, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Marilyn Safran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Uytingco CR, Green WW, Martens JR. Olfactory Loss and Dysfunction in Ciliopathies: Molecular Mechanisms and Potential Therapies. Curr Med Chem 2019; 26:3103-3119. [PMID: 29303074 DOI: 10.2174/0929867325666180105102447] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/08/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ciliopathies are a class of inherited pleiotropic genetic disorders in which alterations in cilia assembly, maintenance, and/or function exhibit penetrance in the multiple organ systems. Olfactory dysfunction is one such clinical manifestation that has been shown in both patients and model organisms. Existing therapies for ciliopathies are limited to the treatment or management of symptoms. The last decade has seen an increase in potential curative therapeutic options including small molecules and biologics. Recent work in multiciliated olfactory sensory neurons has demonstrated the capacity of targeted gene therapy to restore ciliation in terminally differentiated cells and rescue olfactory function. This review will discuss the current understanding of the penetrance of ciliopathies in the olfactory system. Importantly, it will highlight both pharmacological and biological approaches, and their potential therapeutic value in the olfactory system and other ciliated tissues. METHODS We undertook a structured and comprehensive search of peer-reviewed research literature encompassing in vitro, in vivo, model organism, and clinical studies. From these publications, we describe the olfactory system, and discuss the penetrance of ciliopathies and impact of cilia loss on olfactory function. In addition, we outlined the developing therapies for ciliopathies across different organ and cell culture systems, and discussed their potential therapeutic application to the mammalian olfactory system. RESULTS One-hundred sixty-one manuscripts were included in the review, centering on the understanding of olfactory penetrance of ciliopathies, and discussing the potential therapeutic options for ciliopathies in the context of the mammalian olfactory system. Forty-four manuscripts were used to generate a table listing the known congenital causes of olfactory dysfunction, with the first ten listed are linked to ciliopathies. Twenty-three manuscripts were used to outline the potential of small molecules for the olfactory system. Emphasis was placed on HDAC6 inhibitors and lithium, both of which were shown to stabilize microtubule structures, contributing to ciliogenesis and cilia lengthening. Seventy-five manuscripts were used to describe gene therapy and gene therapeutic strategies. Included were the implementation of adenoviral, adeno-associated virus (AAV), and lentiviral vectors to treat ciliopathies across different organ systems and application toward the olfactory system. Thus far, adenoviral and AAVmeditated ciliary restoration demonstrated successful proof-of-principle preclinical studies. In addition, gene editing, ex vivo gene therapy, and transplantation could serve as alternative therapeutic and long-term approaches. But for all approaches, additional assessment of vector immunogenicity, specificity, and efficacy need further investigation. Currently, ciliopathy treatments are limited to symptomatic management with no curative options. However, the accessibility and amenability of the olfactory system to treatment would facilitate development and advancement of a viable therapy. CONCLUSION The findings of this review highlight the contribution of ciliopathies to a growing list of congenial olfactory dysfunctions. Promising results from other organ systems imply the feasibility of biologics, with results from gene therapies proving to be a viable therapeutic option for ciliopathies and olfactory dysfunction.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, United States.,University of Florida Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, United States
| |
Collapse
|
29
|
Araç D, Li J. Teneurin Structure: Splice Variants of a Bacterial Toxin Homolog Specifies Synaptic Connections. Front Neurosci 2019; 13:838. [PMID: 31440135 PMCID: PMC6693077 DOI: 10.3389/fnins.2019.00838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Teneurins are a conserved family of cell-surface adhesion molecules that mediate cellular communication, and play key roles in embryonic and neural development. Their mechanisms of action remained unclear due in part to their unknown structures. In recent years, the structures of teneurins have been reported at atomic resolutions and revealed a clear homology to bacterial Tc toxins with no similarity to other eukaryotic proteins. Another surprising observation was that alternatively spliced variants of teneurins interact with distinct ligands, and thus specify excitatory vs. inhibitory synapses. In this review, we discuss teneurin structures that together with structure-guided biochemical and functional analyses, provide insights for the mechanisms of trans-cellular communication at the synapse and other cell-cell contact sites.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, United States
| | - Jingxian Li
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
30
|
Tessarin GWL, Michalec OM, Torres-da-Silva KR, Da Silva AV, Cruz-Rizzolo RJ, Gonçalves A, Gasparini DC, Horta-Júnior JAC, Ervolino E, Bittencourt JC, Lovejoy DA, Casatti CA. A Putative Role of Teneurin-2 and Its Related Proteins in Astrocytes. Front Neurosci 2019; 13:655. [PMID: 31316338 PMCID: PMC6609321 DOI: 10.3389/fnins.2019.00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Teneurins are type II transmembrane proteins comprised of four phylogenetically conserved homologs (Ten-1-4) that are highly expressed during neurogenesis. An additional bioactive peptide named teneurin C-terminal-associated peptide (TCAP-1-4) is present at the carboxyl terminal of teneurins. The possible correlation between the Ten/TCAP system and brain injuries has not been explored yet. Thus, this study examined the expression of these proteins in the cerebral cortex after mechanical brain injury. Adult rats were subjected to cerebral cortex injury by needle-insertion lesion and sacrificed at various time points. This was followed by analysis of the lesion area by immunohistochemistry and conventional RT-PCR techniques. Control animals (no brain injury) showed only discrete Ten-2-like immunoreactive pyramidal neurons in the cerebral cortex. In contrast, Ten-2 immunoreactivity was significantly up-regulated in the reactive astrocytes in all brain-injured groups (p < 0.0001) when compared to the control group. Interestingly, reactive astrocytes also showed intense immunoreactivity to LPHN-1, an endogenous receptor for the Ten-2 splice variant named Lasso. Semi-quantitative analysis of Ten-2 and TCAP-2 expression revealed significant increases of both at 48 h, 3 days and 5 days (p < 0.0001) after brain injury compared to the remaining groups. Immortalized cerebellar astrocytes were also evaluated for Ten/TCAP expression and intracellular calcium signaling by fluorescence microscopy after TCAP-1 treatment. Immortalized astrocytes expressed additional Ten/TCAP homologs and exhibited significant increases in intracellular calcium concentrations after TCAP-1 treatment. This study is the first to demonstrate that Ten-2/TCAP-2 and LPHN-1 are upregulated in reactive astrocytes after a mechanical brain injury. Immortalized cerebellar astrocytes expressed Ten/TCAP homologs and TCAP-1 treatment stimulated intracellular calcium signaling. These findings disclose a new functional role of the Ten/TCAP system in astrocytes during tissue repair of the CNS.
Collapse
Affiliation(s)
- Gestter W L Tessarin
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kelly R Torres-da-Silva
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - André V Da Silva
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,School of Medicine, Federal University of Mato Grosso do Sul (UFMS), Três Lagoas, Brazil
| | - Roelf J Cruz-Rizzolo
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alaide Gonçalves
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Daniele C Gasparini
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, São Paulo University (USP), São Paulo, Brazil
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Cláudio A Casatti
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
31
|
Burbach JPH, Meijer DH. Latrophilin's Social Protein Network. Front Neurosci 2019; 13:643. [PMID: 31297045 PMCID: PMC6608557 DOI: 10.3389/fnins.2019.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
32
|
Leamey CA, Sawatari A. Teneurins: Mediators of Complex Neural Circuit Assembly in Mammals. Front Neurosci 2019; 13:580. [PMID: 31231187 PMCID: PMC6560073 DOI: 10.3389/fnins.2019.00580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/22/2019] [Indexed: 01/27/2023] Open
Abstract
The teneurins (Ten-m/Odz) are a family of evolutionarily ancient transmembrane molecules whose complex and multi-faceted roles in the generation of mammalian neural circuits are only beginning to be appreciated. In mammals there are four family members (Ten-m1-4). Initial expression studies in vertebrates revealed intriguing expression patterns in interconnected populations of neurons. These observations, together with biochemical and over-expression studies, led to the hypothesis that homophilic interactions between teneurins on afferent and target cells may help to guide the assembly of neural circuits. This review will focus on insights gained on teneurin function in vivo in mammals using mouse knockout models. These studies provide support for the hypothesis that homophilic interactions between teneurin molecules can guide the formation of neural connections with largely consistent results obtained in hippocampal and striatal circuits. Mapping changes obtained in the mouse visual pathway, however, suggest additional roles for these glycoproteins in the formation and specification of circuits which subserve binocular vision.
Collapse
Affiliation(s)
- Catherine A Leamey
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Atomu Sawatari
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Stamou MI, Plummer L, Koika V, Galli-Tsinopoulou A, Georgopoulos NA. A novel FGF8 mutation in a female patient with isolated congenital anosmia. Hormones (Athens) 2019; 18:241-244. [PMID: 31087283 PMCID: PMC8832634 DOI: 10.1007/s42000-019-00108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/27/2019] [Indexed: 10/26/2022]
Affiliation(s)
- M I Stamou
- Harvard Reproductive Science Center, Harvard Medical School, Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Massachusetts General Hospital, Boston, MA, USA.
- Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Cambridge, MA, USA.
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University Regional Hospital of Patras, Rio, Greece.
| | - L Plummer
- Harvard Reproductive Science Center, Harvard Medical School, Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Massachusetts General Hospital, Boston, MA, USA
| | - V Koika
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University Regional Hospital of Patras, Rio, Greece
| | - A Galli-Tsinopoulou
- 4th Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N A Georgopoulos
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University Regional Hospital of Patras, Rio, Greece
| |
Collapse
|
34
|
Araç D, Li J. Teneurins and latrophilins: two giants meet at the synapse. Curr Opin Struct Biol 2019; 54:141-151. [PMID: 30952063 DOI: 10.1016/j.sbi.2019.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Teneurins and latrophilins are both conserved families of cell adhesion proteins that mediate cellular communication and play critical roles in embryonic and neural development. However, their mechanisms of action remain poorly understood. In the past several years, three-dimensional structures of teneurins and latrophilins have been reported at atomic resolutions and revealed distinct protein folds and unique structural features. In this review, we discuss these structures which, together with structure-guided biochemical and functional analyses, provide hints for the mechanisms of trans-cellular communication at the synapse and other cell-cell contact sites.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA.
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA
| |
Collapse
|
35
|
Jackson VA, Busby JN, Janssen BJC, Lott JS, Seiradake E. Teneurin Structures Are Composed of Ancient Bacterial Protein Domains. Front Neurosci 2019; 13:183. [PMID: 30930731 PMCID: PMC6425310 DOI: 10.3389/fnins.2019.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
Pioneering bioinformatic analysis using sequence data revealed that teneurins evolved from bacterial tyrosine-aspartate (YD)-repeat protein precursors. Here, we discuss how structures of the C-terminal domain of teneurins, determined using X-ray crystallography and electron microscopy, support the earlier findings on the proteins’ ancestry. This chapter describes the structure of the teneurin scaffold with reference to a large family of teneurin-like proteins that are widespread in modern prokaryotes. The central scaffold of modern eukaryotic teneurins is decorated by additional domains typically found in bacteria, which are re-purposed in eukaryotes to generate highly multifunctional receptors. We discuss how alternative splicing contributed to further diversifying teneurin structure and thereby function. This chapter traces the evolution of teneurins from a structural point of view and presents the state-of-the-art of how teneurin function is encoded by its specific structural features.
Collapse
Affiliation(s)
| | - Jason N Busby
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - J Shaun Lott
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Li J, Shalev-Benami M, Sando R, Jiang X, Kibrom A, Wang J, Leon K, Katanski C, Nazarko O, Lu YC, Südhof TC, Skiniotis G, Araç D. Structural Basis for Teneurin Function in Circuit-Wiring: A Toxin Motif at the Synapse. Cell 2019; 173:735-748.e15. [PMID: 29677516 DOI: 10.1016/j.cell.2018.03.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Teneurins (TENs) are cell-surface adhesion proteins with critical roles in tissue development and axon guidance. Here, we report the 3.1-Å cryoelectron microscopy structure of the human TEN2 extracellular region (ECR), revealing a striking similarity to bacterial Tc-toxins. The ECR includes a large β barrel that partially encapsulates a C-terminal domain, which emerges to the solvent through an opening in the mid-barrel region. An immunoglobulin (Ig)-like domain seals the bottom of the barrel while a β propeller is attached in a perpendicular orientation. We further show that an alternatively spliced region within the β propeller acts as a switch to regulate trans-cellular adhesion of TEN2 to latrophilin (LPHN), a transmembrane receptor known to mediate critical functions in the central nervous system. One splice variant activates trans-cellular signaling in a LPHN-dependent manner, whereas the other induces inhibitory postsynaptic differentiation. These results highlight the unusual structural organization of TENs giving rise to their multifarious functions.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Moran Shalev-Benami
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xian Jiang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Amanuel Kibrom
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Jie Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christopher Katanski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Olha Nazarko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Yue C Lu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
37
|
Tucker RP. Teneurins: Domain Architecture, Evolutionary Origins, and Patterns of Expression. Front Neurosci 2018; 12:938. [PMID: 30618567 PMCID: PMC6297184 DOI: 10.3389/fnins.2018.00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Disruption of teneurin expression results in abnormal neural networks, but just how teneurins support the development of the central nervous system remains an area of active research. This review summarizes some of what we know about the functions of the various domains of teneurins, the possible evolution of teneurins from a bacterial toxin, and the intriguing patterns of teneurin expression. Teneurins are a family of type-2 transmembrane proteins. The N-terminal intracellular domain can be processed and localized to the nucleus, but the significance of this nuclear localization is unknown. The extracellular domain of teneurins is largely composed of tyrosine-aspartic acid repeats that fold into a hollow barrel, and the C-terminal domains of teneurins are stuffed, and least partly, into the barrel. A 6-bladed beta-propeller is found at the other end of the barrel. The same arrangement-6-bladed beta-propeller, tyrosine-aspartic acid repeat barrel, and the C-terminal domain inside the barrel-is seen in toxic proteins from bacteria, and there is evidence that teneurins may have evolved from a gene encoding a prokaryotic toxin via horizontal gene transfer into an ancestral choanoflagellate. Patterns of teneurin expression are often, but not always, complementary. In the central nervous system, where teneurins are best studied, interconnected populations of neurons often express the same teneurin. For example, in the chicken embryo neurons forming the tectofugal pathway express teneurin-1, whereas neurons forming the thalamofugal pathway express teneurin-2. In Drosophila melanogaster, Caenorhabditis elegans, zebrafish and mice, misexpression or knocking out teneurin expression leads to abnormal connections in the neural networks that normally express the relevant teneurin. Teneurins are also expressed in non-neuronal tissue during development, and in at least some regions the patterns of non-neuronal expression are also complementary. The function of teneurins outside the nervous system remains unclear.
Collapse
Affiliation(s)
- Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, United States
| |
Collapse
|
38
|
Rebolledo-Jaramillo B, Ziegler A. Teneurins: An Integrative Molecular, Functional, and Biomedical Overview of Their Role in Cancer. Front Neurosci 2018; 12:937. [PMID: 30618566 PMCID: PMC6297388 DOI: 10.3389/fnins.2018.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Teneurins are large transmembrane proteins originally identified in Drosophila. Their essential role in development of the central nervous system is conserved throughout species, and evidence supports their involvement in organogenesis of additional tissues. Homophilic and heterophilic interactions between Teneurin paralogues mediate cellular adhesion in crucial processes such as neuronal pathfinding and synaptic organization. At the molecular level, Teneurins are proteolytically processed into distinct subdomains that have been implicated in extracellular and intracellular signaling, and in transcriptional regulation. Phylogenetic studies have shown a high degree of intra- and interspecies conservation of Teneurin genes. Accordingly, the occurrence of genetic variants has been associated with functional and phenotypic alterations in experimental systems, and with some inherited or sporadic conditions. Recently, tumor-related variations in Teneurin gene expression have been associated with patient survival in different cancers. Although these findings were incidental and molecular mechanisms were not addressed, they suggested a potential utility of Teneurin transcript levels as biomarkers for disease prognosis. Mutations and chromosomal alterations affecting Teneurin genes have been found occasionally in tumors, but literature remains scarce. The analysis of open-access molecular and clinical datasets derived from large oncologic cohorts provides an invaluable resource for the identification of additional somatic mutations. However, Teneurin variants have not been classified in terms of pathogenic risk and their phenotypic impact remains unknown. On this basis, is it plausible to hypothesize that Teneurins play a role in carcinogenesis? Does current evidence support a tumor suppressive or rather oncogenic function for these proteins? Here, we comprehensively discuss available literature with integration of molecular evidence retrieved from open-access databases. We show that Teneurins undergo somatic changes comparable to those of well-established cancer genes, and discuss their involvement in cancer-related signaling pathways. Current data strongly suggest a functional contribution of Teneurins to human carcinogenesis.
Collapse
Affiliation(s)
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
39
|
Ferralli J, Tucker RP, Chiquet-Ehrismann R. The teneurin C-terminal domain possesses nuclease activity and is apoptogenic. Biol Open 2018; 7:7/3/bio031765. [PMID: 29555638 PMCID: PMC5898268 DOI: 10.1242/bio.031765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Teneurins are type 2 transmembrane proteins expressed by developing neurons during periods of synaptogenesis and apoptosis. Neurons expressing teneurin-1 synapse with other teneurin-1-expressing neurons, and neurons expressing teneurin-2 synapse with other teneurin-2-expressing neurons. Knockdowns and mutations of teneurins lead to abnormal neuronal connections, but the mechanisms underlying teneurin action remain unknown. Teneurins appear to have evolved via horizontal gene transfer from prokaryotic proteins involved in bacterial self-recognition. The bacterial teneurin-like proteins contain a cytotoxic C-terminal domain that is encapsulated in a tyrosine-aspartic acid repeat barrel. Teneurins are likely to be organized in the same way, but it is unclear if the C-terminal domains of teneurins have cytotoxic properties. Here we show that expression of teneurin C-terminal domains or the addition of purified teneurin C-terminal domains leads to an increase in apoptosis in vitro. The C-terminal domains of teneurins are most similar to bacterial nucleases, and purified C-terminal domains of teneurins linearize pcDNA3 and hydrolyze mitochondrial DNA. We hypothesize that yet to be identified stimuli lead to the release of the encapsulated teneurin C-terminal domain into the intersynaptic region, resulting in programmed cell death or the disruption of mitochondrial DNA and the subsequent pruning of inappropriate contacts. Summary: Teneurins are transmembrane proteins found in the developing nervous system that are related to bacterial toxins. Teneurins also have cytotoxic properties that may help regulate apoptosis or pruning.
Collapse
Affiliation(s)
- Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel CH-4058, Switzerland
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, California 95616-8643, United States of America
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel CH-4058, Switzerland.,Faculty of Science, University of Basel, Basel CH-4056, Switzerland
| |
Collapse
|
40
|
Jackson VA, Meijer DH, Carrasquero M, van Bezouwen LS, Lowe ED, Kleanthous C, Janssen BJC, Seiradake E. Structures of Teneurin adhesion receptors reveal an ancient fold for cell-cell interaction. Nat Commun 2018. [PMID: 29540701 PMCID: PMC5851990 DOI: 10.1038/s41467-018-03460-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Teneurins are ancient cell–cell adhesion receptors that are vital for brain development and synapse organisation. They originated in early metazoan evolution through a horizontal gene transfer event when a bacterial YD-repeat toxin fused to a eukaryotic receptor. We present X-ray crystallography and cryo-EM structures of two Teneurins, revealing a ~200 kDa extracellular super-fold in which eight sub-domains form an intricate structure centred on a spiralling YD-repeat shell. An alternatively spliced loop, which is implicated in homophilic Teneurin interaction and specificity, is exposed and thus poised for interaction. The N-terminal side of the shell is ‘plugged’ via a fibronectin-plug domain combination, which defines a new class of YD proteins. Unexpectedly, we find that these proteins are widespread amongst modern bacteria, suggesting early metazoan receptor evolution from a distinct class of proteins, which today includes both bacterial proteins and eukaryotic Teneurins. Teneurins are cell-cell adhesion receptors that evolved through horizontal gene transfer in which a bacterial YD-repeat protein fused to a eukaryotic receptor. Here the authors present crystallographic and cryo-EM structures of two Teneurins, revealing an ancient YD-repeat protein super-fold.
Collapse
Affiliation(s)
- Verity A Jackson
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK.
| | - Dimphna H Meijer
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | - Laura S van Bezouwen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.,Cryo-electron Microscopy, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Edward D Lowe
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK
| | - Colin Kleanthous
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK.
| |
Collapse
|
41
|
Ahmad G, Amiji M. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discov Today 2018; 23:519-533. [DOI: 10.1016/j.drudis.2018.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
|
42
|
Berns DS, DeNardo LA, Pederick DT, Luo L. Teneurin-3 controls topographic circuit assembly in the hippocampus. Nature 2018; 554:328-333. [PMID: 29414938 PMCID: PMC7282895 DOI: 10.1038/nature25463] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
Abstract
Brain functions rely on specific patterns of connectivity. Teneurins are evolutionarily conserved transmembrane proteins that instruct synaptic partner matching in Drosophila and are required for vertebrate visual system development. The roles of vertebrate teneurins in connectivity beyond the visual system remain largely unknown and their mechanisms of action have not been demonstrated. Here we show that mouse teneurin-3 is expressed in multiple topographically interconnected areas of the hippocampal region, including proximal CA1, distal subiculum, and medial entorhinal cortex. Viral-genetic analyses reveal that teneurin-3 is required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum. Furthermore, teneurin-3 promotes homophilic adhesion in vitro in a splicing isoform-dependent manner. These findings demonstrate striking genetic heterogeneity across multiple hippocampal areas and suggest that teneurin-3 may orchestrate the assembly of a complex distributed circuit in the mammalian brain via matching expression and homophilic attraction.
Collapse
Affiliation(s)
- Dominic S Berns
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, California 94305, USA
| | - Laura A DeNardo
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Daniel T Pederick
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
43
|
Arishima T, Sasaki S, Isobe T, Ikebata Y, Shimbara S, Ikeda S, Kawashima K, Suzuki Y, Watanabe M, Sugano S, Mizoshita K, Sugimoto Y. Maternal variant in the upstream of FOXP3 gene on the X chromosome is associated with recurrent infertility in Japanese Black cattle. BMC Genet 2017; 18:103. [PMID: 29212449 PMCID: PMC5719641 DOI: 10.1186/s12863-017-0573-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Repeat breeding, which is defined as cattle failure to conceive after three or more inseminations in the absence of clinical abnormalities, is a substantial problem in cattle breeding. To identify maternal genetic variants of repeat breeding in Japanese Black cattle, we selected 29 repeat-breeding heifers that failed to conceive following embryo transfer (ET) and conducted a genome-wide association study (GWAS) using the traits. Results We found that a single-nucleotide polymorphism (SNP; g.92,377,635A > G) in the upstream region of the FOXP3 gene on the X chromosome was highly associated with repeat breeding and failure to conceive following ET (P = 1.51 × 10−14). FOXP3 is a master gene for differentiation of regulatory T (Treg) cells that function in pregnancy maintenance. Reporter assay results revealed that the activity of the FOXP3 promoter was lower in reporter constructs with the risk-allele than in those with the non-risk-allele by approximately 0.68 fold. These findings suggest that the variant in the upstream region of FOXP3 with the risk-allele decreased FOXP3 transcription, which in turn, could reduce the number of maternal Treg cells and lead to infertility. The frequency of the risk-allele in repeat-breeding heifers is more than that in cows, suggesting that the risk-allele could be associated with infertility in repeat-breeding heifers. Conclusions This GWAS identified a maternal variant in the upstream region of FOXP3 that was associated with infertility in repeat-breeding Japanese Black cattle that failed to conceive using ET. The variant affected the level of FOXP3 mRNA expression. Thus, the results suggest that the risk-allele could serve as a useful marker to reduce and eliminate animals with inferior fertility in Japanese Black cattle. Electronic supplementary material The online version of this article (10.1186/s12863-017-0573-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taichi Arishima
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Shinji Sasaki
- National Livestock Breeding Center, Odakura, Nishigo, Fukushima, 961-8511, Japan. .,Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan.
| | - Tomohiro Isobe
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Yoshihisa Ikebata
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Shinichi Shimbara
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Shogo Ikeda
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Keisuke Kawashima
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Manabu Watanabe
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, and Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Kazunori Mizoshita
- Kagoshima prefectural Cattle Breeding Development Institute, Osumi, So, Kagoshima, 899-8212, Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan
| |
Collapse
|
44
|
Next-generation sequencing of patients with congenital anosmia. Eur J Hum Genet 2017; 25:1377-1387. [PMID: 29255181 DOI: 10.1038/s41431-017-0014-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/10/2017] [Accepted: 09/09/2017] [Indexed: 02/05/2023] Open
Abstract
We performed whole exome or genome sequencing in eight multiply affected families with ostensibly isolated congenital anosmia. Hypothesis-free analyses based on the assumption of fully penetrant recessive/dominant/X-linked models obtained no strong single candidate variant in any of these families. In total, these eight families showed 548 rare segregating variants that were predicted to be damaging, in 510 genes. Three Kallmann syndrome genes (FGFR1, SEMA3A, and CHD7) were identified. We performed permutation-based analysis to test for overall enrichment of these 510 genes carrying these 548 variants with genes mutated in Kallmann syndrome and with a control set of genes mutated in hypogonadotrophic hypogonadism without anosmia. The variants were found to be enriched for Kallmann syndrome genes (3 observed vs. 0.398 expected, p = 0.007), but not for the second set of genes. Among these three variants, two have been already reported in genes related to syndromic anosmia (FGFR1 (p.(R250W)), CHD7 (p.(L2806V))) and one was novel (SEMA3A (p.(T717I))). To replicate these findings, we performed targeted sequencing of 16 genes involved in Kallmann syndrome and hypogonadotrophic hypogonadism in 29 additional families, mostly singletons. This yielded an additional 6 variants in 5 Kallmann syndrome genes (PROKR2, SEMA3A, CHD7, PROK2, ANOS1), two of them already reported to cause Kallmann syndrome. In all, our study suggests involvement of 6 syndromic Kallmann genes in isolated anosmia. Further, we report a yet unreported appearance of di-genic inheritance in a family with congenital isolated anosmia. These results are consistent with a complex molecular basis of congenital anosmia.
Collapse
|
45
|
Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, Martens J, Ngai J, Duffy VB. Anosmia-A Clinical Review. Chem Senses 2017; 42:513-523. [PMID: 28531300 PMCID: PMC5863566 DOI: 10.1093/chemse/bjx025] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Anosmia and hyposmia, the inability or decreased ability to smell, is estimated to afflict 3-20% of the population. Risk of olfactory dysfunction increases with old age and may also result from chronic sinonasal diseases, severe head trauma, and upper respiratory infections, or neurodegenerative diseases. These disorders impair the ability to sense warning odors in foods and the environment, as well as hinder the quality of life related to social interactions, eating, and feelings of well-being. This article reports and extends on a clinical update commencing at the 2016 Association for Chemoreception Sciences annual meeting. Included were reports from: a patient perspective on losing the sense of smell with information on Fifth Sense, a nonprofit advocacy organization for patients with olfactory disorders; an otolaryngologist's review of clinical evaluation, diagnosis, and management/treatment of anosmia; and researchers' review of recent advances in potential anosmia treatments from fundamental science, in animal, cellular, or genetic models. As limited evidence-based treatments exist for anosmia, dissemination of information on anosmia-related health risks is needed. This could include feasible and useful screening measures for olfactory dysfunction, appropriate clinical evaluation, and patient counseling to avoid harm as well as manage health and quality of life with anosmia.
Collapse
Affiliation(s)
- Sanne Boesveldt
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
| | - Elbrich M Postma
- Division of Human Nutrition, Wageningen University & Research, Wageningen, The Netherlands
- Smell and Taste Centre, Hospital Gelderse Vallei, PO Box 9025, 6710 HN Ede, The Netherlands
| | - Duncan Boak
- Fifth Sense, Sanderum House, 38 Oakley Road, Chino OX39 4TW, UK
| | - Antje Welge-Luessen
- Department of Otorhinolaryngology, University Hospital Basel, Petersgraben 4CH-4031 Basel, Switzerland
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
- Department of Neuroscience, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Jeffrey Martens
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, USA
| | - John Ngai
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Valerie B Duffy
- Department of Allied Health Sciences, University of Connecticut, 358 Mansfield Road, Box U-101 Storrs, CT 06269-2101, USA
| |
Collapse
|
46
|
Rappaport N, Fishilevich S, Nudel R, Twik M, Belinky F, Plaschkes I, Stein TI, Cohen D, Oz-Levi D, Safran M, Lancet D. Rational confederation of genes and diseases: NGS interpretation via GeneCards, MalaCards and VarElect. Biomed Eng Online 2017; 16:72. [PMID: 28830434 PMCID: PMC5568599 DOI: 10.1186/s12938-017-0359-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background A key challenge in the realm of human disease research is next generation sequencing (NGS) interpretation, whereby identified filtered variant-harboring genes are associated with a patient’s disease phenotypes. This necessitates bioinformatics tools linked to comprehensive knowledgebases. The GeneCards suite databases, which include GeneCards (human genes), MalaCards (human diseases) and PathCards (human pathways) together with additional tools, are presented with the focus on MalaCards utility for NGS interpretation as well as for large scale bioinformatic analyses. Results VarElect, our NGS interpretation tool, leverages the broad information in the GeneCards suite databases. MalaCards algorithms unify disease-related terms and annotations from 69 sources. Further, MalaCards defines hierarchical relatedness—aliases, disease families, a related diseases network, categories and ontological classifications. GeneCards and MalaCards delineate and share a multi-tiered, scored gene-disease network, with stringency levels, including the definition of elite status—high quality gene-disease pairs, coming from manually curated trustworthy sources, that includes 4500 genes for 8000 diseases. This unique resource is key to NGS interpretation by VarElect. VarElect, a comprehensive search tool that helps infer both direct and indirect links between genes and user-supplied disease/phenotype terms, is robustly strengthened by the information found in MalaCards. The indirect mode benefits from GeneCards’ diverse gene-to-gene relationships, including SuperPaths—integrated biological pathways from 12 information sources. We are currently adding an important information layer in the form of “disease SuperPaths”, generated from the gene-disease matrix by an algorithm similar to that previously employed for biological pathway unification. This allows the discovery of novel gene-disease and disease–disease relationships. The advent of whole genome sequencing necessitates capacities to go beyond protein coding genes. GeneCards is highly useful in this respect, as it also addresses 101,976 non-protein-coding RNA genes. In a more recent development, we are currently adding an inclusive map of regulatory elements and their inferred target genes, generated by integration from 4 resources. Conclusions MalaCards provides a rich big-data scaffold for in silico biomedical discovery within the gene-disease universe. VarElect, which depends significantly on both GeneCards and MalaCards power, is a potent tool for supporting the interpretation of wet-lab experiments, notably NGS analyses of disease. The GeneCards suite has thus transcended its 2-decade role in biomedical research, maturing into a key player in clinical investigation.
Collapse
Affiliation(s)
- Noa Rappaport
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,Institute for Systems Biology, Seattle, WA, USA
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Nudel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Twik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Frida Belinky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.,National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Inbar Plaschkes
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsippi Iny Stein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Danit Oz-Levi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Marilyn Safran
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
47
|
Abstract
Isolated congenital anosmia (ICA) is a rare condition that is associated with life-long inability to smell. Here we report a genetic characterization of a large Iranian family segregating ICA. Whole exome sequencing in five affected family members and five healthy members revealed a stop gain mutation in CNGA2 (OMIM 300338) (chrX:150,911,102; CNGA2. c.577C > T; p.Arg193*). The mutation segregates in an X-linked pattern, as all the affected family members are hemizygotes, whereas healthy family members are either heterozygote or homozygote for the reference allele. cnga2 knockout mice are congenitally anosmic and have abnormal olfactory system physiology, additionally Karstensen et al. recently reported two anosmic brothers sharing a CNGA2 truncating variant. Our study in concert with these findings provides strong support for role of CNGA2 gene with pathogenicity of ICA in humans. Together, these results indicate that mutations in key olfactory signaling pathway genes are responsible for human disease.
Collapse
|
48
|
Kato T, Takada S. In vivoandin vitrodisease modeling with CRISPR/Cas9. Brief Funct Genomics 2016; 16:13-24. [DOI: 10.1093/bfgp/elw031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|