1
|
Pratelli A, Riparbelli MG, Callaini G. Axonemal tubules in the distal sperm tail of Wolbachia-infected Drosophila simulans males contain ring-like intraluminal structures that persist after axoneme fragmentation. Cytoskeleton (Hoboken) 2025; 82:234-241. [PMID: 38923204 DOI: 10.1002/cm.21891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Wolbachia are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, Wolbachia also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of Wolbachia has important fitness costs and infected Drosophila simulans males produce less sperm than their uninfected counterparts. Such sperm suffer, indeed, of some structural alterations that hinder their proper function. We took advantage of the fact that several sperm have abnormal distal regions of the tail, in which the plasma membrane is broken and the axonemal components splayed, making the ultrastructural aspects clearly observable. We found that axoneme reduction in the distal region of the sperm does not follow a unique pattern as observed in other insects, but occurs by losing accessory tubules or peripheral doublets. The axonemal tubules contain distinct coaxial ring-like structures that are still observed after axoneme fragmentation and form large clusters of several units.
Collapse
Affiliation(s)
- Ambra Pratelli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | |
Collapse
|
2
|
Chu Y, Sakamoto K, Evans CC, Dzimianski MT, Fricks C, Mansour A, DiCosty U, McCall S, McCall JW, Nelson CT, Moorhead AR. Real-time PCR and immunohistochemistry detection of Wolbachia in adult Dirofilaria immitis from dogs treated with doxycycline and ivermectin. Parasit Vectors 2025; 18:78. [PMID: 40012073 PMCID: PMC11866827 DOI: 10.1186/s13071-025-06720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/10/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Wolbachia is present in all life stages of Dirofilaria immitis. Wolbachia surface protein (WSP) can be highly immunogenic and induce acute inflammatory reactions in the host upon worm death. To avoid the abrupt release of Wolbachia and its antigens from deceased parasites, the American Heartworm Society (AHS) has recommended using doxycycline (DOXY) and having a 1-month wait period between the DOXY treatment and the adulticidal process for Wolbachia elimination. Studies have shown that the 28 day, 10 mg/kg twice daily (BID) administration of DOXY can effectively clear Wolbachia in the bloodstream of the host. The 1-month wait period is hypothesized to allow for further reduction of Wolbachia. However, the levels of Wolbachia in adult parasites after the DOXY treatment remain unknown. METHODS Forty-five purposely bred dogs were intravenously transplanted with 20 Dirofilaria immitis adults, consisting of 12 females and 8 males. The dogs were divided into nine groups of five dogs each. Two groups each received 5, 7.5, or 10 mg/kg DOXY BID orally for 28 days, and ivermectin (IVM) monthly (6 µg/kg.) Three groups remained untreated as controls. Study animals were necropsied on day 0, day 30, and day 60, following the start of treatment. Adult worms were collected at necropsy and preserved for analysis. Quantitative polymerase chain reaction (qPCR) and immunohistochemistry for WSP were performed on worms collected at each time point. The data were analyzed using a linear mixed model (LMM). Multiple comparisons were adjusted using Tukey's test. RESULTS The qPCR results showed that all treatment doses significantly reduced Wolbachia levels compared with the control groups at 30 and 60 days. The intradose comparison indicated a significant decrease on day 60 compared with day 30. No significant differences were found between different doses on the two examination dates. Immunohistochemistry indicated the markedly reduced presence of Wolbachia in treatment groups. CONCLUSIONS All DOXY dosages can be considered effective in reducing Wolbachia on both tested dates (30 and 60 days). On the basis of the further reduction of Wolbachia levels in adult D. immitis, the 1-month rest period in the AHS heartworm treatment guidelines is beneficial. Wolbachia can still be detected on day 60 in all dosage groups.
Collapse
Affiliation(s)
- Yi Chu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Kaori Sakamoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Christopher C Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Michael T Dzimianski
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | | | | | | | | | - Andrew R Moorhead
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Serga S, Kovalenko PA, Maistrenko OM, Deconninck G, Shevchenko O, Iakovenko N, Protsenko Y, Susulovsky A, Kaczmarek Ł, Pavlovska M, Convey P, Kozeretska I. Wolbachia in Antarctic terrestrial invertebrates: Absent or undiscovered? ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70040. [PMID: 39533947 PMCID: PMC11558105 DOI: 10.1111/1758-2229.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates. Wolbachia is known for manipulating host reproduction and having obligate or facultative mutualistic relationships with various hosts. However, there is a lack of clear understanding of the prevalence of Wolbachia in terrestrial invertebrates in Antarctica. We present the outcomes of a literature search for information on the occurrence of Wolbachia in each of the major taxonomic groups of terrestrial invertebrates (Acari, Collembola, Diptera, Rotifera, Nematoda, Tardigrada). We also performed profiling of prokaryotes based on three marker genes and Kraken2 in available whole genome sequence data obtained from Antarctic invertebrate samples. We found no reports or molecular evidence of Wolbachia in these invertebrate groups in Antarctica. We discuss possible reasons underlying this apparent absence and suggest opportunities for more targeted future research to confirm bacteria's presence or absence.
Collapse
Affiliation(s)
- Svitlana Serga
- CBGP, Univ Montpellier, CIRAD, INRAE, IRDInstitut Agro MontpellierMontpellierFrance
- National Antarctic Scientific Center of UkraineKyivUkraine
| | - Pavlo A. Kovalenko
- National Antarctic Scientific Center of UkraineKyivUkraine
- State Institution Institute for Evolutionary EcologyNational Academy of Sciences of UkraineKyivUkraine
| | - Oleksandr M. Maistrenko
- European Molecular Biology LaboratoryStructural and Computational Biology UnitHeidelbergGermany
- Royal Netherlands Institute for Sea Research, 't Horntje (Texel)Den HoornNetherlands
| | - Gwenaëlle Deconninck
- UMR CNRS 7261 Institut de Recherche sur la Biologie de l'InsecteUniversité de Tours, Parc GrandmontToursFrance
| | - Oleksandra Shevchenko
- Institute for Problems of Cryobiology and CryomedicineNational Academy of Sciences of UkraineKharkivUkraine
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
| | - Nataliia Iakovenko
- I.I. Schmalhausen Institute of ZoologyNational Academy of Sciences of UkraineKyivUkraine
- Czech University of Life Sciences PragueFaculty of Forestry and Wood SciencesSuchdolCzech Republic
- Institute of Animal Physiology and Genetics AS ČRLaboratory of Nonmendelian EvolutionLibechovCzech Republic
| | | | - Andrij Susulovsky
- State Museum of Natural HistoryNational Academy of Sciences of UkraineLvivUkraine
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Peter Convey
- British Antarctic Survey, NERC, High CrossCambridgeUK
- Department of ZoologyUniversity of JohannesburgAuckland ParkSouth Africa
- Biodiversity of Antarctic and Sub‐Antarctic Ecosystems (BASE)SantiagoChile
| | | |
Collapse
|
4
|
Kaur T, Brown AM. Discovery of a novel Wolbachia in Heterodera expands nematode host distribution. Front Microbiol 2024; 15:1446506. [PMID: 39386366 PMCID: PMC11461310 DOI: 10.3389/fmicb.2024.1446506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Bioinformatics sequence data mining can reveal hidden microbial symbionts that might normally be filtered and removed as contaminants. Data mining can be helpful to detect Wolbachia, a widespread bacterial endosymbiont in insects and filarial nematodes whose distribution in plant-parasitic nematodes (PPNs) remains underexplored. To date, Wolbachia has only been reported a few PPNs, yet nematode-infecting Wolbachia may have been widespread in the evolutionary history of the phylum based on evidence of horizontal gene transfers, suggesting there may be undiscovered Wolbachia infections in PPNs. The goal of this study was to more broadly sample PPN Wolbachia strains in tylenchid nematodes to enable further comparative genomic analyses that may reveal Wolbachia's role and identify targets for biocontrol. Published whole-genome shotgun assemblies and their raw sequence data from 33 Meloidogyne spp. assemblies, seven Globodera spp. assemblies, and seven Heterodera spp. assemblies were analyzed to look for Wolbachia. No Wolbachia was found in Meloidogyne spp. and Globodera spp., but among seven genome assemblies for Heterodera spp., an H. schachtii assembly from the Netherlands was found to have a large Wolbachia-like sequence that, when re-assembled from reads, formed a complete, circular genome. Detailed analyses comparing read coverage, GC content, pseudogenes, and phylogenomic patterns clearly demonstrated that the H. schachtii Wolbachia represented a novel strain (hereafter, denoted wHet). Phylogenomic tree construction with PhyloBayes showed wHet was most closely related to another PPN Wolbachia, wTex, while 16S rRNA gene analysis showed it clustered with other Heterodera Wolbachia assembled from sequence databases. Pseudogenes in wHet suggested relatedness to the PPN clade, as did the lack of significantly enriched GO terms compared to PPN Wolbachia strains. It remains unclear whether the lack of Wolbachia in other published H. schachtii isolates represents the true absence of the endosymbiont from some hosts.
Collapse
Affiliation(s)
| | - Amanda M.V. Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Hoffmann G, Lukarska M, Clare RH, Masters EK, Johnston KL, Ford L, Turner JD, Ward SA, Taylor MJ, Jensen MR, Palencia A. Targeting a microbiota Wolbachian aminoacyl-tRNA synthetase to block its pathogenic host. SCIENCE ADVANCES 2024; 10:eado1453. [PMID: 38985862 PMCID: PMC11235159 DOI: 10.1126/sciadv.ado1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.
Collapse
Affiliation(s)
- Guillaume Hoffmann
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, Université Grenoble-Alpes, Grenoble 38000, France
| | - Maria Lukarska
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, Université Grenoble-Alpes, Grenoble 38000, France
| | - Rachel H. Clare
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ellen K.G. Masters
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kelly L. Johnston
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Louise Ford
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Joseph D. Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Steve A. Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Mark J. Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | | | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, Université Grenoble-Alpes, Grenoble 38000, France
| |
Collapse
|
6
|
Hayashi N, Hosokawa K, Yamamoto Y, Kodama S, Kurokawa A, Nakao R, Nonaka N. A filarial parasite potentially associated with the health burden on domestic chickens in Japan. Sci Rep 2024; 14:6316. [PMID: 38491072 PMCID: PMC10943242 DOI: 10.1038/s41598-024-55284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
Chickens in free-range environments are at risk of exposure to various pathogens, such as filarioids transmitted via hematophagous vectors. However, the study of filarioids in poultry has been largely neglected compared to the extensive studies focused on viruses, bacteria, and protozoa. Here, we performed histological and molecular investigations of the filarioids detected in domestic chickens from two different flocks in Hiroshima Prefecture, Japan. In the first case, adult worms were present in the pulmonary artery and right ventricle, and microfilariae were present in multiple organs of deceased chickens. In the second case, similar filarioids were detected in the organs and blood of one necropsied layer. Phylogenetic analysis using 18S rRNA gene fragments positioned the filarioid in the same clade as that of Onchocercidae sp., previously identified in a deceased chicken from Chiba Prefecture, Japan, that is located 500 km away from Hiroshima Prefecture. Based on 28S rRNA and mitochondrial COI gene fragments, the filarioid was positioned distinctly from previously reported genera of avian filarioids. These results suggest that the filarioids are potentially associated with the health burden on domestic chickens and belong to the genus Paronchocerca. Furthermore, we developed a nested PCR assay targeting mitochondrial COI and detected the parasite DNA from the biting midge Culicoides arakawae captured near the flock, suggesting that it serves as a vector. Our findings fill the knowledge gap regarding avian filarioids, laying the groundwork for future studies examining the epidemiology, life cycle, and species diversity of this neglected parasite group.
Collapse
Affiliation(s)
- Naoki Hayashi
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Kumiko Hosokawa
- Western Center for Livestock Hygiene Service, Higashihiroshima, Hiroshima Prefecture, Japan
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Sachiko Kodama
- Western Center for Livestock Hygiene Service, Higashihiroshima, Hiroshima Prefecture, Japan
| | - Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo, 060-0818, Japan.
| | - Nariaki Nonaka
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo, 060-0818, Japan.
| |
Collapse
|
7
|
Voronin D, Tricoche N, Peguero R, Kaminska AM, Ghedin E, Sakanari JA, Lustigman S. Repurposed Drugs That Activate Autophagy in Filarial Worms Act as Effective Macrofilaricides. Pharmaceutics 2024; 16:256. [PMID: 38399310 PMCID: PMC10891619 DOI: 10.3390/pharmaceutics16020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Onchocerciasis and lymphatic filariasis are two neglected tropical diseases caused by filarial nematodes that utilize insect vectors for transmission to their human hosts. Current control strategies are based on annual or biannual mass drug administration (MDA) of the drugs Ivermectin or Ivermectin plus Albendazole, respectively. These drug regimens kill the first-stage larvae of filarial worms (i.e., microfilariae) and interrupt the transmission of infections. MDA programs for these microfilaricidal drugs must be given over the lifetime of the filarial adult worms, which can reach 15 years in the case of Onchocerca volvulus. This is problematic because of suboptimal responses to ivermectin in various endemic regions and inefficient reduction of transmission even after decades of MDA. There is an urgent need for the development of novel alternative treatments to support the 2030 elimination goals of onchocerciasis and lymphatic filariasis. One successful approach has been to target Wolbachia, obligatory endosymbiotic bacteria on which filarial worms are dependent for their survival and reproduction within the human host. A 4-6-week antibiotic therapy with doxycycline, for example, resulted in the loss of Wolbachia that subsequently led to extensive apoptosis of somatic cells, germline, embryos, and microfilariae, as well as inhibition of fourth-stage larval development. However, this long-course regimen has limited use in MDA programs. As an alternative approach to the use of bacteriostatic antibiotics, in this study, we focused on autophagy-inducing compounds, which we hypothesized could disturb various pathways involved in the interdependency between Wolbachia and filarial worms. We demonstrated that several such compounds, including Niclosamide, an FDA-approved drug, Niclosamide ethanolamine (NEN), and Rottlerin, a natural product derived from Kamala trees, significantly reduced the levels of Wolbachia in vitro. Moreover, when these compounds were used in vivo to treat Brugia pahangi-infected gerbils, Niclosamide and NEN significantly decreased adult worm survival, reduced the release of microfilariae, and decreased embryonic development depending on the regimen and dose used. All three drugs given orally significantly reduced Wolbachia loads and induced an increase in levels of lysosome-associated membrane protein in worms from treated animals, suggesting that Niclosamide, NEN, and Rottlerin were effective in causing drug-induced autophagy in these filarial worms. These repurposed drugs provide a new avenue for the clearance of adult worms in filarial infections.
Collapse
Affiliation(s)
- Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA;
| | - Nancy Tricoche
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Ricardo Peguero
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Anna Maria Kaminska
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, MD 20892, USA;
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA;
| | - Sara Lustigman
- Molecular Parasitology, New York Blood Center, Lindsley F. Kimball Research Institute, New York, NY 10065, USA
| |
Collapse
|
8
|
Perles L, Otranto D, Barreto W, de Macedo G, Lia R, Mendoza-Roldan J, Herrera H, de Oliveira C, Machado R, André M. Mansonella sp. and associated Wolbachia endosymbionts in ring-tailed coatis ( Nasua nasua) in periurban areas from Midwestern Brazil. Int J Parasitol Parasites Wildl 2023; 22:14-19. [PMID: 37584011 PMCID: PMC10424073 DOI: 10.1016/j.ijppaw.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Coatis (Nasua nasua) are wild carnivorous well adapted to anthropized environments especially important because they act as reservoirs hosts for many arthropod-borne zoonotic pathogens. Information about filarioids from coatis and associated Wolbachia spp. in Brazil is scant. To investigate the diversity of filarial nematodes, blood samples (n = 100 animals) were obtained from two urban areas in midwestern Brazil and analyzed using blood smears and buffy coats and cPCR assays based on the cox1, 12S rRNA, 18S rRNA, hsp70 and myoHC genes for nematodes and 16S rRNA for Wolbachia. When analyzing coati blood smears and buffy coats, 30% and 80% of the samples presented at least one microfilaria, respectively. Twenty-five cox1 sequences were obtained showing 89% nucleotide identity with Mansonella ozzardi. Phylogenetic analyses clustered cox1 sequences herein obtained within the Mansonella spp. clade. Sequences of both myoHC and two hsp70 genes showed 99.8% nucleotide identity with Mansonella sp. and clustered into a clade within Mansonella sp., previously detected in coatis from Brazil. Two blood samples were positive for Wolbachia, with a 99% nucleotide identity with Wolbachia previously found in Mansonella perstans, Mansonella ozzardi and Mansonella atelensis and in ectoparasites of the genus Pseudolynchia, Melophagus and Cimex. The study showed a high prevalence of Mansonella sp. in the coati population examined, suggesting that this animal species play a role as reservoirs of a novel, yet to be described, species within the Onchocercidae family.
Collapse
Affiliation(s)
- L. Perles
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, Jaboticabal, 14884-900, São Paulo, Brazil
| | - D. Otranto
- Department of Veterinary Medicine, University of Bari, 70100, Valenzano, Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, 6516738695, Hamedan, Iran
| | - W.T.G. Barreto
- Post-Graduation of Ecology and Conservation, Mato Grosso do Sul Federal University, Campo Grande, 13471-410, Mato Grosso do Sul, Brazil
| | - G.C. de Macedo
- Laboratory of Parasitic Biology, Environmental Sciences and Farming Sustainability, Dom Bosco Catholic University, Campo Grande, 13471-410, MS, Brazil
| | - R.P. Lia
- Department of Veterinary Medicine, University of Bari, 70100, Valenzano, Italy
| | - J.A. Mendoza-Roldan
- Department of Veterinary Medicine, University of Bari, 70100, Valenzano, Italy
| | - H.M. Herrera
- Post-Graduation of Ecology and Conservation, Mato Grosso do Sul Federal University, Campo Grande, 13471-410, Mato Grosso do Sul, Brazil
- Laboratory of Parasitic Biology, Environmental Sciences and Farming Sustainability, Dom Bosco Catholic University, Campo Grande, 13471-410, MS, Brazil
| | - C.E. de Oliveira
- Laboratory of Parasitic Biology, Environmental Sciences and Farming Sustainability, Dom Bosco Catholic University, Campo Grande, 13471-410, MS, Brazil
| | - R.Z. Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, Jaboticabal, 14884-900, São Paulo, Brazil
| | - M.R. André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, Jaboticabal, 14884-900, São Paulo, Brazil
| |
Collapse
|
9
|
Pikula J, Piacek V, Bandouchova H, Bartlova M, Bednarikova S, Burianova R, Danek O, Jedlicka P, Masova S, Nemcova M, Seidlova V, Zukalova K, Zukal J. Case report: Filarial infection of a parti-coloured bat: Litomosa sp. adult worms in abdominal cavity and microfilariae in bat semen. Front Vet Sci 2023; 10:1284025. [PMID: 37808105 PMCID: PMC10551455 DOI: 10.3389/fvets.2023.1284025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Background Filarial infections have been understudied in bats. Likewise, little is known about pathogens associated with the reproductive system in chiropterans. While semen quality is critical for reproductive success, semen-borne pathogens may contribute to reproductive failure. Methods For the first time we performed electroejaculation and used computer-assisted semen analysis to provide baseline data on semen quality in a parti-coloured bat (Vespertilio murinus). Results The semen quality values measured in the V. murinus male appeared high (semen concentration = 305.4 × 106/mL; progressive and motile sperm = 46.58 and 60.27%, respectively). As an incidental finding, however, microfilariae were observed in the bat semen examined. At necropsy, eight adult filarial worms, later genetically identified as Litomosa sp., were found in the peritoneal cavity, close to the stomach, of the same particoloured bat male dying as a result of dysmicrobia and haemorrhagic gastroenteritis in a wildlife rescue centre. Histopathology revealed microfilariae in the testicular connective tissue and the epidydimal connective and fat tissues. A PCR assay targeting cytochrome c oxidase subunit 1 confirmed that adult worms from the peritoneal cavity and testicular microfilariae were of the same filarial species. Mildly engorged argasid mite larvae attached to the bat skin proved negative for filarial DNA and the adult filarial worms proved negative for endosymbiont Wolbachia. Conclusion While the standard filarial life cycle pattern involves a vertebrate definitive host and an invertebrate vector, represented by a blood-sucking ectoparasite, our finding suggests that microfilariae of this nematode species may also be semen-borne, with transmission intensity promoted by the polygynous mating system of vespertilionid bats in which an infected male mates with many females during the autumn swarming. Presence of microfilariae may be expected to decrease semen quality and transmission via this route may challenge the success of reproductive events in females after mating. Further investigation will be necessary to better understand the bat-parasite interaction and the life cycle of this filarial worm.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Marie Bartlova
- Department of Plant Origin Food Sciences, University of Veterinary Sciences Brno, Brno, Czechia
| | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Romana Burianova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Ondrej Danek
- Department of Pathology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
| | - Petr Jedlicka
- Institute of Scientific Instruments of the Czech Academy of Sciences v.v.i., Brno, Czechia
| | - Sarka Masova
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Veronika Seidlova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Katerina Zukalova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
10
|
Frantz SI, Small CM, Cresko WA, Singh ND. Ovarian transcriptional response to Wolbachia infection in D. melanogaster in the context of between-genotype variation in gene expression. G3 (BETHESDA, MD.) 2023; 13:jkad047. [PMID: 36857313 PMCID: PMC10151400 DOI: 10.1093/g3journal/jkad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 01/07/2023] [Indexed: 03/02/2023]
Abstract
Wolbachia is a maternally transmitted endosymbiotic bacteria that infects a wide variety of arthropod and nematode hosts. The effects of Wolbachia on host biology are far-reaching and include changes in host gene expression. However, previous work on the host transcriptional response has generally been investigated in the context of a single host genotype. Thus, the relative effect of Wolbachia infection versus vs. host genotype on gene expression is unknown. Here, we explicitly test the relative roles of Wolbachia infection and host genotype on host gene expression by comparing the ovarian transcriptomes of 4 strains of Drosophila melanogaster (D. melanogaster) infected and uninfected with Wolbachia. Our data suggest that infection explains a small amount of transcriptional variation, particularly in comparison to variation in gene expression among strains. However, infection specifically affects genes related to cell cycle, translation, and metabolism. We also find enrichment of cell division and recombination processes among genes with infection-associated differential expression. Broadly, the transcriptomic changes identified in this study provide novel understanding of the relative magnitude of the effect of Wolbachia infection on gene expression in the context of host genetic variation and also point to genes that are consistently differentially expressed in response to infection among multiple genotypes.
Collapse
Affiliation(s)
- Sophia I Frantz
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, 97403USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, 97403USA
| | - Nadia D Singh
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
| |
Collapse
|
11
|
Wangwiwatsin A, Kulwong S, Phetcharaburanin J, Namwat N, Klanrit P, Loilome W, Maleewong W, Reid AJ. Toward novel treatment against filariasis: Insight into genome-wide co-evolutionary analysis of filarial nematodes and Wolbachia. Front Microbiol 2023; 14:1052352. [PMID: 37032902 PMCID: PMC10073474 DOI: 10.3389/fmicb.2023.1052352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/16/2023] [Indexed: 04/11/2023] Open
Abstract
Infectious diseases caused by filarial nematodes are major health problems for humans and animals globally. Current treatment using anti-helminthic drugs requires a long treatment period and is only effective against the microfilarial stage. Most species of filarial nematodes harbor a specific strain of Wolbachia bacteria, which are essential for the survival, development, and reproduction of the nematodes. This parasite-bacteria obligate symbiosis offers a new angle for the cure of filariasis. In this study, we utilized publicly available genome data and putative protein sequences from seven filarial nematode species and their symbiotic Wolbachia to screen for protein-protein interactions that could be a novel target against multiple filarial nematode species. Genome-wide in silico screening was performed to predict molecular interactions based on co-evolutionary signals. We identified over 8,000 pairs of gene families that show evidence of co-evolution based on high correlation score and low false discovery rate (FDR) between gene families and obtained a candidate list that may be keys in filarial nematode-Wolbachia interactions. Functional analysis was conducted on these top-scoring pairs, revealing biological processes related to various signaling processes, adult lifespan, developmental control, lipid and nucleotide metabolism, and RNA modification. Furthermore, network analysis of the top-scoring genes with multiple co-evolving pairs suggests candidate genes in both Wolbachia and the nematode that may play crucial roles at the center of multi-gene networks. A number of the top-scoring genes matched well to known drug targets, suggesting a promising drug-repurposing strategy that could be applicable against multiple filarial nematode species.
Collapse
Affiliation(s)
- Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Siriyakorn Kulwong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Adam J Reid
- Parasite Genomics Group, Wellcome Sanger Institute, Hinxton, United Kingdom
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Dudzic JP, Curtis CI, Gowen BE, Perlman SJ. A highly divergent Wolbachia with a tiny genome in an insect-parasitic tylenchid nematode. Proc Biol Sci 2022; 289:20221518. [PMID: 36168763 PMCID: PMC9515626 DOI: 10.1098/rspb.2022.1518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wolbachia symbionts are the most successful host-associated microbes on the planet, infecting arthropods and nematodes. Their role in nematodes is particularly enigmatic, with filarial nematode species either 100% infected and dependent on symbionts for reproduction and development, or not at all infected. We have discovered a highly divergent strain of Wolbachia in an insect-parasitic tylenchid nematode, Howardula sp., in a nematode clade that has not previously been known to harbour Wolbachia. While this nematode is 100% infected with Wolbachia, we did not detect it in related species. We sequenced the Howardula symbiont (wHow) genome and found that it is highly reduced, comprising only 550 kilobase pairs of DNA, approximately 35% smaller than the smallest Wolbachia nematode symbiont genomes. The wHow genome is a subset of all other Wolbachia genomes and has not acquired any new genetic information. While it has lost many genes, including genes involved in cell wall synthesis and cell division, it has retained the entire haem biosynthesis pathway, suggesting that haem supplementation is critical. wHow provides key insights into our understanding of what are the lower limits of Wolbachia cells, as well as the role of Wolbachia symbionts in the biology and convergent evolution of diverse parasitic nematodes.
Collapse
Affiliation(s)
- Jan P Dudzic
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Caitlin I Curtis
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Brent E Gowen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
13
|
Krome AK, Becker T, Kehraus S, Schiefer A, Gütschow M, Chaverra-Muñoz L, Hüttel S, Jansen R, Stadler M, Ehrens A, Pogorevc D, Müller R, Hübner MP, Hesterkamp T, Pfarr K, Hoerauf A, Wagner KG, König GM. Corallopyronin A: antimicrobial discovery to preclinical development. Nat Prod Rep 2022; 39:1705-1720. [PMID: 35730490 DOI: 10.1039/d2np00012a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: August 1984 up to January 2022Worldwide, increasing morbidity and mortality due to antibiotic-resistant microbial infections has been observed. Therefore, better prevention and control of infectious diseases, as well as appropriate use of approved antibacterial drugs are crucial. There is also an urgent need for the continuous development and supply of novel antibiotics. Thus, identifying new antibiotics and their further development is once again a priority of natural product research. The antibiotic corallopyronin A was discovered in the 1980s in the culture broth of the Myxobacterium Corallococcus coralloides and serves, in the context of this review, as a show case for the development of a naturally occurring antibiotic compound. The review demonstrates how a hard to obtain, barely water soluble and unstable compound such as corallopyronin A can be developed making use of sophisticated production and formulation approaches. Corallopyronin A is a bacterial DNA-dependent RNA polymerase inhibitor with a new target site and one of the few representatives of this class currently in preclinical development. Efficacy against Gram-positive and Gram-negative pathogens, e.g., Chlamydia trachomatis, Orientia tsutsugamushi, Staphylococcus aureus, and Wolbachia has been demonstrated. Due to its highly effective in vivo depletion of Wolbachia, which are essential endobacteria of most filarial nematode species, and its robust macrofilaricidal efficacy, corallopyronin A was selected as a preclinical candidate for the treatment of human filarial infections. This review highlights the discovery and production optimization approaches for corallopyronin A, as well as, recent preclinical efficacy results demonstrating a robust macrofilaricidal effect of the anti-Wolbachia candidate, and the solid formulation strategy which enhances the stability as well as the bioavailability of corallopyronin A.
Collapse
Affiliation(s)
- Anna K Krome
- Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Tim Becker
- Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Stefan Kehraus
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Pharmaceutical Biology, University of Bonn, Germany.
| | - Andrea Schiefer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | | | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Alexandra Ehrens
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Domen Pogorevc
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrucken, Germany
| | - Rolf Müller
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrucken, Germany
| | - Marc P Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Thomas Hesterkamp
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Karl G Wagner
- Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Gabriele M König
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Pharmaceutical Biology, University of Bonn, Germany.
| |
Collapse
|
14
|
Transient Introgression of Wolbachia into Aedes aegypti Populations Does Not Elicit an Antibody Response to Wolbachia Surface Protein in Community Members. Pathogens 2022; 11:pathogens11050535. [PMID: 35631057 PMCID: PMC9142965 DOI: 10.3390/pathogens11050535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Wolbachia is an endosymbiotic bacterium that can restrict the transmission of human pathogenic viruses by Aedes aegypti mosquitoes. Recent field trials have shown that dengue incidence is significantly reduced when Wolbachia is introgressed into the local Ae. aegypti population. Female Ae. aegypti are anautogenous and feed on human blood to produce viable eggs. Herein, we tested whether people who reside on Tri Nguyen Island (TNI), Vietnam developed antibodies to Wolbachia Surface Protein (WSP) following release of Wolbachia-infected Ae. aegypti, as a measure of exposure to Wolbachia. Paired blood samples were collected from 105 participants before and after mosquito releases and anti-WSP titres were measured by ELISA. We determined no change in anti-WSP titres after ~30 weeks of high levels of Wolbachia-Ae. aegypti on TNI. These data suggest that humans are not exposed to the major Wolbachia surface antigen, WSP, following introgression of Wolbachia-infected Ae. aegypti mosquitoes.
Collapse
|
15
|
Wolbachia depletion blocks transmission of lymphatic filariasis by preventing chitinase-dependent parasite exsheathment. Proc Natl Acad Sci U S A 2022; 119:e2120003119. [PMID: 35377795 PMCID: PMC9169722 DOI: 10.1073/pnas.2120003119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lymphatic filariasis is a vector-borne neglected tropical disease prioritized for global elimination. The filarial nematodes that cause the disease host a symbiotic bacterium, Wolbachia, which has been targeted using antibiotics, leading to cessation of parasite embryogenesis, waning of circulating larvae (microfilariae [mf]), and gradual cure of adult infection. One of the benefits of the anti-Wolbachia mode of action is that it avoids the rapid killing of mf, which can drive inflammatory adverse events. However, mf depleted of Wolbachia persist for several months in circulation, and thus patients treated with antibiotics are assumed to remain at risk for transmitting infections. Here, we show that Wolbachia-depleted mf rapidly lose the capacity to develop in the mosquito vector through a defect in exsheathment and inability to migrate through the gut wall. Transcriptomic and Western blotting analyses demonstrate that chitinase, an enzyme essential for mf exsheathment, is down-regulated in Wolbachia-depleted mf and correlates with their inability to exsheath and escape the mosquito midgut. Supplementation of in vitro cultures of Wolbachia-depleted mf with chitinase enzymes restores their ability to exsheath to a similar level to that observed in untreated mf. Our findings elucidate a mechanism of rapid transmission-blocking activity of filariasis after depletion of Wolbachia and adds to the broad range of biological processes of filarial nematodes that are dependent on Wolbachia symbiosis.
Collapse
|
16
|
Bazzocchi C, Genchi M, Lucchetti C, Cafiso A, Ciuca L, McCall J, Kramer LH, Vismarra A. Transporter gene expression and Wolbachia quantification in adults of Dirofilaria immitis treated in vitro with ivermectin or moxidectin alone or in combination with doxycycline for 12 hours. Mol Biochem Parasitol 2022; 249:111475. [PMID: 35346758 DOI: 10.1016/j.molbiopara.2022.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Due to their marked larvicidal activity, macrocyclic lactones (MLs) are used for the prevention of heartworm disease ( Dirofilaria immitis) in dogs. They have also been shown to eliminate adult parasites after long-term administration, with a so-called "slow-kill" effect. In addition, recent studies have established that a combination of doxycycline, which eliminates the endosymbiont Wolbachia, and MLs has superior adulticide effects when compared to MLs alone. It has been hypothesized that the apparent synergism between doxycycline/MLs may be due to interaction with drug efflux transport proteins. The aim of the present study was to evaluate gene expression of several transport proteins in D. immitis adults treated in vitro either with doxycycline alone, ivermectin alone, moxidectin alone, or a combination of ivermectin or moxidectin with doxycycline for 12h. Quantitative PCR analysis showed a sex-dependent response to treatments. In female worms, Dim-pgp-10, Dim-haf-1 and Dim-haf-5 were upregulated compared to controls with doxycycline alone and when combined with ivermectin. Moxidectin did not induce any changes in gene expression. In males, moxidectin administered alone induced a slight increase in Dim-pgp-10, Dim-pgp-11and Di-avr-14, while ivermectin in combination with doxycycline produced significant upregulation of the ML receptor Di-avr-14. These results suggest possible synergism between the two drug classes and different susceptibility of males vs. females to adulticide effects.
Collapse
Affiliation(s)
- Chiara Bazzocchi
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - Marco Genchi
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio, 10, 43126 Parma, Italy
| | - Chiara Lucchetti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio, 10, 43126 Parma, Italy
| | - Alessandra Cafiso
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, via dell'Università 6, 26900 Lodi, Italy
| | - Lavinia Ciuca
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Via Federico Delpino 1, 80137 Napoli, Italy
| | - John McCall
- TRS Labs Inc, 215 Paradise Blvd, Athens, GA 30607, USA
| | - Laura Helen Kramer
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio, 10, 43126 Parma, Italy
| | - Alice Vismarra
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, via del Taglio, 10, 43126 Parma, Italy.
| |
Collapse
|
17
|
Bech N, Beltran-Bech S, Chupeau C, Peccoud J, Thierry M, Raimond R, Caubet Y, Sicard M, Grève P. Experimental evidence of Wolbachia introgressive acquisition between terrestrial isopod subspecies. Curr Zool 2021; 67:455-464. [PMID: 34616942 PMCID: PMC8489008 DOI: 10.1093/cz/zoaa078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Wolbachia are the most widespread endosymbiotic bacteria in animals. In many arthropod host species, they manipulate reproduction via several mechanisms that favor their maternal transmission to offspring. Among them, cytoplasmic incompatibility (CI) promotes the spread of the symbiont by specifically decreasing the fertility of crosses involving infected males and uninfected females, via embryo mortality. These differences in reproductive efficiency may select for the avoidance of incompatible mating, a process called reinforcement, and thus contribute to population divergence. In the terrestrial isopod Porcellio dilatatus, the Wolbachia wPet strain infecting the subspecies P. d. petiti induces unidirectional CI with uninfected individuals of the subspecies P. d. dilatatus. To study the consequences of CI on P. d. dilatatus and P. d. petiti hybridization, mitochondrial haplotypes and Wolbachia infection dynamics, we used population cages seeded with different proportions of the 2 subspecies in which we monitored these genetic parameters 5 and 7 years after the initial setup. Analysis of microsatellite markers allowed evaluating the degree of hybridization between individuals of the 2 subspecies. These markers revealed an increase in P. d. dilatatus nuclear genetic signature in all mixed cages, reflecting an asymmetry in hybridization. Hybridization led to the introgressive acquisition of Wolbachia and mitochondrial haplotype from P. d. petiti into nuclear genomes dominated by alleles of P. d. dilatatus. We discuss these results with regards to Wolbachia effects on their host (CI and putative fitness cost), and to a possible reinforcement that may have led to assortative mating, as possible factors contributing to the observed results.
Collapse
Affiliation(s)
- Nicolas Bech
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| | - Sophie Beltran-Bech
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| | - Cassandre Chupeau
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| | - Magali Thierry
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| | - Roland Raimond
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| | - Yves Caubet
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| | - Mathieu Sicard
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, TSA 51106 86073 POITIERS, Cedex 9, France
| |
Collapse
|
18
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
19
|
Gangwar M, Jha R, Goyal M, Srivastava M. Biochemical characterization of Recombinase A from Wolbachia endosymbiont of filarial nematode Brugia malayi (wBmRecA). Int J Parasitol 2021; 51:841-853. [PMID: 34273392 DOI: 10.1016/j.ijpara.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
Lymphatic filariasis is a debilitating disease that affects over 890 million people in 49 countries. A lack of vaccines, non-availability of adulticidal drugs, the threat of emerging drug resistance against available chemotherapeutics and an incomplete understanding of the immunobiology of the disease have sustained the problem. Characterization of Wolbachia proteins, the bacterial endosymbiont which helps in the growth and development of filarial worms, regulates fecundity in female worms and mediates immunopathogenesis of Lymphatic Filariasis, is an important approach to gain insights into the immunopathogenesis of the disease. In this study, we carried out extensive biochemical characterization of Recombinase A from Wolbachia of the filarial nematode Brugia malayi (wBmRecA) using an Electrophoretic Mobility Shift Assay, an ATP binding and hydrolysis assay, DNA strand exchange reactions, DAPI displacement assay and confocal microscopy, and evaluated anti-filarial activity of RecA inhibitors. Confocal studies showed that wBmRecA was expressed and localised within B. malayi microfilariae (Mf) and uteri and lateral chord of adult females. Recombinant wBmRecA was biochemically active and showed intrinsic binding capacity towards both single-stranded DNA and double-stranded DNA that were enhanced by ATP, suggesting ATP-induced cooperativity. wBmRecA promoted ATP hydrolysis and DNA strand exchange reactions in a concentration-dependent manner, and its binding to DNA was sensitive to temperature, pH and salt concentration. Importantly, the anti-parasitic drug Suramin, and Phthalocyanine tetrasulfonate (PcTs)-based inhibitors Fe-PcTs and 3,4-Cu-PcTs, inhibited wBmRecA activity and affected the motility and viability of Mf. The addition of Doxycycline further enhanced microfilaricidal activity of wBmRecA, suggesting potential synergism. Taken together, the omnipresence of wBmRecA in B. malayi life stages and the potent microfilaricidal activity of RecA inhibitors suggest an important role of wBmRecA in filarial pathogenesis.
Collapse
Affiliation(s)
- Mamta Gangwar
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ruchi Jha
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Mrigank Srivastava
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
20
|
Bulman CA, Chappell L, Gunderson E, Vogel I, Beerntsen B, Slatko BE, Sullivan W, Sakanari JA. The Eagle effect in the Wolbachia-worm symbiosis. Parasit Vectors 2021; 14:118. [PMID: 33627171 PMCID: PMC7905570 DOI: 10.1186/s13071-020-04545-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022] Open
Abstract
Background Onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) are two human neglected tropical diseases that cause major disabilities. Mass administration of drugs targeting the microfilarial stage has reduced transmission and eliminated these diseases in several countries but a macrofilaricidal drug that kills or sterilizes the adult worms is critically needed to eradicate the diseases. The causative agents of onchocerciasis and lymphatic filariasis are filarial worms that harbor the endosymbiotic bacterium Wolbachia. Because filarial worms depend on Wolbachia for reproduction and survival, drugs targeting Wolbachia hold great promise as a means to eliminate these diseases. Methods To better understand the relationship between Wolbachia and its worm host, adult Brugia pahangi were exposed to varying concentrations of doxycycline, minocycline, tetracycline and rifampicin in vitro and assessed for Wolbachia numbers and worm motility. Worm motility was monitored using the Worminator system, and Wolbachia titers were assessed by qPCR of the single copy gene wsp from Wolbachia and gst from Brugia to calculate IC50s and in time course experiments. Confocal microscopy was also used to quantify Wolbachia located at the distal tip region of worm ovaries to assess the effects of antibiotic treatment in this region of the worm where Wolbachia are transmitted vertically to the microfilarial stage. Results Worms treated with higher concentrations of antibiotics had higher Wolbachia titers, i.e. as antibiotic concentrations increased there was a corresponding increase in Wolbachia titers. As the concentration of antibiotic increased, worms stopped moving and never recovered despite maintaining Wolbachia titers comparable to controls. Thus, worms were rendered moribund by the higher concentrations of antibiotics but Wolbachia persisted suggesting that these antibiotics may act directly on the worms at high concentration. Surprisingly, in contrast to these results, antibiotics given at low concentrations reduced Wolbachia titers. Conclusion Wolbachia in B. pahangi display a counterintuitive dose response known as the “Eagle effect.” This effect in Wolbachia suggests a common underlying mechanism that allows diverse bacterial and fungal species to persist despite exposure to high concentrations of antimicrobial compounds. To our knowledge this is the first report of this phenomenon occurring in an intracellular endosymbiont, Wolbachia, in its filarial host.![]()
Collapse
Affiliation(s)
- Christina A Bulman
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Laura Chappell
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Emma Gunderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Ian Vogel
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Brenda Beerntsen
- Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO, USA
| | - Barton E Slatko
- Molecular Parasitology Division, New England Biolabs Inc, Ipswich, MA, USA
| | - William Sullivan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Judy A Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| |
Collapse
|
21
|
Jean-Pierre F, Henson MA, O’Toole GA. Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Front Mol Biosci 2021; 8:634479. [PMID: 33681294 PMCID: PMC7930556 DOI: 10.3389/fmolb.2021.634479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
The explosion of microbiome analyses has helped identify individual microorganisms and microbial communities driving human health and disease, but how these communities function is still an open question. For example, the role for the incredibly complex metabolic interactions among microbial species cannot easily be resolved by current experimental approaches such as 16S rRNA gene sequencing, metagenomics and/or metabolomics. Resolving such metabolic interactions is particularly challenging in the context of polymicrobial communities where metabolite exchange has been reported to impact key bacterial traits such as virulence and antibiotic treatment efficacy. As novel approaches are needed to pinpoint microbial determinants responsible for impacting community function in the context of human health and to facilitate the development of novel anti-infective and antimicrobial drugs, here we review, from the viewpoint of experimentalists, the latest advances in metabolic modeling, a computational method capable of predicting metabolic capabilities and interactions from individual microorganisms to complex ecological systems. We use selected examples from the literature to illustrate how metabolic modeling has been utilized, in combination with experiments, to better understand microbial community function. Finally, we propose how such combined, cross-disciplinary efforts can be utilized to drive laboratory work and drug discovery moving forward.
Collapse
Affiliation(s)
- Fabrice Jean-Pierre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
22
|
Abstract
![]()
Helminths
represent a diverse category of parasitic organisms that
can thrive within a host for years, if not decades, in the absence
of treatment. As such, they must establish mechanisms to subsist off
their hosts, evade the immune system, and develop a niche among the
other cohabiting microbial communities. The complex interplay of biologically
small molecules (collectively known as the metabolome) derived from,
utilized by, or in response to the presence of helminths within a
host is an emerging field of study. In this Perspective, we briefly
summarize the current existing literature, categorize key host–pathogen–microbiome
interfaces that could be studied in the context of the metabolome,
and provide background on mass spectrometry-based metabolomic methodology.
Overall, we hope to provide a comprehensive guide for utilizing metabolomics
in the context of helminthic disease.
Collapse
Affiliation(s)
- Jeffrey D. Whitman
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California 94110, United States
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| |
Collapse
|
23
|
Kwarteng A, Sylverken A, Asiedu E, Ahuno ST. Genome editing as control tool for filarial infections. Biomed Pharmacother 2021; 137:111292. [PMID: 33581654 DOI: 10.1016/j.biopha.2021.111292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Human filarial infections are vector-borne nematode infections, which include lymphatic filariasis, onchocerciasis, loiasis, and mansonella filariasis. With a high prevalence in developing countries, filarial infections are responsible for some of the most debilitating morbidities and a vicious cycle of poverty and disease. Global initiatives set to eradicate these infections include community mass treatments, vector control, provision of care for morbidity, and search for vaccines. However, there are growing challenges associated with mass treatments, vector control, and antifilarial vaccine development. With the emergence of genome editing tools and successful applications in other infectious diseases, the integration of genetic editing techniques in future control strategies for filarial infections would offer the best option for eliminating filarial infections. In this review, we briefly discuss the mechanisms of the three main genetic editing techniques and explore the potential applications of these powerful tools to control filarial infections.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
24
|
Zimmermann BL, Cardoso GM, Bouchon D, Pezzi PH, Palaoro AV, Araujo PB. Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites? Evol Ecol 2021; 35:165-182. [PMID: 33500597 PMCID: PMC7819146 DOI: 10.1007/s10682-021-10101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022]
Abstract
Horizontal transmission between distantly related species has been used to explain how Wolbachia infect multiple species at astonishing rates despite the selection for resistance. Recently, a terrestrial isopod species was found to be infected by an unusual strain of supergroup F Wolbachia. However, only Wolbachia of supergroup B is typically found in isopods. One possibility is that these isopods acquired the infection because of their recurrent contact with termites—a group with strong evidence of infection by supergroup F Wolbachia. Thus, our goals were: (1) check if the infection was an isolated case in isopods, or if it revealed a broader pattern; (2) search for Wolbachia infection in the termites within Brazil; and (3) look for evidence consistent with horizontal transmission between isopods and termites. We collected Neotroponiscus terrestrial isopods and termites along the Brazilian coastal Atlantic forest. We sequenced and identified the Wolbachia strains found in these groups using coxA, dnaA, and fpbA genes. We constructed phylogenies for both bacteria and host taxa and tested for coevolution. We found the supergroup F Wolbachia in other species and populations of Neotroponiscus, and also in Nasutitermes and Procornitermes termites. The phylogenies showed that, despite the phylogenetic distance between isopods and termites, the Wolbachia strains clustered together. Furthermore, cophylogenetic analyses showed significant jumps of Wolbachia between terrestrial isopods and termites. Thus, our study suggests that the horizontal transmission of supergroup F Wolbachia between termites and terrestrial isopods is likely. Our study also helps understanding the success and worldwide distribution of this symbiont.
Collapse
Affiliation(s)
- Bianca Laís Zimmermann
- Instituto Federal de Ciências e Tecnologia do Rio Grande Do Sul. Rua Nelsi Ribas Fritsch, 1111, Bairro Esperança, Ibirubá, Rio Grande Do Sul CEP 98200-000 Brazil
| | - Giovanna M Cardoso
- Centro de Estudos em Biologia Subterrânea, Departamento de Biologia, Programa de Pós-Graduação em Ecologia Aplicada, Universidade Federal de Lavras, Campus Universitário, CP 3037, Lavras, Minas Gerais CEP 37200-900 Brazil
| | - Didier Bouchon
- CNRS UMR 7267, Laboratoire Ecologie Et Biologie Des Interactions, Université de Poitiers, 5 Rue Albert Turpain, Batiment B8-B35, TSA 51106, 86073 Poitiers, France
| | - Pedro H Pezzi
- Departamento de Zoologia, Laboratório de Carcinologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande Do Sul CEP 91501-970 Brazil
| | - Alexandre V Palaoro
- LUTA do, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Artur Riedel, 275, Bairro Eldorado, Diadema, São Paulo CEP 09972-270 Brazil
| | - Paula B Araujo
- Departamento de Zoologia, Laboratório de Carcinologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, Rio Grande Do Sul CEP 91501-970 Brazil
| |
Collapse
|
25
|
Formenti F, Cortés A, Brindley PJ, Cantacessi C, Rinaldi G. A bug's life: Delving into the challenges of helminth microbiome studies. PLoS Negl Trop Dis 2020; 14:e0008446. [PMID: 32911483 PMCID: PMC7482834 DOI: 10.1371/journal.pntd.0008446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Fabio Formenti
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, València, Spain
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States of America
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
26
|
Curran DM, Grote A, Nursimulu N, Geber A, Voronin D, Jones DR, Ghedin E, Parkinson J. Modeling the metabolic interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. eLife 2020; 9:e51850. [PMID: 32779567 PMCID: PMC7419141 DOI: 10.7554/elife.51850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
The filarial nematode Brugia malayi represents a leading cause of disability in the developing world, causing lymphatic filariasis in nearly 40 million people. Currently available drugs are not well-suited to mass drug administration efforts, so new treatments are urgently required. One potential vulnerability is the endosymbiotic bacteria Wolbachia-present in many filariae-which is vital to the worm. Genome scale metabolic networks have been used to study prokaryotes and protists and have proven valuable in identifying therapeutic targets, but have only been applied to multicellular eukaryotic organisms more recently. Here, we present iDC625, the first compartmentalized metabolic model of a parasitic worm. We used this model to show how metabolic pathway usage allows the worm to adapt to different environments, and predict a set of 102 reactions essential to the survival of B. malayi. We validated three of those reactions with drug tests and demonstrated novel antifilarial properties for all three compounds.
Collapse
Affiliation(s)
- David M Curran
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nirvana Nursimulu
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | | | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- Department of Epidemiology, School of Global Public Health, New York UniversityNew YorkUnited States
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
27
|
Chen H, Zhang M, Hochstrasser M. The Biochemistry of Cytoplasmic Incompatibility Caused by Endosymbiotic Bacteria. Genes (Basel) 2020; 11:genes11080852. [PMID: 32722516 PMCID: PMC7465683 DOI: 10.3390/genes11080852] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Many species of arthropods carry maternally inherited bacterial endosymbionts that can influence host sexual reproduction to benefit the bacterium. The most well-known of such reproductive parasites is Wolbachia pipientis. Wolbachia are obligate intracellular α-proteobacteria found in nearly half of all arthropod species. This success has been attributed in part to their ability to manipulate host reproduction to favor infected females. Cytoplasmic incompatibility (CI), a phenomenon wherein Wolbachia infection renders males sterile when they mate with uninfected females, but not infected females (the rescue mating), appears to be the most common. CI provides a reproductive advantage to infected females in the presence of a threshold level of infected males. The molecular mechanisms of CI and other reproductive manipulations, such as male killing, parthenogenesis, and feminization, have remained mysterious for many decades. It had been proposed by Werren more than two decades ago that CI is caused by a Wolbachia-mediated sperm modification and that rescue is achieved by a Wolbachia-encoded rescue factor in the infected egg. In the past few years, new research has highlighted a set of syntenic Wolbachia gene pairs encoding CI-inducing factors (Cifs) as the key players for the induction of CI and its rescue. Within each Cif pair, the protein encoded by the upstream gene is denoted A and the downstream gene B. To date, two types of Cifs have been characterized based on the enzymatic activity identified in the B protein of each protein pair; one type encodes a deubiquitylase (thus named CI-inducing deubiquitylase or cid), and a second type encodes a nuclease (named CI-inducing nuclease or cin). The CidA and CinA proteins bind tightly and specifically to their respective CidB and CinB partners. In transgenic Drosophila melanogaster, the expression of either the Cid or Cin protein pair in the male germline induces CI and the expression of the cognate A protein in females is sufficient for rescue. With the identity of the Wolbachia CI induction and rescue factors now known, research in the field has turned to directed studies on the molecular mechanisms of CI, which we review here.
Collapse
Affiliation(s)
- Hongli Chen
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
| | - Mengwen Zhang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; (H.C.); (M.Z.)
- Department of Molecular, Cellular, & Developmental Biology, Yale University, New Haven, CT 06511, USA
- Correspondence:
| |
Collapse
|
28
|
Herran B, Geniez S, Delaunay C, Raimond M, Lesobre J, Bertaux J, Slatko B, Grève P. The shutting down of the insulin pathway: a developmental window for Wolbachia load and feminization. Sci Rep 2020; 10:10551. [PMID: 32601334 PMCID: PMC7324399 DOI: 10.1038/s41598-020-67428-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023] Open
Abstract
Using the isopod Armadillidium vulgare as a case study, we review the significance of the "bacterial dosage model", which connects the expression of the extended phenotype to the rise of the Wolbachia load. In isopods, the Insulin-like Androgenic Gland hormone (IAG) induces male differentiation: Wolbachia feminizes males through insulin resistance, presumably through defunct insulin receptors. This should prevent an autocrine development of the androgenic glands so that females differentiate instead: feminization should translate as IAG silencing and increased Wolbachia load in the same developmental window. In line with the autocrine model, uninfected males expressed IAG from the first larval stage on, long before the androgenic gland primordia begin to differentiate, and exponentially throughout development. In contrast in infected males, expression fully stopped at stage 4 (juvenile), when male differentiation begins. This co-occurred with the only significant rise in the Wolbachia load throughout the life-stages. Concurrently, the raw expression of the bacterial Secretion Systems co-increased, but they were not over-expressed relative to the number of bacteria. The isopod model leads to formulate the "bacterial dosage model" throughout extended phenotypes as the conjunction between bacterial load as the mode of action, timing of multiplication (pre/post-zygotic), and site of action (soma vs. germen).
Collapse
Affiliation(s)
- Benjamin Herran
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Sandrine Geniez
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, USA
| | - Carine Delaunay
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Maryline Raimond
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Jérôme Lesobre
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, 63178, Aubière, France
| | - Joanne Bertaux
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France.
| | - Barton Slatko
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, USA
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions - UMR CNRS 7267 - Equipe Ecologie, Evolution, Symbiose - Université de Poitiers, 5 rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
29
|
Abstract
Neglected parasitic helminth diseases such as onchocerciasis and lymphatic filariasis affect an estimated 145 million people worldwide, creating a serious health burden in endemic areas such as sub-Saharan Africa and India. Although these diseases are not usually lethal, these filarial nematodes, transmitted by blood-feeding insect vectors, cause severe debilitation and cause chronic disability to infected individuals. The adult worms can reproduce from 5 to up to 14 years, releasing millions of microfilariae, juvenile worms, over an infected individual's lifetime. The current treatments for controlling human filarial infections is focused on killing microfilariae, the earliest larval stage. Currently, there is an unmet medical need for treatments consisting of a macrofilaricidal regimen, one that targets the adult stage of the parasite, to increase the rate of elimination, allow for safe use in coendemic regions of Onchocerca volvulus and Loa loa, and to provide a rapid method to resolve reinfections. Herein, recent approaches for targeting human filarial diseases are discussed, including direct acting agents to target parasitic nematodes and antibacterial approaches to target the endosymbiotic bacteria, Wolbachia.
Collapse
Affiliation(s)
- Natalie A. Hawryluk
- Bristol-Myers Squibb, Global Health, 10300 Campus Point Drive, San Diego, California 92121, United States
| |
Collapse
|
30
|
Computational evidence for antitoxins associated with RelE/ParE, RatA, Fic, and AbiEii-family toxins in Wolbachia genomes. Mol Genet Genomics 2020; 295:891-909. [DOI: 10.1007/s00438-020-01662-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
|
31
|
Conte CA, Segura DF, Milla FH, Augustinos A, Cladera JL, Bourtzis K, Lanzavecchia SB. Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains. BMC Microbiol 2019; 19:289. [PMID: 31870290 PMCID: PMC6929328 DOI: 10.1186/s12866-019-1652-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). Results We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. Conclusions We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.
Collapse
Affiliation(s)
- Claudia Alejandra Conte
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Diego Fernando Segura
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT), Buenos Aires, Argentina
| | - Fabian Horacio Milla
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge Luis Cladera
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Silvia Beatriz Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Satjawongvanit H, Phumee A, Tiawsirisup S, Sungpradit S, Brownell N, Siriyasatien P, Preativatanyou K. Molecular Analysis of Canine Filaria and Its Wolbachia Endosymbionts in Domestic Dogs Collected from Two Animal University Hospitals in Bangkok Metropolitan Region, Thailand. Pathogens 2019; 8:pathogens8030114. [PMID: 31362350 PMCID: PMC6789508 DOI: 10.3390/pathogens8030114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Canine filariasis is caused by several nematode species, such as Dirofilaria immitis, Dirofilaria repens, Brugia pahangi, Brugia malayi, and Acanthocheilonema reconditum. Zoonotic filariasis is one of the world's neglected tropical diseases. Since 2000, the World Health Organization (WHO) has promoted a global filarial eradication program to eliminate filariasis by 2020. Apart from vector control strategies, the infection control of reservoir hosts is necessary for more effective filariasis control. In addition, many studies have reported that Wolbachia is necessary for the development, reproduction, and survival of the filarial nematode. Consequently, the use of antibiotics to kill Wolbachia in nematodes has now become an alternative strategy to control filariasis. Previously, a case of subconjunctival dirofilariasis caused by Dirofilaria spp. has been reported in a woman who resides in the center of Bangkok, Thailand. Therefore, our study aimed to principally demonstrate the presence of filarial nematodes and Wolbachia bacteria in blood collected from domestic dogs from the Bangkok Metropolitan Region, Thailand. A total of 57 blood samples from dogs with suspected dirofilariasis who had visited veterinary clinics in Bangkok were collected. The investigations for the presence of microfilaria were carried out by using both microscopic and molecular examinations. PCR was used as the molecular detection method for the filarial nematodes based on the COI and ITS1 regions. The demonstration of Wolbachia was performed using PCR to amplify the FtsZ gene. All positive samples by PCR were then cloned and sequenced. The results showed that the filarial nematodes were detected in 16 samples (28.07%) using microscopic examinations. The molecular detection of filarial species using COI-PCR revealed that 50 samples (87.72%) were positive; these consisted of 33 (57.89%), 13 (22.81%), and 4 (7.02%) samples for D. immitis, B. pahangi, and B. malayi, respectively. While the ITS1-PCR showed that 41 samples (71.93%) were positive-30 samples (52.63%) were identified as containing D. immitis and 11 samples (19.30%) were identified to have B. pahangi, whereas B. malayi was not detected. Forty-seven samples (82.45%) were positive for Wolbachia DNA and the phylogenetic tree of all positive Wolbachia was classified into the supergroup C clade. This study has established fundamental data on filariasis associated with Wolbachia infection in domestic dogs in the Bangkok Metropolitan Region. An extensive survey of dog blood samples would provide valuable epidemiologic data on potential zoonotic filariasis in Thailand. In addition, this information could be used for the future development of more effective prevention and control strategies for canine filariasis in Thailand.
Collapse
Affiliation(s)
| | - Atchara Phumee
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Red Cross Emerging Infectious Disease-Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, Chulalongkorn Hospital, Bangkok 10330, Thailand
| | - Sonthaya Tiawsirisup
- Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sivapong Sungpradit
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Narisa Brownell
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Padet Siriyasatien
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanok Preativatanyou
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
33
|
Meany MK, Conner WR, Richter SV, Bailey JA, Turelli M, Cooper BS. Loss of cytoplasmic incompatibility and minimal fecundity effects explain relatively low Wolbachia frequencies in Drosophila mauritiana. Evolution 2019; 73:1278-1295. [PMID: 31001816 PMCID: PMC6554066 DOI: 10.1111/evo.13745] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Maternally transmitted Wolbachia bacteria infect about half of all insect species. Many Wolbachia cause cytoplasmic incompatibility (CI) and reduced egg hatch when uninfected females mate with infected males. Although CI produces a frequency-dependent fitness advantage that leads to high equilibrium Wolbachia frequencies, it does not aid Wolbachia spread from low frequencies. Indeed, the fitness advantages that produce initial Wolbachia spread and maintain non-CI Wolbachia remain elusive. wMau Wolbachia infecting Drosophila mauritiana do not cause CI, despite being very similar to CI-causing wNo from Drosophila simulans (0.068% sequence divergence over 682,494 bp), suggesting recent CI loss. Using draft wMau genomes, we identify a deletion in a CI-associated gene, consistent with theory predicting that selection within host lineages does not act to increase or maintain CI. In the laboratory, wMau shows near-perfect maternal transmission; but we find no significant effect on host fecundity, in contrast to published data. Intermediate wMau frequencies on the island of Mauritius are consistent with a balance between unidentified small, positive fitness effects and imperfect maternal transmission. Our phylogenomic analyses suggest that group-B Wolbachia, including wMau and wPip, diverged from group-A Wolbachia, such as wMel and wRi, 6-46 million years ago, more recently than previously estimated.
Collapse
Affiliation(s)
- Megan K. Meany
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - William R. Conner
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Sophia V. Richter
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Jessica A. Bailey
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| | - Michael Turelli
- Department of Evolution and Ecology, University of
California, Davis, CA USA
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana,
Missoula, MT USA
| |
Collapse
|
34
|
Clare RH, Clark R, Bardelle C, Harper P, Collier M, Johnston KL, Plant H, Plant D, McCall E, Slatko BE, Cantin L, Wu B, Ford L, Murray D, Rich K, Wigglesworth M, Taylor MJ, Ward SA. Development of a High-Throughput Cytometric Screen to Identify Anti- Wolbachia Compounds: The Power of Public-Private Partnership. SLAS DISCOVERY 2019; 24:537-547. [PMID: 30958712 PMCID: PMC6537165 DOI: 10.1177/2472555219838341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Anti-Wolbachia (A·WOL) consortium at the Liverpool School of
Tropical Medicine (LSTM) has partnered with the Global High-Throughput Screening
(HTS) Centre at AstraZeneca to create the first anthelmintic HTS for neglected
tropical diseases (NTDs). The A·WOL consortium aims to identify novel
macrofilaricidal drugs targeting the essential bacterial symbiont
(Wolbachia) of the filarial nematodes causing
onchocerciasis and lymphatic filariasis. Working in collaboration, we have
validated a robust high-throughput assay capable of identifying compounds that
selectively kill Wolbachia over the host insect cell. We
describe the development and validation process of this complex, phenotypic
high-throughput assay and provide an overview of the primary outputs from
screening the AstraZeneca library of 1.3 million compounds.
Collapse
Affiliation(s)
- Rachel H Clare
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Roger Clark
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Catherine Bardelle
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Paul Harper
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Matthew Collier
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Kelly L Johnston
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Helen Plant
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Darren Plant
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Eileen McCall
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Barton E Slatko
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Lindsey Cantin
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Bo Wu
- 3 Genome Biology Division, New England Biolabs, Inc., Ipswich, MA, USA
| | - Louise Ford
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - David Murray
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Kirsty Rich
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Mark Wigglesworth
- 2 Hit Discovery, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - Mark J Taylor
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Stephen A Ward
- 1 Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
35
|
Shaikevich E, Bogacheva A, Rakova V, Ganushkina L, Ilinsky Y. Wolbachia symbionts in mosquitoes: Intra- and intersupergroup recombinations, horizontal transmission and evolution. Mol Phylogenet Evol 2019; 134:24-34. [PMID: 30708172 DOI: 10.1016/j.ympev.2019.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 01/13/2019] [Accepted: 01/22/2019] [Indexed: 11/27/2022]
Abstract
Many mosquitoes harbour Wolbachia symbionts that could affect the biology of their host in different ways. Evolutionary relationships of mosquitoes' Wolbachia infection, geographical distribution and symbiont prevalence in many mosquito species are not yet clear. Here, we present the results of Wolbachia screening of 17 mosquito species of four genera-Aedes, Anopheles, Coquillettidia and Culex collected from five regions of Eastern Europe and the Caucasus in 2012-2016. Based on multilocus sequence typing (MLST) data previously published and generated in this study, we try to reveal genetic links between mosquitoes' and other hosts' Wolbachia. The Wolbachia symbionts are found in Culex pipiens, Aedes albopictus and Coquillettidia richiardii and for the first time in Aedes cinereus and Aedes cantans, which are important vectors of human pathogens. Phylogenetic analysis demonstrated multiple origins of infection in mosquitoes although the one-allele-criterion approach revealed links among B-supergroup mosquito Wolbachia with allele content of lepidopteran hosts. The MLST gene content of strain wAlbA from the A-supergroup is linked with different ant species. Several cases of intersupergroup recombinations were found. One of them occurred in the wAlbaB strain of Aedes albopictus, which contains the coxA allele of the A-supergroup, whereas other loci, including wsp, belong to supergroup B. Other cases are revealed for non-mosquito symbionts and they exemplified genetic exchanges of A, B and F supergroups. We conclude that modern Wolbachia diversity in mosquitoes and in many other insect taxa is a recent product of strain recombination and symbiont transfers.
Collapse
Affiliation(s)
- Elena Shaikevich
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Vera Rakova
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, Moscow 119435, Russia.
| | - Ludmila Ganushkina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, Moscow 119435, Russia.
| | - Yury Ilinsky
- Institute of Cytology and Genetics of SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia; Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| |
Collapse
|
36
|
Shaikevich E, Bogacheva A, Ganushkina L. Dirofilaria and Wolbachia in mosquitoes (Diptera: Culicidae) in central European Russia and on the Black Sea coast. ACTA ACUST UNITED AC 2019; 26:2. [PMID: 30644356 PMCID: PMC6333102 DOI: 10.1051/parasite/2019002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/04/2019] [Indexed: 12/02/2022]
Abstract
Dirofilariasis is endemic in Russia, as well as in many other European countries. The aim of this study was to assess the ability of mosquitoes to transfer Dirofilaria immitis and Dirofilaria repens in regions with temperate and subtropical climates. The possible impact of the symbiotic bacterium Wolbachia on Dirofilaria transmission was also investigated. 5333 female mosquitoes were collected at 11 points in central European Russia and on the Black Sea coast during the period 2013–2017. Out of 20 mosquito species examined, 14 were infected with D. repens and 13 with D. immitis. Both species of Dirofilaria were found in different climatic regions. The total Dirofilaria spp. estimated infection rate (EIR) in the central part of Russia varied from 3.1% to 3.7% and, in the southern region, from 1.1% to 3.0%. The highest estimated infection rate was found in Anopheles messeae, the lowest in Culex pipiens. The greatest epidemiological danger was represented by Aedes aegypti, Ae. geniculatus, An. messeae and Ae. communis. Six out of 20 mosquito species were infected with Wolbachia. Pools of Aedes albopictus, Cx. pipiens and Coquillettidia richiardii were simultaneously infected with Dirofilaria and Wolbachia. After checking mosquitoes individually, it was found that there was no development of Dirofilaria to the infective larval stage in specimens infected with Wolbachia. Twenty-two Dirofilaria-infective pools were Wolbachia-free and only two mosquito pools were Wolbachia-infected. The potential for transmission of Dirofilaria in mosquito species naturally uninfected with the symbiotic bacterium Wolbachia is higher than in species infected with the bacterium.
Collapse
Affiliation(s)
- Elena Shaikevich
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Ludmila Ganushkina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| |
Collapse
|
37
|
Tetracycline reduces feeding and reproduction of the parthenogenetic springtail, Folsomia candida. Symbiosis 2019. [DOI: 10.1007/s13199-018-00593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Ciuca L, Simòn F, Rinaldi L, Kramer L, Genchi M, Cringoli G, Acatrinei D, Miron L, Morchon R. Seroepidemiological survey of human exposure to Dirofilaria spp. in Romania and Moldova. Acta Trop 2018; 187:169-174. [PMID: 30056075 DOI: 10.1016/j.actatropica.2018.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to evaluate the extent of Dirofilaria immitis and D. repens exposure in humans from eastern and southern areas of Romania and central Moldova by serological methods. The serological screening was performed on a total of 450 serum samples (187 from Romania and 263 from Moldova). The sera were collected using a convenience sampling with the help of physicians from the hospitals of the study areas. All samples were analysed by a non-commercial ELISA test for the detection of IgG antibodies against adult somatic antigens of D. immitis and D. repens. The results showed a total of 49 (10.9%; 95% CI = 8.3-14.1%) individuals from Romania and Moldova with a positive response to IgG antibodies against both adult somatic antigens of D. immitis and D. repens. Specifically, 48 (10.7%; 95% CI = 8.0-14.0%) patients were positive for IgG-antibodies against adult somatic antigens of D. immitis, one (0.2%; 95% CI = 0.4-1.2%) against D. repens antigens, and four (0.9%; 95% CI = 0.4-3.3%). were positive for antigens of both parasites. At country level, out of 187 samples from Romania, 13 (6.9%; 95% CI = 4.1-11.5%) were positive for anti-D. immitis IgG with high exposure in the southern part of the country (Bucharest). Of the 263 people from Moldova, 36 (13.7%; 95% CI = 10.0-18.4%) were positive for D. immitis antigens from which three (1.1%, 95% CI = 0.4-3.3%) were positive for the antibodies against antigens of both parasites. Only one sample was found positive for anti-D. repens IgG. Positive IgG-ELISA results were confirmed by Western blot analysis. In addition, for further confirmation, a complementary ELISA was performed for anti-WSP IgG antibodies against Wolbachia endosymbionts. Our findings showed a noticeable exposure of humans from Romania and Moldova to Dirofilaria parasites. Serology can be useful for indicating exposure to Dirofilaria spp. in a healthy population in order to obtain useful data on the epidemiological scenario of human dirofilariosis in Eastern Europe.
Collapse
|
39
|
Kramer L, Crosara S, Gnudi G, Genchi M, Mangia C, Viglietti A, Quintavalla C. Wolbachia, doxycycline and macrocyclic lactones: New prospects in the treatment of canine heartworm disease. Vet Parasitol 2018; 254:95-97. [PMID: 29657018 DOI: 10.1016/j.vetpar.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
Abstract
Melarsomine dihydrochloride (Immiticide®, Merial) is the only approved adulticidal drug for the treatment of canine heartworm disease (HWD). However, in cases where arsenical therapy is not possible or is contraindicated, a monthly heartworm preventive along with doxycycline for a 4-week period, which targets the bacterial endosymbiont Wolbachia, might be considered. There are published reports on the efficacy of ivermectin and doxycycline in both experimentally and naturally infected dogs, but no data on the use of other macrocyclic lactones (MLs) with a similar treatment regime. Preliminary results of studies in dogs show that a topical formulation of moxidectin, the only ML currently registered as a microfilaricide, is also adulticidal when combined with doxycycline. It is not yet known if the efficacy of these combination therapies is due to pharmacokinetic synergism. A recent study showed that serum levels of doxycycline in dogs treated with the combination protocol were not statistically different compared to dogs treated with doxycycline alone. However, lungs from dogs treated with the combination therapy showed a marked reduction in T regulatory cells, indicating that treatment efficacy may be due to a heightened immune response against the parasite. Further studies are necessary to evaluate the long-term clinical outcome of combination protocols and to establish the most efficient treatment for HWD in dogs.
Collapse
Affiliation(s)
- L Kramer
- Department of Veterinary Science, University of Parma, Parma, Italy.
| | - S Crosara
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - G Gnudi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - M Genchi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - C Mangia
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - A Viglietti
- Ambulatorio Veterinario Associato, Carloforte, Italy
| | - C Quintavalla
- Department of Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
40
|
Interaction between Wolbachia and the fibrinolytic system as a possible pathological mechanism in cardiopulmonary dirofilariosis. Vet Parasitol 2017; 247:64-69. [DOI: 10.1016/j.vetpar.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022]
|
41
|
Kageyama D, Wang CH, Hatakeyama M. Wolbachia infections of the butterfly Eurema mandarina interfere with embryonic development of the sawfly Athalia rosae. J Invertebr Pathol 2017; 150:76-81. [PMID: 28789848 DOI: 10.1016/j.jip.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 11/15/2022]
Abstract
Although maternally transmitted microorganisms such as Wolbachia are well known to have a variety of effects on the reproduction of diverse insect species, little is known about the underlying mechanisms of actions. Artificial transfer of Wolbachia between taxonomically distant host species may provide insights into Wolbachia-induced manipulations of hosts. Here we performed a cross-order transfer of feminizing Wolbachia derived from a butterfly, Eurema mandarina. The Wolbachia were propagated in the Eurema hecabe cell line, called NTU-YB, and then used to inject prepupal/pupal females of a Wolbachia-free hymenopteran sawfly, Athalia rosae. The 14 females that emerged as adults looked morphologically and behaviorally healthy, and ovarian development appeared normal on dissection. However, in contrast to the control, none of the 333 eggs harbored by the seven Wolbachia-injected females developed successfully. Similarly, none of the 140 eggs laid on host plant by the four Wolbachia-injected females, which were mated with males, showed any signs of development. Wolbachia infection was detected from whole-body samples of the inoculated individuals, but not from the eggs they produced. Disruption of embryonic development despite the absence of Wolbachia in the egg cytoplasm may represent a new phenotype involving maternal effects that result in female sterility.
Collapse
Affiliation(s)
- Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan.
| | - Chung-Hsiung Wang
- Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei 106, Taiwan, ROC.
| | - Masatsugu Hatakeyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
42
|
Midha A, Schlosser J, Hartmann S. Reciprocal Interactions between Nematodes and Their Microbial Environments. Front Cell Infect Microbiol 2017; 7:144. [PMID: 28497029 PMCID: PMC5406411 DOI: 10.3389/fcimb.2017.00144] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 01/07/2023] Open
Abstract
Parasitic nematode infections are widespread in nature, affecting humans as well as wild, companion, and livestock animals. Most parasitic nematodes inhabit the intestines of their hosts living in close contact with the intestinal microbiota. Many species also have tissue migratory life stages in the absence of severe systemic inflammation of the host. Despite the close coexistence of helminths with numerous microbes, little is known concerning these interactions. While the environmental niche is considerably different, the free-living nematode Caenorhabditis elegans (C. elegans) is also found amongst a diverse microbiota, albeit on decaying organic matter. As a very well characterized model organism that has been intensively studied for several decades, C. elegans interactions with bacteria are much more deeply understood than those of their parasitic counterparts. The enormous breadth of understanding achieved by the C. elegans research community continues to inform many aspects of nematode parasitology. Here, we summarize what is known regarding parasitic nematode-bacterial interactions while comparing and contrasting this with information from work in C. elegans. This review highlights findings concerning responses to bacterial stimuli, antimicrobial peptides, and the reciprocal influences between nematodes and their environmental bacteria. Furthermore, the microbiota of nematodes as well as alterations in the intestinal microbiota of mammalian hosts by helminth infections are discussed.
Collapse
Affiliation(s)
- Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Josephine Schlosser
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
43
|
Armoo S, Doyle SR, Osei-Atweneboana MY, Grant WN. Significant heterogeneity in Wolbachia copy number within and between populations of Onchocerca volvulus. Parasit Vectors 2017; 10:188. [PMID: 28420428 PMCID: PMC5395808 DOI: 10.1186/s13071-017-2126-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wolbachia are intracellular bacteria found in arthropods and several filarial nematode species. The filarial Wolbachia have been proposed to be involved in the immunopathology associated with onchocerciasis. Higher Wolbachia-to-nematode ratios have been reported in the savannah-ecotype compared to the forest-ecotype, and have been interpreted as consistent with a correlation between Wolbachia density and disease severity. However, factors such as geographic stratification and ivermectin drug exposure can lead to significant genetic heterogeneity in the nematode host populations, so we investigated whether Wolbachia copy number variation is also associated with these underlying factors. METHODS Genomic DNA was prepared from single adult nematodes representing forest and savannah ecotypes sampled from Togo, Ghana, Côte d'Ivoire and Mali. A qPCR assay was developed to measure the number of Wolbachia genome(s) per nematode genome. Next-generation sequencing (NGS) was also used to measure relative Wolbachia copy number, and independently verify the qPCR assay. RESULTS Significant variation was observed within the forest (range: 0.02 to 452.99; median: 10.58) and savannah (range: 0.01 to 1106.25; median: 9.10) ecotypes, however, no significant difference between ecotypes (P = 0.645) was observed; rather, strongly significant Wolbachia variation was observed within and between the nine study communities analysed (P = 0.021), independent of ecotype. Analysis of ivermectin-treated and untreated nematodes by qPCR showed no correlation (P = 0.869); however, an additional analysis of a subset of the nematodes by qPCR and NGS revealed a correlation between response to ivermectin treatment and Wolbachia copy number (P = 0.020). CONCLUSIONS This study demonstrates that extensive within and between population variation exists in the Wolbachia content of individual adult O. volvulus. The origin and functional significance of such variation (up to ~ 100,000-fold between worms; ~10 to 100-fold between communities) in the context of the proposed mutualistic relationship between the worms and the bacteria, and between the presence of Wolbachia and clinical outcome of infection, remains unclear. These data do not support a correlation between Wolbachia copy number and forest or savannah ecotype, and may have implications for the development of anti-Wolbachia drugs as a macrofilaricidal treatment of onchocerciasis. The biological significance of a correlation between variation in Wolbachia copy number and ivermectin response remains unexplained.
Collapse
Affiliation(s)
- Samuel Armoo
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, 3083, VIC, Australia.,Environmental Biology and Health Division, Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | - Stephen R Doyle
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, 3083, VIC, Australia.,Present address: Parasite Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Mike Y Osei-Atweneboana
- Environmental Biology and Health Division, Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | - Warwick N Grant
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, La Trobe University, Bundoora, 3083, VIC, Australia.
| |
Collapse
|
44
|
Ilinsky Y, Kosterin OE. Molecular diversity of Wolbachia in Lepidoptera: Prevalent allelic content and high recombination of MLST genes. Mol Phylogenet Evol 2017; 109:164-179. [PMID: 28082006 DOI: 10.1016/j.ympev.2016.12.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/07/2016] [Accepted: 12/28/2016] [Indexed: 11/30/2022]
Abstract
Wolbachia are common endosymbiotic bacteria of Arthropoda and Nematoda that are ordinarily transmitted vertically in host lineages through the egg cytoplasm. Despite the great interest in the Wolbachia symbiont, many issues of its biology remain unclear, including its evolutionary history, routes of transfer among species, and the molecular mechanisms underlying the symbiont's effect on its host. In this report, we present data relating to Wolbachia infection in 120 species of 13 Lepidoptera families, mostly butterflies, from West Siberian localities based on Multilocus sequence typing (MLST) and the wsp locus and perform a comprehensive survey of the distribution of Wolbachia and its genetic diversity in Lepidoptera worldwide. We observed a high infection incidence in the studied region; this finding is probably also true for other temperate latitude regions because many studied species have broad Palearctic and even Holarctic distribution. Although 40 new MLST alleles and 31 new STs were described, there was no noticeable difference in the MLST allele content in butterflies and probably also in moths worldwide. A genetic analysis of Wolbachia strains revealed the MLST allele core in lepidopteran hosts worldwide, viz. the ST-41 allele content. The key finding of our study was the detection of rampant recombination among MLST haplotypes. High rates of homologous recombination between Wolbachia strains indicate a substantial contribution of genetic exchanges to the generation of new STs. This finding should be considered when discussing issues related to the reconstruction of Wolbachia evolution, divergence time, and the routes of Wolbachia transmission across arthropod hosts.
Collapse
Affiliation(s)
- Yury Ilinsky
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia; Institute of Chemistry and Biology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Oleg E Kosterin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
45
|
Choi YJ, Tyagi R, McNulty SN, Rosa BA, Ozersky P, Mafrtin J, Hallsworth-Pepin K, Unnasch TR, Norice CT, Nutman TB, Weil GJ, Fischer PU, Mitreva M. Genomic diversity in Onchocerca volvulus and its Wolbachia endosymbiont. Nat Microbiol 2016; 2:16207. [PMID: 27869792 PMCID: PMC5512550 DOI: 10.1038/nmicrobiol.2016.207] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 01/03/2023]
Abstract
Ongoing elimination efforts have altered the global distribution of Onchocerca volvulus, the agent of river blindness, and further population restructuring is expected as efforts continue. Therefore, a better understanding of population genetic processes and their effect on biogeography is needed to support elimination goals. We describe O. volvulus genome variation in 27 isolates from the early 1990s (before widespread mass treatment) from four distinct locales: Ecuador, Uganda, the West African forest and the West African savanna. We observed genetic substructuring between Ecuador and West Africa and between the West African forest and savanna bioclimes, with evidence of unidirectional gene flow from savanna to forest strains. We identified forest:savanna-discriminatory genomic regions and report a set of ancestry informative loci that can be used to differentiate between forest, savanna and admixed isolates, which has not previously been possible. We observed mito-nuclear discordance possibly stemming from incomplete lineage sorting. The catalogue of the nuclear, mitochondrial and endosymbiont DNA variants generated in this study will support future basic and translational onchocerciasis research, with particular relevance for ongoing control programmes, and boost efforts to characterize drug, vaccine and diagnostic targets.
Collapse
Affiliation(s)
- Young-Jun Choi
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - Rahul Tyagi
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | | | - Bruce A. Rosa
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - Philip Ozersky
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | - John Mafrtin
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
| | | | - Thomas R. Unnasch
- Global Health Infectious Disease Research Program, Department of Global Health, University of South Florida, Tampa, FL, USA
| | - Carmelle T. Norice
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Gary J. Weil
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter U. Fischer
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, MO, USA
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Van CD, Doungchawee G, Suttiprapa S, Arimatsu Y, Kaewkes S, Sripa B. Association between Opisthorchis viverrini and Leptospira spp. infection in endemic Northeast Thailand. Parasitol Int 2016; 66:503-509. [PMID: 27746382 DOI: 10.1016/j.parint.2016.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/21/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022]
Abstract
Opisthorchiasis caused by Opisthorchis viverrini is an important foodborne trematodiasis in Thailand, Laos and Cambodia. Interestingly, the opisthorchiasis endemic region overlaps with an area of leptospirosis emergence. Here we report an association between opisthorchiasis and leptospirosis in Thailand. Of 280 sera collected from villagers living around the Lawa wetland complex in Khon Kaen province, 199 (71%) were seropositive for leptospirosis by immunochromatography. Individuals with O. viverrini infection had a significantly higher rate of leptospirosis than those without (P=0.001). Significant higher leptospirosis prevalence was found in males than females (P=0.002). However, females but not males with O. viverrini infection showed a significantly higher seroprevalence of leptospirosis. Twenty-one of 35 environmental samples from the lake (water, mud and fish skin mucus) were positive for Leptospira spp. DNA sequencing, sequence alignment, and phylogenetic analysis of some positive nested PCR products revealed both pathogenic and intermediate pathogenic strains of Leptospira in the samples. Strikingly, O. viverrini metacercariae from the fish were positive for L. interrogans. These results suggest a close association between opisthorchiasis and leptospirosis. Contact with water, mud or eating raw fish harboring liver fluke metacercariae may be risk factors for Leptospira infection.
Collapse
Affiliation(s)
- Chinh Dang Van
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Center for Public Health & Ecosystem Research, Hanoi School of Public Health, 138 GiangVo st., Ba Dinh, Hanoi, Vietnam
| | | | - Sutas Suttiprapa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuji Arimatsu
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kaewkes
- Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Banchob Sripa
- Tropical Disease Research Laboratory, Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
47
|
Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness. PLoS One 2016; 11:e0153812. [PMID: 27078260 PMCID: PMC4831766 DOI: 10.1371/journal.pone.0153812] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes—6-phosphofructokinase and pyruvate kinase—and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy.
Collapse
|
48
|
Monnin D, Kremer N, Berny C, Henri H, Dumet A, Voituron Y, Desouhant E, Vavre F. Influence of oxidative homeostasis on bacterial density and cost of infection in Drosophila-Wolbachia symbioses. J Evol Biol 2016; 29:1211-22. [PMID: 26999590 DOI: 10.1111/jeb.12863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/25/2016] [Accepted: 03/08/2016] [Indexed: 02/03/2023]
Abstract
The evolution of symbioses along the continuum between parasitism and mutualism can be influenced by the oxidative homeostasis, that is the balance between reactive oxygen species (ROS) and antioxidant molecules. Indeed, ROS can contribute to the host immune defence to regulate symbiont populations, but are also toxic. This interplay between ROS and symbiosis is notably exemplified by recent results in arthropod-Wolbachia interactions. Wolbachia are symbiotic bacteria involved in a wide range of interactions with their arthropods hosts, from facultative, parasitic associations to obligatory, mutualistic ones. In this study, we used Drosophila-Wolbachia associations to determine whether the oxidative homeostasis plays a role in explaining the differences between phenotypically distinct arthropod-Wolbachia symbioses. We used Drosophila lines with different Wolbachia infections and measured the effects of pro-oxidant (paraquat) and antioxidant (glutathione) treatments on the Wolbachia density and the host survival. We show that experimental manipulations of the oxidative homeostasis can reduce the cost of the infection through its effect on Wolbachia density. We discuss the implication of this result from an evolutionary perspective and argue that the oxidative homeostasis could underlie the evolution of tolerance and dependence on Wolbachia.
Collapse
Affiliation(s)
- D Monnin
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard, CNRS, UMR 5558, F-69622 Villeurbanne, France
| | - N Kremer
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard, CNRS, UMR 5558, F-69622 Villeurbanne, France
| | - C Berny
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard, CNRS, UMR 5558, F-69622 Villeurbanne, France
| | - H Henri
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard, CNRS, UMR 5558, F-69622 Villeurbanne, France
| | - A Dumet
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Univ Lyon, Université Claude Bernard, CNRS, UMR 5023, F-69622 Villeurbanne, France
| | - Y Voituron
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Univ Lyon, Université Claude Bernard, CNRS, UMR 5023, F-69622 Villeurbanne, France
| | - E Desouhant
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard, CNRS, UMR 5558, F-69622 Villeurbanne, France
| | - F Vavre
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard, CNRS, UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
49
|
Lefoulon E, Bain O, Makepeace BL, d'Haese C, Uni S, Martin C, Gavotte L. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 2016; 4:e1840. [PMID: 27069790 PMCID: PMC4824920 DOI: 10.7717/peerj.1840] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
Wolbachia is an alpha-proteobacterial symbiont widely distributed in arthropods. Since the identification of Wolbachia in certain animal-parasitic nematodes (the Onchocercidae or filariae), the relationship between arthropod and nematode Wolbachia has attracted great interest. The obligate symbiosis in filariae, which renders infected species susceptible to antibiotic chemotherapy, was held to be distinct from the Wolbachia-arthropod relationship, typified by reproductive parasitism. While co-evolutionary signatures in Wolbachia-arthropod symbioses are generally weak, reflecting horizontal transmission events, strict co-evolution between filariae and Wolbachia has been reported previously. However, the absence of close outgroups for phylogenetic studies prevented the determination of which host group originally acquired Wolbachia. Here, we present the largest co-phylogenetic analysis of Wolbachia in filariae performed to date including: (i) a screening and an updated phylogeny of Wolbachia; (ii) a co-phylogenetic analysis; and (iii) a hypothesis on the acquisition of Wolbachia infection. First, our results show a general overestimation of Wolbachia occurrence and support the hypothesis of an ancestral absence of infection in the nematode phylum. The accuracy of supergroup J is also underlined. Second, although a global pattern of coevolution remains, the signal is derived predominantly from filarial clades associated with Wolbachia in supergroups C and J. In other filarial clades, harbouring Wolbachia supergroups D and F, horizontal acquisitions and secondary losses are common. Finally, our results suggest that supergroup C is the basal Wolbachia clade within the Ecdysozoa. This hypothesis on the origin of Wolbachia would change drastically our understanding of Wolbachia evolution.
Collapse
Affiliation(s)
- Emilie Lefoulon
- UMR7245, MCAM, Museum national d'Histoire naturelle , Paris , France
| | - Odile Bain
- UMR7245, MCAM, Museum national d'Histoire naturelle , Paris , France
| | - Benjamin L Makepeace
- Institute of Infection and Global Health, University of Liverpool , Liverpool , United Kingdom
| | - Cyrille d'Haese
- UMR7179 MECADEV, Museum national d'Histoire naturelle , Paris , France
| | - Shigehiko Uni
- Institute of Biological Sciences, University of Malaya , Kuala Lumpur , Malaysia
| | - Coralie Martin
- UMR7245, MCAM, Museum national d'Histoire naturelle , Paris , France
| | - Laurent Gavotte
- UMR5554 ISEM, Université de Montpellier II , Montpellier , France
| |
Collapse
|
50
|
Nag JK, Chahar D, Shrivastava N, Gupta CL, Bajpai P, Chandra D, Misra-Bhattacharya S. Functional attributes of evolutionary conserved Arg45 of Wolbachia (Brugia malayi) translation initiation factor-1. Future Microbiol 2016; 11:195-214. [PMID: 26855259 DOI: 10.2217/fmb.15.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Wolbachia is a promising antifilarial chemotherapeutic target. Translation initiation factor-1 (Tl IF-1) is an essential factor in prokaryotes. Functional characterization of Wolbachia's novel proteins/enzymes is necessary for the development of adulticidal drugs. MATERIALS & METHODS Mutant, Wol Tl IF-1 R45D was constructed by site directed mutagenesis. Fluorimetry and size exclusion chromatography were used to determine the biophysical characteristics. Mobility shift assay and fluorescence resonance energy transfer were used to investigate the functional aspect of Wol Tl IF-1 with its mutant. RESULTS Both wild and mutant were in monomeric native conformations. Wild exhibits nonspecific binding with ssRNA/ssDNA fragments under electrostatic conditions and showed annealing and displacement of RNA strands in comparison to mutant. CONCLUSION Point mutation impaired RNA chaperone activity of the mutant and its interaction with nucleotides.
Collapse
Affiliation(s)
- Jeetendra Kumar Nag
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Department of Biochemistry, Lucknow University, Lucknow (UP) 226007, India
| | - Dhanvantri Chahar
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Academy of Scientific & Innovative Research, Coordination Office, Mathura Road, CRRI, Jasola, New Delhi 110020, India
| | - Nidhi Shrivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India
| | - Chhedi Lal Gupta
- Department of Biosciences, Integral University, Lucknow (UP) 226026, India
| | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow (UP) 226026, India
| | - Deepak Chandra
- Department of Biochemistry, Lucknow University, Lucknow (UP) 226007, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow (UP) 226031, India.,Academy of Scientific & Innovative Research, Coordination Office, Mathura Road, CRRI, Jasola, New Delhi 110020, India
| |
Collapse
|