1
|
Day KP, Tan MH, He Q, Ruybal-Pesántez S, Zhan Q, Tiedje KE, Pascual M. Var genes, strain hyperdiversity, and malaria transmission dynamics. Trends Parasitol 2025:S1471-4922(25)00104-7. [PMID: 40393890 DOI: 10.1016/j.pt.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
The microbiological paradigm for surveillance of diverse pathogens requires knowledge of the variation of the major surface antigen under the most intense immune selection as immune responses to these antigens drive transmission dynamics. This creates a pathway for population genetics/genomics to be combined with mathematical modelling to describe transmission dynamics to inform public health policy. Here we consider how we can bring population genetics and population dynamics together for a highly recombining pathogen like Plasmodium falciparum. We do this through the lens of what has been recently learnt about the population genetics of the var multigene family encoding the major surface antigen of the blood stages of Plasmodium falciparum, known as PfEMP1.
Collapse
Affiliation(s)
- Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia.
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Mercedes Pascual
- Department of Biology and Department of Environmental Studies, New York University, New York, NY, USA
| |
Collapse
|
2
|
Chaturvedi R, Sharma A. Key Facets for the Elimination of Vector-Borne Diseases Filariasis, Leishmaniasis, and Malaria. ACS Infect Dis 2025; 11:287-304. [PMID: 39784679 DOI: 10.1021/acsinfecdis.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Vector-borne diseases are caused by microbes transmitted to humans through vectors such as mosquitoes, ticks, flies, and other arthropods. Three vector-borne diseases, filariasis, leishmaniasis, and malaria, are significant parasitic diseases which are responsible for long-term morbidity and mortality affecting millions globally. These diseases exhibit several similarities in transmission, health impacts, and the challenges faced in their control and prevention. By identifying these commonalities and fostering cooperation among disease control programs, we can strengthen our efforts to combat them and hence enhance the health of at-risk populations. This review summarizes the key points associated with the epidemiology, transmission dynamics, and therapeutic regimes for each disease, presenting a holistic overview of these three eliminable diseases.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Amit Sharma
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi-110067, India
| |
Collapse
|
3
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. PLoS Pathog 2025; 21:e1012813. [PMID: 39903780 PMCID: PMC11793742 DOI: 10.1371/journal.ppat.1012813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025] Open
Abstract
The var multigene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), central to host-parasite interactions. Genome structure studies have identified three major groups of var genes by specific upstream sequences (upsA, B, or C). Var with these ups groups have different chromosomal locations, transcriptional directions, and associations with disease severity. Here we explore temporal and spatial diversity of a region of var genes encoding the DBLα domain of PfEMP1 in Africa. By applying a novel ups classification algorithm (cUps) to publicly-available DBLα sequence datasets, we categorised DBLα according to association with the three ups groups, thereby avoiding the need to sequence complete genes. Data from deep sequencing of DBLα types in a local population in northern Ghana surveyed seven times from 2012 to 2017 found variants with rare-to-moderate-to-extreme frequencies, and the common variants were temporally stable in this local endemic area. Furthermore, we observed that every isolate repertoire, whether mono- or multiclonal, comprised DBLα types occurring with these frequency ranges implying a common genome structure. When comparing African countries of Ghana, Gabon, Malawi, and Uganda, we report that some DBLα types were consistently found at high frequencies in multiple African countries while others were common only at the country level. The implication of these local and pan-Africa population patterns is discussed in terms of advantage to the parasite with regards to within-host adaptation and resilience to malaria control.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Biology, New York University, New York, New York, United States of America
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Dorin-Semblat D, Semblat JP, Hamelin R, Srivastava A, Tetard M, Matesic G, Doerig C, Gamain B. Casein Kinases 2-dependent phosphorylation of the placental ligand VAR2CSA regulates Plasmodium falciparum-infected erythrocytes cytoadhesion. PLoS Pathog 2025; 21:e1012861. [PMID: 39804934 PMCID: PMC11761665 DOI: 10.1371/journal.ppat.1012861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Placental malaria is characterized by the massive accumulation and sequestration of infected erythrocytes in the placental intervillous blood spaces, causing severe birth outcomes. The variant surface antigen VAR2CSA is associated with Plasmodium falciparum sequestration in the placenta via its capacity to adhere to chondroitin sulfate A. We have previously shown that the extracellular region of VAR2CSA is phosphorylated on several residues and that the phosphorylation enhances the adhesive properties of CSA-binding infected erythrocytes. Here, we aimed to identify the kinases mediating this phosphorylation. We report that Human and Plasmodium falciparum Casein Kinase 2α are involved in the phosphorylation of the extracellular region of VAR2CSA. We notably show that both CK2α can phosphorylate the extracellular region of recombinant and immunoprecipitated VAR2CSA. Mass spectrometry analysis of recombinant VAR2CSA phosphorylated by recombinant Human and P. falciparum CK2α combined with site-directed mutagenesis led to the identification of residue S1068 in VAR2CSA, which is phosphorylated by both enzymes and is associated with CSA binding. Furthermore, using CRISPR/Cas9 we generated a parasite line in which phosphoresidue S1068 was changed to alanine. This mutation strongly impairs infected erythrocytes adhesion by abolishing VAR2CSA translocation to the surface of infected erythrocytes. We also report that two specific CK2 inhibitors reduce infected erythrocytes adhesion to CSA and decrease the phosphorylation of the recombinant extracellular region of VAR2CSA using either infected erythrocytes lysates as a source of kinases or recombinant Human and P. falciparum casein kinase 2. Taken together, these results undoubtedly demonstrate that host and P. falciparum CK2α phosphorylate the extracellular region of VAR2CSA and that this post-translational modification is important for VAR2CSA trafficking and for infected erythrocytes adhesion to CSA.
Collapse
Affiliation(s)
- Dominique Dorin-Semblat
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Jean-Philippe Semblat
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| | - Romain Hamelin
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anand Srivastava
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
| | - Marilou Tetard
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Graziella Matesic
- Université Paris Cité and Université des Antilles, INSERM, BIGR, Paris, France
| | - Christian Doerig
- School of Health and Biomedical Science, RMIT University, Bundoora, Australia
| | - Benoit Gamain
- Sorbonne Université, CNRS, Inserm, Centre d’Immunologie et des Maladies Infectieuses, CIMI, Paris, France
| |
Collapse
|
5
|
McLean FE, Omondi BR, Diallo N, Otoboh S, Kifude C, Abdi AI, Lim R, Otto TD, Ghumra A, Rowe JA. Identification of novel PfEMP1 variants containing domain cassettes 11, 15 and 8 that mediate the Plasmodium falciparum virulence-associated rosetting phenotype. PLoS Pathog 2025; 21:e1012434. [PMID: 39804943 PMCID: PMC11759366 DOI: 10.1371/journal.ppat.1012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates. However, making functional sense of genomic data relies on the ability to infer binding phenotype from var gene sequence. For P. falciparum rosetting, the binding of infected erythrocytes to uninfected erythrocytes, the analysis of var gene/PfEMP1 sequences encoding the phenotype is limited, with only eight rosette-mediating PfEMP1 variants described to date. These known rosetting PfEMP1 variants fall into two types, characterised by N-terminal domains known as "domain cassette" 11 (DC11) and DC16. Here we test the hypothesis that DC11 and DC16 are the only PfEMP1 types in the P. falciparum genome that mediate rosetting, by examining a set of thirteen recent culture-adapted Kenyan parasite lines. We first analysed the var gene/PfEMP1 repertoires of the Kenyan lines and identified an average of three DC11 or DC16 PfEMP1 variants per genotype. In vitro rosette selection of the parasite lines yielded four with a high rosette frequency, and analysis of their var gene transcription, infected erythrocyte PfEMP1 surface expression, rosette disruption and erythrocyte binding function identified four novel rosette-mediating PfEMP1 variants. Two of these were of the predicted DC11 type (one showing the dual rosetting/IgM-Fc-binding phenotype), whereas two contained DC15 (DBLα1.2-CIDRα1.5b) a PfEMP1 type not previously associated with rosetting. We also showed that a Thai parasite line expressing a DC8-like PfEMP1 binds to erythrocytes to form rosettes. Hence, these data expand current knowledge of rosetting mechanisms and emphasize that the PfEMP1 types mediating rosetting are more diverse than previously recognised.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nouhoum Diallo
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdirahman I. Abdi
- KEMRI-Wellcome Trust Research Programme: Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Rivka Lim
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Waller RF, Carruthers VB. Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments. Microbiol Mol Biol Rev 2024; 88:e0019722. [PMID: 39387588 DOI: 10.1128/mmbr.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYMyzozoans encompass apicomplexans and dinoflagellates that manifest diverse lifestyles in highly varied environments. They show enormous propensity to employ different metabolic programs and exploit different nutrient resources and niches, and yet, they share much core biology that underlies this evolutionary success and impact. This review discusses apicomplexan parasites of medical significance and the traits and properties they share with non-pathogenic myzozoans. These include the versatility of myzozoan plastids, which scale from fully photosynthetic organelles to the site of very select key metabolic pathways. Pivotal evolutionary innovations, such as the apical complex, have allowed myzozoans to shift from predatory to parasitic and other symbiotic lifestyles multiple times in both apicomplexan and dinoflagellate branches of the myzozoan evolutionary tree. Such traits, along with shared mechanisms for nutrient acquisition, appear to underpin the prosperity of myzozoans in their varied habitats. Understanding the mechanisms of these shared traits has the potential to spawn new strategic interventions against medically and veterinary relevant parasites within this grouping.
Collapse
Affiliation(s)
- Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Joof F, Hu R, Saidi A, Seydel KB, Cohee LM, Zheng Y, Smith JD. Plasma From Older Children in Malawi Inhibits Plasmodium falciparum Binding in 3-Dimensional Brain Microvessels. J Infect Dis 2024; 230:e1402-e1411. [PMID: 38875153 PMCID: PMC11646604 DOI: 10.1093/infdis/jiae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
A hallmark of cerebral malaria is sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation. Antibodies contribute to malaria immunity, but it remains unclear whether functional antibodies targeting parasite-expressed ligand can block cytoadhesion in the brain. Here, we screened the plasma of older children and young adults in Malawi to characterize the antibody response against the P. falciparum-IE surface and used a bioengineered 3-dimensional (3D) human brain microvessel model incorporating variable flow dynamics to measure adhesion-blocking responses. We found a strong correlation between surface antibody reactivity by flow cytometry and reduced P. falciparum-IE binding in 3D microvessels. Moreover, there was a threshold of surface antibody reactivity necessary to achieve robust inhibitory activity. Our findings provide evidence of the acquisition of adhesion-blocking antibodies against cerebral binding variants in people exposed to stable P. falciparum transmission and suggest the quality of the inhibitory response can be influenced by flow dynamics.
Collapse
Affiliation(s)
- Fatou Joof
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ruoqian Hu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Alex Saidi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Tran TM. Human antibodies offer broad inhibition against variable proteins of the malaria parasite. Nature 2024; 636:54-55. [PMID: 39567799 DOI: 10.1038/d41586-024-03555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
9
|
Wyss M, Kanyal A, Niederwieser I, Bartfai R, Voss TS. The Plasmodium falciparum histone methyltransferase PfSET10 is dispensable for the regulation of antigenic variation and gene expression in blood-stage parasites. mSphere 2024; 9:e0054624. [PMID: 39445826 PMCID: PMC11580404 DOI: 10.1128/msphere.00546-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
The malaria parasite Plasmodium falciparum employs antigenic variation of the virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1) to escape adaptive immune responses during blood infection. Antigenic variation of PfEMP1 occurs through epigenetic switches in the mutually exclusive expression of individual members of the multi-copy var gene family. var genes are located in perinuclear clusters of transcriptionally inactive heterochromatin. Singular var gene activation is linked to locus repositioning into a dedicated zone at the nuclear periphery and deposition of histone 3 lysine 4 di-/trimethylation (H3K4me2/3) and H3K9 acetylation marks in the promoter region. While previous work identified the putative H3K4-specific methyltransferase PfSET10 as an essential enzyme and positive regulator of var gene expression, a recent study reported conflicting data. Here, we used iterative genome editing to engineer a conditional PfSET10 knockout line tailored to study the function of PfSET10 in var gene regulation. We demonstrate that PfSET10 is not required for mutually exclusive var gene expression and switching. We also show that PfSET10 is dispensable not only for asexual parasite proliferation but also for sexual conversion and gametocyte differentiation. Furthermore, comparative RNA-seq experiments revealed that PfSET10 plays no obvious role in regulating gene expression during asexual parasite development and gametocytogenesis. Interestingly, however, PfSET10 shows different subnuclear localization patterns in asexual and sexual stage parasites and female-specific expression in mature gametocytes. In summary, our work confirms in detail that PfSET10 is not involved in regulating var gene expression and is not required for blood-stage parasite viability, indicating PfSET10 may be important for life cycle progression in the mosquito vector or during liver stage development.IMPORTANCEThe malaria parasite Plasmodium falciparum infects hundreds of millions of people every year. To survive and proliferate in the human bloodstream, the parasites need to escape recognition by the host's immune system. To achieve this, P. falciparum can change the expression of surface antigens via a process called antigenic variation. This fascinating survival strategy is based on infrequent switches in the expression of single members of the var multigene family. Previous research reported conflicting results on the role of the epigenetic regulator PfSET10 in controlling mutually exclusive var gene expression and switching. Here, we unequivocally demonstrate that PfSET10 is neither required for antigenic variation nor the expression of any other proteins during blood-stage infection. This information is critical in directing our attention toward exploring alternative molecular mechanisms underlying the control of antigenic variation and investigating the function of PfSET10 in other life cycle stages.
Collapse
Affiliation(s)
- Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abhishek Kanyal
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Richard Bartfai
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Kinyua AW, Turner L, Kimingi HW, Mwai K, Mwikali K, Andisi C, Sim BKL, Bejon P, Kapulu MC, Kinyanjui SM, Lavstsen T, Abdi AI. Antibodies to PfEMP1 and variant surface antigens: Protection after controlled human malaria infection in semi-immune Kenyan adults. J Infect 2024; 89:106252. [PMID: 39182654 PMCID: PMC11409615 DOI: 10.1016/j.jinf.2024.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES Acquisition of antibodies to Plasmodium falciparum variant surface antigens (VSA) expressed on infected red blood cells (iRBCs) is associated with naturally acquired immunity to malaria. We have previously shown that antibodies to VSA on iRBCs are associated with protection against parasite growth in the context of controlled human malaria infection (CHMI). This study explored whether antibodies to recombinant antigens derived from PfEMP1 domains were independently associated with protection during CHMI in semi-immune Kenyan adults. METHODS We used a multiplex bead assay to measure levels of IgG antibody against a panel of 27 recombinant PfEMP1 antigens derived from the PfEMP1 repertoire of the 3D7 parasite clone. We measured IgG levels in plasma samples collected from the CHMI participants before inoculation with Sanaria® PfSPZ Challenge, on the day of diagnosis, and 35 days post-inoculation. Univariable and multivariable Cox regression analysis was used to evaluate the relationship between the levels of antibodies to the antigens and CHMI outcome. We also adjusted for previous data including antibodies to VSA on iRBCs, and we assessed the kinetics of antibody acquisition to the different PfEMP1 recombinant antigens over time. RESULTS All study participants had detectable antibodies to multiple PfEMP1 proteins before inoculation. All PfEMP1 antigens were associated with protection against parasite growth to the threshold criteria for treatment in CHMI, albeit with substantial collinearity. However, individual PfEMP1 antigens were not independently associated with protection following adjustment for breadth of reactivity to VSA on iRBCs and schizont extract. In addition, antibodies to PfEMP1 antigens derived from group B PfEMP1 were induced and sustained in the participants who could not control parasite growth. CONCLUSION This study shows that the breadth of antibody response to VSA on iRBCs, and not to specific PfEMP1 antigens, is predictive of protection against malaria in CHMI.
Collapse
Affiliation(s)
- Ann W Kinyua
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Hannah W Kimingi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kioko Mwikali
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Cheryl Andisi
- Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| | | | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom
| | - Samson M Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom; School of Business Studies, Strathmore University, Nairobi, Kenya
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Abdirahman I Abdi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
McLean FE, Azasi Y, Sutherland C, Toboh E, Ansong D, Agbenyega T, Awandare G, Rowe JA. Detection of naturally acquired, strain-transcending antibodies against rosetting Plasmodium falciparum strains in humans. Infect Immun 2024; 92:e0001524. [PMID: 38842304 PMCID: PMC11238554 DOI: 10.1128/iai.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Strain-transcending antibodies against virulence-associated subsets of P. falciparum-infected erythrocyte surface antigens could protect children from severe malaria. However, the evidence supporting the existence of such antibodies is incomplete and inconsistent. One subset of surface antigens associated with severe malaria, rosette-mediating Plasmodium falciparum Erythrocyte Membrane Protein one (PfEMP1) variants, cause infected erythrocytes to bind to uninfected erythrocytes to form clusters of cells (rosettes) that contribute to microvascular obstruction and pathology. Here, we tested plasma from 80 individuals living in malaria-endemic regions for IgG recognition of the surface of four P. falciparum rosetting strains using flow cytometry. Broadly reactive plasma samples were then used in antibody elution experiments in which intact IgG was eluted from the surface of infected erythrocytes and transferred to heterologous rosetting strains to look for strain-transcending antibodies. We found that seroprevalence (percentage of positive plasma samples) against allopatric rosetting strains was high in adults (63%-93%) but lower in children (13%-48%). Strain-transcending antibodies were present in nine out of eleven eluted antibody experiments, with six of these recognizing multiple heterologous rosetting parasite strains. One eluate had rosette-disrupting activity against heterologous strains, suggesting PfEMP1 as the likely target of the strain-transcending antibodies. Naturally acquired strain-transcending antibodies to rosetting P. falciparum strains in humans have not been directly demonstrated previously. Their existence suggests that such antibodies could play a role in clinical protection and raises the possibility that conserved epitopes recognized by strain-transcending antibodies could be targeted therapeutically by monoclonal antibodies or vaccines.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne Azasi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Cameron Sutherland
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Diffendall G, Claes A, Barcons-Simon A, Nyarko P, Dingli F, Santos MM, Loew D, Claessens A, Scherf A. RNA polymerase III is involved in regulating Plasmodium falciparum virulence. eLife 2024; 13:RP95879. [PMID: 38921824 PMCID: PMC11208047 DOI: 10.7554/elife.95879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
While often undetected and untreated, persistent seasonal asymptomatic malaria infections remain a global public health problem. Despite the presence of parasites in the peripheral blood, no symptoms develop. Disease severity is correlated with the levels of infected red blood cells (iRBCs) adhering within blood vessels. Changes in iRBC adhesion capacity have been linked to seasonal asymptomatic malaria infections, however how this is occurring is still unknown. Here, we present evidence that RNA polymerase III (RNA Pol III) transcription in Plasmodium falciparum is downregulated in field isolates obtained from asymptomatic individuals during the dry season. Through experiments with in vitro cultured parasites, we have uncovered an RNA Pol III-dependent mechanism that controls pathogen proliferation and expression of a major virulence factor in response to external stimuli. Our findings establish a connection between P. falciparum cytoadhesion and a non-coding RNA family transcribed by Pol III. Additionally, we have identified P. falciparum Maf1 as a pivotal regulator of Pol III transcription, both for maintaining cellular homeostasis and for responding adaptively to external signals. These results introduce a novel perspective that contributes to our understanding of P. falciparum virulence. Furthermore, they establish a connection between this regulatory process and the occurrence of seasonal asymptomatic malaria infections.
Collapse
Affiliation(s)
- Gretchen Diffendall
- Institut Pasteur, Universite Paris CitéParisFrance
- Institut Pasteur, Sorbonne Université Ecole doctorale Complexité du VivantParisFrance
| | | | - Anna Barcons-Simon
- Institut Pasteur, Universite Paris CitéParisFrance
- Institut Pasteur, Sorbonne Université Ecole doctorale Complexité du VivantParisFrance
- Institut Pasteur, Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Prince Nyarko
- Institut Pasteur, Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of MontpellierMontpellierFrance
| | - Florent Dingli
- Institut Pasteur, Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry ProteomicsParisFrance
| | - Miguel M Santos
- Institut Pasteur, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de LisboaLisboaPortugal
| | - Damarys Loew
- Institut Pasteur, Institut Curie, PSL Research University, Centre de Recherche, CurieCoreTech Mass Spectrometry ProteomicsParisFrance
| | - Antoine Claessens
- Institut Pasteur, Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of MontpellierMontpellierFrance
- Institut Pasteur, LPHI, MIVEGEC, CNRS, INSERM, University of MontpellierMontpellierFrance
| | - Artur Scherf
- Institut Pasteur, Universite Paris CitéParisFrance
| |
Collapse
|
13
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
14
|
Jabeena CA, Rajavelu A. Histone globular domain epigenetic modifications: The regulators of chromatin dynamics in malaria parasite. Chembiochem 2024; 25:e202300596. [PMID: 38078518 DOI: 10.1002/cbic.202300596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/09/2023] [Indexed: 01/31/2024]
Abstract
Plasmodium species adapt a complex lifecycle with multiple phenotypes to survive inside various cell types of humans and mosquitoes. Stage-specific gene expression in the developmental stages of parasites is tightly controlled in Plasmodium species; however, the underlying mechanisms have yet to be explored. Genome organization and gene expression for each stage of the malaria parasite need to be better characterized. Recent studies indicated that epigenetic modifications of histone proteins play a vital role in chromatin plasticity. Like other eukaryotes, Plasmodium species N-terminal tail modifications form a distinct "histone code," which creates the docking sites for histone reader proteins, including gene activator/repressor complexes, to regulate gene expression. The emerging research findings shed light on various unconventional epigenetic changes in histone proteins' core/globular domain regions, which might contribute to the chromatin organization in different developmental stages of the malaria parasite. The malaria parasite lost many transcription factors during evolution, and it is proposed that the nature of local chromatin structure essentially regulates the stage-specific gene expression. This review highlights recent discoveries of unconventional histone globular domain epigenetic modifications and their functions in regulating chromatin structure dynamics in various developmental stages of malaria parasites.
Collapse
Affiliation(s)
- C A Jabeena
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
| | - Arumugam Rajavelu
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P O, Thiruvananthapuram, Kerala, 695014, India
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600 036, India
| |
Collapse
|
15
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565723. [PMID: 37986738 PMCID: PMC10659346 DOI: 10.1101/2023.11.05.565723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-Ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| |
Collapse
|
16
|
Howard C, Joof F, Hu R, Smith JD, Zheng Y. Probing cerebral malaria inflammation in 3D human brain microvessels. Cell Rep 2023; 42:113253. [PMID: 37819760 DOI: 10.1016/j.celrep.2023.113253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation is a hallmark of cerebral malaria (CM), which leads to endothelial activation, brain swelling, and death. Here, we probed CM inflammation in a perfusable 3D human brain microvessel model. 3D brain microvessels supported in vivo-like capacities for parasite binding and maturation in situ, leading to a distinct inflammatory response from the pro-inflammatory cytokine tumor necrosis factor α (TNF-α). By combining transcriptional analysis, imaging, and leukocyte perfusion, we showed that whereas TNF-α promotes a reversible inflammatory phenotype with widespread leukocyte recruitment, parasites induce unique stress response pathways and cause localized cell adhesivity changes, focal endothelial disruptions, and apoptosis. Furthermore, parasites modified the temporal kinetics of the TNF transcriptional response, suggesting augmented inflammatory damage with the two sequential stimuli. Our findings offer mechanistic insights into CM biology in a 3D brain microvessel mimetic platform and suggest that multiple events intersect to promote brain barrier inflammation in CM.
Collapse
Affiliation(s)
- Caitlin Howard
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Fatou Joof
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Ruoqian Hu
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Tewey MA, Coulibaly D, Lawton JG, Stucke EM, Zhou AE, Berry AA, Bailey JA, Pike A, Dara A, Ouattara A, Lyke KE, Ifeonu O, Laurens MB, Adams M, Takala-Harrison S, Niangaly A, Kouriba B, Koné AK, Rowe JA, Doumbo OK, Patel JJ, Tan JC, Felgner PL, Plowe CV, Thera MA, Travassos MA. Natural immunity to malaria preferentially targets the endothelial protein C receptor-binding regions of PfEMP1s. mSphere 2023; 8:e0045123. [PMID: 37791774 PMCID: PMC10597466 DOI: 10.1128/msphere.00451-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.
Collapse
Affiliation(s)
- Madison A. Tewey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Jonathan G. Lawton
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Albert E. Zhou
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jason A. Bailey
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pike
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Antoine Dara
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olukemi Ifeonu
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Adams
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | | | - John C. Tan
- Roche NimbleGen, Inc., Madison, Wisconsin, USA
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California, USA
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Rajan Raghavan SS, Turner L, Jensen RW, Johansen NT, Jensen DS, Gourdon P, Zhang J, Wang Y, Theander TG, Wang K, Lavstsen T. Endothelial protein C receptor binding induces conformational changes to severe malaria-associated group A PfEMP1. Structure 2023; 31:1174-1183.e4. [PMID: 37582356 DOI: 10.1016/j.str.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Severe Plasmodium falciparum malaria infections are caused by microvascular sequestration of parasites binding to the human endothelial protein C receptor (EPCR) via the multi-domain P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands. Using cryogenic electron microscopy (Cryo-EM) and PfEMP1 sequence diversity analysis, we found that group A PfEMP1 CIDRα1 domains interact with the adjacent DBLα1 domain through central, conserved residues of the EPCR-binding site to adopt a compact conformation. Upon EPCR binding, the DBLα1 domain is displaced, and the EPCR-binding helix of CIDRα1 is turned, kinked, and twisted to reach a rearranged, stable EPCR-bound conformation. The unbound conformation and the required transition to the EPCR-bound conformation may represent a conformational masking mechanism of immune evasion for the PfEMP1 family.
Collapse
Affiliation(s)
- Sai Sundar Rajan Raghavan
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus W Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Skjold Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jinqiu Zhang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Thor Grundtvig Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
19
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Ji C, Shen H, Su C, Li Y, Chen S, Sharp TH, Xiao J. Plasmodium falciparum has evolved multiple mechanisms to hijack human immunoglobulin M. Nat Commun 2023; 14:2650. [PMID: 37156765 PMCID: PMC10167334 DOI: 10.1038/s41467-023-38320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Plasmodium falciparum causes the most severe malaria in humans. Immunoglobulin M (IgM) serves as the first line of humoral defense against infection and potently activates the complement pathway to facilitate P. falciparum clearance. A number of P. falciparum proteins bind IgM, leading to immune evasion and severe disease. However, the underlying molecular mechanisms remain unknown. Here, using high-resolution cryo-electron microscopy, we delineate how P. falciparum proteins VAR2CSA, TM284VAR1, DBLMSP, and DBLMSP2 target IgM. Each protein binds IgM in a different manner, and together they present a variety of Duffy-binding-like domain-IgM interaction modes. We further show that these proteins interfere directly with IgM-mediated complement activation in vitro, with VAR2CSA exhibiting the most potent inhibitory effect. These results underscore the importance of IgM for human adaptation of P. falciparum and provide critical insights into its immune evasion mechanism.
Collapse
Affiliation(s)
- Chenggong Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, PR China
| | - Hao Shen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yaxin Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Shihua Chen
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center, 2300, RC, Leiden, The Netherlands
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, PR China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
21
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
22
|
Gill J, Sharma A. Structural and genomic analysis of single nucleotide polymorphisms in human host factor endothelial protein C receptor (EPCR) reveals complex interplay with malaria parasites. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105413. [PMID: 36775045 DOI: 10.1016/j.meegid.2023.105413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Plasmodium parasites responsible for malaria follow a complex life cycle of which half takes place inside the human host. Parasites present diverse antigens at different stages of their life cycle and interact with many surface molecules to attach to and enter host cells. The CIDRα1 domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) in infected erythrocytes adheres to one such vascular receptor endothelial protein C receptor (EPCR). EPCR is implicated in the pathogenesis of severe malaria as preferential binding of CIDRα1 to endothelium results in widespread sequestration of infected erythrocytes leading to endothelium inflammation and severe disease. A single EPCR variant S219G is clinically reported to provide protection from severe malaria. In this work, we have collated all single nucleotide polymorphisms (SNPs) in EPCR from dbSNP. We structurally mapped the SNPs on the three-dimensional complex of EPCR and PfEMP1 CIDRα1. Analysis shows that most EPCR mutations lie on the receptor surface and are non-conservative. Of the 11 mutations in the CIDRα1-interaction region of EPCR, S88P, L96V/I, and R98L/H/P/C are seen with comparably higher occurrences in diverse populations. Our structural analysis details a framework of the interactions between the parasite ligand and host factor EPCR. These structural glimpses provide a blueprint for designing both field-based variant sequencing studies and vaccine development.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India.
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
23
|
Disulfide bond and crosslinking analyses reveal inter-domain interactions that contribute to the rigidity of placental malaria VAR2CSA structure and formation of CSA binding channel. Int J Biol Macromol 2023; 226:143-158. [PMID: 36470436 DOI: 10.1016/j.ijbiomac.2022.11.258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022]
Abstract
VAR2CSA, a multidomain Plasmodium falciparum protein, mediates the adherence of parasite-infected red blood cells to chondroitin 4-sulfate (C4S) in the placenta, contributing to placental malaria. Therefore, detailed understanding of VAR2CSA structure likely help developing strategies to treat placental malaria. The VAR2CSA ectodomain consists of an N-terminal segment (NTS), six Duffy binding-like (DBL) domains, and three interdomains (IDs) present in sequence NTS-DBL1x-ID1-DBL2x-ID2-DBL3x-DBL4ε-ID3-DBL5ε-DBL6ε. Recent electron microscopy studies showed that VAR2CSA is compactly organized into a globular structure containing C4S-binding channel, and that DBL5ε-DBL6ε arm is attached to the NTS-ID3 core structure. However, the structural elements involved in inter-domain interactions that stabilize the VAR2CSA structure remain largely not understood. Here, limited proteolysis and peptide mapping by mass spectrometry showed that VAR2CSA contains several inter-domain disulfide bonds that stabilize its compact structure. Chemical crosslinking-mass spectrometry showed that all IDs interact with DBL4ε; additionally, IDs interact with other DBL domains, demonstrating that IDs are the key structural scaffolds that shape the functional NTS-ID3 core. Ligand binding analysis suggested that NTS considerably restricts the C4S binding. Overall, our study revealed that inter-domain disulfide bonds and interactions between IDs and DBL domains contribute to the stability of VAR2CSA structural architecture and formation of C4S-binding channel.
Collapse
|
24
|
Joof F, Hartmann E, Jarvis A, Colley A, Cross JH, Avril M, Prentice AM, Cerami C. Genetic variations in human ATP2B4 gene alter Plasmodium falciparum in vitro growth in RBCs from Gambian adults. Malar J 2023; 22:5. [PMID: 36604655 PMCID: PMC9817369 DOI: 10.1186/s12936-022-04359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Polymorphisms in ATP2B4 coding for PMCA4b, the primary regulator of erythrocyte calcium concentration, have been shown by GWAS and cross-sectional studies to protect against severe malaria but the mechanism remains unknown. METHODS Using a recall-by-genotype design, we investigated the impact of a common haplotype variant in ATP2B4 using in vitro assays that model erythrocyte stage malaria pathogenesis. Ninety-six donors representing homozygote (carriers of the minor allele, C/C), heterozygote (T/C) and wildtype (T/T) carriers of the tagging SNP rs1541252 were selected from a cohort of over 12,000 participants in the Keneba Biobank. RESULTS Red blood cells (RBCs) from homozygotes showed reduced PMCA4b protein expression (mean fluorescence intensities (MFI = 2428 ± 124, 3544 ± 159 and 4261 ± 283], for homozygotes, heterozygotes and wildtypes respectively, p < 0.0001) and slower rates of calcium expulsion (calcium t½ ± SD = 4.7 ± 0.5, 1.8 ± 0.3 and 1.9 ± 0.4 min, p < 0.0001). Growth of a Plasmodium falciparum laboratory strain (FCR3) and two Gambian field isolates was decreased in RBCs from homozygotes compared to heterozygotes and wildtypes (p < 0.01). Genotype group did not affect parasite adhesion in vitro or var-gene expression in malaria-infected RBCs. Parasite growth was inhibited by a known inhibitor of PMCA4b, aurintricarboxylic acid (IC50 = 122uM CI: 110-134) confirming its sensitivity to calcium channel blockade. CONCLUSION The data support the hypothesis that this ATP2B4 genotype, common in The Gambia and other malaria-endemic areas, protects against severe malaria through the suppression of parasitaemia during an infection. Reduction in parasite density plays a pivotal role in disease outcome by minimizing all aspects of malaria pathogenesis. Follow up studies are needed to further elucidate the mechanism of protection and to determine if this ATP2B4 genotype carries a fitness cost or increases susceptibility to other human disease.
Collapse
Affiliation(s)
- Fatou Joof
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | - Alhassan Colley
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - James H Cross
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Andrew M Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Carla Cerami
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
25
|
Weiland AS. Recent Advances in Imported Malaria Pathogenesis, Diagnosis, and Management. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2023; 11:49-57. [PMID: 37213266 PMCID: PMC10091340 DOI: 10.1007/s40138-023-00264-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
Purpose of Review Malaria is an important human parasitic disease affecting the population of tropical, subtropical regions as well as travelers to these areas.The purpose of this article is to provide clinicians practicing in non-endemic areas with a comprehensive overview of the recent data on microbiologic and pathophysiologic features of five Plasmodium parasites, clinical presentation of uncomplicated and severe cases, modern diagnostic methods, and treatment of malaria. Recent Findings Employment of robust surveillance programs, rapid diagnostic tests, highly active artemisinin-based therapy, and the first malaria vaccine have led to decline in malaria incidence; however, emerging drug resistance, disruptions due to the COVID-19 pandemic, and other socio-economic factors have stalled the progress. Summary Clinicians practicing in non-endemic areas such as the United States should consider a diagnosis of malaria in returning travelers presenting with fever, utilize rapid diagnostic tests if available at their practice locations in addition to microscopy, and timely initiate guideline-directed management as delays in treatment can lead to poor clinical outcomes.
Collapse
Affiliation(s)
- Anastasia S. Weiland
- Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH USA
| |
Collapse
|
26
|
CD36-A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms 2022; 10:microorganisms10122356. [PMID: 36557610 PMCID: PMC9785914 DOI: 10.3390/microorganisms10122356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) present P. falciparum erythrocyte membrane protein 1 proteins (PfEMP1s) on the cell surface, via which they cytoadhere to various endothelial cell receptors (ECRs) on the walls of human blood vessels. This prevents the parasite from passing through the spleen, which would lead to its elimination. Each P. falciparum isolate has about 60 different PfEMP1s acting as ligands, and at least 24 ECRs have been identified as interaction partners. Interestingly, in every parasite genome sequenced to date, at least 75% of the encoded PfEMP1s have a binding domain for the scavenger receptor CD36 widely distributed on host endothelial cells and many other cell types. Here, we discuss why the interaction between PfIEs and CD36 is optimal to maintain a finely regulated equilibrium that allows the parasite to multiply and spread while causing minimal harm to the host in most infections.
Collapse
|
27
|
Raghavan SSR, Dagil R, Lopez-Perez M, Conrad J, Bassi MR, Quintana MDP, Choudhary S, Gustavsson T, Wang Y, Gourdon P, Ofori MF, Christensen SB, Minja DTR, Schmiegelow C, Nielsen MA, Barfod L, Hviid L, Salanti A, Lavstsen T, Wang K. Cryo-EM reveals the conformational epitope of human monoclonal antibody PAM1.4 broadly reacting with polymorphic malarial protein VAR2CSA. PLoS Pathog 2022; 18:e1010924. [PMCID: PMC9668162 DOI: 10.1371/journal.ppat.1010924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Malaria during pregnancy is a major global health problem caused by infection with Plasmodium falciparum parasites. Severe effects arise from the accumulation of infected erythrocytes in the placenta. Here, erythrocytes infected by late blood-stage parasites adhere to placental chondroitin sulphate A (CS) via VAR2CSA-type P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. Immunity to placental malaria is acquired through exposure and mediated through antibodies to VAR2CSA. Through evolution, the VAR2CSA proteins have diversified in sequence to escape immune recognition but retained their overall macromolecular structure to maintain CS binding affinity. This structural conservation may also have allowed development of broadly reactive antibodies to VAR2CSA in immune women. Here we show the negative stain and cryo-EM structure of the only known broadly reactive human monoclonal antibody, PAM1.4, in complex with VAR2CSA. The data shows how PAM1.4’s broad VAR2CSA reactivity is achieved through interactions with multiple conserved residues of different sub-domains forming conformational epitope distant from the CS binding site on the VAR2CSA core structure. Thus, while PAM1.4 may represent a class of antibodies mediating placental malaria immunity by inducing phagocytosis or NK cell-mediated cytotoxicity, it is likely that broadly CS binding-inhibitory antibodies target other epitopes at the CS binding site. Insights on both types of broadly reactive monoclonal antibodies may aid the development of a vaccine against placental malaria.
Collapse
Affiliation(s)
- Sai Sundar Rajan Raghavan
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Mary Lopez-Perez
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Julian Conrad
- Swedish National Cryo-EM Facility, Science for Life Laboratories, Solna, Sweden
| | - Maria Rosaria Bassi
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Maria del Pilar Quintana
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Yong Wang
- Joint Research Centre for Engineering Biology, Zhejiang University-University of Edinburgh Institute, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sebastian Boje Christensen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | | | - Christentze Schmiegelow
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Morten Agertoug Nielsen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology at Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
- * E-mail: (TL); (KW)
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (TL); (KW)
| |
Collapse
|
28
|
Haag M, Kehrer J, Sanchez CP, Deponte M, Lanzer M. Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biol 2022; 58:102536. [DOI: 10.1016/j.redox.2022.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
29
|
Inklaar MR, Barillas-Mury C, Jore MM. Deceiving and escaping complement - the evasive journey of the malaria parasite. Trends Parasitol 2022; 38:962-974. [PMID: 36089499 PMCID: PMC9588674 DOI: 10.1016/j.pt.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023]
Abstract
During its life cycle, Plasmodium, the malaria parasite, is exposed to the human and mosquito complement systems. Early experiments demonstrated that activation of complement can pose a serious threat to parasites, but recent studies revealed complement-evasion mechanisms important for parasite survival. Blood-stage parasites and gametes recruit regulators to neutralize human complement activation, while ookinetes inhibit mosquito complement by disrupting epithelial nitration in response to midgut invasion. Here we provide an in-depth overview of the evasion mechanisms currently known and speculate on the existence of others not yet identified. Finally, we discuss how these mechanisms could provide novel targets for urgently needed malaria vaccines and therapeutics.
Collapse
Affiliation(s)
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, The Netherlands.
| |
Collapse
|
30
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
31
|
The impact of human complement on the clinical outcome of malaria infection. Mol Immunol 2022; 151:19-28. [PMID: 36063583 DOI: 10.1016/j.molimm.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
The tropical disease malaria remains a major cause of global morbidity. Once transmitted to the human by a blood-feeding mosquito, the unicellular malaria parasite comes into contact with the complement system and continues to interact with human complement during its intraerythrocytic replication cycles. In the course of infection, both the classical and the alternative pathway of complement are activated, leading to parasite opsonization and lysis as well as the induction of complement-binding antibodies. While complement activity can be linked to the severity of malaria, it remains to date unclear, whether human complement is beneficial for protective immunity or if extensive complement reactions may rather enhance pathogenesis. In addition, the parasite has evolved molecular strategies to circumvent attack by human complement and has even developed means to utilize complement factors as mediators of host cell infection. In this review, we highlight current knowledge on the role of human complement for the progression of malaria infection. We discuss the various types of interactions between malaria parasites and complement factors with regard to immunity and infection outcome and set a special emphasis on the dual role of complement in the context of parasite fitness.
Collapse
|
32
|
Abstract
Thrombosis is a common disorder with a relevant burden of morbidity and mortality worldwide, particularly among elderly patients. Growing evidence demonstrated a direct role of oxidative stress in thrombosis, with various cell types contributing to this process. Among them, erythrocytes produce high quantities of intracellular reactive oxygen species (ROS) by NADPH oxidase activation and haemoglobin autoxidation. Concomitantly, extracellular ROS released by other cells in the blood flow can be uptaken and accumulate within erythrocytes. This oxidative milieu can alter erythrocyte membrane structure, leading to an impaired erythrocyte function, and promoting erythrocytes lysis, binding to endothelial cells, activation of platelet and of coagulation factors, phosphatidylserine exposure and release of microvesicles. Moreover, these abnormal erythrocytes are able to adhere to the vessel wall, contributing to thrombin generation within the thrombus. This process results in accelerated haemolysis and in a hypercoagulable state, in which structurally impaired erythrocytes contribute to increase thrombus size, to reduce its permeability and susceptibility to lysis. However, the wide plethora of mechanisms by which oxidised erythrocytes contribute to thrombosis is not completely elucidated. This review discusses the main biochemical aspects linking erythrocytes, oxidative stress and thrombosis, addressing their potential implication for clinical and therapeutic management.
Collapse
|
33
|
Peterson MS, Joyner CJ, Lapp SA, Brady JA, Wood JS, Cabrera-Mora M, Saney CL, Fonseca LL, Cheng WT, Jiang J, Soderberg SR, Nural MV, Hankus A, Machiah D, Karpuzoglu E, DeBarry JD, Tirouvanziam R, Kissinger JC, Moreno A, Gumber S, Voit EO, Gutierrez JB, Cordy RJ, Galinski MR. Plasmodium knowlesi Cytoadhesion Involves SICA Variant Proteins. Front Cell Infect Microbiol 2022; 12:888496. [PMID: 35811680 PMCID: PMC9260704 DOI: 10.3389/fcimb.2022.888496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium knowlesi poses a health threat throughout Southeast Asian communities and currently causes most cases of malaria in Malaysia. This zoonotic parasite species has been studied in Macaca mulatta (rhesus monkeys) as a model for severe malarial infections, chronicity, and antigenic variation. The phenomenon of Plasmodium antigenic variation was first recognized during rhesus monkey infections. Plasmodium-encoded variant proteins were first discovered in this species and found to be expressed at the surface of infected erythrocytes, and then named the Schizont-Infected Cell Agglutination (SICA) antigens. SICA expression was shown to be spleen dependent, as SICA expression is lost after P. knowlesi is passaged in splenectomized rhesus. Here we present data from longitudinal P. knowlesi infections in rhesus with the most comprehensive analysis to date of clinical parameters and infected red blood cell sequestration in the vasculature of tissues from 22 organs. Based on the histopathological analysis of 22 tissue types from 11 rhesus monkeys, we show a comparative distribution of parasitized erythrocytes and the degree of margination of the infected erythrocytes with the endothelium. Interestingly, there was a significantly higher burden of parasites in the gastrointestinal tissues, and extensive margination of the parasites along the endothelium, which may help explain gastrointestinal symptoms frequently reported by patients with P. knowlesi malarial infections. Moreover, this margination was not observed in splenectomized rhesus that were infected with parasites not expressing the SICA proteins. This work provides data that directly supports the view that a subpopulation of P. knowlesi parasites cytoadheres and sequesters, likely via SICA variant antigens acting as ligands. This process is akin to the cytoadhesive function of the related variant antigen proteins, namely Erythrocyte Membrane Protein-1, expressed by Plasmodium falciparum.
Collapse
Affiliation(s)
- Mariko S. Peterson
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica A. Brady
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, United States
| | - Jennifer S. Wood
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Celia L. Saney
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Luis L. Fonseca
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Wayne T. Cheng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Jianlin Jiang
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Stephanie R. Soderberg
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Allison Hankus
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Deepa Machiah
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Ebru Karpuzoglu
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Alberto Moreno
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Juan B. Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, United States
| | - Regina Joice Cordy
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
34
|
Rehn T, Lubiana P, Nguyen THT, Pansegrau E, Schmitt M, Roth LK, Brehmer J, Roeder T, Cadar D, Metwally NG, Bruchhaus I. Ectopic Expression of Plasmodium vivax vir Genes in P. falciparum Affects Cytoadhesion via Increased Expression of Specific var Genes. Microorganisms 2022; 10:microorganisms10061183. [PMID: 35744701 PMCID: PMC9230084 DOI: 10.3390/microorganisms10061183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) adhere to endothelial cell receptors (ECRs) of blood vessels mainly via PfEMP1 proteins to escape elimination via the spleen. Evidence suggests that P. vivax-infected reticulocytes (PvIRs) also bind to ECRs, presumably enabled by VIR proteins, as shown by inhibition experiments and studies with transgenic P. falciparum expressing vir genes. To test this hypothesis, our study investigated the involvement of VIR proteins in cytoadhesion using vir gene-expressing P. falciparum transfectants. Those VIR proteins with a putative transmembrane domain were present in Maurer's clefts, and some were also present in the erythrocyte membrane. The VIR protein without a transmembrane domain (PVX_050690) was not exported. Five of the transgenic P. falciparum cell lines, including the one expressing PVX_050690, showed binding to CD36. We observed highly increased expression of specific var genes encoding PfEMP1s in all CD36-binding transfectants. These results suggest that ectopic vir expression regulates var expression through a yet unknown mechanism. In conclusion, the observed cytoadhesion of P. falciparum expressing vir genes depended on PfEMP1s, making this experimental unsuitable for characterizing VIR proteins.
Collapse
Affiliation(s)
- Torben Rehn
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Pedro Lubiana
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Thi Huyen Trang Nguyen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Eva Pansegrau
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Lisa Katharina Roth
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, 24118 Kiel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (T.R.); (P.L.); (T.H.T.N.); (E.P.); (M.S.); (L.K.R.); (J.B.); (D.C.); (N.G.M.)
- Department of Biology, University of Hamburg, 22601 Hamburg, Germany
- Correspondence:
| |
Collapse
|
35
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
36
|
Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, Dzikowski R, Granot Z. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep 2022; 23:e53641. [PMID: 35417070 PMCID: PMC9171683 DOI: 10.15252/embr.202153641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody‐mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody‐mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood‐stage P. falciparum isolates. We identify neutrophil ICAM‐1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.
Collapse
Affiliation(s)
- Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karina Simantov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yvonne Adams
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
37
|
Introini V, Govendir MA, Rayner JC, Cicuta P, Bernabeu M. Biophysical Tools and Concepts Enable Understanding of Asexual Blood Stage Malaria. Front Cell Infect Microbiol 2022; 12:908241. [PMID: 35711656 PMCID: PMC9192966 DOI: 10.3389/fcimb.2022.908241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Forces and mechanical properties of cells and tissues set constraints on biological functions, and are key determinants of human physiology. Changes in cell mechanics may arise from disease, or directly contribute to pathogenesis. Malaria gives many striking examples. Plasmodium parasites, the causative agents of malaria, are single-celled organisms that cannot survive outside their hosts; thus, thost-pathogen interactions are fundamental for parasite’s biological success and to the host response to infection. These interactions are often combinations of biochemical and mechanical factors, but most research focuses on the molecular side. However, Plasmodium infection of human red blood cells leads to changes in their mechanical properties, which has a crucial impact on disease pathogenesis because of the interaction of infected red blood cells with other human tissues through various adhesion mechanisms, which can be probed and modelled with biophysical techniques. Recently, natural polymorphisms affecting red blood cell biomechanics have also been shown to protect human populations, highlighting the potential of understanding biomechanical factors to inform future vaccines and drug development. Here we review biophysical techniques that have revealed new aspects of Plasmodium falciparum invasion of red blood cells and cytoadhesion of infected cells to the host vasculature. These mechanisms occur differently across Plasmodium species and are linked to malaria pathogenesis. We highlight promising techniques from the fields of bioengineering, immunomechanics, and soft matter physics that could be beneficial for studying malaria. Some approaches might also be applied to other phases of the malaria lifecycle and to apicomplexan infections with complex host-pathogen interactions.
Collapse
Affiliation(s)
- Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Viola Introini,
| | - Matt A. Govendir
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Molina-Franky J, Patarroyo ME, Kalkum M, Patarroyo MA. The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2022; 12:816574. [PMID: 35433504 PMCID: PMC9008539 DOI: 10.3389/fcimb.2022.816574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is the most lethal human malaria parasite, partly due to its genetic variability and ability to use multiple invasion routes via its binding to host cell surface receptors. The parasite extensively modifies infected red blood cell architecture to promote its survival which leads to increased cell membrane rigidity, adhesiveness and permeability. Merozoites are initially released from infected hepatocytes and efficiently enter red blood cells in a well-orchestrated process that involves specific interactions between parasite ligands and erythrocyte receptors; symptoms of the disease occur during the life-cycle’s blood stage due to capillary blockage and massive erythrocyte lysis. Several studies have focused on elucidating molecular merozoite/erythrocyte interactions and host cell modifications; however, further in-depth analysis is required for understanding the parasite’s biology and thus provide the fundamental tools for developing prophylactic or therapeutic alternatives to mitigate or eliminate Plasmodium falciparum-related malaria. This review focuses on the cellular and molecular events during Plasmodium falciparum merozoite invasion of red blood cells and the alterations that occur in an erythrocyte once it has become infected.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- PhD Programme in Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| |
Collapse
|
39
|
Zuo H, Qiang J, Wang Y, Wang R, Wang G, Chai L, Ren G, Zhao Y, Zhang G, Zhang S. Design of red blood cell membrane-cloaked dihydroartemisinin nanoparticles with enhanced antimalarial efficacy. Int J Pharm 2022; 618:121665. [PMID: 35288223 DOI: 10.1016/j.ijpharm.2022.121665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023]
Abstract
Targeting delivery and prolonging action duration of artemisinin drugs are effective strategies for improving antimalarial treatment outcomes. Here, dihydroartemisinin (DHA) loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PDNs) were prepared and further cloaked with red blood cell (RBC) membranes via electrostatic interactions to yield RBC membrane-cloaked PDNs (RPDNs). The prepared RPDNs displayed a notable "core-shell" structure, with a negative surface charge of -29.2 ± 4.19 mV, a relatively uniform size distribution (86.4 ± 2.54 nm, polydispersity index of 0.179 ± 0.011), an average encapsulation efficiency (70.1 ± 0.79%), and a 24-h sustained-release behavior in vitro. Compared with PDNs, RPDNs showed markedly decreased phagocytic activity by RAW 264.7 cells and had prolonged blood circulation duration. The Pearson correlation coefficient of RPDNs distribution in infected red blood cells (iRBCs) was 0.7173, suggesting that RPDNs could effectively target Plasmodium-iRBCs. In PyBy265-infected mice, RPDNs showed a higher inhibition ratio (88.39 ± 2.69%) than PDNs (83.13 ± 2.12%) or DHA (58.74 ± 3.78%), at the same dose of 8.8 μmol/kg. The ED90 of RPDNs (8.13 ± 0.18 μmol/kg) was substantially lower than that of PDNs (14.48 ± 0.23 μmol/kg) and DHA (17.67 ± 3.38 μmol/kg). Furthermore, no apparent abnormalities were detected in routine blood examination, liver function indexes, and pathological analysis of tissue sections of PyBy265-infected mice following RPDNs treatment. In conclusion, the prepared RPDNs exhibited enhanced antimalarial efficacy, prolonged circulation, targeted delivery to Plasmodium-iRBCs, and satisfactory biocompatibility.
Collapse
Affiliation(s)
- Hengtong Zuo
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jihong Qiang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yidan Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Geng Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liqing Chai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yongdan Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
40
|
Ortolan LS, Avril M, Xue J, Seydel KB, Zheng Y, Smith JD. Plasmodium falciparum Parasite Lines Expressing DC8 and Group A PfEMP1 Bind to Brain, Intestinal, and Kidney Endothelial Cells. Front Cell Infect Microbiol 2022; 12:813011. [PMID: 35155278 PMCID: PMC8831842 DOI: 10.3389/fcimb.2022.813011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cytoadhesion of Plasmodium falciparum-infected red blood cells is a virulence determinant associated with microvascular obstruction and organ complications. The gastrointestinal tract is a major site of sequestration in fatal cerebral malaria cases and kidney complications are common in severe malaria, but parasite interactions with these microvascular sites are poorly characterized. To study parasite tropism for different microvascular sites, we investigated binding of parasite lines to primary human microvascular endothelial cells from intestine (HIMEC) and peritubular kidney (HKMEC) sites. Of the three major host receptors for P. falciparum, CD36 had low or negligible expression; endothelial protein C receptor (EPCR) had the broadest constitutive expression; and intercellular adhesion molecule 1 (ICAM-1) was weakly expressed on resting cells and was strongly upregulated by TNF-α on primary endothelial cells from the brain, intestine, and peritubular kidney sites. By studying parasite lines expressing var genes linked to severe malaria, we provide evidence that both the DC8 and Group A EPCR-binding subsets of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family encodes binding affinity for brain, intestinal, and peritubular kidney endothelial cells, and that DC8 parasite adhesion was partially dependent on EPCR. Collectively, these findings raise the possibility of a brain-gut-kidney binding axis contributing to multi-organ complications in severe malaria.
Collapse
Affiliation(s)
- Luana S. Ortolan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Marion Avril
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Jun Xue
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Joseph D. Smith
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- *Correspondence: Joseph D. Smith,
| |
Collapse
|
41
|
Mackenzie G, Jensen RW, Lavstsen T, Otto TD. Varia: a tool for prediction, analysis and visualisation of variable genes. BMC Bioinformatics 2022; 23:52. [PMID: 35073845 PMCID: PMC8785495 DOI: 10.1186/s12859-022-04573-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Parasites use polymorphic gene families to evade the immune system or interact with the host. Assessing the diversity and expression of such gene families in pathogens can inform on the repertoire or host interaction phenotypes of clinical relevance. However, obtaining the sequences and quantifying their expression is a challenge. In Plasmodium falciparum, the highly polymorphic var genes encode the major virulence protein, PfEMP1, which bind a range of human receptors through varying combinations of DBL and CIDR domains. Here we present a tool, Varia, to predict near full-length gene sequences and domain compositions of query genes from database genes sharing short sequence tags. Varia generates output through two complementary pipelines. Varia_VIP returns all putative gene sequences and domain compositions of the query gene from any partial sequence provided, thereby enabling experimental validation of specific genes of interest and detailed assessment of their putative domain structure. Varia_GEM accommodates rapid profiling of var gene expression in complex patient samples from DBLα expression sequence tags (EST), by computing a sample overall transcript profile stratified by PfEMP1 domain types. Results Varia_VIP was tested querying sequence tags from all DBL domain types using different search criteria. On average 92% of query tags had one or more 99% identical database hits, resulting in the full-length query gene sequence being identified (> 99% identical DNA > 80% of query gene) among the five most prominent database hits, for ~ 33% of the query genes. Optimized Varia_GEM settings allowed correct prediction of > 90% of domains placed among the four most N-terminal domains, including the DBLα domain, and > 70% of C-terminal domains. With this accuracy, N-terminal domains could be predicted for > 80% of queries, whereas prediction rates of C-terminal domains dropped with the distance from the DBLα from 70 to 40%. Conclusion Prediction of var sequence and domain composition is possible from short sequence tags. Varia can be used to guide experimental validation of PfEMP1 sequences of interest and conduct high-throughput analysis of var type expression in patient samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04573-6.
Collapse
|
42
|
Indari O, Sk MF, Jakhmola S, Jonniya NA, Jha HC, Kar P. Decoding the Host-Parasite Protein Interactions Involved in Cerebral Malaria Through Glares of Molecular Dynamics Simulations. J Phys Chem B 2022; 126:387-402. [PMID: 34989590 DOI: 10.1021/acs.jpcb.1c07850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria causes millions of deaths every year. The malaria parasite spends a substantial part of its life cycle inside human erythrocytes. Inside erythrocytes, it synthesizes and displays various proteins onto the erythrocyte surface, such as Plasmodium falciparum erythrocytic membrane protein-1 (PfEMP1). This protein contains cysteine-rich interdomain region (CIDR) domains which have many subtypes based on sequence diversity and can cross-talk with host molecules. The CIDRα1.4 subtype can attach host endothelial protein C receptor (EPCR). This interaction facilitates infected erythrocyte adherence to brain endothelium and subsequent development of cerebral malaria. Through molecular dynamics simulations in conjunction with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, we explored the mechanism of interaction in the CIDRα1-EPCR complex. We examined the structural behavior of two CIDRα1 molecules (encoded by HB3-isolate var03-gene and IT4-isolate var07-gene) with EPCR unbound and bound (complex) forms. HB3var03CIDRα1 in apo and complexed with EPCR was comparatively more stable than IT4var07CIDRα1. Both of the complexes adopted two distinct conformational energy states. The hydrophobic residues played a crucial role in the binding of both complexes. For HB3var03CIDRα1-EPCR, the dominant energetic components were total polar interactions, while in IT4var07CIDRα1-EPCR, the primary interaction was van der Waals and nonpolar solvation energy. The study also revealed details such as correlated conformational motions and secondary structure evolution. Further, it elucidated various hotspot residues involved in protein-protein recognition. Overall, our study provides additional information on the structural behavior of CIDR molecules in unbound and receptor-bound states, which will help to design potent inhibitors.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
43
|
Sahu PK, Duffy FJ, Dankwa S, Vishnyakova M, Majhi M, Pirpamer L, Vigdorovich V, Bage J, Maharana S, Mandala W, Rogerson SJ, Seydel KB, Taylor TE, Kim K, Sather DN, Mohanty A, Mohanty RR, Mohanty A, Pattnaik R, Aitchison JD, Hoffman A, Mohanty S, Smith JD, Bernabeu M, Wassmer SC. Determinants of brain swelling in pediatric and adult cerebral malaria. JCI Insight 2021; 6:145823. [PMID: 34549725 PMCID: PMC8492338 DOI: 10.1172/jci.insight.145823] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A–EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A–EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Fergal J Duffy
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Selasi Dankwa
- Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Wilson Mandala
- Malawi University of Science and Technology, Limbe, Malawi
| | - Stephen J Rogerson
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kami Kim
- Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - D Noah Sather
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Akshaya Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Anita Mohanty
- Department of Intensive Care, IGH, Rourkela, Odisha, India
| | | | - John D Aitchison
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angelika Hoffman
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Maria Bernabeu
- Seattle Children's Research Institute, Seattle, Washington, USA.,European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
44
|
Sanchez CP, Patra P, Chang SYS, Karathanasis C, Hanebutte L, Kilian N, Cyrklaff M, Heilemann M, Schwarz US, Kudryashev M, Lanzer M. KAHRP dynamically relocalizes to remodeled actin junctions and associates with knob spirals in Plasmodium falciparum-infected erythrocytes. Mol Microbiol 2021; 117:274-292. [PMID: 34514656 DOI: 10.1111/mmi.14811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
The knob-associated histidine-rich protein (KAHRP) plays a pivotal role in the pathophysiology of Plasmodium falciparum malaria by forming membrane protrusions in infected erythrocytes, which anchor parasite-encoded adhesins to the membrane skeleton. The resulting sequestration of parasitized erythrocytes in the microvasculature leads to severe disease. Despite KAHRP being an important virulence factor, its physical location within the membrane skeleton is still debated, as is its function in knob formation. Here, we show by super-resolution microscopy that KAHRP initially associates with various skeletal components, including ankyrin bridges, but eventually colocalizes with remnant actin junctions. We further present a 35 Å map of the spiral scaffold underlying knobs and show that a KAHRP-targeting nanoprobe binds close to the spiral scaffold. Single-molecule localization microscopy detected ~60 KAHRP molecules/knob. We propose a dynamic model of KAHRP organization and a function of KAHRP in attaching other factors to the spiral scaffold.
Collapse
Affiliation(s)
- Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Pintu Patra
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Shih-Ying Scott Chang
- Max Planck Institute for Biophysics and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt, Frankfurt, Germany
| | - Christos Karathanasis
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Lukas Hanebutte
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Nicole Kilian
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Mike Heilemann
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.,Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University of Frankfurt, Frankfurt, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Protein Sorting in Plasmodium Falciparum. Life (Basel) 2021; 11:life11090937. [PMID: 34575086 PMCID: PMC8467625 DOI: 10.3390/life11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Plasmodium falciparum is a unicellular eukaryote with a very polarized secretory system composed of micronemes rhoptries and dense granules that are required for host cell invasion. P. falciparum, like its relative T. gondii, uses the endolysosomal system to produce the secretory organelles and to ingest host cell proteins. The parasite also has an apicoplast, a secondary endosymbiotic organelle, which depends on vesicular trafficking for appropriate incorporation of nuclear-encoded proteins into the apicoplast. Recently, the central molecules responsible for sorting and trafficking in P. falciparum and T. gondii have been characterized. From these studies, it is now evident that P. falciparum has repurposed the molecules of the endosomal system to the secretory pathway. Additionally, the sorting and vesicular trafficking mechanism seem to be conserved among apicomplexans. This review described the most recent findings on the molecular mechanisms of protein sorting and vesicular trafficking in P. falciparum and revealed that P. falciparum has an amazing secretory machinery that has been cleverly modified to its intracellular lifestyle.
Collapse
|
46
|
Rawat M, Srivastava A, Johri S, Gupta I, Karmodiya K. Single-Cell RNA Sequencing Reveals Cellular Heterogeneity and Stage Transition under Temperature Stress in Synchronized Plasmodium falciparum Cells. Microbiol Spectr 2021; 9:e0000821. [PMID: 34232098 PMCID: PMC8552519 DOI: 10.1128/spectrum.00008-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The malaria parasite has a complex life cycle exhibiting phenotypic and morphogenic variations in two different hosts by existing in heterogeneous developmental states. To investigate this cellular heterogeneity of the parasite within the human host, we performed single-cell RNA sequencing of synchronized Plasmodium cells under control and temperature treatment conditions. Using the Malaria Cell Atlas (https://www.sanger.ac.uk/science/tools/mca) as a guide, we identified 9 subtypes of the parasite distributed across known intraerythrocytic stages. Interestingly, temperature treatment results in the upregulation of the AP2-G gene, the master regulator of sexual development in a small subpopulation of the parasites. Moreover, we identified a heterogeneous stress-responsive subpopulation (clusters 5, 6, and 7 [∼10% of the total population]) that exhibits upregulation of stress response pathways under normal growth conditions. We also developed an online exploratory tool that will provide new insights into gene function under normal and temperature stress conditions. Thus, our study reveals important insights into cell-to-cell heterogeneity in the parasite population under temperature treatment that will be instrumental toward a mechanistic understanding of cellular adaptation and population dynamics in Plasmodium falciparum. IMPORTANCE The malaria parasite has a complex life cycle exhibiting phenotypic variations in two different hosts accompanied by cell-to-cell variability that is important for stress tolerance, immune evasion, and drug resistance. To investigate cellular heterogeneity determined by gene expression, we performed single-cell RNA sequencing (scRNA-seq) of about 12,000 synchronized Plasmodium cells under physiologically relevant normal (37°C) and temperature stress (40°C) conditions phenocopying the cyclic bouts of fever experienced during malarial infection. In this study, we found that parasites exhibit transcriptional heterogeneity in an otherwise morphologically synchronized culture. Also, a subset of parasites is continually committed to gametocytogenesis and stress-responsive pathways. These observations have important implications for understanding the mechanisms of drug resistance generation and vaccine development against the malaria parasite.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Ashish Srivastava
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Shreya Johri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| |
Collapse
|
47
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
48
|
Expression Patterns of Plasmodium falciparum Clonally Variant Genes at the Onset of a Blood Infection in Malaria-Naive Humans. mBio 2021; 12:e0163621. [PMID: 34340541 PMCID: PMC8406225 DOI: 10.1128/mbio.01636-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonally variant genes (CVGs) play fundamental roles in the adaptation of Plasmodium falciparum to fluctuating conditions of the human host. However, their expression patterns under the natural conditions of the blood circulation have been characterized in detail for only a few specific gene families. Here, we provide a detailed characterization of the complete P. falciparum transcriptome across the full intraerythrocytic development cycle (IDC) at the onset of a blood infection in malaria-naive human volunteers. We found that the vast majority of transcriptional differences between parasites obtained from the volunteers and the parental parasite line maintained in culture occurred in CVGs. In particular, we observed a major increase in the transcript levels of most genes of the pfmc-2tm and gbp families and of specific genes of other families, such as phist, hyp10, rif, or stevor, in addition to previously reported changes in var and clag3 gene expression. Increased transcript levels of individual pfmc-2tm, rif, and stevor genes involved activation in small subsets of parasites. Large transcriptional differences correlated with changes in the distribution of heterochromatin, confirming their epigenetic nature. Furthermore, the similar expression of several CVGs between parasites collected at different time points along the blood infection suggests that the epigenetic memory for multiple CVG families is lost during transmission stages, resulting in a reset of their transcriptional state. Finally, the CVG expression patterns observed in a volunteer likely infected by a single sporozoite suggest that new epigenetic patterns are established during liver stages.
Collapse
|
49
|
Mohamad N, O’Donoghue A, Kantsadi AL, Vakonakis I. Structures of the Plasmodium falciparum heat-shock protein 70-x ATPase domain in complex with chemical fragments identify conserved and unique binding sites. Acta Crystallogr F Struct Biol Commun 2021; 77:262-268. [PMID: 34341192 PMCID: PMC8329712 DOI: 10.1107/s2053230x21007378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
Plasmodium falciparum invades erythrocytes and extensively modifies them in a manner that increases the virulence of this malaria parasite. A single heat-shock 70 kDa-type chaperone, PfHsp70-x, is among the parasite proteins exported to the host cell. PfHsp70-x assists in the formation of a key protein complex that underpins parasite virulence and supports parasite growth during febrile episodes. Previous work resolved the crystallographic structures of the PfHsp70-x ATPase and substrate-binding domains, and showed them to be highly similar to those of their human counterparts. Here, 233 chemical fragments were screened for binding to the PfHsp70-x ATPase domain, resulting in three crystallographic structures of this domain in complex with ligands. Two binding sites were identified, with most ligands binding proximal to the ATPase nucleotide-binding pocket. Although amino acids participating in direct ligand interactions are conserved between the parasite and human erythrocytic chaperones, one nonconserved residue is also present near the ligand. This work suggests that PfHsp70-x features binding sites that may be exploitable by small-molecule ligands towards the specific inhibition of the parasite chaperone.
Collapse
Affiliation(s)
- Nada Mohamad
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ailsa O’Donoghue
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anastassia L. Kantsadi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
50
|
Fröhlich B, Dasanna AK, Lansche C, Czajor J, Sanchez CP, Cyrklaff M, Yamamoto A, Craig A, Schwarz US, Lanzer M, Tanaka M. Functionalized supported membranes for quantifying adhesion of P. falciparum-infected erythrocytes. Biophys J 2021; 120:3315-3328. [PMID: 34246628 PMCID: PMC8391081 DOI: 10.1016/j.bpj.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
The pathology of Plasmodium falciparum malaria is largely defined by the cytoadhesion of infected erythrocytes to the microvascular endothelial lining. The complexity of the endothelial surface and the large range of interactions available for the infected erythrocyte via parasite-encoded adhesins make analysis of critical contributions during cytoadherence challenging to define. Here, we have explored supported membranes functionalized with two important adhesion receptors, ICAM1 or CD36, as a quantitative biomimetic surface to help understand the processes involved in cytoadherence. Parasitized erythrocytes bound to the receptor-functionalized membranes with high efficiency and selectivity under both static and flow conditions, with infected wild-type erythrocytes displaying a higher binding capacity than do parasitized heterozygous sickle cells. We further show that the binding efficiency decreased with increasing intermolecular receptor distance and that the cell-surface contacts were highly dynamic and increased with rising wall shear stress as the cell underwent a shape transition. Computer simulations using a deformable cell model explained the wall-shear-stress-induced dynamic changes in cell shape and contact area via the specific physical properties of erythrocytes, the density of adhesins presenting knobs, and the lateral movement of receptors in the supported membrane.
Collapse
Affiliation(s)
- Benjamin Fröhlich
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg, Germany
| | - Anil K Dasanna
- Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Christine Lansche
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Julian Czajor
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg, Germany
| | - Cecilia P Sanchez
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.
| | - Michael Lanzer
- Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Japan.
| |
Collapse
|