1
|
Chedraoui C, Fattouh N, El Hachem S, Younes M, Khalaf RA. Induction of Antifungal Tolerance Reveals Genetic and Phenotypic Changes in Candida glabrata. J Fungi (Basel) 2025; 11:284. [PMID: 40278105 PMCID: PMC12028409 DOI: 10.3390/jof11040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 04/26/2025] Open
Abstract
Candida glabrata is an opportunistic, pathogenic fungus that is increasingly isolated from hospitalized patients. The incidence of drug tolerance, heteroresistance, and resistance is on the rise due to an overuse of antifungal drugs. The aim of this study was to expose a sensitive C. glabrata strain to sequentially increasing concentrations of two antifungal drugs, fluconazole, an azole that targets ergosterol biosynthesis, or caspofungin, an echinocandin that targets cell wall glucan synthesis. Analysis of the drug-exposed isolates showed development of antifungal tolerance, chromosomal abnormalities, decreased adhesion, attenuated virulence, and an increase in efflux pump activity. Furthermore, whole genome sequencing of all isolates exposed to different concentrations of fluconazole or caspofungin was performed to determine mutations in key genes that could correlate with the observed phenotypes. Mutations were found in genes implicated in adhesion, such as in the AWP, PWP, and EPA family of genes. Isolates exposed to higher drug concentrations displayed more mutations than those at lower concentrations.
Collapse
Affiliation(s)
- Christy Chedraoui
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| | - Nour Fattouh
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
- Department of Biology, Saint George University of Beirut, Beirut 1100-2807, Lebanon
| | - Setrida El Hachem
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| | - Maria Younes
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| | - Roy A. Khalaf
- Department of Biological Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon; (C.C.); (N.F.); (S.E.H.); (M.Y.)
| |
Collapse
|
2
|
El Khoury P, Zeidan A, Khalaf RA. Proteomic characterization of clinical Candida glabrata isolates with varying degrees of virulence and resistance to fluconazole. PLoS One 2025; 20:e0320484. [PMID: 40131896 PMCID: PMC11936215 DOI: 10.1371/journal.pone.0320484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Candida glabrata, an opportunistic fungal pathogen, is a significant contributor to mortality among individuals with weakened immune systems. Antifungal drugs such as azoles work by inhibiting the Erg11 enzyme, altering the conversion of lanosterol to ergosterol. Resistance to azoles is increasing among Candida species worldwide, and in Lebanon. This study aims to determine the identity of cell wall proteins that could be involved in resistance and virulence in Candida glabrata Lebanese hospital isolates. Four isolates with varying degrees of resistance and virulence to fluconazole were subjected to proteomic analysis. Cell wall proteins of each isolate were extracted and analyzed using MALDI TOF TOF mass spectrometry to identify proteins responsible for virulence and resistance under exposure to fluconazole. Results showed the exclusive presence of efflux pumps such as Cdr1 and Pdr1 after exposure to fluconazole, in addition to other resistance mechanisms such as activation of multidrug transporter proteins and specific response pathways such as the RIM 101 pathway that could be involved in drug resistance and adhesion. Proteomic profiling exhibited proteins differentially detected in the virulent isolates such as the autophagy related proteins Atg 11 and Atg16, and stress response proteins Sgf11 and Alg2. In conclusion, our study suggests several mechanisms that contribute to resistance and virulence in C. glabrata.
Collapse
Affiliation(s)
- Pamela El Khoury
- Department of Biological Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Ahmad Zeidan
- Department of Biological Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Roy A. Khalaf
- Department of Biological Sciences, Lebanese American University, PO Box 36, Byblos, Lebanon
| |
Collapse
|
3
|
Lombardi L, Salzberg LI, Cinnéide EÓ, O'Brien C, Morio F, Turner SA, Byrne KP, Butler G. Alternative sulphur metabolism in the fungal pathogen Candida parapsilosis. Nat Commun 2024; 15:9190. [PMID: 39448588 PMCID: PMC11502921 DOI: 10.1038/s41467-024-53442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Candida parapsilosis is an opportunistic fungal pathogen commonly isolated from the environment and associated with nosocomial infection outbreaks worldwide. We describe here the construction of a large collection of gene disruptions, greatly increasing the molecular tools available for probing gene function in C. parapsilosis. We use these to identify transcription factors associated with multiple metabolic pathways, and in particular to dissect the network regulating the assimilation of sulphur. We find that, unlike in other yeasts and filamentous fungi, the transcription factor Met4 is not the main regulator of methionine synthesis. In C. parapsilosis, assimilation of inorganic sulphur (sulphate) and synthesis of cysteine and methionine is regulated by Met28, a paralog of Met4, whereas Met4 regulates expression of a wide array of transporters and enzymes involved in the assimilation of organosulfur compounds. Analysis of transcription factor binding sites suggests that Met4 is recruited by the DNA-binding protein Met32, and Met28 is recruited by Cbf1. Despite having different target genes, Met4 and Met28 have partial functional overlap, possibly because Met4 can contribute to assimilation of inorganic sulphur in the absence of Met28.
Collapse
Affiliation(s)
- Lisa Lombardi
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| | - Letal I Salzberg
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin Ó Cinnéide
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Caoimhe O'Brien
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, UR1155, Nantes, France
| | - Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Kevin P Byrne
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
4
|
Askari F, Kaur R. Protocol for determination of phosphatidylinositol 3-phosphate levels and localization in Candida glabrata by confocal microscopy. STAR Protoc 2024; 5:102759. [PMID: 38088931 PMCID: PMC10757287 DOI: 10.1016/j.xpro.2023.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 01/02/2024] Open
Abstract
Phosphatidylinositol 3-phosphate (PI3P) levels govern membrane trafficking in Candida glabrata. Here, we present a confocal imaging-based protocol for PI3P localization analysis using the GFP-FYVE (found in Fab1, YOTB, Vac1, and EEA1) fusion protein. We describe steps for cloning the FYVE domain into the GFP-containing vector backbone, transforming FYVE-GFP into C. glabrata, and preparing slides with FYVE-GFP-expressing C. glabrata cells. We then detail procedures for acquiring and analyzing images and quantifying signal data. This protocol is adaptable to subcellular localization analysis of other low-abundant lipid and protein molecules. For complete details on the use and execution of this protocol, please refer to Askari et al. (2023).1.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, Telangana, India.
| |
Collapse
|
5
|
Askari F, Vasavi B, Kaur R. Phosphatidylinositol 3-phosphate regulates iron transport via PI3P-binding CgPil1 protein. Cell Rep 2023; 42:112855. [PMID: 37490387 DOI: 10.1016/j.celrep.2023.112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Iron homeostasis, which is pivotal to virulence, is regulated by the phosphatidylinositol 3-kinase CgVps34 in the human fungal pathogen Candida glabrata. Here, we identify CgPil1 as a phosphatidylinositol 3-phosphate (PI3P)-binding protein and unveil its role in retaining the high-affinity iron transporter CgFtr1 at the plasma membrane (PM), with PI3P negatively regulating CgFtr1-CgPil1 interaction. PI3P production and its PM localization are elevated in the high-iron environment. Surplus iron also leads to intracellular distribution and vacuolar delivery of CgPil1 and CgFtr1, respectively, from the PM. Loss of CgPil1 or CgFtr1 ubiquitination at lysines 391 and 401 results in CgFtr1 trafficking to the endoplasmic reticulum and a decrease in vacuole-localized CgFtr1. The E3-ubiquitin ligase CgRsp5 interacts with CgFtr1 and forms distinct CgRsp5-CgFtr1 puncta at the PM, with high iron resulting in their internalization. Finally, PI3P controls retrograde transport of many PM proteins. Altogether, we establish PI3P as a key regulator of membrane transport in C. glabrata.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Bhogadi Vasavi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.
| |
Collapse
|
6
|
Lai Y, Jiang B, Hou F, Huang X, Ling B, Lu H, Zhong T, Huang J. The emerging role of extracellular vesicles in fungi: a double-edged sword. Front Microbiol 2023; 14:1216895. [PMID: 37533824 PMCID: PMC10390730 DOI: 10.3389/fmicb.2023.1216895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Fungi are eukaryotic microorganisms found in nature, which can invade the human body and cause tissue damage, inflammatory reactions, organ dysfunctions, and diseases. These diseases can severely damage the patient's body systems and functions, leading to a range of clinical symptoms that can be life-threatening. As the incidence of invasive fungal infections has progressively increased in the recent years, a wealth of evidence has confirmed the "double-edged sword" role of fungal extracellular vesicles (EVs) in intercellular communication and pathogen-host interactions. Fungal EVs act as mediators of cellular communication, affecting fungal-host cell interactions, delivering virulence factors, and promoting infection. Fungal EVs can also have an induced protective effect, affecting fungal growth and stimulating adaptive immune responses. By integrating recent studies, we discuss the role of EVs in fungi, providing strong theoretical support for the early prevention and treatment of invasive fungal infections. Finally, we highlight the feasibility of using fungal EVs as drug carriers and in vaccine development.
Collapse
Affiliation(s)
- Yi Lai
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bowei Jiang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangpeng Hou
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinhong Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongfei Lu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
7
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
8
|
Schrevens S, Durandau E, Tran VDT, Sanglard D. Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence 2022; 13:1285-1303. [PMID: 35795910 PMCID: PMC9348041 DOI: 10.1080/21505594.2022.2095716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida species are the most commonly isolated opportunistic fungal pathogens in humans. Candida albicans causes most of the diagnosed infections, closely followed by Candida glabrata. C. albicans is well studied, and many genes have been shown to be important for infection and colonization of the host. It is however less clear how C. glabrata infects the host. With the help of fungal RNA enrichment, we here investigated for the first time the transcriptomic profile of C. glabrata during urinary tract infection (UTI) in mice. In the UTI model, bladders and kidneys are major target organs and therefore fungal transcriptomes were addressed in these organs. Our results showed that, next to adhesins and proteases, nitrogen metabolism and regulation play a vital role during C. glabrata UTI. Genes involved in nitrogen metabolism were upregulated and among them we show that DUR1,2 (urea amidolyase) and GAP1 (amino acid permease) were important for virulence. Furthermore, we confirmed the importance of the glyoxylate cycle in the host and identified MLS1 (malate synthase) as an important gene necessary for C. glabrata virulence. In conclusion, our study shows with the support of in vivo transcriptomics how C. glabrata adapts to host conditions.
Collapse
Affiliation(s)
- Sanne Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Eric Durandau
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
9
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:1529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
| |
Collapse
|
10
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
11
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Essential Role for the Phosphatidylinositol 3,5-Bisphosphate Synthesis Complex in Caspofungin Tolerance and Virulence in Candida glabrata. Antimicrob Agents Chemother 2019; 63:AAC.00886-19. [PMID: 31138567 PMCID: PMC6658794 DOI: 10.1128/aac.00886-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/25/2022] Open
Abstract
Increasing resistance of the human opportunistic fungal pathogen Candida glabrata toward the echinocandin antifungals, which target the cell wall, is a matter of grave clinical concern. Echinocandin resistance in C. glabrata has primarily been associated with mutations in the β-glucan synthase-encoding genes C. glabrataFKS1 (CgFKS1) and CgFKS2. This notwithstanding, the role of the phosphoinositide signaling in antifungal resistance is just beginning to be deciphered. Increasing resistance of the human opportunistic fungal pathogen Candida glabrata toward the echinocandin antifungals, which target the cell wall, is a matter of grave clinical concern. Echinocandin resistance in C. glabrata has primarily been associated with mutations in the β-glucan synthase-encoding genes C. glabrataFKS1 (CgFKS1) and CgFKS2. This notwithstanding, the role of the phosphoinositide signaling in antifungal resistance is just beginning to be deciphered. The phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] is a low-abundance lipid molecule that is pivotal to the intracellular membrane traffic. Here, we demonstrate for the first time that the PI(3,5)P2 kinase CgFab1, along with its activity regulator CgVac7 and the scaffolding protein CgVac14, is required for maintenance of the cell wall chitin content, survival of the cell wall, and caspofungin stress. Further, deletion analyses implicated the PI(3,5)P2 phosphatase CgFig4 in the regulation of PI(3,5)P2 levels and azole and echinocandin tolerance through CgVac14. We also show the localization of the CgFab1 lipid kinase to the vacuole to be independent of the CgVac7, CgVac14, and CgFig4 proteins. Lastly, our data demonstrate an essential requirement for PI(3,5)P2 signaling components, CgFab1, CgVac7, and CgVac14, in the intracellular survival and virulence in C. glabrata. Altogether, our data have yielded key insights into the functions and metabolism of PI(3,5)P2 lipid in the pathogenic yeast C. glabrata. In addition, our data highlight that CgVac7, whose homologs are absent in higher eukaryotes, may represent a promising target for antifungal therapy.
Collapse
|
13
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
14
|
Bhakt P, Shivarathri R, Choudhary DK, Borah S, Kaur R. Fluconazole-induced actin cytoskeleton remodeling requires phosphatidylinositol 3-phosphate 5-kinase in the pathogenic yeast Candida glabrata. Mol Microbiol 2018; 110:425-443. [PMID: 30137648 PMCID: PMC6221164 DOI: 10.1111/mmi.14110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/29/2022]
Abstract
Known azole antifungal resistance mechanisms include mitochondrial dysfunction and overexpression of the sterol biosynthetic target enzyme and multidrug efflux pumps. Here, we identify, through a genetic screen, the vacuolar membrane‐resident phosphatidylinositol 3‐phosphate 5‐kinase (CgFab1) to be a novel determinant of azole tolerance. We demonstrate for the first time that fluconazole promotes actin cytoskeleton reorganization in the emerging, inherently less azole‐susceptible fungal pathogen Candida glabrata, and genetic or chemical perturbation of actin structures results in intracellular sterol accumulation and azole susceptibility. Further, CgFAB1 disruption impaired vacuole homeostasis and actin organization, and the F‐actin‐stabilizing compound jasplakinolide rescued azole toxicity in cytoskeleton defective‐mutants including the Cgfab1Δ mutant. In vitro assays revealed that the actin depolymerization factor CgCof1 binds to multiple lipids including phosphatidylinositol 3,5‐bisphosphate. Consistently, CgCof1 distribution along with the actin filament‐capping protein CgCap2 was altered upon both CgFAB1 disruption and fluconazole exposure. Altogether, these data implicate CgFab1 in azole tolerance through actin network remodeling. Finally, we also show that actin polymerization inhibition rendered fluconazole fully and partially fungicidal in azole‐susceptible and azole‐resistant C. glabrata clinical isolates, respectively, thereby, underscoring the role of fluconazole‐effectuated actin remodeling in azole resistance.
Collapse
Affiliation(s)
- Priyanka Bhakt
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raju Shivarathri
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Deepak Kumar Choudhary
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Sapan Borah
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Visser JG, Smith C. Development of a transendothelial shuttle by macrophage modification. J Tissue Eng Regen Med 2017; 12:e1889-e1898. [PMID: 29193878 DOI: 10.1002/term.2620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
One of the limiting factors in tissue regeneration, particularly in the context of chronic disease such as myodystrophy, motor neuron disease, sarcopenia, and cardiovascular disease, is limited availability of stem cells. We propose employing autologous macrophages to deliver stem cells, thereby facilitating tissue regeneration, by a novel and relatively non-invasive therapeutic intervention. Circulatory monocytic cells of M1 phenotype have capacity for transendothelial migration to infiltrate damaged tissue, making them ideal delivery vehicles. However, in order to deliver viable stem cells, these macrophages must undergo phagosome maturation arrest. Our aim was to induce phagosome maturation arrest in prepolarised M1 macrophages, whilst maintaining capacity for phagocytic engulfment (including phagosome formation) and transendothelial migration. Primary human M1 macrophages were treated with a wortmannin-concanamycin A-chloroquine cocktail to induce arrest. Modified cells were allowed to ingest 4.5 μm protein-coated fluorescent latex beads (simulated stem cells), before migratory capacity in response to MCP-1 was assessed over a 2-hr period in a Transwell co-culture system. Data indicate that phagosome acidification (as indicated by pHrodo®) was prevented in treated cells, effectively limiting digestion of ingested "cargo" (1.23 ± 0.26% vs. 7.52 ± 0.98% in controls; p < .0001). Neither phagocytic engulfment capacity (68.67 ± 3.51% vs. 61.19 ± 4.68%) nor migratory capacity (70.14 ± 12.6 vs. 72.86 ± 16.0 migrated cells per well) was compromised. We conclude that macrophages were successfully modified into transendothelial delivery vehicles, without compromising required functionality. This delivery system can be exploited to develop a novel method for focussed stem cell and/or drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
16
|
Hernández-Chávez MJ, Pérez-García LA, Niño-Vega GA, Mora-Montes HM. Fungal Strategies to Evade the Host Immune Recognition. J Fungi (Basel) 2017; 3:jof3040051. [PMID: 29371567 PMCID: PMC5753153 DOI: 10.3390/jof3040051] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022] Open
Abstract
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Collapse
Affiliation(s)
- Marco J Hernández-Chávez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Luis A Pérez-García
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, C.P., Cd. Valle SLP. 79060, México.
| | - Gustavo A Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| |
Collapse
|
17
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
18
|
Sharma V, Purushotham R, Kaur R. The Phosphoinositide 3-Kinase Regulates Retrograde Trafficking of the Iron Permease CgFtr1 and Iron Homeostasis in Candida glabrata. J Biol Chem 2016; 291:24715-24734. [PMID: 27729452 DOI: 10.1074/jbc.m116.751529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/22/2016] [Indexed: 01/13/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K), which phosphorylates phosphatidylinositol and produces PI3P, has been implicated in protein trafficking, intracellular survival, and virulence in the pathogenic yeast Candida glabrata Here, we demonstrate PI3-kinase (CgVps34) to be essential for maintenance of cellular iron homeostasis. We examine how CgVps34 regulates the fundamental process of iron acquisition, and underscore its function in vesicular trafficking as a central determinant. RNA sequencing analysis revealed iron homeostasis genes to be differentially expressed upon CgVps34 disruption. Consistently, the Cgvps34Δ mutant displayed growth attenuation in low- and high-iron media, increased intracellular iron content, elevated mitochondrial aconitase activity, impaired biofilm formation, and extenuated mouse organ colonization potential. Furthermore, we demonstrate for the first time that C. glabrata cells respond to iron limitation by expressing the iron permease CgFtr1 primarily on the cell membrane, and to iron excess via internalization of the plasma membrane-localized CgFtr1 to the vacuole. Our data show that CgVps34 is essential for the latter process. We also report that macrophage-internalized C. glabrata cells express CgFtr1 on the cell membrane indicative of an iron-restricted macrophage internal milieu, and Cgvps34Δ cells display better survival in iron-enriched medium-cultured macrophages. Overall, our data reveal the centrality of PI3K signaling in iron metabolism and host colonization.
Collapse
Affiliation(s)
- Vandana Sharma
- From the Centre for DNA Fingerprinting and Diagnostics, Survey Nos. 728, 729, 730 and 734, Opposite Uppal Water Tank, Beside BSNL T E Building, Uppal, Hyderabad 500039, Ranga Reddy District, India and; the Graduate Studies, Manipal University, Manipal, India
| | - Rajaram Purushotham
- From the Centre for DNA Fingerprinting and Diagnostics, Survey Nos. 728, 729, 730 and 734, Opposite Uppal Water Tank, Beside BSNL T E Building, Uppal, Hyderabad 500039, Ranga Reddy District, India and
| | - Rupinder Kaur
- From the Centre for DNA Fingerprinting and Diagnostics, Survey Nos. 728, 729, 730 and 734, Opposite Uppal Water Tank, Beside BSNL T E Building, Uppal, Hyderabad 500039, Ranga Reddy District, India and.
| |
Collapse
|
19
|
Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res 2015; 15:fov042. [PMID: 26066553 DOI: 10.1093/femsyr/fov042] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection.
Collapse
Affiliation(s)
- Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), University Hospital, 07747 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
20
|
Vale-Silva LA, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res 2015; 15:fov025. [PMID: 25979690 DOI: 10.1093/femsyr/fov025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
Among existing fungal pathogens, Candida glabrata is outstanding in its capacity to rapidly develop resistance to currently used antifungal agents. Resistance to the class of azoles, which are still widely used agents, varies in proportion (from 5 to 20%) depending on geographical area. Moreover, resistance to the class of echinocandins, which was introduced in the late 1990s, is rising in several institutions. The recent emergence of isolates with acquired resistance to both classes of agents is a major concern since alternative therapeutic options are scarce. Although considered less pathogenic than C. albicans, C. glabrata has still evolved specific virulence traits enabling its survival and propagation in colonized and infected hosts. Development of drug resistance is usually associated with fitness costs, and this notion is documented across several microbial species. Interestingly, azole resistance in C. glabrata has revealed the opposite. Experimental models of infection showed enhanced virulence of azole-resistant isolates. Moreover, azole resistance could be associated with specific changes in adherence properties to epithelial cells or innate immunity cells (macrophages), both of which contribute to virulence changes. Here we will summarize the current knowledge on C. glabrata drug resistance and also discuss the consequences of drug resistance acquisition on the balance between C. glabrata and its hosts.
Collapse
Affiliation(s)
- Luis A Vale-Silva
- Institute of Microbiology, University of Lausanne and University Hospital Center, CH-1011 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, CH-1011 Lausanne, Switzerland
| |
Collapse
|