1
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Holbert S, Barilleau E, Yan J, Trotereau J, Koczerka M, Charton M, Le Vern Y, Pichon J, Grassl GA, Velge P, Wiedemann A. The Salmonella virulence protein PagN contributes to the advent of a hyper-replicating cytosolic bacterial population. Virulence 2024; 15:2357670. [PMID: 38804638 PMCID: PMC11135831 DOI: 10.1080/21505594.2024.2357670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhimurium is an intracellular pathogen that invades and colonizes the intestinal epithelium. Following bacterial invasion, Salmonella is enclosed within a membrane-bound vacuole known as a Salmonella-containing vacuole (SCV). However, a subset of Salmonella has the capability to prematurely rupture the SCV and escape, resulting in Salmonella hyper-replication within the cytosol of epithelial cells. A recently published RNA-seq study provides an overview of cytosolic and vacuolar upregulated genes and highlights pagN vacuolar upregulation. Here, using transcription kinetics, protein production profile, and immunofluorescence microscopy, we showed that PagN is exclusively produced by Salmonella in SCV. Gentamicin protection and chloroquine resistance assays were performed to demonstrate that deletion of pagN affects Salmonella replication by affecting the cytosolic bacterial population. This study presents the first example of a Salmonella virulence factor expressed within the endocytic compartment, which has a significant impact on the dynamics of Salmonella cytosolic hyper-replication.
Collapse
Affiliation(s)
| | | | - Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, China
- Research Center of Digestive Disease, Central South University, China
| | | | | | - Mégane Charton
- INRAE, Université de Tours, ISP, Nouzilly, France
- Service biologie vétérinaire et santé animale, Inovalys, Angers, France
| | - Yves Le Vern
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | | | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, Nouzilly, France
- IRSD - Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France
| |
Collapse
|
3
|
Achi SC, McGrosso D, Tocci S, Ibeawuchi SR, Sayed IM, Gonzalez DJ, Das S. Proteome profiling identifies a link between the mitochondrial pathways and host-microbial sensor ELMO1 following Salmonella infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592405. [PMID: 38746404 PMCID: PMC11092768 DOI: 10.1101/2024.05.03.592405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The host EnguLfment and cell MOtility protein 1 (ELMO1) is a cytosolic microbial sensor that facilitates bacterial sensing, internalization, clearance, and inflammatory responses. We have shown previously that ELMO1 binds bacterial effector proteins, including pathogenic effectors from Salmonella and controls host innate immune signaling. To understand the ELMO1-regulated host pathways, we have performed liquid chromatography Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the global quantification of proteins regulated by ELMO1 in macrophages during Salmonella infection. Comparative proteome analysis of control and ELMO1-depleted murine J774 macrophages after Salmonella infection quantified more than 7000 proteins with a notable enrichment in mitochondrial-related proteins. Gene ontology enrichment analysis revealed 19 upregulated and 11 downregulated proteins exclusive to ELMO1-depleted cells during infection, belonging to mitochondrial functions, metabolism, vesicle transport, and the immune system. By assessing the cellular energetics via Seahorse analysis, we found that Salmonella infection alters mitochondrial metabolism, shifting it from oxidative phosphorylation to glycolysis. Importantly, these metabolic changes are significantly influenced by the depletion of ELMO1. Furthermore, ELMO1 depletion resulted in a decreased ATP rate index following Salmonella infection, indicating its importance in counteracting the effects of Salmonella on immunometabolism. Among the proteins involved in mitochondrial pathways, mitochondrial fission protein DRP1 was significantly upregulated in ELMO1-depleted cells and in ELMO1-KO mice intestine following Salmonella infection. Pharmacological Inhibition of DRP1 revealed the link of the ELMO1-DRP1 pathway in regulating the pro-inflammatory cytokine TNF-α following infection. The role of ELMO1 has been further characterized by a proteome profile of ELMO1-depleted macrophage infected with SifA mutant and showed the involvement of ELMO1-SifA on mitochondrial function, metabolism and host immune/defense responses. Collectively, these findings unveil a novel role for ELMO1 in modulating mitochondrial functions, potentially pivotal in modulating inflammatory responses. Significance Statement Host microbial sensing is critical in infection and inflammation. Among these sensors, ELMO1 has emerged as a key regulator, finely tuning innate immune signaling and discriminating between pathogenic and non-pathogenic bacteria through interactions with microbial effectors like SifA of Salmonella . In this study, we employed Multinotch MS3-Tandem Mass Tag (TMT) multiplexed proteomics to determine the proteome alterations mediated by ELMO1 in macrophages following WT and SifA mutant Salmonella infection. Our findings highlight a substantial enrichment of host proteins associated with metabolic pathways and mitochondrial functions. Notably, we validated the mitochondrial fission protein DRP1 that is upregulated in ELMO1-depleted macrophages and in ELMO1 knockout mice intestine after infection. Furthermore, we demonstrated that Salmonella -induced changes in cellular energetics are influenced by the presence of ELMO1. This work shed light on a possible novel link between mitochondrial dynamics and microbial sensing in modulating immune responses.
Collapse
|
4
|
Awasthi S, Singh B, Ramani V, Godbole NM, King C. Involvement of endoplasmic reticulum and histone proteins in immunomodulation by TLR4-interacting SPA4 peptide against Escherichia coli. Infect Immun 2023; 91:e0031123. [PMID: 37909750 PMCID: PMC10714950 DOI: 10.1128/iai.00311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Pulmonary host defense is critical for the control of lung infection and inflammation. An increased expression and activity of Toll-like receptor 4 (TLR4) induce phagocytic uptake/clearance and inflammation against Gram-negative bacteria. In this study, we addressed the mechanistic aspect of the immunomodulatory activity of the TLR4-interacting SPA4 peptide (amino acid sequence GDFRYSDGTPVNYTNWYRGE) against Escherichia coli. Binding of the SPA4 peptide to bacteria and direct anti-bacterial effects were investigated using flow cytometric, microscopic, and bacteriological methods. The bacterial uptake and inflammatory cytokine response were studied in dendritic cells expressing endogenous basal level of TLR4 or overexpressing TLR4. The subcellular distribution and co-localization of TLR4 and bacteria were investigated by immunocytochemistry. Furthermore, we studied the cellular expression and co-localization of endoplasmic reticulum (ER) molecules (calnexin and ER membrane protein complex subunit 1; EMC1) with lysosomal-associated membrane protein 1 (LAMP1) in cells infected with E. coli and treated with the SPA4 peptide. Simultaneously, the expression of histone H2A protein was quantitated by immunoblotting. Our results demonstrate no binding or direct killing of the bacteria by SPA4 peptide. Instead, it induces the uptake and localization of E. coli in the phagolysosomes for lysis and simultaneously suppresses the secreted levels of TNF-α. Overexpression of TLR4 further augments the pro-phagocytic and anti-inflammatory activity of SPA4 peptide. A time-dependent change in subcellular distribution of TLR4 and an increased co-localization of TLR4 with E. coli in SPA4 peptide-treated cells suggest an enhanced recognition and internalization of bacteria in conjugation with TLR4. Furthermore, an increased co-localization of calnexin and EMC1 with LAMP1 indicates the involvement of ER in pro-phagocytic activity of SPA4 peptide. Simultaneous reduction in secreted amounts of TNF-α coincides with suppressed histone H2A protein expression in the SPA4 peptide-treated cells. These results provide initial insights into the plausible role of ER and histones in the TLR4-immunomodulatory activity of SPA4 peptide against Gram-negative bacteria.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bhupinder Singh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Vijay Ramani
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nachiket M. Godbole
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Catherine King
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
5
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
Chatterjee R, Nair AV, Singh A, Mehta N, Setty SRG, Chakravortty D. Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole. Traffic 2023; 24:270-283. [PMID: 37114883 DOI: 10.1111/tra.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Nishi Mehta
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Salmonella Exhibit Altered Cellular Localization in the Presence of HLA-B27 and Codistribute with Endo-Reticular Membrane. J Immunol Res 2022; 2022:9493019. [PMID: 36157878 PMCID: PMC9507774 DOI: 10.1155/2022/9493019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Salmonella enteritica (S. enteritica) induce and require unfolded protein response (UPR) pathways for intracellular replication. Salmonella infections can lead to reactive arthritis (ReA), which can exhibit associations with Human Leucocyte Antigen (HLA)-B∗27 : 05. S. enteritica normally reside in a juxtanuclear position to the Golgi apparatus, representing the formation and residence within the Salmonella-containing vacuole (SCV). Changes in cellular localization of infecting Salmonella can alter their ability to replicate. We therefore used isogenic epithelial cell lines expressing physiological levels of HLA-B∗27 : 05 heavy chain (HC) and a control HLA-B allele, HLA-B∗35 : 01.HC to determine any changes in Salmonella localization within epithelial cells. Expression of HLA-B∗27 : 05 but not HLA-B∗35 : 01 was associated with a quantifiable change in S. enteritica cellular distribution away from the Golgi apparatus. Furthermore, the Salmonella requirements for UPR induction and the consequences of the concomitant endoplasmic reticulum (ER) membrane expansion were determined. Using confocal imaging, S. enteritica bacteria exhibited a significant and quantifiable codistribution with endo-reticular membrane as determined by ER tracker staining. Isogenic S. enterica Typhimurium mutant strains, which can infect but exhibit impaired intracellular growth, demonstrated that the activation of the UPR was dependent on an integral intracellular niche. Therefore, these data identify cellular changes accompanying Salmonella induction of the UPR and in the presence of HLA-B27.
Collapse
|
8
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
9
|
Stévenin V, Neefjes J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem Biol 2022; 29:741-756. [PMID: 35512694 DOI: 10.1016/j.chembiol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023]
Abstract
Intracellular bacteria have developed a multitude of mechanisms to influence the post-translational modifications (PTMs) of host proteins to pathogen advantages. The recent explosion of insights into the diversity and sophistication of host PTMs and their manipulation by infectious agents challenges us to formulate a comprehensive vision of this complex and dynamic facet of the host-pathogen interaction landscape. As new discoveries continue to shed light on the central roles of PTMs in infectious diseases, technological advances foster our capacity to detect old and new PTMs and investigate their control and impact during pathogenesis, opening new possibilities for chemical intervention and infection treatment. Here, we present a comprehensive overview of these pathogenic mechanisms and offer perspectives on how these insights may contribute to the development of a new class of therapeutics that are urgently needed to face rising antibiotic resistances.
Collapse
Affiliation(s)
- Virginie Stévenin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands
| |
Collapse
|
10
|
Petit TJ, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol 2022; 30:736-748. [DOI: 10.1016/j.tim.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
|
11
|
Chao TC, Thapa S, Hansmeier N. Affinity Enrichment of Salmonella-Modified Membranes from Murine Macrophages for Proteomic Analyses. Methods Mol Biol 2022; 2456:263-273. [PMID: 35612748 DOI: 10.1007/978-1-0716-2124-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dissecting host-pathogen interaction requires the ability to specifically enrich distinct proteins along with their co-assembled constituents or complexes. Affinity technologies leverage specificity of reagents to desired targets and help to enrich proteins of interests along with specifically associated proteins. Coupled with mass-spectrometry-based proteomics, this technology has become a powerful tool to explore pathogen compartments of diverse facultative and obligate intracellular pathogens. Here, we describe the process from infection of macrophages with Salmonella enterica to the affinity enrichment of Salmonella-modified membranes from murine macrophages.
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, SK, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada
| | - Samina Thapa
- Department of Biology, University of Regina, Regina, SK, Canada
| | - Nicole Hansmeier
- Department of Biology, University of Regina, Regina, SK, Canada.
- Luther College at University of Regina, Regina, SK, Canada.
| |
Collapse
|
12
|
Stévenin V, Giai Gianetto Q, Duchateau M, Matondo M, Enninga J, Chang YY. Purification of infection-associated macropinosomes by magnetic isolation for proteomic characterization. Nat Protoc 2021; 16:5220-5249. [PMID: 34697468 DOI: 10.1038/s41596-021-00610-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Macropinocytosis refers to the nonselective uptake of extracellular molecules into many different types of eukaryotic cells within large fluid-filled vesicles named macropinosomes. Macropinosomes are relevant for a wide variety of cellular processes, such as antigen sampling in immune cells, homeostasis in the kidney, cell migration or pathogen uptake. Understanding the molecular composition of the different macropinosomes formed during these processes has helped to differentiate their regulations from other endocytic events. Here, we present a magnetic purification protocol that segregates scarce macropinosomes from other endocytic vesicles at a high purity and in a low-cost and unbiased manner. Our protocol takes advantage of moderate-sized magnetic beads of 100 nm in diameter coupled to mass-spectrometry-based proteomic analysis. Passing the cell lysate through a table-top magnet allows the quick retention of the bead-containing macropinosomes. Unlike other cell-fractionation-based methodologies, our protocol minimizes sample loss and production cost without prerequisite knowledge of the macropinosomes and with minimal laboratory experience. We describe a detailed procedure for the isolation of infection-associated macropinosomes during bacterial invasion and the optimization steps to readily adapt it to various studies. The protocol can be performed in 3 d to provide highly purified and enriched macropinosomes for qualitative proteomic composition analysis.
Collapse
Affiliation(s)
- Virginie Stévenin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
- Université de Paris, Ecole Doctorale BioSPC, Paris, France.
| | - Quentin Giai Gianetto
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000 CNRS, Paris, France
- Hub Bioinformatics et Biostatistics, Computational Biology Department, USR CNRS, Institut Pasteur, Paris, France
| | - Magalie Duchateau
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000 CNRS, Paris, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, USR 2000 CNRS, Paris, France
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France
| | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Jiang C, Huang X, Yao J, Yu L, Wei F, Yang A. The role of membrane contact sites at the bacteria-host interface. Crit Rev Microbiol 2021; 48:270-282. [PMID: 34403642 DOI: 10.1080/1040841x.2021.1961678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Membrane contact sites (MCSs) refer to the areas of close proximity between heterologous membranes. A growing body of evidence indicates that MCSs are involved in important cellular functions, such as cellular material transfer, organelle biogenesis, and cell growth. Importantly, the study of MCSs at the bacteria-host interface is an emerging popular research topic. Intracellular bacterial pathogens have evolved a variety of fascinating strategies to interfere with MCSs by injecting effectors into infected host cells. Bacteria-containing vacuoles establish direct physical contact with organelles within the host, ensuring vacuolar membrane integrity and energy supply from host organelles and protecting the vacuoles from the host endocytic pathway and lysosomal degradation. An increasing number of bacterial effectors from various bacterial pathogens hijack components of host MCSs to form the vacuole-organelle MCSs for material exchange. MCS-related events have been identified as new mechanisms of microbial pathogenesis to greatly improve bacterial survival and replication within host cells. In this review, we will discuss the recent advances in MCSs at the bacteria-host interface, focussing on the roles of MCSs mediated by bacterial effectors in microbial pathogenesis.
Collapse
Affiliation(s)
- Chen Jiang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jia Yao
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lihua Yu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Fujing Wei
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Liu K, Kong L, Graham DB, Carey KL, Xavier RJ. SAC1 regulates autophagosomal phosphatidylinositol-4-phosphate for xenophagy-directed bacterial clearance. Cell Rep 2021; 36:109434. [PMID: 34320354 PMCID: PMC8327279 DOI: 10.1016/j.celrep.2021.109434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Phosphoinositides are important molecules in lipid signaling, membrane identity, and trafficking that are spatiotemporally controlled by factors from both mammalian cells and intracellular pathogens. Here, using small interfering RNA (siRNA) directed against phosphoinositide kinases and phosphatases, we screen for regulators of the host innate defense response to intracellular bacterial replication. We identify SAC1, a transmembrane phosphoinositide phosphatase, as an essential regulator of xenophagy. Depletion or inactivation of SAC1 compromises fusion between Salmonella-containing autophagosomes and lysosomes, leading to increased bacterial replication. Mechanistically, the loss of SAC1 results in aberrant accumulation of phosphatidylinositol-4-phosphate [PI(4)P] on Salmonella-containing autophagosomes, thus facilitating recruitment of SteA, a PI(4)P-binding Salmonella effector protein, which impedes lysosomal fusion. Replication of Salmonella lacking SteA is suppressed by SAC-1-deficient cells, however, demonstrating bacterial adaptation to xenophagy. Our findings uncover a paradigm in which a host protein regulates the level of its substrate and impairs the function of a bacterial effector during xenophagy.
Collapse
Affiliation(s)
- Kai Liu
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingjia Kong
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Graham
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Chang YY, Enninga J, Stévenin V. New methods to decrypt emerging macropinosome functions during the host-pathogen crosstalk. Cell Microbiol 2021; 23:e13342. [PMID: 33848057 PMCID: PMC8365644 DOI: 10.1111/cmi.13342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Large volumes of liquid and other materials from the extracellular environment are internalised by eukaryotic cells via an endocytic process called macropinocytosis. It is now recognised that this fundamental and evolutionarily conserved pathway is hijacked by numerous intracellular pathogens as an entry portal to the host cell interior. Yet, an increasing number of additional cellular functions of macropinosomes in pathologic processes have been reported beyond this role for fluid internalisation. It emerges that the identity of macropinosomes can vary hugely and change rapidly during their lifetime. A deeper understanding of this important multi-faceted compartment is based on novel methods for their investigation. These methods are either imaging-based for the tracking of macropinosome dynamics, or they provide the means to extract macropinosomes at high purity for comprehensive proteomic analyses. Here, we portray these new approaches for the investigation of macropinosomes. We document how these method developments have provided insights for a new understanding of the intracellular lifestyle of the bacterial pathogens Shigella and Salmonella. We suggest that a systematic complete characterisation of macropinosome subversion with these approaches during other infection processes and pathologies will be highly beneficial for our understanding of the underlying cellular and molecular processes.
Collapse
Affiliation(s)
- Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.,Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France
| | - Virginie Stévenin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit and CNRS UMR 3691, Paris, France.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Université Paris Diderot, Ecole doctorale BioSPC, Paris, France
| |
Collapse
|
16
|
Weiner A. Step-by-step guide to post-acquisition correlation of confocal and FIB/SEM volumes using Amira software. Methods Cell Biol 2020; 162:333-351. [PMID: 33707018 DOI: 10.1016/bs.mcb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In recent years new methodologies and workflow pipelines for acquiring correlated fluorescence microscopy and volume electron microscopy datasets have been extensively described and made accessible to users of different levels. Post-acquisition image processing, and particularly correlation of the optical and electron data in a single integrated three-dimensional framework can be key for extracting valuable information, especially when imaging large sample volumes such as whole cells or tissues. These tasks remain challenging and are often rate-limiting to most users. Here we provide a step-by-step guide to image processing and manual correlation using ImageJ and Amira software of a confocal microscopy stack and a focused ion beam/scanning electron microscopy (FIB/SEM) tomogram acquired using a correlative pipeline. These previously published datasets capture a highly transient invasion event by the bacterium Shigella flexneri infecting an epithelial cell grown in culture, and are made available here in their pre-processed form for readers who wish to gain hands-on experience in image processing and correlation using existing data. In this guide we describe a simple protocol for correlation based on internal sample features clearly visible by both fluorescence and electron microscopy, which is normally sufficient when correlating standard fluorescence microscopy stacks with FIB/SEM data. While the guide describes the treatment of specific datasets, it is applicable to a wide variety of samples and different microscopy approaches that require basic correlation and visualization of two or more datasets in a single integrated framework.
Collapse
Affiliation(s)
- Allon Weiner
- Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Inserm, Sorbonne Université, Paris, France.
| |
Collapse
|
17
|
Valenzuela C, Gil M, Urrutia ÍM, Sabag A, Enninga J, Santiviago CA. SopB- and SifA-dependent shaping of the Salmonella-containing vacuole proteome in the social amoeba Dictyostelium discoideum. Cell Microbiol 2020; 23:e13263. [PMID: 32945061 DOI: 10.1111/cmi.13263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella-containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type-3 secretion systems encoded in SPI-1 and SPI-2 (T3SS-1 and T3SS-2, respectively). Recently, we reported that S. Typhimurium requires T3SS-1 and T3SS-2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.
Collapse
Affiliation(s)
- Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | - Magdalena Gil
- Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | - Ítalo M Urrutia
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrea Sabag
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur, Paris, France.,CNRS UMR3691, Paris, France
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Stévenin V, Chang YY, Le Toquin Y, Duchateau M, Gianetto QG, Luk CH, Salles A, Sohst V, Matondo M, Reiling N, Enninga J. Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche. Cell Rep 2020; 29:3958-3973.e7. [PMID: 31851926 PMCID: PMC6931108 DOI: 10.1016/j.celrep.2019.11.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/23/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Salmonella is a human and animal pathogen that causes gastro-enteric diseases. The key to Salmonella infection is its entry into intestinal epithelial cells, where the bacterium resides within a Salmonella-containing vacuole (SCV). Salmonella entry also induces the formation of empty macropinosomes, distinct from the SCV, in the vicinity of the entering bacteria. A few minutes after its formation, the SCV increases in size through fusions with the surrounding macropinosomes. Salmonella also induces membrane tubules that emanate from the SCV and lead to SCV shrinkage. Here, we show that these antipodal events are utilized by Salmonella to either establish a vacuolar niche or to be released into the cytosol by SCV rupture. We identify the molecular machinery underlying dynamic SCV growth and shrinkage. In particular, the SNARE proteins SNAP25 and STX4 participate in SCV inflation by fusion with macropinosomes. Thus, host compartment size control emerges as a pathogen strategy for intracellular niche regulation. The early SCV simultaneously grows and shrinks through fusion and tubule formation SCV shrinkage promotes vacuolar rupture and cytosolic release IAMs are enriched in the host SNAREs SNAP25 and STX4, enabling IAM-SCV fusion Promoting SNX1-mediated tubule formation, SopB fosters SCV ruptures
Collapse
Affiliation(s)
- Virginie Stévenin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Yoann Le Toquin
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Magalie Duchateau
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France; Institut Pasteur, Bioinformatics and Biostatistics HUB, C3BI, USR CNRS 3756, Paris, France
| | - Chak Hon Luk
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France
| | - Audrey Salles
- Institut Pasteur, UtechS Photonic BioImaging PBI (Imagopole), Centre de Recherche et de Ressources Technologiques C2RT, Paris, France
| | - Victoria Sohst
- Research Center Borstel, Leibniz Lung Center, RG Microbial Interface Biology, Parkallee 22, 23845 Borstel, Germany
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie, C2RT, USR 2000 CNRS, Paris, France
| | - Norbert Reiling
- Research Center Borstel, Leibniz Lung Center, RG Microbial Interface Biology, Parkallee 22, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, 25 Rue du Dr. Roux, Paris, France.
| |
Collapse
|
19
|
Daussy CF, Wodrich H. "Repair Me if You Can": Membrane Damage, Response, and Control from the Viral Perspective. Cells 2020; 9:cells9092042. [PMID: 32906744 PMCID: PMC7564661 DOI: 10.3390/cells9092042] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cells are constantly challenged by pathogens (bacteria, virus, and fungi), and protein aggregates or chemicals, which can provoke membrane damage at the plasma membrane or within the endo-lysosomal compartments. Detection of endo-lysosomal rupture depends on a family of sugar-binding lectins, known as galectins, which sense the abnormal exposure of glycans to the cytoplasm upon membrane damage. Galectins in conjunction with other factors orchestrate specific membrane damage responses such as the recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to either repair damaged membranes or the activation of autophagy to remove membrane remnants. If not controlled, membrane damage causes the release of harmful components including protons, reactive oxygen species, or cathepsins that will elicit inflammation. In this review, we provide an overview of current knowledge on membrane damage and cellular responses. In particular, we focus on the endo-lysosomal damage triggered by non-enveloped viruses (such as adenovirus) and discuss viral strategies to control the cellular membrane damage response. Finally, we debate the link between autophagy and inflammation in this context and discuss the possibility that virus induced autophagy upon entry limits inflammation.
Collapse
|
20
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
21
|
Kehl A, Noster J, Hensel M. Eat in or Take out? Metabolism of Intracellular Salmonella enterica. Trends Microbiol 2020; 28:644-654. [DOI: 10.1016/j.tim.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
|
22
|
Contributions of Mass Spectrometry-Based Proteomics to Understanding Salmonella-Host Interactions. Pathogens 2020; 9:pathogens9070581. [PMID: 32708900 PMCID: PMC7400052 DOI: 10.3390/pathogens9070581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/02/2023] Open
Abstract
As a model pathogen, Salmonella invades both phagocytic and non-phagocytic host cells and adopts an intracellular lifestyle in a membrane-bound compartment during infection. Therefore, a systemic overview of Salmonella adaptations to distinct host cells together with host remodeling will assist us in charting the landscape of host-pathogen interactions. Central to the Salmonella-host interplay are bacterial virulence factors (effectors) that are injected into host cells by type III secretion systems (T3SSs). Despite great progress, functional studies of bacterial effectors have experienced daunting challenges as well. In the last decade, mass spectrometry-based proteomics has evolved into a powerful technological platform that can quantitatively measure thousands of proteins in terms of their expression as well as post-translational modifications. Here, we will review the applications of high-throughput proteomic technologies in understanding the dynamic reprogramming of both Salmonella and host proteomes during the course of infection. Furthermore, we will summarize the progress in utilizing affinity purification-mass spectrometry to screen for host substrates of Salmonella T3SS effectors. Finally, we will critically discuss some limitations/challenges with current proteomic platforms in the context of host-pathogen interactions and highlight some emerging technologies that may offer the promise of tackling these problems.
Collapse
|
23
|
Kehl A, Göser V, Reuter T, Liss V, Franke M, John C, Richter CP, Deiwick J, Hensel M. A trafficome-wide RNAi screen reveals deployment of early and late secretory host proteins and the entire late endo-/lysosomal vesicle fusion machinery by intracellular Salmonella. PLoS Pathog 2020; 16:e1008220. [PMID: 32658937 PMCID: PMC7377517 DOI: 10.1371/journal.ppat.1008220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 07/23/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
The intracellular lifestyle of Salmonella enterica is characterized by the formation of a replication-permissive membrane-bound niche, the Salmonella-containing vacuole (SCV). As a further consequence of the massive remodeling of the host cell endosomal system, intracellular Salmonella establish a unique network of various Salmonella-induced tubules (SIT). The bacterial repertoire of effector proteins required for the establishment for one type of these SIT, the Salmonella-induced filaments (SIF), is rather well-defined. However, the corresponding host cell proteins are still poorly understood. To identify host factors required for the formation of SIF, we performed a sub-genomic RNAi screen. The analyses comprised high-resolution live cell imaging to score effects on SIF induction, dynamics and morphology. The hits of our functional RNAi screen comprise: i) The late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, consisting of STX7, STX8, VTI1B, and VAMP7 or VAMP8, which is, in conjunction with RAB7 and the homotypic fusion and protein sorting (HOPS) tethering complex, a complete vesicle fusion machinery. ii) Novel interactions with the early secretory GTPases RAB1A and RAB1B, providing a potential link to coat protein complex I (COPI) vesicles and reinforcing recently identified ties to the endoplasmic reticulum. iii) New connections to the late secretory pathway and/or the recycling endosome via the GTPases RAB3A, RAB8A, and RAB8B and the SNAREs VAMP2, VAMP3, and VAMP4. iv) An unprecedented involvement of clathrin-coated structures. The resulting set of hits allowed us to characterize completely new host factor interactions, and to strengthen observations from several previous studies. The facultative intracellular pathogen Salmonella enterica serovar Typhimurium induces the reorganization of the endosomal system of mammalian host cells. This activity is dependent on translocated effector proteins of the pathogen. The host cell factors required for endosomal remodeling are only partially known. To identify such factors for the formation and dynamics of endosomal compartments in Salmonella-infected cells, we performed a live cell imaging-based RNAi screen to investigate the role of 496 mammalian proteins involved in cellular logistics. We identified that endosomal remodeling by intracellular Salmonella is dependent on host factors in the following functional classes: i) the late endo-/lysosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex, ii) the early secretory pathway, represented by regulator GTPases RAB1A and RAB1B, iii) the late secretory pathway and/or recycling endosomes represented by GTPases RAB3A, RAB8A, RAB8B, and the SNAREs VAMP2, VAMP3, and VAMP4, and iv) clathrin-coated structures. The identification of these new host factors provides further evidence for the complex manipulation of host cell transport functions by intracellular Salmonella and should enable detailed follow-up studies on the mechanisms involved.
Collapse
Affiliation(s)
- Alexander Kehl
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
- Division of Biophysics, University of Osnabrück, Osnabrück, Germany
- * E-mail: (AK); (MH)
| | - Vera Göser
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Tatjana Reuter
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Viktoria Liss
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Maximilian Franke
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Christopher John
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | | | - Jörg Deiwick
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
- CellNanOs–Center for Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
- * E-mail: (AK); (MH)
| |
Collapse
|
24
|
Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, Heilig R, Chen KW, Lim RYH, Broz P. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat Commun 2020; 11:3276. [PMID: 32581219 PMCID: PMC7314798 DOI: 10.1038/s41467-020-16889-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
The human non-canonical inflammasome controls caspase-4 activation and gasdermin-D-dependent pyroptosis in response to cytosolic bacterial lipopolysaccharide (LPS). Since LPS binds and oligomerizes caspase-4, the pathway is thought to proceed without dedicated LPS sensors or an activation platform. Here we report that interferon-induced guanylate-binding proteins (GBPs) are required for non-canonical inflammasome activation by cytosolic Salmonella or upon cytosolic delivery of LPS. GBP1 associates with the surface of cytosolic Salmonella seconds after bacterial escape from their vacuole, initiating the recruitment of GBP2-4 to assemble a GBP coat. The GBP coat then promotes the recruitment of caspase-4 to the bacterial surface and caspase activation, in absence of bacteriolysis. Mechanistically, GBP1 binds LPS with high affinity through electrostatic interactions. Our findings indicate that in human epithelial cells GBP1 acts as a cytosolic LPS sensor and assembles a platform for caspase-4 recruitment and activation at LPS-containing membranes as the first step of non-canonical inflammasome signaling. Detection of LPS derived from Gram-negative bacteria by innate immune receptors is a critical step in the host response. Here Santos and colleagues show human GBP1 binds to LPS resulting in non-canonical inflammasome activation.
Collapse
Affiliation(s)
- José Carlos Santos
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Dave Boucher
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | | | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Marisa Dilucca
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kateryna Shkarina
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Rosalie Heilig
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Roderick Y H Lim
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
25
|
Reuter T, Vorwerk S, Liss V, Chao TC, Hensel M, Hansmeier N. Proteomic Analysis of Salmonella-modified Membranes Reveals Adaptations to Macrophage Hosts. Mol Cell Proteomics 2020; 19:900-912. [PMID: 32102972 PMCID: PMC7196581 DOI: 10.1074/mcp.ra119.001841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
Systemic infection and proliferation of intracellular pathogens require the biogenesis of a growth-stimulating compartment. The gastrointestinal pathogen Salmonella enterica commonly forms highly dynamic and extensive tubular membrane compartments built from Salmonella-modified membranes (SMMs) in diverse host cells. Although the general mechanism involved in the formation of replication-permissive compartments of S. enterica is well researched, much less is known regarding specific adaptations to different host cell types. Using an affinity-based proteome approach, we explored the composition of SMMs in murine macrophages. The systematic characterization provides a broader landscape of host players to the maturation of Salmonella-containing compartments and reveals core host elements targeted by Salmonella in macrophages as well as epithelial cells. However, we also identified subtle host specific adaptations. Some of these observations, such as the differential involvement of the COPII system, Rab GTPases 2A, 8B, 11 and ER transport proteins Sec61 and Sec22B may explain cell line-dependent variations in the pathophysiology of Salmonella infections. In summary, our system-wide approach demonstrates a hitherto underappreciated impact of the host cell type in the formation of intracellular compartments by Salmonella.
Collapse
Affiliation(s)
- Tatjana Reuter
- CellNanOs - Center for Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Stephanie Vorwerk
- CellNanOs - Center for Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Viktoria Liss
- Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Tzu-Chiao Chao
- Institute of Environmental Change and Society, Department of Biology, University of Regina, Regina, Canada
| | - Michael Hensel
- Division of Microbiology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany; CellNanOs - Center for Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| | - Nicole Hansmeier
- Department of Biology, Faculty of Science, Luther College at University of Regina, Regina, Canada.
| |
Collapse
|
26
|
Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A. Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review. Infect Drug Resist 2020; 13:11-26. [PMID: 32021316 PMCID: PMC6954085 DOI: 10.2147/idr.s230604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
Salmonella can be categorized into many serotypes, which are specific to known hosts or broadhosts. It makes no difference which one of the serotypes would penetrate the gastrointestinal tract because they all face similar obstacles such as mucus and microbiome. However, following their penetration, some species remain in the gastrointestinal tract; yet, others spread to another organ like gallbladder. Salmonella is required to alter the immune response to sustain its intracellular life. Changing the host response requires particular effector proteins and vehicles to translocate them. To this end, a categorized gene called Salmonella pathogenicity island (SPI) was developed; genes like Salmonella pathogenicity island encode aggressive or modulating proteins. Initially, Salmonella needs to be attached and stabilized via adhesin factor, without which no further steps can be taken. In this review, an attempt has been made to elaborate on each factor attached to the host cell or to modulating and aggressive proteins that evade immune systems. This review includes four sections: (A) attachment factors or T3SS- independent entrance, (B) effector proteins or T3SS-dependent entrance, (c) regulation of invasive genes, and (D) regulation of immune responses.
Collapse
Affiliation(s)
- Taher Azimi
- Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zamirnasta
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| | - Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, Environmental health Department, School of Public Health, Tehran University of medical sciences, Tehran, Iran
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
27
|
Functional screenings reveal different requirements for host microRNAs in Salmonella and Shigella infection. Nat Microbiol 2019; 5:192-205. [DOI: 10.1038/s41564-019-0614-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022]
|
28
|
Lau N, Haeberle AL, O’Keeffe BJ, Latomanski EA, Celli J, Newton HJ, Knodler LA. SopF, a phosphoinositide binding effector, promotes the stability of the nascent Salmonella-containing vacuole. PLoS Pathog 2019; 15:e1007959. [PMID: 31339948 PMCID: PMC6682159 DOI: 10.1371/journal.ppat.1007959] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/05/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The enteric bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), utilizes two type III secretion systems (T3SSs) to invade host cells, survive and replicate intracellularly. T3SS1 and its dedicated effector proteins are required for bacterial entry into non-phagocytic cells and establishment and trafficking of the nascent Salmonella-containing vacuole (SCV). Here we identify the first T3SS1 effector required to maintain the integrity of the nascent SCV as SopF. SopF associates with host cell membranes, either when translocated by bacteria or ectopically expressed. Recombinant SopF binds to multiple phosphoinositides in protein-lipid overlays, suggesting that it targets eukaryotic cell membranes via phospholipid interactions. In yeast, the subcellular localization of SopF is dependent on the activity of Mss4, a phosphatidylinositol 4-phosphate 5-kinase that generates PI(4,5)P2 from PI(4)P, indicating that membrane recruitment of SopF requires specific phospholipids. Ectopically expressed SopF partially colocalizes with specific phosphoinositide pools present on the plasma membrane in mammalian cells and with cytoskeletal-associated markers at the leading edge of cells. Translocated SopF concentrates on plasma membrane ruffles and around intracellular bacteria, presumably on the SCV. SopF is not required for bacterial invasion of non-phagocytic cells but is required for maintenance of the internalization vacuole membrane as infection with a S. Typhimurium ΔsopF mutant led to increased lysis of the SCV compared to wild type bacteria. Our structure-function analysis shows that the carboxy-terminal seven amino acids of SopF are essential for its membrane association in host cells and to promote SCV membrane stability. We also describe that SopF and another T3SS1 effector, SopB, act antagonistically to modulate nascent SCV membrane dynamics. In summary, our study highlights that a delicate balance of type III effector activities regulates the stability of the Salmonella internalization vacuole.
Collapse
Affiliation(s)
- Nicole Lau
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Brittany J. O’Keeffe
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Eleanor A. Latomanski
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
| | - Hayley J. Newton
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (LAK); (HJN)
| | - Leigh A. Knodler
- The Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- * E-mail: (LAK); (HJN)
| |
Collapse
|
29
|
Weiner A, Enninga J. The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends Microbiol 2019; 27:426-439. [DOI: 10.1016/j.tim.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
30
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
31
|
Martinez E, Siadous FA, Bonazzi M. Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens. FEMS Microbiol Rev 2018; 42:425-447. [PMID: 29596635 DOI: 10.1093/femsre/fuy013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Co-evolution of bacterial pathogens with their hosts led to the emergence of a stunning variety of strategies aiming at the evasion of host defences, colonisation of host cells and tissues and, ultimately, the establishment of a successful infection. Pathogenic bacteria are typically classified as extracellular and intracellular; however, intracellular lifestyle comes in many different flavours: some microbes rapidly escape to the cytosol whereas other microbes remain within vacuolar compartments and harness membrane trafficking pathways to generate their host-derived, pathogen-specific replicative niche. Here we review the current knowledge on a variety of vacuolar lifestyles, the effector proteins used by bacteria as tools to take control of the host cell and the main membrane trafficking signalling pathways targeted by vacuolar pathogens as source of membranes and nutrients. Finally, we will also discuss how host cells have developed countermeasures to sense the biogenesis of the aberrant organelles harbouring bacteria. Understanding the dialogue between bacterial and eukaryotic proteins is the key to unravel the molecular mechanisms of infection and in turn, this may lead to the identification of new targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Eric Martinez
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| | | | - Matteo Bonazzi
- IRIM, University of Montpellier, CNRS, 34293 Montpellier, France
| |
Collapse
|
32
|
Tuli A, Sharma M. How to do business with lysosomes: Salmonella leads the way. Curr Opin Microbiol 2018; 47:1-7. [PMID: 30391777 DOI: 10.1016/j.mib.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
Pathogens have devised various strategies to alter the host endomembrane system towards building their replicative niche. This is aptly illustrated by Salmonella Typhimurium, whereby it remodels the host endolysosomal system to form a unique niche, also known as Salmonella-containing vacuole (SCV). Decades of research using in vitro cell-based infection studies have revealed intricate details of how Salmonella effectors target endocytic trafficking machinery of the host cell to acquire membrane and nutrients for bacterial replication. Unexpectedly, Salmonella requires host factors involved in endosome-lysosome fusion for its intravacuolar replication. Understanding how Salmonella obtains selective content from lysosomes, that is nutrients, but not active hydrolases, needs further exploration. Recent studies have described heterogeneity in the composition and pH of lysosomes, which will be highly relevant to explore, not only in the context of Salmonella infection, but also for other intracellular pathogens that interact with the endolysosomal pathway.
Collapse
Affiliation(s)
- Amit Tuli
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Punjab, India.
| |
Collapse
|
33
|
McCaughey J, Stephens DJ. COPII-dependent ER export in animal cells: adaptation and control for diverse cargo. Histochem Cell Biol 2018; 150:119-131. [PMID: 29916038 PMCID: PMC6096569 DOI: 10.1007/s00418-018-1689-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 12/31/2022]
Abstract
The export of newly synthesized proteins from the endoplasmic reticulum is fundamental to the ongoing maintenance of cell and tissue structure and function. After co-translational translocation into the ER, proteins destined for downstream intracellular compartments or secretion from the cell are sorted and packaged into transport vesicles by the COPII coat protein complex. The fundamental discovery and characterization of the pathway has now been augmented by a greater understanding of the role of COPII in diverse aspects of cell function. We now have a deep understanding of how COPII contributes to the trafficking of diverse cargoes including extracellular matrix molecules, developmental signalling proteins, and key metabolic factors such as lipoproteins. Structural and functional studies have shown that the COPII coat is both highly flexible and subject to multiple modes of regulation. This has led to new discoveries defining roles of COPII in development, autophagy, and tissue organization. Many of these newly emerging features of the canonical COPII pathway are placed in a context of procollagen secretion because of the fundamental interest in how a coat complex that typically generates 80-nm transport vesicles can package a cargo reported to be over 300 nm. Here we review the current understanding of COPII and assess the current consensus on its role in packaging diverse cargo proteins.
Collapse
Affiliation(s)
- Janine McCaughey
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
34
|
Fredlund J, Santos JC, Stévenin V, Weiner A, Latour-Lambert P, Rechav K, Mallet A, Krijnse-Locker J, Elbaum M, Enninga J. The entry ofSalmonellain a distinct tight compartment revealed at high temporal and ultrastructural resolution. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12816] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jennifer Fredlund
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - José Carlos Santos
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Virginie Stévenin
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | - Allon Weiner
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| | | | - Katya Rechav
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | | | | | - Michael Elbaum
- Department of Interfaces; The Weizmann Institute of Sciences; Rehovot Israel
| | - Jost Enninga
- Unité “Dynamique des interactions hôte-pathogène”; Institut Pasteur; Paris France
| |
Collapse
|
35
|
Controlled Activity of the Salmonella Invasion-Associated Injectisome Reveals Its Intracellular Role in the Cytosolic Population. mBio 2017; 8:mBio.01931-17. [PMID: 29208746 PMCID: PMC5717391 DOI: 10.1128/mbio.01931-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Salmonella invasion-associated type III secretion system (T3SS1) is an essential virulence factor required for entry into nonphagocytic cells and consequent uptake into a Salmonella-containing vacuole (SCV). While Salmonella is typically regarded as a vacuolar pathogen, a subset of bacteria escape from the SCV in epithelial cells and eventually hyperreplicate in the cytosol. T3SS1 is downregulated following bacterial entry into mammalian cells, but cytosolic Salmonella cells are T3SS1 induced, suggesting prolonged or resurgent activity of T3SS1 in this population. In order to investigate the postinternalization contributions of T3SS1 to the Salmonella infectious cycle in epithelial cells, we bypassed its requirement for bacterial entry by tagging the T3SS1-energizing ATPase InvC at the C terminus with peptides that are recognized by bacterial tail-specific proteases. This caused a dramatic increase in InvC turnover which rendered even assembled injectisomes inactive. Bacterial strains conditionally expressing these unstable InvC variants were proficient for invasion but underwent rapid and sustained intracellular inactivation of T3SS1 activity when InvC expression ceased. This allowed us to directly implicate T3SS1 activity in cytosolic colonization and bacterial egress. We subsequently identified two T3SS1-delivered effectors, SopB and SipA, that are required for efficient colonization of the epithelial cell cytosol. Overall, our findings support a multifaceted, postinvasion role for T3SS1 and its effectors in defining the cytosolic population of intracellular Salmonella. A needle-like apparatus, the type III secretion system (T3SS) injectisome, is absolutely required for Salmonella enterica to enter epithelial cells; this requirement has hampered the analysis of its postentry contributions. To identify T3SS1-dependent intracellular activities, in this study we overcame this limitation by developing a conditional inactivation in the T3SS whereby T3SS activity is chemically induced during culture in liquid broth, permitting bacterial entry into epithelial cells, but is quickly and perpetually inactivated in the absence of inducer. In this sense, the mutant acts like wild-type bacteria when extracellular and as a T3SS mutant once it enters a host cell. This “conditional” mutant allowed us to directly link activity of this T3SS with nascent vacuole lysis, cytosolic proliferation, and cellular egress, demonstrating that the invasion-associated T3SS also contributes to essential intracellular stages of the S. enterica infectious cycle.
Collapse
|
36
|
Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication. PLoS Pathog 2017; 13:e1006700. [PMID: 29084291 PMCID: PMC5679646 DOI: 10.1371/journal.ppat.1006700] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 11/09/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar typhimurium extensively remodels the host late endocytic compartments to establish its vacuolar niche within the host cells conducive for its replication, also known as the Salmonella-containing vacuole (SCV). By maintaining a prolonged interaction with late endosomes and lysosomes of the host cells in the form of interconnected network of tubules (Salmonella-induced filaments or SIFs), Salmonella gains access to both membrane and fluid-phase cargo from these compartments. This is essential for maintaining SCV membrane integrity and for bacterial intravacuolar nutrition. Here, we have identified the multisubunit lysosomal tethering factor—HOPS (HOmotypic fusion and Protein Sorting) complex as a crucial host factor facilitating delivery of late endosomal and lysosomal content to SCVs, providing membrane for SIF formation, and nutrients for intravacuolar bacterial replication. Accordingly, depletion of HOPS subunits significantly reduced the bacterial load in non-phagocytic and phagocytic cells as well as in a mouse model of Salmonella infection. We found that Salmonella effector SifA in complex with its binding partner; SKIP, interacts with HOPS subunit Vps39 and mediates recruitment of this tethering factor to SCV compartments. The lysosomal small GTPase Arl8b that binds to, and promotes membrane localization of Vps41 (and other HOPS subunits) was also required for HOPS recruitment to SCVs and SIFs. Our findings suggest that Salmonella recruits the host late endosomal and lysosomal membrane fusion machinery to its vacuolar niche for access to host membrane and nutrients, ensuring its intracellular survival and replication. Intracellular pathogens have devised various strategies to subvert the host membrane trafficking pathways for their growth and survival inside the host cells. Salmonella is one such successful intracellular pathogen that redirects membrane and nutrients from the host endocytic compartments to its replicative niche known as the Salmonella-containing vacuole (SCV) via establishing an interconnected network of tubules (Salmonella-induced filaments or SIFs) that form a continuum with the SCVs. How Salmonella ensures a constant supply of endocytic cargo required for its survival and growth remained unexplored. Our work uncovers a strategy evolved by Salmonella wherein it secretes a bacterial effector into the host cytosol that recruits component of host vesicle fusion machinery-HOPS complex to SCVs and SIFs. HOPS complex promotes docking of the late endocytic compartments at the SCV membrane, prior to their fusion. Thus, depletion of HOPS subunits both in cultured cell lines as well as a mouse model inhibits Salmonella replication, likely due to reduced access to host membranes and nutrients by the vacuolar bacteria. These findings provide mechanistic insights into how this pathogen reroutes the host’s endocytic transport towards its vacuole, ensuring its own intracellular survival and replication.
Collapse
|
37
|
Fels U, Gevaert K, Van Damme P. Proteogenomics in Aid of Host-Pathogen Interaction Studies: A Bacterial Perspective. Proteomes 2017; 5:E26. [PMID: 29019919 PMCID: PMC5748561 DOI: 10.3390/proteomes5040026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/02/2017] [Accepted: 10/08/2017] [Indexed: 12/17/2022] Open
Abstract
By providing useful tools to study host-pathogen interactions, next-generation omics has recently enabled the study of gene expression changes in both pathogen and infected host simultaneously. However, since great discriminative power is required to study pathogen and host simultaneously throughout the infection process, the depth of quantitative gene expression profiling has proven to be unsatisfactory when focusing on bacterial pathogens, thus preferentially requiring specific strategies or the development of novel methodologies based on complementary omics approaches. In this review, we focus on the difficulties encountered when making use of proteogenomics approaches to study bacterial pathogenesis. In addition, we review different omics strategies (i.e., transcriptomics, proteomics and secretomics) and their applications for studying interactions of pathogens with their host.
Collapse
Affiliation(s)
- Ursula Fels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
38
|
Castanheira S, García-Del Portillo F. Salmonella Populations inside Host Cells. Front Cell Infect Microbiol 2017; 7:432. [PMID: 29046870 PMCID: PMC5632677 DOI: 10.3389/fcimb.2017.00432] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the Salmonella genus cause diseases ranging from gastroenteritis to life-threatening typhoid fever and are among the most successful intracellular pathogens known. After the invasion of the eukaryotic cell, Salmonella exhibits contrasting lifestyles with different replication rates and subcellular locations. Although Salmonella hyper-replicates in the cytosol of certain host cell types, most invading bacteria remain within vacuoles in which the pathogen proliferates at moderate rates or persists in a dormant-like state. Remarkably, these cytosolic and intra-vacuolar intracellular lifestyles are not mutually exclusive and can co-exist in the same infected host cell. The mechanisms that direct the invading bacterium to follow the cytosolic or intra-vacuolar “pathway” remain poorly understood. In vitro studies show predominance of either the cytosolic or the intra-vacuolar population depending on the host cell type invaded by the pathogen. The host and pathogen factors controlling phagosomal membrane integrity and, as consequence, the egress into the cytosol, are intensively investigated. Other aspects of major interest are the host defenses that may affect differentially the cytosolic and intra-vacuolar populations and the strategies used by the pathogen to circumvent these attacks. Here, we summarize current knowledge about these Salmonella intracellular subpopulations and discuss how they emerge during the interaction of this pathogen with the eukaryotic cell.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Francisco García-Del Portillo
- Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
39
|
Knuff K, Finlay BB. What the SIF Is Happening-The Role of Intracellular Salmonella-Induced Filaments. Front Cell Infect Microbiol 2017; 7:335. [PMID: 28791257 PMCID: PMC5524675 DOI: 10.3389/fcimb.2017.00335] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022] Open
Abstract
A common strategy among intracellular bacterial pathogens is to enter into a vacuolar environment upon host cell invasion. One such pathogen, Salmonella enterica, resides within the Salmonella-containing vacuole (SCV) inside epithelial cells and macrophages. Salmonella hijacks the host endosomal system to establish this unique intracellular replicative niche, forming a highly complex and dynamic network of Salmonella-induced filaments (SIFs). SIFs radiate outwards from the SCV upon onset of bacterial replication. SIF biogenesis is dependent on the activity of bacterial effector proteins secreted by the Salmonella-pathogenicity island-2 (SPI-2) encoded type III secretion system. While the presence of SIFs has been known for almost 25 years, their precise role during infection remains elusive. This review summarizes our current knowledge of SCV maturation and SIF biogenesis, and recent advances in our understanding of the role of SIFs inside cells.
Collapse
Affiliation(s)
- Katelyn Knuff
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada.,Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada.,Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
40
|
Kühn S, Lopez-Montero N, Chang YY, Sartori-Rupp A, Enninga J. Imaging macropinosomes during Shigella infections. Methods 2017; 127:12-22. [PMID: 28522322 DOI: 10.1016/j.ymeth.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022] Open
Abstract
Macropinocytosis is the uptake of extracellular fluid within vesicles of varying size that takes place during numerous cellular processes in a large variety of cells. A growing number of pathogens, including viruses, parasites, and bacteria are known to induce macropinocytosis during their entry into targeted host cells. We have recently discovered that the human enteroinvasive, bacterial pathogen Shigella causes in situ macropinosome formation during its entry into epithelial cells. These infection-associated macropinosomes are not generated to ingest the bacteria, but are instead involved in Shigella's intracellular niche formation. They make contacts with the phagocytosed shigellae to promote vacuolar membrane rupture and their cytosolic release. Here, we provide an overview of the different imaging approaches that are currently used to analyze macropinocytosis during infectious processes with a focus on Shigella entry. We detail the advantages and disadvantages of genetically encoded reporters as well as chemical probes to trace fluid phase uptake. In addition, we report how such reporters can be combined with ultrastructural approaches for correlative light electron microscopy either in thin sections or within large volumes. The combined imaging techniques introduced here provide a detailed characterization of macropinosomes during bacterial entry, which, apart from Shigella, are relevant for numerous other ones, including Salmonella, Brucella or Mycobacteria.
Collapse
Affiliation(s)
- Sonja Kühn
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | | | - Yuen-Yan Chang
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Anna Sartori-Rupp
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Jost Enninga
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France.
| |
Collapse
|
41
|
Neefjes J, Jongsma MML, Berlin I. Stop or Go? Endosome Positioning in the Establishment of Compartment Architecture, Dynamics, and Function. Trends Cell Biol 2017; 27:580-594. [PMID: 28363667 DOI: 10.1016/j.tcb.2017.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/03/2023]
Abstract
The endosomal system constitutes a key negotiator between the environment of a cell and its internal affairs. Comprised of a complex membranous network, wherein each vesicle can in principle move autonomously throughout the cell, the endosomal system operates as a coherent unit to optimally face external challenges and maintain homeostasis. Our appreciation of how individual endosomes are controlled in time and space to best serve their collective purpose has evolved dramatically in recent years. In light of these efforts, the endoplasmic reticulum (ER) - with its expanse of membranes permeating the cytoplasmic space - has emerged as a potent spatiotemporal organizer of endosome biology. We review the latest advances in our understanding of the mechanisms underpinning endosomal transport and positioning, with emphasis on the contributions from the ER, and offer a perspective on how the interplay between these aspects shapes the architecture and dynamics of the endosomal system and drives its myriad cellular functions.
Collapse
Affiliation(s)
- Jacques Neefjes
- Department of Chemical Immunology, Leiden University Medical Center (LUMC), Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Marlieke M L Jongsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC)/Universiteit van Amsterdam (UvA), Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Ilana Berlin
- Department of Chemical Immunology, Leiden University Medical Center (LUMC), Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
42
|
Liss V, Swart AL, Kehl A, Hermanns N, Zhang Y, Chikkaballi D, Böhles N, Deiwick J, Hensel M. Salmonella enterica Remodels the Host Cell Endosomal System for Efficient Intravacuolar Nutrition. Cell Host Microbe 2017; 21:390-402. [DOI: 10.1016/j.chom.2017.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/04/2016] [Accepted: 02/02/2017] [Indexed: 01/09/2023]
|
43
|
Santos JC, Enninga J. At the crossroads: communication of bacteria-containing vacuoles with host organelles. Cell Microbiol 2016; 18:330-9. [PMID: 26762760 DOI: 10.1111/cmi.12567] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 02/06/2023]
Abstract
Invasive bacterial pathogens are engulfed upon host cell entry in a vacuolar environment called the bacteria-containing vacuole (BCV). BCVs directly contact with numerous host compartments, mainly vesicles of the endocytic pathway, such as endosomes or lysosomes. In addition, they also interact with the endoplasmic reticulum and endomembranes of the secretory pathway. These connections between the pathogen and the host occur either through heterotypic membrane fusions or through membrane contact sites. The precise regulation of BCV contacts with host compartments defines the constitution of the intracellular bacterial niche. It emerges that the associated pathways may control the stability of the BCV resulting either in vacuolar or cytoplasmically growing bacteria. Here, we will portray how the usage of novel proteomics and imaging technologies allows comparison of the communication of different host cell compartments with four relevant intracellular human pathogens, namely Salmonella enterica, Legionella pneumophila, Shigella flexneri and Francisella tularensis. The first two remain mainly within the BCV, and the latter two escape into the cytoplasm.
Collapse
Affiliation(s)
- José Carlos Santos
- Unit "Dynamics of Host-Pathogen Interactions", Institut Pasteur, Paris, France
| | - Jost Enninga
- Unit "Dynamics of Host-Pathogen Interactions", Institut Pasteur, Paris, France
| |
Collapse
|
44
|
Weiner A, Mellouk N, Lopez-Montero N, Chang YY, Souque C, Schmitt C, Enninga J. Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells. PLoS Pathog 2016; 12:e1005602. [PMID: 27182929 PMCID: PMC4868309 DOI: 10.1371/journal.ppat.1005602] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/05/2016] [Indexed: 01/30/2023] Open
Abstract
Intracellular pathogens include all viruses, many bacteria and parasites capable of invading and surviving within host cells. Key to survival is the subversion of host cell pathways by the pathogen for the purpose of propagation and evading the immune system. The intracellular bacterium Shigella flexneri, the causative agent of bacillary dysentery, invades host cells in a vacuole that is subsequently ruptured to allow growth of the pathogen within the host cytoplasm. S. flexneri invasion has been classically described as a macropinocytosis-like process, however the underlying details and the role of macropinosomes in the intracellular bacterial lifestyle have remained elusive. We applied dynamic imaging and advanced large volume correlative light electron microscopy (CLEM) to study the highly transient events of S. flexneri's early invasion into host epithelial cells and elucidate some of its fundamental features. First, we demonstrate a clear distinction between two compartments formed during the first step of invasion: the bacterial containing vacuole and surrounding macropinosomes, often considered identical. Next, we report a functional link between macropinosomes and the process of vacuolar rupture, demonstrating that rupture timing is dependent on the availability of macropinosomes as well as the activity of the small GTPase Rab11 recruited directly to macropinosomes. We go on to reveal that the bacterial containing vacuole and macropinosomes come into direct contact at the onset of vacuolar rupture. Finally, we demonstrate that S. flexneri does not subvert pre-existing host endocytic vesicles during the invasion steps leading to vacuolar rupture, and propose that macropinosomes are the major compartment involved in these events. These results provide the basis for a new model of the early steps of S. flexneri epithelial cell invasion, establishing a different view of the enigmatic process of cytoplasmic access by invasive bacterial pathogens.
Collapse
Affiliation(s)
- Allon Weiner
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
- * E-mail: (AW); (JE)
| | - Nora Mellouk
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
| | | | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
| | - Célia Souque
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
| | | | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen interactions Unit, Paris, France
- * E-mail: (AW); (JE)
| |
Collapse
|