1
|
Chibani S, Yacoub E, Boujemaa S, Mardassi H, Guglielmini J, Vaysse A, Khadraoui N, Mlik B, Ben Abdelmoumen Mardassi B. A genome-wide investigation of Mycoplasma hominis genes associated with gynecological infections or infertility. Front Microbiol 2025; 16:1561378. [PMID: 40371111 PMCID: PMC12075135 DOI: 10.3389/fmicb.2025.1561378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/18/2025] [Indexed: 05/16/2025] Open
Abstract
Background and aim Mycoplasma hominis is a human pathogenic bacterium that causes a wide range of genital infections and reproductive issues. Previously, based on an extended multilocus sequence typing scheme, we provided evidence for the segregation of M. hominis clinical strains into two distinct pathotypes: gynecological infections or infertility. Here, based on whole genome sequencing (WGS) data, we sought to provide a more refined picture of the phylogenetic relationship between these two M. hominis pathotypes, with the aim to delineate the underlying genetic determinants. Methods We carried out WGS of 62 Tunisian M. hominis clinical strains collected over a 17-year period. The majority of these clinical strains are associated with infertility (n = 53) and the remaining nine isolates are from gynecological infections cases. An alignment-free distance-based procedure (Jolytree) was used to infer phylogenetic relationships among M. hominis isolates, while the phylogenetic method treeWAS was used to determine the statistical association between pathotypes of interest and genotypes at all loci. Results The total pangenome of M. hominis strains was found to contain 1,590 genes including 966 core genes and 592 accessory genes, representing 60 and 37% of the total genome, respectively. Collectively, phylogenetic analyses based on WGS confirmed the distinction between the two M. hominis pathotypes. Strikingly, genome wide association analyses identified 4 virulence genes associated with gynecological infections, mainly involved in nucleotide salvage pathways and tolerance to oxidative stress, while five genes have been associated with infertility cases, two of which are implicated in biofilm formation. Conclusion In sum, this study further established the categorization of M. hominis into two pathotypes, and led to the identification of the associated genetic loci, thus holding out promising prospects for a better understanding of the differential interaction of M. hominis with its host.
Collapse
Affiliation(s)
- Salim Chibani
- Group of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnological Development, Pasteur Institute of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| | - Elhem Yacoub
- Group of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnological Development, Pasteur Institute of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| | - Safa Boujemaa
- Group of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnological Development, Pasteur Institute of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Pasteur Institute of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| | - Julien Guglielmini
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Amaury Vaysse
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Nadine Khadraoui
- Group of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnological Development, Pasteur Institute of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| | - Béhija Mlik
- Group of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnological Development, Pasteur Institute of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| | - Boutheina Ben Abdelmoumen Mardassi
- Group of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnological Development, Pasteur Institute of Tunis, University of Tunis-El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
Camli DN, Iscil HAO, Acuner SE. MuGger Toxins: Exploring the Selective Binding Mechanism of Clostridial Glucosyltransferase Toxin B and Host GTPases. Proteins 2025; 93:934-944. [PMID: 39670652 DOI: 10.1002/prot.26770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
(a) Clostridioides difficile ( C. difficile ) bacterium can cause severe diarrhea and its over-colonization in the host's intestinal tract lead to the development of pseudomembranous colitis, generally due to antibiotic usage. The primary exotoxins involved are toxin A (TcdA) and toxin B (TcdB), the latter being more pathogenic. TcdB has glucosyltransferase activity and mediates monoglycosylation by targeting host cell enzymes (mainly Rho and Ras family of GTPases) with differential selectivity. Here, we aim to provide structural and dynamic insights into how TcdB impacts the host's intestinal epithelial cells focusing on the glycosylation mechanism of Rho GTPases, Cdc42, and Rac1, at the molecular level. To this aim, we modeled the unknown TcdB-host protein complex structures, based on the available experimental structures of TcdB, through protein-protein docking. Then, we elaborated on TcdB-Rho GTPase models as TcdB is known to selectively interact with GDP-bound inactive states of Rho GTPases, over the GTP-bound active ones, but the mechanism is unclear. Through a total of 6 μs-long molecular dynamics simulation of TcdB and GTP/GDP-bound Rac1 and Cdc42 complexes, TcdB's selective binding mechanism was revealed for Rac1. TcdB-Rac1 complexes were further analyzed with enhanced sampling techniques such as well-tempered metadynamics simulations and umbrella sampling to reveal selective binding mechanism between TcdB and GDP-bound Rac1. Our results show that TcdB selectively binds to GDP-bound Rac1, over the GTP-bound one, driven by its affinity for the Mg2+ ion. A destabilized Mg2+ ion incapable of coordinating GDP disrupts Rac1's GTPase function, shedding light on the molecular basis of TcdB's pathogenic effects.
Collapse
Affiliation(s)
- Damla Nur Camli
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
- Science and Advanced Technologies Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, Turkey
| | - Haci Aslan Onur Iscil
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
- Science and Advanced Technologies Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, Turkey
| | - Saliha Ece Acuner
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
- Science and Advanced Technologies Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
3
|
Taghaddos D, Saqib Z, Bai X, Bercik P, Collins SM. Post-infectious ibs following Clostridioides difficile infection; role of microbiota and implications for treatment. Dig Liver Dis 2024; 56:1805-1809. [PMID: 38653643 DOI: 10.1016/j.dld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Up to 25% of patients recovering from antibiotic-treated Clostridioides difficile infection (CDI) develop functional symptoms reminiscent of Post-Infectious Irritable Bowel Syndrome (PI-IBS). For patients with persistent symptoms following infection, a clinical dilemma arises as to whether to provide additional antibiotic treatment or to adopt a conservative symptom-based approach. Here, we review the literature on CDI-related PI-IBS and compare the findings with PI-IBS. We review proposed mechanisms, including the role of C. difficile toxins and the microbiota, and discuss implications for therapy. We suggest that gut dysfunction post-CDI may be initiated by toxin-induced damage to enteroglial cells and that a dysbiotic gut microbitota maintains the clinical phenotype over time, prompting consideration of microbiota-directed therapies. While Fecal Microbial Transplant (FMT) is currently reserved for recurrent CDI (rCDI), we propose that microbiota-directed therapies may have a role in primary CDI in order to avoid or mitigate futher antibiotic treatment that further disrupts the microbiota and thus prevent PI-IBS. We discuss novel microbial transfer therapies and as they emerge, we recommend clinical trials to determine whether microbial transfer therapy of the primary infection prevents both rCDI and CDI-related PI- IBS.
Collapse
Affiliation(s)
- Dana Taghaddos
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zarwa Saqib
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xiaopeng Bai
- Division of Gastroenterology, Kyushu University, Japan
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
5
|
Zheng Y, Yang Q, Luo J, Zhang Y, Li X, He L, Ma C, Tao L. Identification of a hemorrhagic determinant in Clostridioides difficile TcdA and Paeniclostridium sordellii TcsH. Microbiol Spectr 2024; 12:e0035424. [PMID: 38709085 PMCID: PMC11237598 DOI: 10.1128/spectrum.00354-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Paeniclostridium sordellii hemorrhagic toxin (TcsH) and Clostridioides difficile toxin A (TcdA) are two major members of the large clostridial toxin (LCT) family. These two toxins share ~87% similarity and are known to cause severe hemorrhagic pathology in animals. Yet, the pathogenesis of their hemorrhagic toxicity has been mysterious for decades. Here, we examined the liver injury after systemic exposure to different LCTs and found that only TcsH and TcdA induce overt hepatic hemorrhage. By investigating the chimeric and truncated toxins, we demonstrated that the enzymatic domain of TcsH alone is not sufficient to determine its potent hepatic hemorrhagic toxicity in mice. Likewise, the combined repetitive oligopeptide (CROP) domain of TcsH/TcdA alone also failed to explain their strong hemorrhagic activity in mice. Lastly, we showed that disrupting the first two short repeats of CROPs in TcsH and TcdA impaired hemorrhagic toxicity without causing overt changes in cytotoxicity and lethality. These findings lead to a deeper understanding of toxin-induced hemorrhage and the pathogenesis of LCTs and could be insightful in developing therapeutic avenues against clostridial infections. IMPORTANCE Paeniclostridium sordellii and Clostridioides difficile infections often cause hemorrhage in the affected tissues and organs, which is mainly attributed to their hemorrhagic toxins, TcsH and TcdA. In this study, we demonstrate that TcsH and TcdA, but not other related toxins. including Clostridioides difficile toxin B and TcsL, induce severe hepatic hemorrhage in mice. We further determine that a small region in TcsH and TcdA is critical for the hemorrhagic toxicity but not cytotoxicity or lethality of these toxins. Based on these results, we propose that the hemorrhagic toxicity of TcsH and TcdA is due to an uncharacterized mechanism, such as the presence of an unknown receptor, and future studies to identify the interactive host factors are warranted.
Collapse
Affiliation(s)
- Yangling Zheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Qi Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jianhua Luo
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xingxing Li
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Liuqing He
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Chao Ma
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Liang Tao
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future and Key Laboratory of Multi-omics in Infection and Immunity of Zhejiang Province, School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Schneider S, Wirth C, Jank T, Hunte C, Aktories K. Tyrosine-modifying glycosylation by Yersinia effectors. J Biol Chem 2024; 300:107331. [PMID: 38703997 PMCID: PMC11152714 DOI: 10.1016/j.jbc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Silvia Schneider
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.
| | - Thomas Jank
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Carola Hunte
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
7
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
8
|
Papatheodorou P, Minton NP, Aktories K, Barth H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:219-247. [PMID: 38175478 DOI: 10.1007/978-3-031-42108-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on the human gut pathogen Clostridioides (C.) difficile and its toxins continues to attract much attention as a consequence of the threat to human health posed by hypervirulent strains. Toxin A (TcdA) and Toxin B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (C. difficile transferase). C. difficile toxins are the causative agents of C. difficile-associated diseases (CDADs), such as antibiotics-associated diarrhea and pseudomembranous colitis. For that reason, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Many of these studies have been conducted in European laboratories. Here, we provide an update on our previous review (Papatheodorou et al. Adv Exp Med Biol, 2018) on important advances in C. difficile toxins research.
Collapse
Affiliation(s)
- Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, University of Nottingham, Nottingham, UK
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Belyy A, Heilen P, Hagel P, Hofnagel O, Raunser S. Structure and activation mechanism of the Makes caterpillars floppy 1 toxin. Nat Commun 2023; 14:8226. [PMID: 38086871 PMCID: PMC10716152 DOI: 10.1038/s41467-023-44069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The bacterial Makes caterpillars floppy 1 (Mcf1) toxin promotes apoptosis in insects, leading to loss of body turgor and death. The molecular mechanism underlying Mcf1 intoxication is poorly understood. Here, we present the cryo-EM structure of Mcf1 from Photorhabdus luminescens, revealing a seahorse-like shape with a head and tail. While the three head domains contain two effectors, as well as an activator-binding domain (ABD) and an autoprotease, the tail consists of two putative translocation and three putative receptor-binding domains. Rearrangement of the tail moves the C-terminus away from the ABD and allows binding of the host cell ADP-ribosylation factor 3, inducing conformational changes that position the cleavage site closer to the protease. This distinct activation mechanism that is based on a hook-loop interaction results in three autocleavage reactions and the release of two toxic effectors. Unexpectedly, the BH3-like domain containing ABD is not an active effector. Our findings allow us to understand key steps of Mcf1 intoxication at the molecular level.
Collapse
Affiliation(s)
- Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philipp Heilen
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philine Hagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| |
Collapse
|
10
|
Dupuy B. Regulation of Clostridial Toxin Gene Expression: A Pasteurian Tradition. Toxins (Basel) 2023; 15:413. [PMID: 37505682 PMCID: PMC10467148 DOI: 10.3390/toxins15070413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
The alarming symptoms attributed to several potent clostridial toxins enabled the early identification of the causative agent of tetanus, botulism, and gas gangrene diseases, which belongs to the most famous species of pathogenic clostridia. Although Clostridioides difficile was identified early in the 20th century as producing important toxins, it was identified only 40 years later as the causative agent of important nosocomial diseases upon the advent of antibiotic therapies in hospital settings. Today, C. difficile is a leading public health issue, as it is the major cause of antibiotic-associated diarrhea in adults. In particular, severe symptoms within the spectrum of C. difficile infections are directly related to the levels of toxins produced in the host. This highlights the importance of understanding the regulation of toxin synthesis in the pathogenicity process of C. difficile, whose regulatory factors in response to the gut environment were first identified at the Institut Pasteur. Subsequently, the work of other groups in the field contributed to further deciphering the complex mechanisms controlling toxin production triggered by the intestinal dysbiosis states during infection. This review summarizes the Pasteurian contribution to clostridial toxin regulation studies.
Collapse
Affiliation(s)
- Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
11
|
Markovska R, Dimitrov G, Gergova R, Boyanova L. Clostridioides difficile, a New “Superbug”. Microorganisms 2023; 11:microorganisms11040845. [PMID: 37110267 PMCID: PMC10140992 DOI: 10.3390/microorganisms11040845] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming, anaerobic bacterium. The clinical features of C. difficile infections (CDIs) can vary, ranging from the asymptomatic carriage and mild self-limiting diarrhoea to severe and sometimes fatal pseudomembranous colitis. C. difficile infections (CDIs) are associated with disruption of the gut microbiota caused by antimicrobial agents. The infections are predominantly hospital-acquired, but in the last decades, the CDI patterns have changed. Their prevalence increased, and the proportion of community-acquired CDIs has also increased. This can be associated with the appearance of hypervirulent epidemic isolates of ribotype 027. The COVID-19 pandemic and the associated antibiotic overuse could additionally change the patterns of infections. Treatment of CDIs is a challenge, with only three appropriate antibiotics for use. The wide distribution of C. difficile spores in hospital environments, chronic persistence in some individuals, especially children, and the recent detection of C. difficile in domestic pets can furthermore worsen the situation. “Superbugs” are microorganisms that are both highly virulent and resistant to antibiotics. The aim of this review article is to characterise C. difficile as a new member of the “superbug” family. Due to its worldwide spread, the lack of many treatment options and the high rates of both recurrence and mortality, C. difficile has emerged as a major concern for the healthcare system.
Collapse
|
12
|
Kubatzky KF. Pasteurella multocida toxin - lessons learned from a mitogenic toxin. Front Immunol 2022; 13:1058905. [PMID: 36591313 PMCID: PMC9800868 DOI: 10.3389/fimmu.2022.1058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
The gram-negative, zoonotic bacterium Pasteurella multocida was discovered in 1880 and found to be the causative pathogen of fowl cholera. Pasteurella-related diseases can be found in domestic and wild life animals such as buffalo, sheep, goat, deer and antelope, cats, dogs and tigers and cause hemorrhagic septicemia in cattle, rhinitis or pneumonia in rabbits or fowl cholera in poultry and birds. Pasteurella multocida does not play a major role in the immune-competent human host, but can be found after animal bites or in people with close contact to animals. Toxigenic strains are most commonly found in pigs and express a phage-encoded 146 kDa protein, the Pasteurella multocida toxin (PMT). Toxin-expressing strains cause atrophic rhinitis where nasal turbinate bones are destroyed through the inhibition of bone building osteoblasts and the activation of bone resorbing osteoclasts. After its uptake through receptor-mediated endocytosis, PMT specifically targets the alpha subunit of several heterotrimeric G proteins and constitutively activates them through deamidation of a glutamine residue to glutamate in the alpha subunit. This results in cytoskeletal rearrangement, proliferation, differentiation and survival of cells. Because of the toxin's mitogenic effects, it was suggested that it might have carcinogenic properties, however, no link between Pasteurella infections and cell transformation could be established, neither in tissue culture models nor through epidemiological data. In the recent years it was shown that the toxin not only affects bone, but also the heart as well as basically all cells of innate and adaptive immunity. During the last decade the focus of research shifted from signal transduction processes to understanding how the bacteria might benefit from a bone-destroying toxin. The primary function of PMT seems to be the modulation of immune cell activation which at the same time creates an environment permissive for osteoclast formation. While the disease is restricted to pigs, the implications of the findings from PMT research can be used to explore human diseases and have a high translational potential. In this review our current knowledge will be summarized and it will be discussed what can be learned from using PMT as a tool to understand human pathologies.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Koh E, Kim U, Cho HS. Catalytic DxD motif caged in Asx-turn and Met-aromatic interaction attenuates the pathogenic glycosylation of SseK2/NleB2 effectors. Sci Rep 2022; 12:19288. [PMID: 36369343 PMCID: PMC9652389 DOI: 10.1038/s41598-022-22803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogenic bacteria encode virulent glycosyltransferases that conjugate various glycans onto host crucial proteins, which allows adhesion to mammalian cells and modulates host cellular processes for pathogenesis. Escherichia coli NleB1, Citrobacter rodentium NleB, and Salmonella enterica SseK1/3 type III effectors fatally glycosyltransfer N-acetyl glucosamine (GlcNAc) from UDP-GlcNAc to arginine residues of death domain-containing proteins that regulate host inflammation, intra-bacterial proteins, and themselves, whose post-translational modification disrupts host immune functions and prolongs bacterial viability inside host cells. However, unlike the similar NleB1/SseK1/SseK3, E. coli NleB2 and S. enterica SseK2 show deficient GlcNAcylation and neither intra-bacterial glycosylation nor auto-glycosylation. Here, as the major factor in SseK2/NleB2 deficiency, we focused on the catalytic Asp-x-Asp (DxD) motif conserved throughout all O-/N-glycosyltransferases to coordinate Mn2+. All DxD motifs in apo-glycosyltransferases form Type-I-turns for binding Mn2+, similar to the ligand-bound DxD motif, whereas TcnA/SseK2/NleB2 DxD motifs form Asx-turns, which are unable to bind Mn2+. Interestingly, methionine of the NleB2 DMD motif forms triple Met-aromatic interactions, as found in age-associated diseases and tumor necrosis factor (TNF) ligand-receptor complexes. The NleB1 A222M mutation induces triple Met-aromatic interactions to steeply attenuate glycosylation activity to 3% of that in the wild type. Thus, the characteristic conformation of the DxD motif is essential for binding Mn2+, donors, and glycosylate targets. This explains why SseK2/NleB2 effectors with the DxD motif caged in the Asp-/Asn-turn (Asx-turn) and triple Met-aromatic interactions have lower glycosyltransferase activity than that of other fatal NleB1/SseK1/SseK3 toxins.
Collapse
Affiliation(s)
- Eunhee Koh
- grid.15444.300000 0004 0470 5454Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Uijin Kim
- grid.15444.300000 0004 0470 5454Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hyun-Soo Cho
- grid.15444.300000 0004 0470 5454Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| |
Collapse
|
14
|
Azimirad M, Noori M, Azimirad F, Gholami F, Naseri K, Yadegar A, Asadzadeh Aghdaei H, Zali MR. Curcumin and capsaicin regulate apoptosis and alleviate intestinal inflammation induced by Clostridioides difficile in vitro. Ann Clin Microbiol Antimicrob 2022; 21:41. [PMID: 36155114 PMCID: PMC9511736 DOI: 10.1186/s12941-022-00533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The dramatic upsurge of Clostridioides difficile infection (CDI) by hypervirulent isolates along with the paucity of effective conventional treatment call for the development of new alternative medicines against CDI. The inhibitory effects of curcumin (CCM) and capsaicin (CAP) were investigated on the activity of toxigenic cell-free supernatants (Tox-S) of C. difficile RT 001, RT 126 and RT 084, and culture-filtrate of C. difficile ATCC 700057. METHODS Cell viability of HT-29 cells exposed to varying concentrations of CCM, CAP, C. difficile Tox-S and culture-filtrate was assessed by MTT assay. Anti-inflammatory and anti-apoptotic effects of CCM and CAP were examined by treatment of HT-29 cells with C. difficile Tox-S and culture-filtrate. Expression of BCL-2, SMAD3, NF-κB, TGF-β and TNF-α genes in stimulated HT-29 cells was measured using RT-qPCR. RESULTS C. difficile Tox-S significantly (P < 0.05) reduced the cell viability of HT-29 cells in comparison with untreated cells. Both CAP and CCM significantly (P < 0.05) downregulated the gene expression level of BCL-2, SMAD3, NF-κB and TNF-α in Tox-S treated HT-29 cells. Moreover, the gene expression of TGF-β decreased in Tox-S stimulated HT-29 cells by both CAP and CCM, although these reductions were not significantly different (P > 0.05). CONCLUSION The results of the present study highlighted that CCM and CAP can modulate the inflammatory response and apoptotic effects induced by Tox-S from different clinical C. difficile strains in vitro. Further studies are required to accurately explore the anti-toxin activity of natural components, and their probable adverse risks in clinical practice.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Paeniclostridium sordellii hemorrhagic toxin targets TMPRSS2 to induce colonic epithelial lesions. Nat Commun 2022; 13:4331. [PMID: 35882856 PMCID: PMC9321280 DOI: 10.1038/s41467-022-31994-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Hemorrhagic toxin (TcsH) is an important exotoxin produced by Paeniclostridium sordellii, but the exact role of TcsH in the pathogenesis remains unclear, partly due to the lack of knowledge of host receptor(s). Here, we carried out two genome-wide CRISPR/Cas9 screens parallelly with TcsH and identified cell surface fucosylation and TMPRSS2 as host factors contributing to the binding and entry of TcsH. Genetic deletion of either fucosylation biosynthesis enzymes or TMPRSS2 in the cells confers resistance to TcsH intoxication. Interestingly, TMPRSS2 and fucosylated glycans can mediate the binding/entry of TcsH independently, thus serving as redundant receptors. Both TMPRSS2 and fucosylation recognize TcsH through its CROPs domain. By using Tmprss2‒/‒ mice, we show that Tmprss2 is important for TcsH-induced systematic toxicity and colonic epithelial lesions. These findings reveal the importance of TMPRSS2 and surface fucosylation in TcsH actions and further provide insights into host recognition mechanisms for large clostridial toxins. Paeniclostridium sordellii is an opportunistic pathogen that can occur and be fatal in women undergoing abortion or childbirth. The pathogenesis of a hemorrhagic toxin, TcsH, produced by this bacteria, remains unknown. Here, authors carry out genome-wide screens to identify pathologically relevant host factors of TcsH.
Collapse
|
16
|
Belyi Y, Levanova N, Schroeder GN. Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules 2022; 12:255. [PMID: 35204756 PMCID: PMC8961657 DOI: 10.3390/biom12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Work over the past two decades clearly defined a significant role of glycosyltransferase effectors in the infection strategy of the Gram-negative, respiratory pathogen Legionella pneumophila. Identification of the glucosyltransferase effectors Lgt1-3, specifically modifying elongation factor eEF1A, disclosed a novel mechanism of host protein synthesis manipulation by pathogens and illuminated its impact on the physiological state of the target cell, in particular cell cycle progression and immune and stress responses. Recent characterization of SetA as a general O-glucosyltransferase with a wide range of targets including the proteins Rab1 and Snx1, mediators of membrane transport processes, and the discovery of new types of glycosyltransferases such as LtpM and SidI indicate that the vast effector arsenal might still hold more so-far unrecognized family members with new catalytic features and substrates. In this article, we review our current knowledge regarding these fascinating biomolecules and discuss their role in introducing new or overriding endogenous post-translational regulatory mechanisms enabling the subversion of eukaryotic cells by L. pneumophila.
Collapse
Affiliation(s)
- Yury Belyi
- Laboratory of Molecular Pathogenesis, Gamaleya Research Centre, 123098 Moscow, Russia
| | | | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
17
|
Klepka C, Sandmann M, Tatge H, Mangan M, Arens A, Henkel D, Gerhard R. Impairment of lysosomal function by Clostridioides difficile TcdB. Mol Microbiol 2021; 117:493-507. [PMID: 34931374 DOI: 10.1111/mmi.14864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
TcdB is a potent cytotoxin produced by pathogenic Clostridioides difficile that inhibits Rho GTPases by mono-glucosylation. TcdB enters cells via receptor-mediated endocytosis. The pathogenic glucosyltransferase domain (GTD) egresses endosomes by pH-mediated conformational changes, and is subsequently released in an autoproteolytic manner. We here investigated the uptake, localization and degradation of TcdB. TcdB colocalized with lysosomal marker protein LAMP1, verifying the endosomal-lysosomal route of the toxin. In pulse assays endocytosed TcdB declined to a limit of detection within 2 hr, whereas the released GTD accumulated for up to 8 hr. We observed that autoproteolytic deficient TcdB NXN C698S was degraded significantly faster than wildtype TcdB, suggesting interference of TcdB with lysosomal degradation process. In fact, TcdB reduced lysosomal degradation of endosome cargo as tested with DQ-Green BSA. Lysosomal dysfunction was accompanied by perinuclear accumulation of LAMP1 and a weaker detection in immunoblots. Galectin-8 or galectin-3 was not recruited to lysosomes speaking against lysosome membrane damage. Changes in the autophagosomal marker LC3B suggested additional indirect effect of lysosomal dysfunction on the autophagic flux. In contrast to necrotic signaling induced in by TcdB, lysosomal dysfunction was not abolished by calcium channel blocker nifedipin, indicating separate cytopathogenic effects induced by TcdB during endo-lysosomal trafficking.
Collapse
Affiliation(s)
- Carmen Klepka
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Moritz Sandmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Matthew Mangan
- Institute of Innate Immunology, Biomedical Center, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Annabel Arens
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Daniel Henkel
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Kim Y, Ko JY, Yang WH. Remodeling of host glycoproteins during bacterial infection. BMB Rep 2021. [PMID: 34674797 PMCID: PMC8633524 DOI: 10.5483/bmbrep.2021.54.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis.
Collapse
Affiliation(s)
- Yeolhoe Kim
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| | - Jeong Yeon Ko
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| | - Won Ho Yang
- Department of Systems Biology, BK21 Plus Project, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Glycosylation Network Research Center, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
19
|
Nothaft H, Bian X, Shajahan A, Miller WG, Bolick DT, Guerrant RL, Azadi P, Ng KKS, Szymanski CM. Detecting Glucose Fluctuations in the Campylobacter jejuni N-Glycan Structure. ACS Chem Biol 2021; 16:2690-2701. [PMID: 34726367 DOI: 10.1021/acschembio.1c00498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a significant cause of human gastroenteritis worldwide, and all strains express an N-glycan that is added to at least 80 different proteins. We characterized 98 C. jejuni isolates from infants from 7 low- and middle-income countries and identified 4 isolates unreactive with our N-glycan-specific antiserum that was raised against the C. jejuni heptasaccharide composed of GalNAc-GalNAc-GalNAc(Glc)-GalNAc-GalNAc-diNAcBac. Mass spectrometric analyses indicated these isolates express a hexasaccharide lacking the glucose branch. Although all 4 strains encode the PglI glucosyltransferase (GlcTF), one aspartate in the DXDD motif was missing, an alteration also present in ∼4% of all available PglI sequences. Deleting this residue from an active PglI resulted in a nonfunctional GlcTF when the protein glycosylation system was reconstituted in E. coli, while replacement with Glu/Ala was not deleterious. Molecular modeling proposed a mechanism for how the DXDD residues and the structure/length beyond the motif influence activity. Mouse vaccination with an E. coli strain expressing the full-length heptasaccharide produced N-glycan-specific antibodies and a corresponding reduction in Campylobacter colonization and weight loss following challenge. However, the antibodies did not recognize the hexasaccharide and were unable to opsonize C. jejuni isolates lacking glucose, suggesting this should be considered when designing N-glycan-based vaccines to prevent campylobacteriosis.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta T6G 2E9, Canada
| | - Xiaoming Bian
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - David T. Bolick
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Richard L. Guerrant
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Christine M. Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta T6G 2E9, Canada
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Szymanski CM, Koropatkin NM. Microbial transformation of the host glycobiome. Glycobiology 2021; 31:664-666. [PMID: 34213552 PMCID: PMC8252863 DOI: 10.1093/glycob/cwab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Affiliation(s)
- Christine M Szymanski
- Complex Carbohydrate Research Center and Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Ranftler C, Nagl D, Sparer A, Röhrich A, Freissmuth M, El-Kasaby A, Nasrollahi Shirazi S, Koban F, Tschegg C, Nizet S. Binding and neutralization of C. difficile toxins A and B by purified clinoptilolite-tuff. PLoS One 2021; 16:e0252211. [PMID: 34043688 PMCID: PMC8158989 DOI: 10.1371/journal.pone.0252211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridioides difficile (C. difficile) infection is a major public health problem worldwide. The current treatment of C. difficile-associated diarrhea relies on the use of antibacterial agents. However, recurrences are frequent. The main virulence factors of C. difficile are two secreted cytotoxic proteins toxin A and toxin B. Alternative research exploring toxin binding by resins found a reduced rate of recurrence by administration of tolevamer. Hence, binding of exotoxins may be useful in preventing a relapse provided that the adsorbent is innocuous. Here, we examined the toxin binding capacity of G-PUR®, a purified version of natural clinoptilolite-tuff. Our observations showed that the purified clinoptilolite-tuff adsorbed clinically relevant amounts of C. difficile toxins A and B in vitro and neutralized their action in a Caco-2 intestinal model. This conclusion is based on four independent sets of findings: G-PUR® abrogated toxin-induced (i) RAC1 glucosylation, (ii) redistribution of occludin, (iii) rarefaction of the brush border as visualized by scanning electron microscopy and (iv) breakdown of the epithelial barrier recorded by transepithelial electrical resistance monitoring. Finally, we confirmed that the epithelial monolayer tolerated G-PUR® over a wide range of particle densities. Our findings justify the further exploration of purified clinoptilolite-tuff as a safe agent in the treatment and/or prevention of C. difficile-associated diarrhea.
Collapse
Affiliation(s)
- Carmen Ranftler
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Dietmar Nagl
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Andreas Sparer
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Andreas Röhrich
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Michael Freissmuth
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shahrooz Nasrollahi Shirazi
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian Koban
- Institute of Pharmacology & Gaston H. Glock Research Laboratories for Explorative Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cornelius Tschegg
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
| | - Stephane Nizet
- GLOCK Health, Science and Research G.m.b.H., Deutsch-Wagram, Austria
- * E-mail:
| |
Collapse
|
22
|
Koh E, Cho HS. NleB/SseKs ortholog effectors as a general bacterial monoglycosyltransferase for eukaryotic proteins. Curr Opin Struct Biol 2021; 68:215-223. [PMID: 33761453 DOI: 10.1016/j.sbi.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022]
Abstract
Protein glycosylation is the most common post-translational modification as more than 50% of all human proteins are glycosylated. Pathogenic bacteria glycosylation allows adhesion to host cells and manipulates eukaryotic functions. A variety of acceptor proteins in bacterial glycosylation was recently discovered. Especially NleB/SseKs type III effectors unexpectedly glycosylate a poor nucleophile arginine. Other pathogenic toxins modify the unusual tyrosine, as well as canonical serine/threonine residues. And a huge diversity is found in target proteins; Rho/Ras families, death domains and moreover themselves for autoglycosylation. However, in spite of this acceptor diversity, all their sugar donors are only UDP-Glc/-GlcNAc and structural alignments as liganded show their catalytic cores are geometrically conserved, where DRY and DXD motives and W residues equally position to hold the sugar donors and to π-π bind with a uridine ring, respectively. Therefore, bacterial glycosyltransferases have a key for carbohydrate research problems concerning the sugar donors and target proteins recognition.
Collapse
Affiliation(s)
- Eunhee Koh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Ost GS, Wirth C, Bogdanović X, Kao WC, Schorch B, Aktories PJK, Papatheodorou P, Schwan C, Schlosser A, Jank T, Hunte C, Aktories K. Inverse control of Rab proteins by Yersinia ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. SCIENCE ADVANCES 2020; 6:eaaz2094. [PMID: 32195351 PMCID: PMC7065874 DOI: 10.1126/sciadv.aaz2094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/17/2019] [Indexed: 05/20/2023]
Abstract
We identified a glucosyltransferase (YGT) and an ADP-ribosyltransferase (YART) in Yersinia mollaretii, highly related to glucosylating toxins from Clostridium difficile, the cause of antibiotics-associated enterocolitis. Both Yersinia toxins consist of an amino-terminal enzyme domain, an autoprotease domain activated by inositol hexakisphosphate, and a carboxyl-terminal translocation domain. YGT N-acetylglucosaminylates Rab5 and Rab31 at Thr52 and Thr36, respectively, thereby inactivating the Rab proteins. YART ADP-ribosylates Rab5 and Rab31 at Gln79 and Gln64, respectively. This activates Rab proteins by inhibiting GTP hydrolysis. We determined the crystal structure of the glycosyltransferase domain of YGT (YGTG) in the presence and absence of UDP at 1.9- and 3.4-Å resolution, respectively. Thereby, we identified a previously unknown potassium ion-binding site, which explains potassium ion-dependent enhanced glycosyltransferase activity in clostridial and related toxins. Our findings exhibit a novel type of inverse regulation of Rab proteins by toxins and provide new insights into the structure-function relationship of glycosyltransferase toxins.
Collapse
Affiliation(s)
- G. Stefan Ost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Institut für Biologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Xenia Bogdanović
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Wei-Chun Kao
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Björn Schorch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Philipp J. K. Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Thomas Jank
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Carola Hunte
- Institut für Biochemie und Molekularbiologie, ZBMZ, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- Corresponding author.
| |
Collapse
|
25
|
Wu Y, Boulogne C, Carle S, Podinovskaia M, Barth H, Spang A, Cintrat J, Gillet D, Barbier J. Regulation of endo‐lysosomal pathway and autophagic flux by broad‐spectrum antipathogen inhibitor ABMA. FEBS J 2020; 287:3184-3199. [DOI: 10.1111/febs.15201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/10/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Wu
- Université Paris‐Saclay CEAINRAE Médicaments et Technologies pour la Santé (MTS) SIMoS Gif‐sur‐Yvette91191France
| | - Claire Boulogne
- IMAGERIE‐GIF Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Stefan Carle
- Institute of Pharmacology and Toxicology University of Ulm Medical Center Germany
| | | | - Holger Barth
- Institute of Pharmacology and Toxicology University of Ulm Medical Center Germany
| | - Anne Spang
- Growth and Development Biozentrum University of Basel Switzerland
| | - Jean‐Christophe Cintrat
- Université Paris‐Saclay CEA INRAE Médicaments et Technologies pour la Santé (MTS) SCBM Gif‐sur‐Yvette91191France
| | - Daniel Gillet
- Université Paris‐Saclay CEAINRAE Médicaments et Technologies pour la Santé (MTS) SIMoS Gif‐sur‐Yvette91191France
| | - Julien Barbier
- Université Paris‐Saclay CEAINRAE Médicaments et Technologies pour la Santé (MTS) SIMoS Gif‐sur‐Yvette91191France
| |
Collapse
|
26
|
Ding J, Pan X, Du L, Yao Q, Xue J, Yao H, Wang DC, Li S, Shao F. Structural and Functional Insights into Host Death Domains Inactivation by the Bacterial Arginine GlcNAcyltransferase Effector. Mol Cell 2019; 74:922-935.e6. [PMID: 30979585 DOI: 10.1016/j.molcel.2019.03.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/27/2018] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Enteropathogenic E. coli NleB and related type III effectors catalyze arginine GlcNAcylation of death domain (DD) proteins to block host defense, but the underlying mechanism is unknown. Here we solve crystal structures of NleB alone and in complex with FADD-DD, UDP, and Mn2+ as well as NleB-GlcNAcylated DDs of TRADD and RIPK1. NleB adopts a GT-A fold with a unique helix-pair insertion to hold FADD-DD; the interface contacts explain the selectivity of NleB for certain DDs. The acceptor arginine is fixed into a cleft, in which Glu253 serves as a base to activate the guanidinium. Analyses of the enzyme-substrate complex and the product structures reveal an inverting sugar-transfer reaction and a detailed catalytic mechanism. These structural insights are validated by mutagenesis analyses of NleB-mediated GlcNAcylation in vitro and its function in mouse infection. Our study builds a structural framework for understanding of NleB-catalyzed arginine GlcNAcylation of host death domain.
Collapse
Affiliation(s)
- Jingjin Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Xing Pan
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lijie Du
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qing Yao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hongwei Yao
- College of Chemistry and Chemical Engineering, High-Field Nuclear Magnetic Resonance Center, Xiamen University, Xiamen, Fujian 361005, China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Li
- Bio-Medical Center, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
27
|
Levanova N, Mattheis C, Carson D, To KN, Jank T, Frankel G, Aktories K, Schroeder GN. The Legionella effector LtpM is a new type of phosphoinositide-activated glucosyltransferase. J Biol Chem 2019; 294:2862-2879. [PMID: 30573678 PMCID: PMC6393602 DOI: 10.1074/jbc.ra118.005952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Indexed: 01/01/2023] Open
Abstract
Legionella pneumophila causes Legionnaires' disease, a severe form of pneumonia. L. pneumophila translocates more than 300 effectors into host cells via its Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) type IV secretion system to enable its replication in target cells. Here, we studied the effector LtpM, which is encoded in a recombination hot spot in L. pneumophila Paris. We show that a C-terminal phosphoinositol 3-phosphate (PI3P)-binding domain, also found in otherwise unrelated effectors, targets LtpM to the Legionella-containing vacuole and to early and late endosomes. LtpM expression in yeast caused cytotoxicity. Sequence comparison and structural homology modeling of the N-terminal domain of LtpM uncovered a remote similarity to the glycosyltransferase (GT) toxin PaTox from the bacterium Photorhabdus asymbiotica; however, instead of the canonical DxD motif of GT-A type glycosyltransferases, essential for enzyme activity and divalent cation coordination, we found that a DxN motif is present in LtpM. Using UDP-glucose as sugar donor, we show that purified LtpM nevertheless exhibits glucohydrolase and autoglucosylation activity in vitro and demonstrate that PI3P binding activates LtpM's glucosyltransferase activity toward protein substrates. Substitution of the aspartate or the asparagine in the DxN motif abolished the activity of LtpM. Moreover, whereas all glycosyltransferase toxins and effectors identified so far depend on the presence of divalent cations, LtpM is active in their absence. Proteins containing LtpM-like GT domains are encoded in the genomes of other L. pneumophila isolates and species, suggesting that LtpM is the first member of a novel family of glycosyltransferase effectors employed to subvert hosts.
Collapse
Affiliation(s)
- Nadezhda Levanova
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Corinna Mattheis
- the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Danielle Carson
- the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Ka-Ning To
- the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Thomas Jank
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Gad Frankel
- the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Klaus Aktories
- From the Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany,
| | - Gunnar Neels Schroeder
- the MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom, and
- the Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, United Kingdom
| |
Collapse
|
28
|
Brander S, Jank T, Hugel T. AFM Imaging Suggests Receptor-Free Penetration of Lipid Bilayers by Toxins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:365-371. [PMID: 30565941 DOI: 10.1021/acs.langmuir.8b03146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A crucial step of exotoxin action is the attack on the membrane. Many exotoxins show an architecture following the AB model, where a binding subunit translocates an "action" subunit across a cell membrane. Atomic force microscopy is an ideal technique to study these systems because of its ability to provide structural as well as dynamic information at the same time. We report first images of toxins Photorhabdus luminescens TcdA1 and Clostridium difficile TcdB on a supported lipid bilayer. A significant amount of toxin binds to the bilayer at neutral pH in the absence of receptors. Lack of diffusion indicates that toxin particles penetrate the membrane. This observation is supported by fluorescence recovery after photobleaching measurements. We mimic endocytosis by acidification while imaging the particles over time; however, we see no large conformational change. We therefore conclude that the toxin particles we imaged in neutral conditions had already formed a pore and speculate that there is no "pre-pore" state in our imaging conditions (i.e., in the absence of receptor).
Collapse
|
29
|
Gao L, Song Q, Liang H, Zhu Y, Wei T, Dong N, Xiao J, Shao F, Lai L, Chen X. Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nat Chem Biol 2019; 15:213-216. [DOI: 10.1038/s41589-018-0189-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
|
30
|
Genth H, Junemann J, Lämmerhirt CM, Lücke AC, Schelle I, Just I, Gerhard R, Pich A. Difference in Mono-O-Glucosylation of Ras Subtype GTPases Between Toxin A and Toxin B From Clostridioides difficile Strain 10463 and Lethal Toxin From Clostridium sordellii Strain 6018. Front Microbiol 2018; 9:3078. [PMID: 30622517 PMCID: PMC6308379 DOI: 10.3389/fmicb.2018.03078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/29/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile toxin A (TcdA) and Toxin B (TcdB) trigger inflammasome activation with caspase-1 activation in cultured cells, which in turn induce the release of IL-6, IFN-γ, and IL-8. Release of these proinflammatory responses is positively regulated by Ras-GTPases, which leads to the hypothesis that Ras glucosylation by glucosylating toxins results in (at least) reduced proinflammatory responses. Against this background, data on toxin-catalyzed Ras glucosylation are required to estimate of pro-inflammatory effect of the glucosylating toxins. In this study, a quantitative evaluation of the GTPase substrate profiles glucosylated in human colonic (Caco-2) cells treated with either TcdA, TcdB, or the related Clostridium sordellii lethal toxin (TcsL) was performed using multiple reaction monitoring (MRM) mass spectrometry. (H/K/N)Ras are presented to be glucosylated by TcsL and TcdA but by neither TcdB isoform tested. Furthermore, the glucosylation of (H/K/N)Ras was detected in TcdA-(not TcdB)-treated cells, as analyzed exploiting immunoblot analysis using the Ras glucosylation-sensitive 27H5 antibody. Furthermore, [14C]glucosylation of substrate GTPase was found to be increased in a cell-free system complemented with Caco-2 lysates. Under these conditions, (H/K/N)Ras glucosylation by TcdA was detected. In contrast, TcdB-catalyzed (H/K/N)Ras glucosylation was detected by neither MRM analysis, immunoblot analysis nor [14C]glucosylation in a cell-free system. The observation that TcdA (not TcdB) glucosylates Ras subtype GTPases correlates with the fact that TcdB (not TcdA) is primarily responsible for inflammatory responses in CDI. Finally, TcsL more efficaciously glucosylated Ras subtype GTPase as compared with TcdA, reinforcing the paradigm that TcsL is the prototype of a Ras glucosylating toxin.
Collapse
Affiliation(s)
- Harald Genth
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | | | | | | | - Ilona Schelle
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
31
|
Wang S, Wang Y, Cai Y, Kelly CP, Sun X. Novel Chimeric Protein Vaccines Against Clostridium difficile Infection. Front Immunol 2018; 9:2440. [PMID: 30405630 PMCID: PMC6204379 DOI: 10.3389/fimmu.2018.02440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of world-wide nosocomial acquired diarrhea in adults. Active vaccination is generally accepted as a logical and cost-effective approach to prevent CDI. In this paper, we have generated two novel chimeric proteins; one designated Tcd169, comprised of the glucosyltransferase domain (GT), the cysteine proteinase domain (CPD), and receptor binding domain (RBD) of TcdB, and the RBD of TcdA; the other designated Tcd169FI, which contains Salmonella typhimurium flagellin (sFliC) and Tcd169. Both proteins were expressed in and purified from Bacillus megaterium. Point mutations were made in the GT (W102A, D288N) and CPD (C698) of TcdB to ensure that Tcd169 and Tcd169FI were atoxic. Immunization with Tcd169 or Tcd169Fl induced protective immunity against TcdA/TcdB challenge through intraperitoneal injection, also provided mice full protection against infection with a hyper-virulent C. difficile strain (BI/NAP1/027). In addition, inclusion of sFlic in the fusion protein (Tcd169Fl) enhanced its protective immunity against toxin challenge, reduced C. difficile numbers in feces from Tcd169Fl-immunized mice infected C. difficile. Our data show that Tcd169 and Tcd169FI fusion proteins may represent alternative vaccine candidates against CDI.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yuanguo Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ying Cai
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ciaran P. Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
32
|
The chaperonin TRiC/CCT is essential for the action of bacterial glycosylating protein toxins like Clostridium difficile toxins A and B. Proc Natl Acad Sci U S A 2018; 115:9580-9585. [PMID: 30181275 DOI: 10.1073/pnas.1807658115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Various bacterial protein toxins, including Clostridium difficile toxins A (TcdA) and B (TcdB), attack intracellular target proteins of host cells by glucosylation. After receptor binding and endocytosis, the toxins are translocated into the cytosol, where they modify target proteins (e.g., Rho proteins). Here we report that the activity of translocated glucosylating toxins depends on the chaperonin TRiC/CCT. The chaperonin subunits CCT4/5 directly interact with the toxins and enhance the refolding and restoration of the glucosyltransferase activities of toxins after heat treatment. Knockdown of CCT5 by siRNA and HSF1A, an inhibitor of TRiC/CCT, blocks the cytotoxic effects of TcdA and TcdB. In contrast, HSP90, which is involved in the translocation and uptake of ADP ribosylating toxins, is not involved in uptake of the glucosylating toxins. We show that the actions of numerous glycosylating toxins from various toxin types and different species depend on TRiC/CCT. Our data indicate that the TRiC/CCT chaperonin system is specifically involved in toxin uptake and essential for the action of various glucosylating protein toxins acting intracellularly on target proteins.
Collapse
|
33
|
Aliramezani A, Talebi M, Baghani A, Hajabdolbaghi M, Salehi M, Abdollahi A, Afhami S, Marjani M, Golbabaei F, Boroumand MA, Sarrafnejad A, Yaseri M, Ghourchian S, Douraghi M. Pathogenicity locus determinants and toxinotyping of Clostridioides difficile isolates recovered from Iranian patients. New Microbes New Infect 2018; 25:52-57. [PMID: 30094031 PMCID: PMC6072886 DOI: 10.1016/j.nmni.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023] Open
Abstract
Little is known about the toxin profiles, toxinotypes and variations of toxin Clostridioides difficile C (tcdC) in Iranian C. difficile isolates. A total of 818 stool specimens were obtained from outpatients (n = 45) and hospitalized patients (n = 773) in Tehran, Iran, from 2011 to 2017. The 44 C. difficile isolates were subjected to PCR of toxin C. difficile A (tcdA), toxin C. difficile B (tcdB), tcdA 3′-end deletion, toxinotyping and sequencing of the tcdC gene. Thirty-eight isolates (86.36%) were identified as tcdA and tcdB positive, and the remaining six isolates (13.63%) were nontoxigenic. All tcdA- and tcdB-positive isolates yielded an amplicon of 2535 bp by PCR for the tcdA 3′ end. Fourteen (36.84%), seventeen (44.73%) and seven (18.43%) isolates belonged to wild-type, toxin C. difficile C subclone3 (tcdC-sc3) and tcdC-A genotype of tcdC, respectively. Thirty-one isolates (81.57%) belonged to toxinotype 0, and seven isolates (18.42%) were classified as toxinotype V. This study provides evidence for the circulation of historical and hypervirulent isolates in the healthcare and community settings. Furthermore, it was also demonstrated that the tcdC-A genotype and toxinotype V are not uncommon among Iranian C. difficile isolates.
Collapse
Affiliation(s)
- A Aliramezani
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran, Iran
| | - M Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A Baghani
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran, Iran
| | - M Hajabdolbaghi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran, Iran
| | - M Salehi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Tehran, Iran
| | - A Abdollahi
- Department of Pathology, Imam Hospital Complex, Tehran, Iran
| | - S Afhami
- Department of Infectious Diseases, Shariati Hospital, Tehran, Iran
| | - M Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Golbabaei
- Department of Occupational Health, School of Public Health, Medical Sciences, University of Tehran, Tehran, Iran
| | - M A Boroumand
- Department of Pathology, Tehran Heart Center, Tehran, Iran
| | - A Sarrafnejad
- Department of Immunology, School of Public Health, Tehran, Iran
| | - M Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran, Iran
| | - S Ghourchian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran, Iran
| | - M Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Popoff MR. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response. Toxicon 2018; 149:54-64. [DOI: 10.1016/j.toxicon.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
|
35
|
Esposito D, Günster RA, Martino L, El Omari K, Wagner A, Thurston TLM, Rittinger K. Structural basis for the glycosyltransferase activity of the Salmonella effector SseK3. J Biol Chem 2018; 293:5064-5078. [PMID: 29449376 PMCID: PMC5892559 DOI: 10.1074/jbc.ra118.001796] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Indexed: 01/03/2023] Open
Abstract
The Salmonella-secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an N-acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating DXD motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free N-acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine N-glycosylation reaction. Homology models of SseK1, SseK2, and the Escherichia coli orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine N-glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors.
Collapse
Affiliation(s)
- Diego Esposito
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Regina A Günster
- the Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Luigi Martino
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Kamel El Omari
- the Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Armin Wagner
- the Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - Teresa L M Thurston
- the Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom, and
| | - Katrin Rittinger
- From the Molecular Structure of Cell Signalling Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom,
| |
Collapse
|
36
|
Xu Y, Uddin N, Wagner GK. Covalent Probes for Carbohydrate-Active Enzymes: From Glycosidases to Glycosyltransferases. Methods Enzymol 2018; 598:237-265. [DOI: 10.1016/bs.mie.2017.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:77-96. [DOI: 10.1007/978-3-319-72799-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Larabee JL, Hauck GD, Ballard JD. Cell-penetrating peptides derived from Clostridium difficile TcdB2 and a related large clostridial toxin. J Biol Chem 2017; 293:1810-1819. [PMID: 29247010 DOI: 10.1074/jbc.m117.815373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile TcdB (2366 amino acid residues) is an intracellular bacterial toxin that binds to cells and enters the cytosol where it glucosylates small GTPases. In the current study, we examined a putative cell entry region of TcdB (amino acid residues 1753-1851) for short sequences that function as cell-penetrating peptides (CPPs). To screen for TcdB-derived CPPs, a panel of synthetic peptides was tested for the ability to enhance transferrin (Tf) association with cells. Four candidate CPPs were discovered, and further study on one peptide (PepB2) pinpointed an asparagine residue necessary for CPP activity. PepB2 mediated the cell entry of a wide variety of molecules including dextran, streptavidin, microspheres, and lentivirus particles. Of note, this uptake was dramatically reduced in the presence of the Na+/H+ exchange blocker and micropinocytosis inhibitor amiloride, suggesting that PepB2 invokes macropinocytosis. Moreover, we found that PepB2 had more efficient cell-penetrating activity than several other well-known CPPs (TAT, penetratin, Pep-1, and TP10). Finally, Tf assay-based screening of peptides derived from two other large clostridial toxins, TcdA and TcsL, uncovered two new TcdA-derived CPPs. In conclusion, we have identified six CPPs from large clostridial toxins and have demonstrated the ability of PepB2 to promote cell association and entry of several molecules through a putative fluid-phase macropinocytotic mechanism.
Collapse
Affiliation(s)
- Jason L Larabee
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Garrett D Hauck
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jimmy D Ballard
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
39
|
Junemann J, Lämmerhirt CM, Polten F, Just I, Gerhard R, Genth H, Pich A. Quantification of small GTPase glucosylation by clostridial glucosylating toxins using multiplexed MRM analysis. Proteomics 2017; 17. [PMID: 28252257 DOI: 10.1002/pmic.201700016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/29/2022]
Abstract
Large clostridial toxins mono-O-glucosylate small GTPases of the Rho and Ras subfamily. As a result of glucosylation, the GTPases are inhibited and thereby corresponding downstream signaling pathways are disturbed. Current methods for quantifying the extent of glucosylation include sequential [14 C]glucosylation, sequential [32 P]ADP-ribosylation, and Western Blot detection of nonglucosylated GTPases, with neither method allowing the quantification of the extent of glucosylation of an individual GTPase. Here, we describe a novel MS-based multiplexed MRM assay to specifically quantify the glucosylation degree of small GTPases. This targeted proteomics approach achieves a high selectivity and reproducibility, which allows determination of the in vivo substrate pattern of glucosylating toxins. As proof of principle, GTPase glucosylation was analyzed in CaCo-2 cells treated with TcdA, and glucosylation kinetics were determined for RhoA/B, RhoC, RhoG, Ral, Rap1, Rap2, (H/K/N)Ras, and R-Ras2.
Collapse
Affiliation(s)
- Johannes Junemann
- Hannover Medical School, Institute for Toxicology, Hannover, Germany
| | | | - Felix Polten
- Hannover Medical School, Institute for Toxicology, Hannover, Germany
| | - Ingo Just
- Hannover Medical School, Institute for Toxicology, Hannover, Germany
| | - Ralf Gerhard
- Hannover Medical School, Institute for Toxicology, Hannover, Germany
| | - Harald Genth
- Hannover Medical School, Institute for Toxicology, Hannover, Germany
| | - Andreas Pich
- Hannover Medical School, Institute for Toxicology, Hannover, Germany
| |
Collapse
|
40
|
Collins J, Auchtung JM. Control of Clostridium difficile Infection by Defined Microbial Communities. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0009-2016. [PMID: 28936948 PMCID: PMC5736378 DOI: 10.1128/microbiolspec.bad-0009-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Each year in the United States, billions of dollars are spent combating almost half a million Clostridium difficile infections (CDIs) and trying to reduce the ∼29,000 patient deaths in which C. difficile has an attributed role. In Europe, disease prevalence varies by country and level of surveillance, though yearly costs are estimated at €3 billion. One factor contributing to the significant health care burden of C. difficile is the relatively high frequency of recurrent CDIs. Recurrent CDI, i.e., a second episode of symptomatic CDI occurring within 8 weeks of successful initial CDI treatment, occurs in ∼25% of patients, with 35 to 65% of these patients experiencing multiple episodes of recurrent disease. Using microbial communities to treat recurrent CDI, either as whole fecal transplants or as defined consortia of bacterial isolates, has shown great success (in the case of fecal transplants) or potential promise (in the case of defined consortia of isolates). This review will briefly summarize the epidemiology and physiology of C. difficile infection, describe our current understanding of how fecal microbiota transplants treat recurrent CDI, and outline potential ways that knowledge can be used to rationally design and test alternative microbe-based therapeutics.
Collapse
Affiliation(s)
- James Collins
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Jennifer M Auchtung
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
41
|
Erdmann J, Junemann J, Schröder A, Just I, Gerhard R, Pich A. Glucosyltransferase-dependent and -independent effects of TcdB on the proteome of HEp-2 cells. Proteomics 2017; 17. [PMID: 28612519 DOI: 10.1002/pmic.201600435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022]
Abstract
Toxin B (TcdB) of the nosocomial pathogen C. difficile has been reported to exhibit a glucosyltransferase-dependent and -independent effect on treated HEp-2 cells at toxin concentration above 0.3 nM. In order to investigate and further characterize both effects epithelial cells were treated with wild type TcdB and glucosyltransferase-deficient TcdBNXN and their proteomes were analyzed by LC-MS. Triplex SILAC labeling was used for quantification. Identification of 5212 and quantification of 4712 protein groups was achieved. Out of these 257 were affected by TcdB treatment, 92 by TcdBNXN treatment and 49 by both. TcdB mainly led to changes in proteins that are related to "GTPase mediated signaling" and the "cytoskeleton" while "chromatin" and "cell cycle" related proteins were altered by both, TcdB and TcdBNXN . The obtained dataset of HEp-2 cell proteome helps us to better understand glucosyltransferase-dependent and -independent mechanisms of TcdB and TcdBNXN , particularly those involved in pyknotic cell death. All proteomics data have been deposited in the ProteomeXchange with the dataset identifier PXD006658 (https://proteomecentral.proteomexchange.org/dataset/PXD006658).
Collapse
Affiliation(s)
- Jelena Erdmann
- Hannover Medical School, Institute of Toxicology, Hannover, Germany
| | | | - Anke Schröder
- Hannover Medical School, Institute of Toxicology, Hannover, Germany
| | - Ingo Just
- Hannover Medical School, Institute of Toxicology, Hannover, Germany
| | - Ralf Gerhard
- Hannover Medical School, Institute of Toxicology, Hannover, Germany
| | - Andreas Pich
- Hannover Medical School, Institute of Toxicology, Hannover, Germany
| |
Collapse
|
42
|
Zarandi ER, Mansouri S, Nakhaee N, Sarafzadeh F, Moradi M. Toxin production of Clostridium difficile in sub-MIC of vancomycin and clindamycin alone and in combination with ceftazidime. Microb Pathog 2017; 107:249-253. [PMID: 28286152 DOI: 10.1016/j.micpath.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/26/2017] [Accepted: 03/06/2017] [Indexed: 02/01/2023]
Abstract
Toxin production in Clostridium difficile (C. difficile) is a key process for induction of diarrhea. Several factors such as sub-MIC of antibiotics impact on toxin production. The aim of this research is investigation of sub-minimum inhibitory concentration (sub-MIC) of vancomycin (VAN), clindamycin (CLI) separately and in combination with ceftazidime (CAZ) on toxin production in C. difficile. About ∼106 colony forming units (CFU) from 18-h culture of C. difficile ATCC 9689 and clinical isolates A+/B+/CTD-, were cultured anaerobically in the pre-reduced medium with appropriate concentration of separated and in combination antibiotics. After 24 and 48 h, 1 mL of culture was removed, centrifuged and the supernatant stored at-70 °C for later use. The evaluation of toxin production was carried out by the ELISA technique. All antibiotics alone and in combination formats inhibited toxin production over a period of 24 h. This effect is also observed in presence of VAN and CLI during a period of 48 h. Over a 4 h period, CAZ increased toxin production alone and in combination, especially with CLI. The data showed VAN and CLI decrease the level of toxins. In contrast, the CAZ not only increases the level of produced toxin, but also can interfere with VAN and CLI. Based on the results, combination therapy which is performed for treatment or prevention of other infections may cause toxin production and probably the severity of C. difficile AAD to increase.
Collapse
Affiliation(s)
- Ebrahim Rezazadeh Zarandi
- Department of Microbiology and Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahla Mansouri
- Department of Microbiology and Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nouzar Nakhaee
- Department of Community Medicine, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Sarafzadeh
- Department of Infectious Diseases, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Moradi
- Department of Microbiology and Virology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
43
|
Role of p38 alpha/beta MAP Kinase in Cell Susceptibility to Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B. Toxins (Basel) 2016; 9:toxins9010002. [PMID: 28025502 PMCID: PMC5308236 DOI: 10.3390/toxins9010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Lethal Toxin from Clostridium sordellii (TcsL), which is casually involved in the toxic shock syndrome and in gas gangrene, enters its target cells by receptor-mediated endocytosis. Inside the cell, TcsL mono-O-glucosylates and thereby inactivates Rac/Cdc42 and Ras subtype GTPases, resulting in actin reorganization and an activation of p38 MAP kinase. While a role of p38 MAP kinase in TcsL-induced cell death is well established, data on a role of p38 MAP kinase in TcsL-induced actin reorganization are not available. In this study, TcsL-induced Rac/Cdc42 glucosylation and actin reorganization are differentially analyzed in p38alpha−/− MSCV empty vector MEFs and the corresponding cell line with reconstituted p38alpha expression (p38alpha−/− MSCV p38alpha MEFs). Genetic deletion of p38alpha results in reduced susceptibility of cells to TcsL-induced Rac/Cdc42 glucosylation and actin reorganization. Furthermore, SB203580, a pyridinyl imidazole inhibitor of p38alpha/beta MAP kinase, also protects cells from TcsL-induced effects in both p38−/− MSCV empty vector MEFs and in p38alpha−/− MSCV p38alpha MEFs, suggesting that inhibition of p38beta contributes to the protective effect of SB203580. In contrast, the effects of the related C. difficile Toxin B are responsive neither to SB203580 treatment nor to p38alpha deletion. In conclusion, the protective effects of SB203580 and of p38alpha deletion are likely not based on inhibition of the toxins’ glucosyltransferase activity rather than on inhibited endocytic uptake of specifically TcsL into target cells.
Collapse
|
44
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
45
|
Di Bella S, Ascenzi P, Siarakas S, Petrosillo N, di Masi A. Clostridium difficile Toxins A and B: Insights into Pathogenic Properties and Extraintestinal Effects. Toxins (Basel) 2016; 8:134. [PMID: 27153087 PMCID: PMC4885049 DOI: 10.3390/toxins8050134] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) has significant clinical impact especially on the elderly and/or immunocompromised patients. The pathogenicity of Clostridium difficile is mainly mediated by two exotoxins: toxin A (TcdA) and toxin B (TcdB). These toxins primarily disrupt the cytoskeletal structure and the tight junctions of target cells causing cell rounding and ultimately cell death. Detectable C. difficile toxemia is strongly associated with fulminant disease. However, besides the well-known intestinal damage, recent animal and in vitro studies have suggested a more far-reaching role for these toxins activity including cardiac, renal, and neurologic impairment. The creation of C. difficile strains with mutations in the genes encoding toxin A and B indicate that toxin B plays a major role in overall CDI pathogenesis. Novel insights, such as the role of a regulator protein (TcdE) on toxin production and binding interactions between albumin and C. difficile toxins, have recently been discovered and will be described. Our review focuses on the toxin-mediated pathogenic processes of CDI with an emphasis on recent studies.
Collapse
Affiliation(s)
- Stefano Di Bella
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | - Paolo Ascenzi
- Department of Science, Roma Tre University, Rome 00154, Italy.
| | - Steven Siarakas
- Department of Microbiology and Infectious Diseases, Concord Repatriation General Hospital, Sydney 2139, Australia.
| | - Nicola Petrosillo
- 2nd Infectious Diseases Division, National Institute for Infectious Diseases "L. Spallanzani", Rome 00149, Italy.
| | | |
Collapse
|
46
|
Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B. Toxins (Basel) 2016; 8:109. [PMID: 27089365 PMCID: PMC4848635 DOI: 10.3390/toxins8040109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 12/02/2022] Open
Abstract
Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA)—is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+) in mammalian target cells.
Collapse
|
47
|
Cassady-Cain RL, Blackburn EA, Alsarraf H, Dedic E, Bease AG, Böttcher B, Jørgensen R, Wear M, Stevens MP. Biophysical Characterization and Activity of Lymphostatin, a Multifunctional Virulence Factor of Attaching and Effacing Escherichia coli. J Biol Chem 2016; 291:5803-5816. [PMID: 26786100 PMCID: PMC4786716 DOI: 10.1074/jbc.m115.709600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
Attaching and effacing Escherichia coli cause diarrhea and typically produce lymphostatin (LifA), an inhibitor of mitogen-activated proliferation of lymphocytes and pro-inflammatory cytokine synthesis. A near-identical factor (Efa1) has been reported to mediate adherence of E. coli to epithelial cells. An amino-terminal region of LifA shares homology with the catalytic domain of the large clostridial toxins, which are retaining glycosyltransferases with a DXD motif involved in binding of a metal ion. Understanding the mode(s) of action of lymphostatin has been constrained by difficulties obtaining a stably transformed plasmid expression clone. We constructed a tightly inducible clone of enteropathogenic E. coli O127:H6 lifA for affinity purification of lymphostatin. The purified protein inhibited mitogen-activated proliferation of bovine T lymphocytes in the femtomolar range. It is a monomer in solution and the molecular envelope was determined using both transmission electron microscopy and small-angle x-ray scattering. Domain architecture was further studied by limited proteolysis. The largest proteolytic fragment containing the putative glycosyltransferase domain was tested in isolation for activity against T cells, and was not sufficient for activity. Tryptophan fluorescence studies indicated thatlymphostatin binds uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) but not UDP-glucose (UDP-Glc). Substitution of the predicted DXD glycosyltransferase motif with alanine residues abolished UDP-GlcNAc binding and lymphostatin activity, although other biophysical properties were unchanged. The data indicate that lymphostatin has UDP-sugar binding potential that is critical for activity, and is a major leap toward identifying the nature and consequences of modifications of host cell factors.
Collapse
Affiliation(s)
- Robin L Cassady-Cain
- From the Roslin Institute, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Elizabeth A Blackburn
- the Centre for Translational and Chemical Biology (CTCB), University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, United Kingdom, and
| | - Husam Alsarraf
- the Department of Microbiology & Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Emil Dedic
- the Department of Microbiology & Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Andrew G Bease
- From the Roslin Institute, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Bettina Böttcher
- the Centre for Translational and Chemical Biology (CTCB), University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, United Kingdom, and
| | - René Jørgensen
- the Department of Microbiology & Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Martin Wear
- the Centre for Translational and Chemical Biology (CTCB), University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh EH9 3BF, United Kingdom, and
| | - Mark P Stevens
- From the Roslin Institute, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom,.
| |
Collapse
|