1
|
Ost KJ, Arentshorst M, Moerschbacher BM, Dirks-Hofmeister ME, Ram AF. Comprehensive phenotypic analysis of multiple gene deletions of α-glucan synthase and Crh-transglycosylase gene families in Aspergillus niger highlighting the versatility of the fungal cell wall. Cell Surf 2025; 13:100141. [PMID: 39991742 PMCID: PMC11847290 DOI: 10.1016/j.tcsw.2025.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Multiple paralogs are found in the fungal genomes for several genes that encode proteins involved in cell wall biosynthesis. The genome of A. niger contains five genes encoding putative α-1,3-glucan synthases (AgsA-E) and seven genes encoding putative glucan-chitin crosslinking enzymes (CrhA-G). Here, we systematically studied the effects of the deletion of single (agsA or agsE), double (agsA and agsE), or all five ags genes (agsA-E) present in A. niger. Morphological and biochemical analysis of ags mutants emphasizes the important role of agsE in cell wall integrity, while deletion of other ags genes had minimal impact. Loss of agsE compromised cell wall integrity and altered pellet morphology in liquid cultures. Previous studies have indicated that deletion of all crh genes in A. niger did not result in cell wall integrity-related phenotypes. To determine whether the ags and crh gene families have redundant functions, both gene families were deleted using iterative CRISPR/Cas9 mediated genome editing. The 12-fold deletion mutant was viable and did not exhibit growth defects under non-stressing growth conditions. A synergistic effect on cell wall integrity was observed in this 12-fold deletion mutant, particularly when exposed to cell wall-perturbing compounds. The cell wall composition, extractability of glucans by alkali, and scanning electron microscopy analysis showed no differences between the parental strain and mutants lacking ags genes, crh genes, or both. These observations underscore the ability of fungal cells to adapt and secure cell wall integrity, even when two entire cell wall protein-encoding gene families are missing.
Collapse
Affiliation(s)
- Katharina J. Ost
- Münster University, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
- Osnabrück University of Applied Sciences, Faculty of Agricultural Sciences and Landscape Architecture, Laboratory for Food Biotechnology, Oldenburger Landstraße 62, 49090 Osnabrück, Germany
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Fungal Genetics and Biotechnology, Sylviusweg 7, 2333, BE, Leiden, the Netherlands
| | - Bruno M. Moerschbacher
- Münster University, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
| | - Mareike E. Dirks-Hofmeister
- Osnabrück University of Applied Sciences, Faculty of Agricultural Sciences and Landscape Architecture, Laboratory for Food Biotechnology, Oldenburger Landstraße 62, 49090 Osnabrück, Germany
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Fungal Genetics and Biotechnology, Sylviusweg 7, 2333, BE, Leiden, the Netherlands
| |
Collapse
|
2
|
Sultana S, Rahaman M, Hassan A, Parvez MA, Chandan MR. Biomass-Based Sustainable Graphene for Advanced Electronic Technology: A Review. Chem Asian J 2025; 20:e202500128. [PMID: 40256841 DOI: 10.1002/asia.202500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025]
Abstract
Through its remarkable mechanical, electrical, and thermal qualities, graphene has become a revolutionary material in electronics. Sustainable graphene synthesis from biomass residues offers a possible path toward adhering to the demand for economical and ecologically friendly graphene production methods. The present study thoroughly examines the numerous biomass sources used for graphene synthesis, such as plant-derived materials, agricultural waste, and other organic leftovers. The benefits and drawbacks of several synthesis methods are examined, including pyrolysis, chemical exfoliation, and hydrothermal carbonization. The study also explores the possible uses of graphene produced from biomass in electronics, including sensors, energy storage devices, electronic devices with flexibility, and electromagnetic interference (EMI) shielding. This review highlights how biomass-based graphene can revolutionize the electronics sector by bridging the gap between electronic applications, synthesis techniques, and biomass supplies.
Collapse
Affiliation(s)
- Salma Sultana
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abul Hassan
- Department of Finance, School of Business, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad Anwar Parvez
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammed Rehaan Chandan
- Colloids and Polymers Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
3
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Features of the rare pathogen Meyerozyma guilliermondii strain SO and comprehensive in silico analyses of its adherence-contributing virulence factor agglutinin-like sequences. J Biomol Struct Dyn 2025; 43:3728-3748. [PMID: 38189364 DOI: 10.1080/07391102.2023.2300757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
Meyerozyma guilliermondii is a rare yeast pathogen contributing to the deadly invasive candidiasis. M. guilliermondii strain SO, as a promising protein expression host, showed 99% proteome similarity with the clinically isolated ATCC 6260 (type strain) in a recent comparative genomic analysis. However, their in vitro virulence features and in vivo pathogenicity were uncharacterized. This study aimed to characterize the in vitro and in vivo pathogenicity of M. guilliermondii strain SO and analyze its Als proteins (MgAls) via comprehensive bioinformatics approaches. M. guilliermondii strain SO showed lower and higher sensitivity towards β-mercaptoethanol and lithium, respectively than the avirulent S. cerevisiae but exhibited the same tolerance towards cell wall-perturbing Congo Red with C. albicans. With 7.5× higher biofilm mass, M. guilliermondii strain SO also demonstrated 75% higher mortality rate in the zebrafish embryos with a thicker biofilm layer on the chorion compared to the avirulent S. cerevisiae. Being one of the most important Candida adhesins, sequence and structural analyses of four statistically identified MgAls showed that MgAls1056 was predicted to exhibit the most conserved amyloid-forming regions, tandem repeat domain and peptide binding cavity (PBC) compared to C. albicans Als3. Favoured from the predicted largest ligand binding site and druggable pockets, it showed the highest affinity towards hepta-threonine. Non-PBC druggable pockets in the most potent virulence contributing MgAls1056 provide new insights into developing antifungal drugs targeting non-albicans Candida spp. Virtual screening of available synthetic or natural bioactive compounds and MgAls1056 deletion from the fungal genome should be further performed and validated experimentally.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Araújo Dos Santos DL, Santana de Curcio J, Novaes E, Maria de Almeida Soares C. miRNAs regulate the metabolic adaptation of Paracoccidioides brasiliensis during copper deprivation. Microbes Infect 2025; 27:105435. [PMID: 39528107 DOI: 10.1016/j.micinf.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Copper is an essential metal for cellular processes such as detoxification of reactive oxygen species, oxidative phosphorylation, and iron uptake. However, during infection, the host restricts the bioavailability of this micronutrient to the pathogen as a strategy to combat infection. Recently, we have shown the involvement of miRNAs as an adaptive strategy of P. brasiliensis upon metal deprivation such as iron and zinc. However, their role in copper limitation still needs to be elucidated. Our objective was to characterize the expression profile of miRNAs regulated during copper deprivation in P. brasiliensis and the putative altered processes. Through RNAseq analysis and bioinformatics, we identified 14 differentially expressed miRNAs, two of which putatively regulated oxidative stress response, beta-oxidation, glyoxylate cycle, and cell wall remodeling. Our results suggest that metabolic adaptations carried out by P. brasiliensis in copper deprivation are regulated by miRNAs.
Collapse
Affiliation(s)
- Dener Lucas Araújo Dos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Genética Molecular e Citogenética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil
| | - Evandro Novaes
- Setor de Genética, Departamento de Biologia, Universidade Federal de Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
5
|
Manoj N, Pradhan M, Kundu D, Abhiramy DS, Balakumaran PA, Sherpa KC. Nanochitin: Green nanomaterial for sustainable applications in agriculture and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178607. [PMID: 39889571 DOI: 10.1016/j.scitotenv.2025.178607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
The need for a green and sustainable nanomaterial sourced from biomass in the form of nanochitin has raised interest in paving the way towards incorporating biological resources for the production of functional materials. Nanochitin as nanofibers and nanocrystals/whiskers have attractive features like their ability to self-assemble into multidimensional biomaterials while retaining their intrinsic characteristics. Herein, the review discusses chitin's molecular association and hierarchical assemblies and gives an overview of the extraction methods adopted to produce nanochitin. Recent progress in the development of advanced functional nanochitin-based materials/composites and their current application in agriculture and environmental remediation are reviewed to gain a better understanding of their applicability for forthcoming research and improvement. Furthermore, the environmental impact assessment of chitin has been discussed, followed by the techno-economic analysis, thus providing scope for improvement in manufacturing and perspectives on the potential of nanochitin in the context of sustainable material and their role in circular bioeconomy.
Collapse
Affiliation(s)
- Neeraja Manoj
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Meghna Pradhan
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh, 522 240, India
| | - Deepan Shammy Abhiramy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Palanisamy Athiyaman Balakumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Knawang Chhunji Sherpa
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Ciobanu LT, Constantinescu-Aruxandei D, Farcasanu IC, Oancea F. Spent Brewer's Yeast Lysis Enables a Best Out of Waste Approach in the Beer Industry. Int J Mol Sci 2024; 25:12655. [PMID: 39684367 DOI: 10.3390/ijms252312655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain. Cell lysis is a crucial step in the recovery of bioactive compounds such as (glyco)proteins, vitamins, and polysaccharides from yeasts. Besides the soluble intracellular content rich in bioactive molecules, which is released by cell lysis, the yeast cell walls β-glucan, chitin, and mannoproteins present properties that make them good candidates for various applications such as functional food ingredients, dietary supplements, or plant biostimulants. This literature study provides an overview of the lysis methods used to valorize spent brewer's yeast. The content of yeast extracts and yeast cell walls resulting from cellular disruption of spent brewer's yeast are discussed in correlation with the biological activities of these fractions and resulting applications. This review highlights the need for a deeper investigation of molecular mechanisms to unleash the potential of spent brewer's yeast extracts and cell walls to become an important source for a variety of bioactive compounds.
Collapse
Affiliation(s)
- Livia Teodora Ciobanu
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
7
|
Wlizło K, Siwulski M, Kowalska-Krochmal B, Wiater A. Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments. Int J Mol Sci 2024; 25:11388. [PMID: 39518940 PMCID: PMC11546519 DOI: 10.3390/ijms252111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol A is a plastic component, which shows endocrine activity that is detrimental to humans and aquatic ecosystems. The elimination of BPA from the environment is one of the solutions for BPA contaminant management. Adsorption is a cost-effective, easy-to-use method generating low harmful byproducts; nevertheless, contaminant sorbent treatment is a challenge that still needs to be addressed. Fungal fruiting bodies biomass is rarely studied sorbent but is promising due to its high polysaccharide content and availability. Our preliminary studies showed BPA sorption (100 mg/L) by 50 cultivated and wild fungi. The cultivated species: Clitocybe maxima (82%), Pholiota nameko (77%), and Pleurotus columbinus (74%), and wild fungi Cantharellus cibarius (75%) and Lactarius deliciosus (72%) were the most efficient. The biomass was able to sorb BPA over a broad range of temperature and pH levels, with an optimum at 20 °C and pH 7. Although saturation of sorbents was rapid, the regeneration process using ethanol was effective and allowed to recover up to 75% of sorbents' initial efficiency. A single use of 1 g of sorbent would allow the treatment of 8.86 to 10.1 m3 of wastewater effluent, 16.5 to 18.7 m3 of surface water, and 411 to 469 m3 of drinking water, assuming the concentrations of BPA reported in the literature.
Collapse
Affiliation(s)
- Kamila Wlizło
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Marek Siwulski
- Department of Vegetable Crops, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland;
| | - Beata Kowalska-Krochmal
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| |
Collapse
|
8
|
Roncero E, Andrade MJ, Álvarez M, Cebrián E, Delgado J. Deciphering the antiochratoxigenic activity of plant extracts and Debaryomyces hansenii against Penicillium nordicum in a "chorizo"-based medium by proteomic analysis. Meat Sci 2024; 216:109591. [PMID: 38991481 DOI: 10.1016/j.meatsci.2024.109591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Penicillium nordicum is the main ochratoxin A (OTA)-producing species on the surface of dry-fermented sausages, such as the "chorizo". New antifungal strategies are being developed using biocontrol agents (BCAs), such as plant extracts and native microorganisms. This work aimed to evaluate the antiochratoxigenic capacity and the causative modes of action of BCAs (rosemary essential oil (REO), acorn shell extract and the yeast Debaryomyces hansenii (Dh)) in a "chorizo"-based medium (Ch-DS). BCAs were inoculated on Ch-DS together with P. nordicum and incubated at 12 °C for 15 days to collect mycelia for OTA analyses and comparative proteomics. Both REO and Dh alone decreased OTA accumulation up to 99% and affected the abundance of P. nordicum proteins linked to cell wall organisation, synthesis of OTA-related metabolites and ergosterol synthesis. It is worth highlighting the increased abundance of an amidase by REO, matching with the decrease in OTA. The use of REO and Dh as BCAs could be an effective strategy to reduce the OTA hazard in the meat industry. Based on their not fully coincident modes of action, their combined application could be of interest in "chorizo" to maximise their potential against ochratoxigenic strains.
Collapse
Affiliation(s)
- Elia Roncero
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - María J Andrade
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain.
| | - Micaela Álvarez
- Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eva Cebrián
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
9
|
Gu H, Qin J, Wen J, Lin Y, Jia X, Wang W, Yin H. Unveiling the structural properties and induced resistance activity in rice of Chitin/Chitosan-Glucan Complex of Rhizoctonia solani AG1 IA inner cell wall. Carbohydr Polym 2024; 337:122149. [PMID: 38710571 DOI: 10.1016/j.carbpol.2024.122149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was β-1,3-linked Glcp, both the α and β-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.
Collapse
Affiliation(s)
- Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxuan Wen
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yudie Lin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Shree A, Pal S, Verma PK. Structural diversification of fungal cell wall in response to the stress signaling and remodeling during fungal pathogenesis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:733-747. [PMID: 38846457 PMCID: PMC11150350 DOI: 10.1007/s12298-024-01453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
Fungi are one of the most diverse organisms found in our surroundings. The heterotrophic lifestyle of fungi and the ever-changing external environmental factors pose numerous challenges for their survival. Despite all adversities, fungi continuously develop new survival strategies to secure nutrition and space from their host. During host-pathogen interaction, filamentous phytopathogens in particular, effectively infect their hosts by maintaining polarised growth at the tips of hyphae. The fungal cell wall, being the prime component of host contact, plays a crucial role in fortifying the intracellular environment against the harsh external environment. Structurally, the fungal cell wall is a highly dynamic yet rigid component, responsible for maintaining cellular morphology. Filamentous pathogens actively maintain their dynamic cell wall to compensate rapid growth on the host. Additionally, they secrete effectors to dampen the sophisticated mechanisms of plant defense and initiate various downstream signaling cascades to repair the damage inflicted by the host. Thus, the fungal cell wall serves as a key modulator of fungal pathogenicity. The fungal cell wall with their associated signaling mechanisms emerge as intriguing targets for host immunity. This review comprehensively examines and summarizes the multifaceted findings of various research groups regarding the dynamics of the cell wall in filamentous fungal pathogens during host invasion.
Collapse
Affiliation(s)
- Ankita Shree
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Surabhi Pal
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
11
|
Kalita B, Roy A, Jayaprakash A, Arunachalam A, P.T.V L. Identification of lncRNA and weighted gene coexpression network analysis of germinating Rhizopus delemar causing mucormycosis. Mycology 2024; 14:344-357. [PMID: 38187880 PMCID: PMC10769135 DOI: 10.1080/21501203.2023.2265414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Rhizopus delemar, an opportunistic fungal pathogen, causes a highly fatal disease, mucormycosis. Spore germination is a crucial mechanism for disease pathogenesis. Thus, exploring the molecular mechanisms of fungal germination would underpin our knowledge of such transformation and, in turn, help control mucormycosis. To gain insight into the developmental process particularly associated with cell wall modification and synthesis, weighted gene co-expression network analysis (WGCNA) was performed including both coding and non-coding transcripts identified in the current study, to find out the module of interest in the germination stages. The module-trait relationship identified a particular module to have a high correlation only at the resting phase and further analysis revealed the module to be enriched for protein phosphorylation, carbohydrate metabolic process, and cellular response to stimulus. Moreover, co-expression network analysis of highly connected nodes revealed cell wall modifying enzymes, especially those involved in mannosylation, chitin-glucan crosslinking, and polygalacturonase activities co-expressing and interacting with the novel lncRNAs among which some of them predicted to be endogenous target mimic (eTM) lncRNAs. Hence, the present study provides an insight into the onset of spore germination and the information on the novel non-coding transcripts with key cell wall-related enzymes as potential targets against mucormycosis.
Collapse
Affiliation(s)
- Barsha Kalita
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Abhijeet Roy
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | | | | | - Lakshmi P.T.V
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
12
|
Salas E, Gorfer M, Bandian D, Eichorst SA, Schmidt H, Horak J, Rittmann SKMR, Schleper C, Reischl B, Pribasnig T, Jansa J, Kaiser C, Wanek W. Reevaluation and novel insights into amino sugar and neutral sugar necromass biomarkers in archaea, bacteria, fungi, and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167463. [PMID: 37793447 DOI: 10.1016/j.scitotenv.2023.167463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Soil microbial necromass is an important contributor to soil organic matter (>50%) and it is largely composed of microbial residues. In soils, fragmented cell wall residues are mostly found in their polysaccharide forms of fungal chitin and bacterial peptidoglycan. Microbial necromass biomarkers, particularly amino sugars (AS) such as glucosamine (GlcN) and muramic acid (MurA) have been used to trace fungal and bacterial residues in soils, and to distinguish carbon (C) found in microbial residues from non-microbial organic C. Neutral sugars (NS), particularly the hexose/pentose ratio, have also been proposed as tracers of plant polysaccharides in soils. In our study, we extended the range of biomarkers to include AS and NS compounds in the biomass of 120 species belonging to archaea, bacteria, fungi, or plants. GlcN was the most common AS found in all taxa, contributing 42-91% to total AS content, while glucose was the most common NS found, contributing 56-79% to total NS. We identified talosaminuronic acid, found in archaeal pseudopeptidoglycan, as a new potential biomarker specific for Euryarchaeota. We compared the variability of these compounds between the different taxonomic groups using multivariate approaches, such as non-metric multidimensional scaling (NMDS) and partial least squares discriminant analysis (PLS-DA) and statistically evaluated their biomarker potential via indicator species analysis. Both NMDS and PLS-DA showcased the variability in the AS and NS contents between the different taxonomic groups, highlighting their potential as necromass residue biomarkers and allowing their extension from separating bacterial and fungal necromass to separating microbes from plants. Finally, we estimated new conversion factors where fungal GlcN is converted to fungal C by multiplying by 10 and MurA is converted to bacterial C by multiplying by 54. Conversion factors for talosaminuronic acid and galactosamine are also proposed to allow estimation of archaeal or all-microbial necromass residue C, respectively.
Collapse
Affiliation(s)
- Erika Salas
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Bioresources, Tulln, Austria
| | - Dragana Bandian
- AIT Austrian Institute of Technology GmbH, Bioresources, Tulln, Austria
| | - Stephanie A Eichorst
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hannes Schmidt
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Julia Horak
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Thomas Pribasnig
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Christina Kaiser
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Rovetta-Nogueira SDM, Borges AC, de Oliveira Filho M, Nishime TMC, Hein LRDO, Kostov KG, Koga-Ito CY. Helium Cold Atmospheric Plasma Causes Morphological and Biochemical Alterations in Candida albicans Cells. Molecules 2023; 28:7919. [PMID: 38067648 PMCID: PMC10707892 DOI: 10.3390/molecules28237919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: Previous studies reported the promising inhibitory effect of cold atmospheric plasma (CAP) on Candida albicans. However, the exact mechanisms of CAP's action on the fungal cell are still poorly understood. This study aims to elucidate the CAP effect on C. albicans cell wall, by evaluating the alterations on its structure and biochemical composition; (2) Methods: C. albicans cells treated with Helium-CAP were analyzed by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in order to detect morphological, topographic and biochemical changes in the fungal cell wall. Cells treated with caspofungin were also analyzed for comparative purposes; (3) Results: Expressive morphological and topographic changes, such as increased roughness and shape modification, were observed in the cells after CAP exposure. The alterations detected were similar to those observed after the treatment with caspofungin. The main biochemical changes occurred in polysaccharides content, and an overall decrease in glucans and an increase in chitin synthesis were detected; (4) Conclusions: Helium-CAP caused morphological and topographic alterations in C. albicans cells and affected the cell wall polysaccharide content.
Collapse
Affiliation(s)
- Sabrina de Moura Rovetta-Nogueira
- Oral Biopathology Graduate Program, Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil; (S.d.M.R.-N.); (A.C.B.)
| | - Aline Chiodi Borges
- Oral Biopathology Graduate Program, Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil; (S.d.M.R.-N.); (A.C.B.)
| | - Maurício de Oliveira Filho
- Department of Materials and Technology, Guaratinguetá Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil; (M.d.O.F.); (L.R.d.O.H.)
| | | | - Luis Rogerio de Oliveira Hein
- Department of Materials and Technology, Guaratinguetá Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil; (M.d.O.F.); (L.R.d.O.H.)
| | - Konstantin Georgiev Kostov
- Department of Physics, Guaratinguetá Faculty of Engineering, São Paulo State University (UNESP), Guaratinguetá 12516-410, SP, Brazil;
| | - Cristiane Yumi Koga-Ito
- Oral Biopathology Graduate Program, Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University (UNESP), São José dos Campos 12247-016, SP, Brazil; (S.d.M.R.-N.); (A.C.B.)
| |
Collapse
|
14
|
Yang YM, Fu X, Cui FJ, Sun L, Zan XY, Sun WJ. Biochemical and structural characterization of a glucan synthase GFGLS2 from edible fungus Grifola frondosa to synthesize β-1, 3-glucan. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:163. [PMID: 37904199 PMCID: PMC10617128 DOI: 10.1186/s13068-023-02380-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/05/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Grifola frondosa is a Basidiomycete fungus belonging to the family of Grifolaceae and the order of Polyporales. β-Glucans are the main polymers in G. frondosa, playing a crucial role in the physiology and representing the healthy benefits for humans. The membrane-integrated β-1, 3-glucan synthase (GLS) is responsible for glucan synthesis, cell wall assembly, differentiation and growth of the edible fungi. However, the structural/catalytic characteristics and mechanisms of β-1, 3-glucan synthases in G. frondosa are still unknown due to their extremely complex structures with multi-transmembranes and large molecular masses. RESULTS Herein, a β-1, 3-glucan synthase (GFGLS2) was purified and identified from the cultured mycelia with a specific activity of 60.01 pmol min-1 μg-1 for the first time. The GFGLS2 showed a strict specificity to UDP-glucose with a Vmax value of 1.29 ± 0.04 µM min-1 at pH 7.0 and synthesized β-1, 3-glucan with a maximum degree of polymerization (DP) of 62. Sequence Similarity Network (SSN) analysis revealed that GFGLS2 has a close relationship with others in Ganoderma sinense, Trametes coccinea, Polyporus brumalis, and Trametes pubescens. With the assistance of 3D structure modelling by AlphaFold 2, molecular docking and molecular dynamics simulations, the central hydrophilic domain (Class III) in GFGLS2 was the main active sites through binding the substrate UDP-glucose to 11 amino acid residues via hydrogen bonds, π-stacking and salt bridges. CONCLUSIONS The biochemical, 3D structural characterization and potential catalytic mechanism of a membrane-bound β-1, 3-glucan synthase GFGLS2 from cultured mycelia of G. frondosa were well investigated and would provide a reasonable full picture of β-1, 3-glucan synthesis in fungi.
Collapse
Affiliation(s)
- Yu-Meng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xin Fu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Dexing, 334221, China.
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-Production, Dexing, 334221, China
| |
Collapse
|
15
|
Qiu M, Qiu L, Deng Q, Fang Z, Sun L, Wang Y, Gooneratne R, Zhao J. L-Cysteine hydrochloride inhibits Aspergillus flavus growth and AFB 1 synthesis by disrupting cell structure and antioxidant system balance. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132218. [PMID: 37552922 DOI: 10.1016/j.jhazmat.2023.132218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Aflatoxin B1 (AFB1) is the most potent known naturally occurring carcinogen and pose an immense threat to food safety and human health. L-Cysteine hydrochloride (L-CH) is a food additive often used as a fruit and vegetable preservative and also to approved bread consistency. In this study, we investigated the effects and mechanisms of L-CH as an antimicrobial on the growth of Aspergillus flavus (A. flavus) and AFB1 biosynthesis. L-CH significantly inhibited A. flavus mycelial growth, affected mycelial morphology and AFB1 synthesis. Furthermore, L-CH induced glutathione (GSH) synthesis which scavenged intracellular reactive oxygen species (ROS). RNA-Seq indicated that L-CH inhibited hyphal branching, and spore and sclerotia formation by controlling cell wall and spore development-related genes. Activation of the GSH metabolic pathway eliminated intracellular ROS, leading to hyphal dwarfing. L-CH treatment downregulated most of the Aflatoxin (AF) cluster genes and aflS, aflR, AFLA_091090 transcription factors. This study provides new insights into the molecular mechanism of L-CH control of A. flavus and AFB1 foundation. We believe that L-CH could be used as a food additive to control AFB1 in foods and also in the environment.
Collapse
Affiliation(s)
- Mei Qiu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lihong Qiu
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, Villagómez-Castro JC, López-Romero E. Fungal Glycosidases in Sporothrix Species and Candida albicans. J Fungi (Basel) 2023; 9:919. [PMID: 37755027 PMCID: PMC10532485 DOI: 10.3390/jof9090919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Glycoside hydrolases (GHs) are enzymes that participate in many biological processes of fungi and other organisms by hydrolyzing glycosidic linkages in glycosides. They play fundamental roles in the degradation of carbohydrates and the assembly of glycoproteins and are important subjects of studies in molecular biology and biochemistry. Based on amino acid sequence similarities and 3-dimensional structures in the carbohydrate-active enzyme (CAZy), they have been classified in 171 families. Members of some of these families also exhibit the activity of trans-glycosydase or glycosyl transferase (GT), i.e., they create a new glycosidic bond in a substrate instead of breaking it. Fungal glycosidases are important for virulence by aiding tissue adhesion and colonization, nutrition, immune evasion, biofilm formation, toxin release, and antibiotic resistance. Here, we review fungal glycosidases with a particular emphasis on Sporothrix species and C. albicans, two well-recognized human pathogens. Covered issues include a brief account of Sporothrix, sporotrichosis, the different types of glycosidases, their substrates, and mechanism of action, recent advances in their identification and characterization, their potential biotechnological applications, and the limitations and challenges of their study given the rather poor available information.
Collapse
Affiliation(s)
| | | | | | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| |
Collapse
|
17
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
18
|
Francisco CS, McDonald BA, Palma-Guerrero J. A transcription factor and a phosphatase regulate temperature-dependent morphogenesis in the fungal plant pathogen Zymoseptoria tritici. Fungal Genet Biol 2023; 167:103811. [PMID: 37196910 DOI: 10.1016/j.fgb.2023.103811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Naturally fluctuating temperatures provide a constant environmental stress that requires adaptation. Some fungal pathogens respond to heat stress by producing new morphotypes that maximize their overall fitness. The fungal wheat pathogen Zymoseptoria tritici responds to heat stress by switching from its yeast-like blastospore form to hyphae or chlamydospores. The regulatory mechanisms underlying this switch are unknown. Here, we demonstrate that a differential heat stress response is ubiquitous in Z. tritici populations around the world. We used QTL mapping to identify a single locus associated with the temperature-dependent morphogenesis and we found two genes, the transcription factor ZtMsr1 and the protein phosphatase ZtYvh1, regulating this mechanism. We find that ZtMsr1 regulates repression of hyphal growth and induces chlamydospore formation whereas ZtYvh1 is required for hyphal growth. We next showed that chlamydospore formation is a response to the intracellular osmotic stress generated by the heat stress. This intracellular stress stimulates the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) MAPK pathways resulting in hyphal growth. If cell wall integrity is compromised, however, ZtMsr1 represses the hyphal development program and may induce the chlamydospore-inducing genes as a stress-response survival strategy. Taken together, these results suggest a novel mechanism through which morphological transitions are orchestrated in Z. tritici - a mechanism that may also be present in other pleomorphic fungi.
Collapse
Affiliation(s)
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, 8092 ETH Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, 8092 ETH Zürich, Switzerland.
| |
Collapse
|
19
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
20
|
Patel P, Free SJ. Characterization of Neurospora crassa GH16, GH17, and GH72 gene families of cell wall crosslinking enzymes. Cell Surf 2022; 8:100073. [PMID: 35079668 PMCID: PMC8777122 DOI: 10.1016/j.tcsw.2022.100073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/18/2022] Open
Abstract
GH16 chitin transferases, GH17 β-1,3-glucan transferases, and GH72 β-1,3-glucan/lichenin transferases are important fungal cell wall crosslinking enzymes. The Neurospora crassa genome encodes three genes from the GH17 gene family and five members in the GH16 subfamily 18 and 19 fungal chitin transferases. We created deletion mutants lacking all three GH17 genes and determined that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We also created deletion mutants lacking all five GH16 subfamily 18 and 19 genes and found that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We conclude that GH16 and GH17 enzymes play roles in cell wall biogenesis. In N. crassa, GH72 enzymes have been reported to be lichenin transferases, while in other fungi they have been shown to be the β-1,3-glucan transferases. Neurospora triple GH72 deletions give rise to a tight colonial morphology, sensitivity to cell wall perturbation reagents, and release of cell wall proteins into the medium. To ask if GH72 and GH17 enzymes might be redundant in N. crassa, we created sextuple mutants lacking the three GH72 genes and the three GH17 genes and found that they were indistinguishable from the GH72 triple mutant. We also found that a recombinant GH72 enzyme is able to form a lichenin-enzyme intermediate demonstrating that GH72 enzymes are lichenin transferases. The N. crassa GH72 enzymes are lichenin transferases and are not redundant with the GH17 β-1,3-glucan transferases.
Collapse
Affiliation(s)
- Pavan Patel
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J. Free
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| |
Collapse
|
21
|
Ortiz-Ramírez JA, Cuéllar-Cruz M, López-Romero E. Cell compensatory responses of fungi to damage of the cell wall induced by Calcofluor White and Congo Red with emphasis on Sporothrix schenckii and Sporothrix globosa. A review. Front Cell Infect Microbiol 2022; 12:976924. [PMID: 36211971 PMCID: PMC9539796 DOI: 10.3389/fcimb.2022.976924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, β-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.
Collapse
|
22
|
Lehmann D, Sladek M, Khemmani M, Boone TJ, Rees E, Driks A. Role of novel polysaccharide layers in assembly of the exosporium, the outermost protein layer of the Bacillus anthracis spore. Mol Microbiol 2022; 118:258-277. [PMID: 35900297 PMCID: PMC9549345 DOI: 10.1111/mmi.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022]
Abstract
A fundamental question in cell biology is how cells assemble their outer layers. The bacterial endospore is a well-established model for cell layer assembly. However, the assembly of the exosporium, a complex protein shell comprising the outermost layer in the pathogen Bacillus anthracis, remains poorly understood. Exosporium assembly begins with the deposition of proteins at one side of the spore surface, followed by the progressive encirclement of the spore. We seek to resolve a major open question: the mechanism directing exosporium assembly to the spore, and then into a closed shell. We hypothesized that material directly underneath the exosporium (the interspace) directs exosporium assembly to the spore and drives encirclement. In support of this, we show that the interspace possesses at least two distinct layers of polysaccharide. Secondly, we show that putative polysaccharide biosynthetic genes are required for exosporium encirclement, suggesting a direct role for the interspace. These results not only significantly clarify the mechanism of assembly of the exosporium, an especially widespread bacterial outer layer, but also suggest a novel mechanism in which polysaccharide layers drive the assembly of a protein shell.
Collapse
Affiliation(s)
- Dörte Lehmann
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Margaret Sladek
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tyler J Boone
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Eric Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
23
|
Zhang J, Xiao K, Li M, Hu H, Zhang X, Liu J, Pan H, Zhang Y. SsAGM1-Mediated Uridine Diphosphate-N-Acetylglucosamine Synthesis Is Essential for Development, Stress Response, and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:938784. [PMID: 35814696 PMCID: PMC9260252 DOI: 10.3389/fmicb.2022.938784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen. S. sclerotiorum can cause Sclerotinia stem rot in more than 600 species of plants, which results in serious economic losses every year. Chitin is one of the most important polysaccharides in fungal cell walls. Chitin and β-Glucan form a scaffold that wraps around the cell and determines the vegetative growth and pathogenicity of pathogens. UDP-GlcNAc is a direct precursor of chitin synthesis. During the synthesis of UDP-GlcNAc, the conversion of GlcNAc-6P to GlcNAc-1P that is catalyzed by AGM1 (N-acetylglucosamine-phosphate mutase) is a key step. However, the significance and role of AGM1 in phytopathogenic fungus are unclear. We identified a cytoplasm-localized SsAGM1 in S. sclerotiorum, which is homologous to AGM1 of Saccharomyces cerevisiae. We utilized RNA interference (RNAi) and overexpression to characterize the function of SsAGM1 in S. sclerotiorum. After reducing the expression of SsAGM1, the contents of chitin and UDP-GlcNAc decreased significantly. Concomitantly, the gene-silenced transformants of SsAGM1 slowed vegetative growth and, importantly, lost the ability to produce sclerotia and infection cushion; it also lost virulence, even on wounded leaves. In addition, SsAGM1 was also involved in the response to osmotic stress and inhibitors of cell wall synthesis. Our results revealed the function of SsAGM1 in the growth, development, stress response, and pathogenicity in S. sclerotiorum.
Collapse
|
24
|
Li R, Zhu L, Liu D, Wang W, Zhang C, Jiao S, Wei J, Ren L, Zhang Y, Gou X, Yuan X, Du Y, Wang ZA. High molecular weight chitosan oligosaccharide exhibited antifungal activity by misleading cell wall organization via targeting PHR transglucosidases. Carbohydr Polym 2022; 285:119253. [PMID: 35287867 DOI: 10.1016/j.carbpol.2022.119253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The fungal cell wall is an ideal target for the design of antifungal drugs. In this study we used an analog of cell wall polymer, a highly deacetylated high molecular-weight chitosan oligosaccharide (HCOS), to test its effect against pathogenic Candida strains. Results showed that HCOS was successfully incorporated into the dynamic cell wall organization process and exhibited an apparent antifungal activity against both plankton and mature fungal biofilm, by impairing the cell wall integrity. Unexpectedly, mechanistic studies suggested that HCOS exerts its activity by interfering with family members of PHR β-(1,3)-glucanosyl transferases and affecting the connection and assembly of cell wall polysaccharides. Furthermore, HCOS showed great synergistic activity with different fungicides against Candida cells, especially those in biofilm. These findings indicated HCOS has a great potential as an antifungal drug or drug synergist and proposed a novel antifungal strategy with structure-specific oligosaccharides mimicking cell wall polysaccharide fragments.
Collapse
Affiliation(s)
- Ruilian Li
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Limeng Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Chen Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhua Wei
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lishi Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuchen Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xun Gou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xianghua Yuan
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yuguang Du
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhuo A Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
25
|
Li J, Shao Y, Yang Y, Xu C, Jing Z, Li H, Xie B, Tao Y. The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis. J Fungi (Basel) 2022; 8:jof8050477. [PMID: 35628733 PMCID: PMC9147824 DOI: 10.3390/jof8050477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022] Open
Abstract
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier gene containing the JmjC domain in stipe elongation. First, we identified a JmjC domain family gene (FfJmhy) with a 3684 bp length open reading frame (ORF) in F. filiformis. FfJmhy was predicted to have a histone H3K9 demethylation function, and was specifically upregulated during stipe rapid elongation. Further investigation revealed that the silencing of FfJmhy inhibited the mycelial growth, while overexpression of this gene had no effect on the mycelial growth. Comparative analysis revealed that the stipe elongation rate in FfJmhy overexpression strains was significantly increased, while it was largely reduced when FfJmhy was silenced. Taken together, these results suggest that FfJmhy positively regulates the mycelial growth and controls the elongation speed and the length of the stipe. Moreover, cell wall-related enzymes genes, including three exo-β-1,3-glucanases, one β-1,6-glucan synthase, four chitinases, and two expansin proteins, were found to be regulated by FfJmhy. Based on the putative functions of FfJmhy, we propose that this gene enhances the transcription of cell wall-related enzymes genes by demethylating histone H3K9 sites to regulate remodeling of the cell wall in rapid stipe elongation. This study provides new insight into the mechanism of rapid stipe elongation, and it is important to regulate the commodity quality of agaric fungi.
Collapse
Affiliation(s)
- Jian Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanping Shao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yayong Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Chang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhuohan Jing
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Hui Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China;
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongxin Tao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.L.); (Y.S.); (Y.Y.); (C.X.); (Z.J.)
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Correspondence: ; Tel.: +86-0591-83789281
| |
Collapse
|
26
|
Mohammad Hood MH, Tengku Abdul Hamid TH, Abdul Wahab RA, Huyop FZ, Kaya Y, Abdul Hamid AAA. Molecular interactions of trichoderma β-1,4-glucosidase (ThBglT12) with mycelial cell wall components of phytopathogenic Macrophomina phaseolina. J Biomol Struct Dyn 2022; 41:2831-2847. [PMID: 35174777 DOI: 10.1080/07391102.2022.2039772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Efficacy of a β-1,4-glucosidase from Trichoderma harzianum T12 (ThBglT12) in disrupting the cell wall of the phytopathogenic fungus M. phaseolina (Macrophomina phaseolina) was studied, as the underlying molecular mechanisms of cell wall recognition remains elusive. In this study, the binding location identified by a consensus of residues predicted by COACH tool, blind docking, and multiple sequence alignment revealed that molecular recognition by ThBglT12 occurred through interactions between the α-1,3-glucan, β-1,3-glucan, β-1,3/1,4-glucan, and chitin components of M. phaseolina, with corresponding binding energies of -7.4, -7.6, -7.5 and -7.8 kcal/mol. The residue consensus verified the participation of Glu172, Tyr304, Trp345, Glu373, Glu430, and Trp431 in the active site pocket of ThBglT12 to bind the ligands, of which Trp345 was the common interacting residue. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), total energy, and minimum distance calculation from molecular dynamics (MD) simulation further confirmed the stability and the closeness of the binding ligands into the ThBglT12 active site pocket. The h-bond occupancy by Glu373 and Trp431 instated the role of the nucleophile for substrate recognition and specificity, crucial for cleaving the β-1,4 linkage. Further investigation showed that the proximity of Glu373 to the anomeric carbon of β-1,3/1,4-glucan (3.5 Å) and chitin (5.5 Å) indicates the nucleophiles' readiness to form enzyme-substrate intermediates. Plus, the neighboring water molecule appeared to be correctly positioned and oriented towards the anomeric carbon to hydrolyze the β-1,3/1,4-glucan and chitin, in less than 4.0 Å. In a nutshell, the study verified that the ThBglT12 is a good alternative fungicide to inhibit the growth of M. phaseolina.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Hakim Mohammad Hood
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Tengku Haziyamin Tengku Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia.,Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Roswanira Abdul Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Malaysia
| | - Fahrul Zaman Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Turkey
| | - Azzmer Azzar Abdul Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia.,Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| |
Collapse
|
27
|
Sanz AB, García R, Pavón-Vergés M, Rodríguez-Peña JM, Arroyo J. Control of Gene Expression via the Yeast CWI Pathway. Int J Mol Sci 2022; 23:ijms23031791. [PMID: 35163713 PMCID: PMC8836261 DOI: 10.3390/ijms23031791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Living cells exposed to stressful environmental situations can elicit cellular responses that guarantee maximal cell survival. Most of these responses are mediated by mitogen-activated protein kinase (MAPK) cascades, which are highly conserved from yeast to humans. Cell wall damage conditions in the yeast Saccharomyces cerevisiae elicit rescue mechanisms mainly associated with reprogramming specific transcriptional responses via the cell wall integrity (CWI) pathway. Regulation of gene expression by this pathway is coordinated by the MAPK Slt2/Mpk1, mainly via Rlm1 and, to a lesser extent, through SBF (Swi4/Swi6) transcription factors. In this review, we summarize the molecular mechanisms controlling gene expression upon cell wall stress and the role of chromatin structure in these processes. Some of these mechanisms are also discussed in the context of other stresses governed by different yeast MAPK pathways. Slt2 regulates both transcriptional initiation and elongation by interacting with chromatin at the promoter and coding regions of CWI-responsive genes but using different mechanisms for Rlm1- and SBF-dependent genes. Since MAPK pathways are very well conserved in eukaryotic cells and are essential for controlling cellular physiology, improving our knowledge regarding how they regulate gene expression could impact the future identification of novel targets for therapeutic intervention.
Collapse
|
28
|
Farinha I, Baptista S, Reis MAM, Freitas F. Influence of Dissolved Oxygen Level on Chitin–Glucan Complex and Mannans Production by the Yeast Pichia pastoris. Life (Basel) 2022; 12:life12020161. [PMID: 35207449 PMCID: PMC8874363 DOI: 10.3390/life12020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
The yeast Pichia pastoris was cultivated under different dissolved oxygen (DO) levels (5, 15, 30 and 50% of the air saturation) to evaluate its impact on the production of the cell-wall polysaccharide chitin–glucan complex (CGC) and mannans. Decreasing the DO level from 50 to 15% had no significant impact on cell growth but substrate conversion into biomass was improved. Under such conditions, a mannans content in the biomass of 22 wt% was reached, while the CGC content in the biomass was improved from 15 to 18 wt%, confirming that the DO level also impacted on P. pastoris cell-wall composition. Overall mannans and CGC volumetric productivity values of 10.69 and 8.67 g/(L. day) were reached, respectively. On the other hand, the polymers’ composition was not significantly affected by decreasing the DO level. These results demonstrated that considerable energy savings can be made in the polysaccharide production process by reducing the DO level during cultivation of P. pastoris by improving the overall polymers’ productivity without altering their composition. This has impact on the polysaccharide production costs, which is of considerable relevance for process scale-up and products’ commercialization.
Collapse
Affiliation(s)
- Inês Farinha
- Pharma 73, S.A., Edifício Arcis, Rua Ivone Silva, 6, 4º Piso, 1050-124 Lisboa, Portugal;
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (S.B.); (M.A.M.R.)
| | - Sílvia Baptista
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (S.B.); (M.A.M.R.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- 73100 Lda., Edifício Arcis, Rua Ivone Silva, 6, 4º Piso, 1050-124 Lisboa, Portugal
| | - Maria A. M. Reis
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (S.B.); (M.A.M.R.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (S.B.); (M.A.M.R.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948300
| |
Collapse
|
29
|
Shinohara N, Nishitani K. Cryogenian Origin and Subsequent Diversification of the Plant Cell-Wall Enzyme XTH Family. PLANT & CELL PHYSIOLOGY 2021; 62:1874-1889. [PMID: 34197607 PMCID: PMC8711696 DOI: 10.1093/pcp/pcab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 05/22/2023]
Abstract
All land plants encode large multigene families of xyloglucan endotransglucosylase/hydrolases (XTHs), plant-specific enzymes that cleave and reconnect plant cell-wall polysaccharides. Despite the ubiquity of these enzymes, considerable uncertainty remains regarding the evolutionary history of the XTH family. Phylogenomic and comparative analyses in this study traced the non-plant origins of the XTH family to Alphaproteobacteria ExoKs, bacterial enzymes involved in loosening biofilms, rather than Firmicutes licheninases, plant biomass digesting enzymes, as previously supposed. The relevant horizontal gene transfer (HGT) event was mapped to the divergence of non-swimming charophycean algae in the Cryogenian geological period. This HGT event was the likely origin of charophycean EG16-2s, which are putative intermediates between ExoKs and XTHs. Another HGT event in the Cryogenian may have led from EG16-2s or ExoKs to fungal Congo Red Hypersensitive proteins (CRHs) to fungal CRHs, enzymes that cleave and reconnect chitin and glucans in fungal cell walls. This successive transfer of enzyme-encoding genes may have supported the adaptation of plants and fungi to the ancient icy environment by facilitating their sessile lifestyles. Furthermore, several protein evolutionary steps, including coevolution of substrate-interacting residues and putative intra-family gene fusion, occurred in the land plant lineage and drove diversification of the XTH family. At least some of those events correlated with the evolutionary gain of broader substrate specificities, which may have underpinned the expansion of the XTH family by enhancing duplicated gene survival. Together, this study highlights the Precambrian evolution of life and the mode of multigene family expansion in the evolutionary history of the XTH family.
Collapse
Affiliation(s)
- Naoki Shinohara
- *Corresponding authors: Naoki Shinohara, E-mail, ; Kazuhiko Nishitani, E-mail,
| | - Kazuhiko Nishitani
- *Corresponding authors: Naoki Shinohara, E-mail, ; Kazuhiko Nishitani, E-mail,
| |
Collapse
|
30
|
Effect of N-acetyl chito-oligosaccharides on the biosynthesis and properties of chitin in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2021; 67:285-289. [PMID: 34837152 DOI: 10.1007/s12223-021-00933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
Chitin exists in yeast cells both as free and bound in a complex with β-1,3/β-1,6-glucan. The formation of covalent links between chitin and β-glucans is catalyzed by the enzymes Crh1 and Crh2, acting as transglycosylases. We found that N-acetyl-chito-oligosaccharides, as well as laminarioligosaccharides, the respective products of partial hydrolysis of chitin, and β-1,3-glucan, interfered with reactions catalyzed by Crh1p and Crh2p in vitro. However, the N-acetyl-chito-oligosaccharides did not influence the growth rate of the yeast, neither did they affect the yeast phenotype, but they prolonged the lag phase. Inhibition of Crh1 and Crh2 in vivo with oligosaccharides derived from chitin leads to an increase of alkali-soluble chitin and a decrease in the amount of chitin linked to β-glucans. In addition, yeast cells growing in the presence of N-acetyl-D-chito-oligosaccharides accumulated more chitin than control cells.
Collapse
|
31
|
Boniche-Alfaro C, Kischkel B, Thomaz L, Carvalho-Gomes MM, Lopes-Bezerra LM, Nosanchuk JD, Taborda CP. Antibody- Based Immunotherapy Combined With Antimycotic Drug TMP- SMX to Treat Infection With Paracoccidioides brasiliensis. Front Immunol 2021; 12:725882. [PMID: 34737741 PMCID: PMC8562153 DOI: 10.3389/fimmu.2021.725882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023] Open
Abstract
Monoclonal antibodies (mAbs) are promising alternatives to treat infectious diseases, especially given their potential for applications in combination therapies with antimicrobial drugs to enhance the antifungal efficacy. Protection mediated by mAbs used to treat experimental paracoccidioidomycosis (PCM) has been demonstrated previously. Our aim in the present work was to characterize a monoclonal antibody (mAbF1.4) raised against a cell wall glycoconjugate fraction of Paracoccidioides spp. and to analyze its efficacy combined with trimethoprim-sulfamethoxazole (TMP/SMX) as treatment for experimental PCM. We demonstrated that the epitope recognized by mAbF1.4 is consistent with branched glucose residues present on a cell wall β-glucan polymer. In vitro, mAbF1.4 increased the phagocytic capacity and nitric oxide concentration induced by the macrophage cell line J774.1A, and this resulted in a significant reduction in the viability of the opsonophagocytized yeasts. In vivo, we detected a significant reduction in pulmonary fungal burdens of mice treated with mAbF1.4 in association with TMP/SMX, which correlated with increased pulmonary concentrations (determined by ELISA) of IFN- γ, TNF-α, IL-10 and IL-17. In parallel, we observed a decrease in IL-4, suggesting that the treatment was associated with a mixed Th1-Th17 type immune response. Histopathology of lung segments from mice receiving the combination therapy showed a significant reduction in granulomas, which were well-defined, and improved maintenance of lung architecture. These findings demonstrate that mAbF1.4 + TMP/SMX therapy is a promising approach to combat PCM as well as decrease disease sequelae and highlights the potential benefits of immune mediators in PCM combined immunotherapy.
Collapse
Affiliation(s)
- Camila Boniche-Alfaro
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Brenda Kischkel
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Luciana Thomaz
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Leila M Lopes-Bezerra
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.,BIDiagnostics, Centro de Inovação, Empreendedorismo e Tecnologia (CIETEC)/Universidade de São Paulo, São Paulo, Brazil
| | - Joshua Daniel Nosanchuk
- Department of Medicine (Division of Infectious Diseases), Microbiology and Immunology, Albert Einstein College of Medicine, New York City, NY, United States
| | - Carlos Pelleschi Taborda
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology, Institute of Tropical Medicine of São Paulo, Department of Dermatology, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Ueki A, Tonouchi A, Kaku N, Ueki K. Anaerocolumna chitinilytica sp. nov., a chitin-decomposing anaerobic bacterium isolated from anoxic soil subjected to biological soil disinfestation. Int J Syst Evol Microbiol 2021; 71. [PMID: 34515629 DOI: 10.1099/ijsem.0.004999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An obligately anaerobic bacterial strain (CTTWT) belonging to the family Lachnospiraceae within the class Clostridia was isolated from an anoxic soil sample subjected to biological or reductive soil disinfestation. Cells of the strain were Gram-stain-positive, short rods with peritrichous flagella. The strain was saccharolytic and decomposed polysaccharides, chitin, xylan and β-1,3-glucan. Strain CTTWT decomposed cell biomass and cell-wall preparations of an ascomycete plant pathogen, Fusarium oxysporum f. sp. spinaciae. The strain produced acetate, ethanol, H2 and CO2 as fermentation products from the utilized substrates. The major cellular fatty acids of the strain were C16 : 1 ω7c dimethylacetal (DMA), C16 : 0 DMA and C18 : 1 ω7c DMA. The closely related species of strain CTTWT based on the 16S rRNA gene sequences were species in the genus Anaerocolumna with sequence similarities of 95.2-97.6 %. Results of genome analyses of strain CTTWT indicated that the genome size of the strain was 5.62 Mb and the genomic DNA G+C content was 38.3 mol%. Six 16S rRNA genes with five different sequences from each other were found in the genome. Strain CTTWT had genes encoding chitinase, xylanase, cellulase, β-glucosidase and nitrogenase as characteristic genes in the genome. Homologous genes encoding these proteins were found in the genomes of the related Anaerocolumna species, but the genomic and phenotypic properties of strain CTTWT were distinct from them. Based on the phylogenetic, genomic and phenotypic analyses, the name Anaerocolumna chitinilytica sp. nov., in the family Lachnospiraceae is proposed for strain CTTWT (=NBRC 112102T=DSM 110036T).
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Akio Tonouchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, Wakaba-machi 1-23, Tsuruoka, Yamagata 997-8555, Japan
| |
Collapse
|
33
|
García R, Itto-Nakama K, Rodríguez-Peña JM, Chen X, Sanz AB, de Lorenzo A, Pavón-Vergés M, Kubo K, Ohnuki S, Nombela C, Popolo L, Ohya Y, Arroyo J. Poacic acid, a β-1,3-glucan-binding antifungal agent, inhibits cell-wall remodeling and activates transcriptional responses regulated by the cell-wall integrity and high-osmolarity glycerol pathways in yeast. FASEB J 2021; 35:e21778. [PMID: 34383971 DOI: 10.1096/fj.202100278r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023]
Abstract
As a result of the relatively few available antifungals and the increasing frequency of resistance to them, the development of novel antifungals is increasingly important. The plant natural product poacic acid (PA) inhibits β-1,3-glucan synthesis in Saccharomyces cerevisiae and has antifungal activity against a wide range of plant pathogens. However, the mode of action of PA is unclear. Here, we reveal that PA specifically binds to β-1,3-glucan, its affinity for which is ~30-fold that for chitin. Besides its effect on β-1,3-glucan synthase activity, PA inhibited the yeast glucan-elongating activity of Gas1 and Gas2 and the chitin-glucan transglycosylase activity of Crh1. Regarding the cellular response to PA, transcriptional co-regulation was mediated by parallel activation of the cell-wall integrity (CWI) and high-osmolarity glycerol signaling pathways. Despite targeting β-1,3-glucan remodeling, the transcriptional profiles and regulatory circuits activated by caspofungin, zymolyase, and PA differed, indicating that their effects on CWI have different mechanisms. The effects of PA on the growth of yeast strains indicated that it has a mode of action distinct from that of echinocandins, suggesting it is a unique antifungal agent.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - José Manuel Rodríguez-Peña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Xiaolin Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Alba de Lorenzo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Mónica Pavón-Vergés
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Karen Kubo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - César Nombela
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Tokyo, Japan
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, IRYCIS, Madrid, Spain
| |
Collapse
|
34
|
Improving the functionality of surface-engineered yeast cells by altering the cell wall morphology of the host strain. Appl Microbiol Biotechnol 2021; 105:5895-5904. [PMID: 34272577 DOI: 10.1007/s00253-021-11440-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
The expression of functional proteins on the cell surface using glycosylphosphatidylinositol (GPI)-anchoring technology is a promising approach for constructing yeast cells with special functions. The functionality of surface-engineered yeast strains strongly depends on the amount of functional proteins displayed on their cell surface. On the other hand, since the yeast cell wall space is finite, heterologous protein carrying capacity of the cell wall is limited. Here, we report the effect of CCW12 and CCW14 knockout, which encode major nonenzymatic GPI-anchored cell wall proteins (GPI-CWPs) involved in the cell wall organization, on the heterologous protein carrying capacity of yeast cell wall. Aspergillus aculeatus β-glucosidase (BGL) was used as a reporter to evaluate the protein carrying capacity in Saccharomyces cerevisiae. No significant difference in the amount of cell wall-associated BGL and cell-surface BGL activity was observed between CCW12 and CCW14 knockout strains and their control strain. In contrast, in the CCW12 and CCW14 co-knockout strains, the amount of cell wall-associated BGL and its activity were approximately 1.4-fold higher than those of the control strain and CCW12 or CCW14 knockout strains. Electron microscopic observation revealed that the total cell wall thickness of the CCW12 and CCW14 co-knockout strains was increased compared to the parental strain, suggesting a potential increase in heterologous protein carrying capacity of the cell wall. These results indicate that the CCW12 and CCW14 co-knockout strains are a promising host for the construction of highly functional recombinant yeast strains using cell-surface display technology. KEY POINTS: • CCW12 and/or CCW14 of a BGL-displaying S. cerevisiae strain were knocked out. • CCW12 and CCW14 co-disruption improved the display efficiency of BGL. • The thickness of the yeast cell wall was increased upon CCW12 and CCW14 knockout.
Collapse
|
35
|
Meng Q, Wu PP, Li MM, Shu RH, Zhou GL, Zhang JH, Zhang H, Jiang H, Qin QL, Zou Z. Distinct Responses of Thitarodes xiaojinensis β-1,3-Glucan Recognition Protein-1 and Immulectin-8 to Ophiocordyceps sinensis and Cordyceps militaris Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:200-209. [PMID: 34162722 DOI: 10.4049/jimmunol.2000447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/23/2021] [Indexed: 11/19/2022]
Abstract
Melanization and encapsulation are prominent defense responses against microbes detected by pattern recognition receptors of their host insects. In the ghost moth Thitarodes xiaojinensis, an activated immune system can melanize and encapsulate the fungus Cordyceps militaris However, these responses were hardly detected in the host hemolymph postinfection of another fungus Ophiocordyceps sinensis The immune interaction between O. sinensis and the host remains largely unknown, which hinders the artificial cultivation of Chinese cordyceps. We found that T. xiaojinensis β-1,3-glucan recognition protein-1 (βGRP1) was needed for prophenoloxidase activation induced by C. militaris Failure of βGRP1 to recognize O. sinensis is a primary reason for the lack of melanization in the infected host. Lyticase or snailase treatment combined with binding and immunofluorescence detection showed the existence of a protective layer preventing the fungus from βGRP1 recognition. Coimmunoprecipitation and mass spectrometry analysis indicated that βGRP1 interacted with immulectin-8 (IML8) via binding to C. militaris IML8 promotes encapsulation. This study suggests the roles of T. xiaojinensis βGRP1 and IML8 in modulating immune responses against C. militaris Most importantly, the data indicate that O. sinensis may evade melanization by preventing βGRP1 recognition.
Collapse
Affiliation(s)
- Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Ling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK; and
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Liu C, Bi J, Kang L, Zhou J, Liu X, Liu Z, Yuan S. The molecular mechanism of stipe cell wall extension for mushroom stipe elongation growth. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Spent Brewer's Yeast as a Source of Insoluble β-Glucans. Int J Mol Sci 2021; 22:ijms22020825. [PMID: 33467670 PMCID: PMC7829969 DOI: 10.3390/ijms22020825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.
Collapse
|
38
|
van Leeuwe TM, Wattjes J, Niehues A, Forn-Cuní G, Geoffrion N, Mélida H, Arentshorst M, Molina A, Tsang A, Meijer AH, Moerschbacher BM, Punt PJ, Ram AF. A seven-membered cell wall related transglycosylase gene family in Aspergillus niger is relevant for cell wall integrity in cell wall mutants with reduced α-glucan or galactomannan. Cell Surf 2020; 6:100039. [PMID: 32743151 PMCID: PMC7389268 DOI: 10.1016/j.tcsw.2020.100039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 11/05/2022] Open
Abstract
Chitin is an important fungal cell wall component that is cross-linked to β-glucan for structural integrity. Acquisition of chitin to glucan cross-links has previously been shown to be performed by transglycosylation enzymes in Saccharomyces cerevisiae, called Congo Red hypersensitive (Crh) enzymes. Here, we characterized the impact of deleting all seven members of the crh gene family (crhA-G) in Aspergillus niger on cell wall integrity, cell wall composition and genome-wide gene expression. In this study, we show that the seven-fold crh knockout strain shows slightly compact growth on plates, but no increased sensitivity to cell wall perturbing compounds. Additionally, we found that the cell wall composition of this knockout strain was virtually identical to that of the wild type. In congruence with these data, genome-wide expression analysis revealed very limited changes in gene expression and no signs of activation of the cell wall integrity response pathway. However, deleting the entire crh gene family in cell wall mutants that are deficient in either galactofuranose or α-glucan, mainly α-1,3-glucan, resulted in a synthetic growth defect and an increased sensitivity towards Congo Red compared to the parental strains, respectively. Altogether, these results indicate that loss of the crh gene family in A. niger does not trigger the cell wall integrity response, but does play an important role in ensuring cell wall integrity in mutant strains with reduced galactofuranose or α-glucan.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jasper Wattjes
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Anna Niehues
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Gabriel Forn-Cuní
- Leiden University, Institute of Biology Leiden, Animal Science and Health, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Quebec H4B1R6, Canada
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Quebec H4B1R6, Canada
| | - Annemarie H. Meijer
- Leiden University, Institute of Biology Leiden, Animal Science and Health, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Peter J. Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
39
|
Liu X, Wang R, Bi J, Kang L, Zhou J, Duan B, Liu Z, Yuan S. A novel endo-β-1,6-glucanase from the mushroom Coprinopsis cinerea and its application in studying of cross-linking of β-1,6-glucan and the wall extensibility in stipe cell walls. Int J Biol Macromol 2020; 160:612-622. [DOI: 10.1016/j.ijbiomac.2020.05.244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
|
40
|
GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis. Curr Top Microbiol Immunol 2020; 425:167-186. [PMID: 32418035 DOI: 10.1007/82_2020_207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchored proteins are a class of proteins attached to the extracellular leaflet of the plasma membrane via a post-translational modification, the glycolipid anchor. GPI anchored proteins are expressed in all eukaryotes, from fungi to plants and animals. They display very diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall metabolism, and immune response. In this review, we investigated for the first time an exhaustive list of all the GPI anchored proteins present in the Aspergillus fumigatus genome. An A. fumigatus mutant library of all the genes that encode in silico identified GPI anchored proteins has been constructed and the phenotypic analysis of all these mutants has been characterized including their growth, conidial viability or morphology, adhesion and the ability to form biofilms. We showed the presence of different fungal categories of GPI anchored proteins in the A. fumigatus genome associated to their role in cell wall remodeling, adhesion, and biofilm formation.
Collapse
|
41
|
Comparative study of β-glucan-degrading enzymes from Coprinopsis cinerea for their capacities to induce stipe cell wall extension. Int J Biol Macromol 2020; 152:516-524. [DOI: 10.1016/j.ijbiomac.2020.02.299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022]
|
42
|
Ueki A, Takehara T, Ishioka G, Kaku N, Ueki K. β-1,3-Glucanase production as an anti-fungal enzyme by phylogenetically different strains of the genus Clostridium isolated from anoxic soil that underwent biological disinfestation. Appl Microbiol Biotechnol 2020; 104:5563-5578. [PMID: 32328681 PMCID: PMC7275012 DOI: 10.1007/s00253-020-10626-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Biological (or reductive) soil disinfestation (BSD or RSD) is a bioremediation process to control soil-borne plant pathogens using activities of indigenous bacteria in the soil. Three obligate anaerobic bacterial strains (TW1, TW10, and TB10), which were isolated from anoxic soil subjected to BSD treatments, were examined for their abilities to produce anti-fungal enzymes. All strains were affiliated with the different lineages of the genus Clostridium. The three strains decomposed β-1,3-glucans (curdlan and laminarin), and β-1,3-glucanase activities were detected from their culture supernatants with these glucans. The three strains also produced the enzyme with wheat bran as a growth substrate and killed the Fusarium pathogen (Fusarium oxysporum f. sp. spinaciae) in the anaerobic co-incubation conditions. Observation by fluorescence microscopy of the pathogen cells showed that the three strains had degraded the fungal cells in different manners upon co-incubation with wheat bran. When the three strains were cultivated with the dead cells or the cell wall samples prepared from the Fusarium pathogen, strain TW1 utilized these materials as easily decomposable substrates by releasing β-1,3-glucanase. When observed by fluorescence microscopy, it appeared that strain TW1 degraded the mycelial cell wall nearly thoroughly, with the septa remaining as undecomposed luminous rings. In contrast, the other two strains decomposed neither the dead cells nor the cell wall samples directly. The results indicate that the various anaerobic bacteria proliferated in the soil under the BSD treatments should play key roles as an organized bacterial community to eliminate fungal pathogens, namely by release of anti-fungal enzymes with different properties.Key points •Three clostridial strains isolated from BSD-treated soils produced β-1,3-glucanase. •All strains killed the Fusarium pathogen in the anaerobic co-incubation conditions. •One of the strains produced β-1,3-glucanase with the fungal cell wall as a substrate. •The strain degraded the cell wall almost completely, except for the mycelial septa. |
Collapse
Affiliation(s)
- Atsuko Ueki
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan.
| | - Toshiaki Takehara
- NARO Western Region Agricultural Research Center, Hiroshima, 721-8514, Japan.,NARO Technical Support Center of Central Region, Ibaraki, 305-8517, Japan
| | - Gen Ishioka
- NARO Western Region Agricultural Research Center, Hiroshima, 721-8514, Japan
| | - Nobuo Kaku
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Katsuji Ueki
- Faculty of Agriculture, Yamagata University, 1-23, Wakaba-machi, Tsuruoka, Yamagata, 997-8555, Japan
| |
Collapse
|
43
|
Singh A, Dutta PK. Green synthesis, characterization and biological evaluation of chitin glucan based zinc oxide nanoparticles and its curcumin conjugation. Int J Biol Macromol 2020; 156:514-521. [PMID: 32305371 DOI: 10.1016/j.ijbiomac.2020.04.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022]
Abstract
A well-organized, simplistic, and green route of chitin-glucan based zinc oxide nanoparticles (ChGC@ZnONPs) was synthesized using reducing and capping agent both in one as chitin-glucan complex (ChGC). Herein we report the bio-synthesis of Cur-ChGC@ZnONPs by the conjugation of curcumin (Cur) with ChGC@ZnONPs for the improvement of antioxidant and antibacterial activity. The synthesized nanoparticles were characterized by the UV-Visible (UV-Vis), particle size analyser, scanning electron microscope (SEM) with Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscope (TEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Structure analysis, shape and crystalline size of nanomaterials were confirmed by scanning electron microscopy (SEM) and Transmission Electron Microscopy (TEM). The particle size analyser showed the particle size of nanomaterials and stability. Crystalline nature of both ChGC@ZnONPs and Cur-ChGC@ZnONPs were confirmed by the XRD spectra and FT-IR spectrum was used to examine the functional groups of nanomaterials. The antioxidant potential of conjugated nanomaterials were estimated using a DPPH free radical scavenging assay and ABTS+⁎ assay. This analysis showed that after loading of Cur, antioxidant activity increases. The antibacterial assessment of conjugated nanomaterials were tested by different microorganisms and showed excellent antibacterial activity.
Collapse
Affiliation(s)
- Anu Singh
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
44
|
White Wine Protein Instability: Mechanism, Quality Control and Technological Alternatives for Wine Stabilisation—An Overview. BEVERAGES 2020. [DOI: 10.3390/beverages6010019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Wine protein instability depends on several factors, but wine grape proteins are the main haze factors, being mainly caused by pathogenesis-related proteins (thaumatin-like proteins and chitinases) with a molecular weight between 10~40 kDa and an isoelectric point below six. Wine protein stability tests are needed for the routine control of this wine instability, and to select the best technological approach to remove the unstable proteins. The heat test is the most used, with good correlation with the natural proteins’ precipitations and because high temperatures are the main protein instability factor after wine bottling. Many products and technological solutions have been studied in recent years; however, sodium bentonite is still the most efficient and used treatment to remove unstable proteins from white wines. This overview resumes and discusses the different aspects involved in wine protein instability, from the wine protein instability mechanisms, the protein stability tests used, and technological alternatives available to stabilise wines with protein instability problems.
Collapse
|
45
|
Heshof R, Visscher B, van de Zilver E, van de Vondervoort R, van Keulen F, Delahaije RJBM, Wind RD. Production of tailor-made enzymes to facilitate lipid extraction from the oleaginous yeast Schwanniomyces occidentalis. AMB Express 2020; 10:41. [PMID: 32112299 PMCID: PMC7048881 DOI: 10.1186/s13568-020-00974-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Due to the depletion of fossil fuel resources and concern about increasing atmospheric CO2 levels, the production of microbial oil as source for energy and chemicals is considered as a sustainable alternative. A promising candidate strain for the production of microbial oil is the oleaginous yeast Schwanniomyces occidentalis CBS 2864. To compete with fossil resources, cultivation and processing of S. occidentalis requires improvement. Currently, different cell wall disruption techniques based on mechanical, chemical, physiological, and biological methods are being investigated using a variety of oil producing yeasts and microalgae. Most of these techniques are not suitable for upscaling because they are technically or energetically unfavorable. Therefore, new techniques have to be developed to overcome this challenge. Here, we demonstrate an effective mild enzymatic approach for cell disruption to facilitate lipid extraction from the oleaginous yeast S. occidentalis. Most oil was released by applying 187 mg L−1 tailor-made enzymes from Trichoderma harzianum CBS 146429 against the yeast cell wall of S. occidentalis at pH 5.0 and 40 °C with 4 h of incubation time after applying 1 M NaOH as a pretreatment step.
Collapse
|
46
|
Pérez-Llano Y, Rodríguez-Pupo EC, Druzhinina IS, Chenthamara K, Cai F, Gunde-Cimerman N, Zalar P, Gostinčar C, Kostanjšek R, Folch-Mallol JL, Batista-García RA, Sánchez-Carbente MDR. Stress Reshapes the Physiological Response of Halophile Fungi to Salinity. Cells 2020; 9:E525. [PMID: 32106416 PMCID: PMC7140475 DOI: 10.3390/cells9030525] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Mechanisms of cellular and molecular adaptation of fungi to salinity have been commonly drawn from halotolerant strains and few studies in basidiomycete fungi. These studies have been conducted in settings where cells are subjected to stress, either hypo- or hyperosmotic, which can be a confounding factor in describing physiological mechanisms related to salinity. (2) Methods: We have studied transcriptomic changes in Aspergillussydowii, a halophilic species, when growing in three different salinity conditions (No NaCl, 0.5 M, and 2.0 M NaCl). (3) Results: In this fungus, major physiological modifications occur under high salinity (2.0 M NaCl) and not when cultured under optimal conditions (0.5 M NaCl), suggesting that most of the mechanisms described for halophilic growth are a consequence of saline stress response and not an adaptation to saline conditions. Cell wall modifications occur exclusively at extreme salinity, with an increase in cell wall thickness and lamellar structure, which seem to involve a decrease in chitin content and an augmented content of alfa and beta-glucans. Additionally, three hydrophobin genes were differentially expressed under hypo- or hyperosmotic stress but not when the fungus grows optimally. Regarding compatible solutes, glycerol is the main compound accumulated in salt stress conditions, whereas trehalose is accumulated in the absence of salt. (4) Conclusions: Physiological responses to salinity vary greatly between optimal and high salt concentrations and are not a simple graded effect as the salt concentration increases. Our results highlight the influence of stress in reshaping the response of extremophiles to environmental challenges.
Collapse
Affiliation(s)
- Yordanis Pérez-Llano
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - Eya Caridad Rodríguez-Pupo
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - Irina S. Druzhinina
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
- Fungal Genomics Group, Nanjing Agricultural University, Nanjing 210095, China
| | - Komal Chenthamara
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
| | - Feng Cai
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, 1060 Vienna, Austria; (I.S.D.); (K.C.); (F.C.)
- Fungal Genomics Group, Nanjing Agricultural University, Nanjing 210095, China
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (N.G.-C.); (P.Z.); (C.G.); (R.K.)
| | - Jorge Luis Folch-Mallol
- Laboratory of Molecular Biology of Fungi, Center for Research on Biotechnology, Autonomous University of the State of Morelos, Morelos 62210, Mexico;
| | - Ramón Alberto Batista-García
- Center of Research on Cell Dynamics, Autonomous University of the State of Morelos, Morelos 62210, Mexico; (Y.P.-L.); (E.C.R.-P.)
| | - María del Rayo Sánchez-Carbente
- Laboratory of Molecular Biology of Fungi, Center for Research on Biotechnology, Autonomous University of the State of Morelos, Morelos 62210, Mexico;
| |
Collapse
|
47
|
Glucanase-Induced Stipe Wall Extension Shows Distinct Differences from Chitinase-Induced Stipe Wall Extension of Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.01345-19. [PMID: 31444203 DOI: 10.1128/aem.01345-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 11/20/2022] Open
Abstract
This study reports that a high concentration of the endo-β-1,3-glucanase ENG (200 μg ml-1) induced heat-inactivated stipe wall extension of Coprinopsis cinerea, whereas a high concentration of the extracellular β-glucosidase BGL2 (1,000 μg ml-1) did not; however, in combination, low concentrations of ENG (25 μg ml-1) and BGL2 (260 μg ml-1) induced heat-inactivated stipe cell wall extension. In contrast to the previously reported chitinase-reconstituted stipe wall extension, β-1,3-glucanase-reconstituted heat-inactivated stipe cell wall extension initially exhibited a fast extension rate that quickly decreased to zero after approximately 60 min; the stipe cell wall extension induced by a high concentration of β-1,3-glucanase did not result in stipe breakage during measurement, and the inner surfaces of glucanase-reconstituted extended cell walls still remained as amorphous matrices that did not appear to have been damaged. These distinctive features of the β-1,3-glucanase-reconstituted wall extension may be because chitin chains are cross-linked not only to the nonreducing termini of the side chains and the backbones of β-1,6 branched β-1,3-glucans but also to other polysaccharides. Remarkably, a low concentration of either the β-1,3-glucanase ENG or of chitinase ChiE1 did not induce heat-inactivated stipe wall extension, but a combination of these two enzymes, each at a low concentration, showed stipe cell wall extension activity that exhibited a steady and continuous wall extension profile. Therefore, we concluded that the stipe cell wall extension is the result of the synergistic actions of glucanases and chitinases.IMPORTANCE We previously reported that the chitinase could induce stipe wall extension and was involved in stipe elongation growth of the mushroom Coprinopsis cinerea In this study, we explored that β-1,3-glucanase also induced stipe cell wall extension. Interestingly, the extension profile and extended ultra-architecture of β-1,3-glucanase-reconstituted stipe wall were different from those of chitinase-reconstituted stipe wall. However, β-1,3-glucanase cooperated with chitinase to induce stipe cell wall extension. The significance of this synergy between glucanases and chitinases is that it enables a low concentration of active enzymes to induce wall extension, and the involvement of β-1,3-glucanases is necessary for the cell wall remodeling and the addition of new β-glucans during stipe elongation growth.
Collapse
|
48
|
van Leeuwe TM, Arentshorst M, Ernst T, Alazi E, Punt PJ, Ram AFJ. Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi. Fungal Biol Biotechnol 2019; 6:13. [PMID: 31559019 PMCID: PMC6754632 DOI: 10.1186/s40694-019-0076-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CRISPR/Cas9 mediated genome editing has expedited the way of constructing multiple gene alterations in filamentous fungi, whereas traditional methods are time-consuming and can be of mutagenic nature. These developments allow the study of large gene families that contain putatively redundant genes, such as the seven-membered family of crh-genes encoding putative glucan-chitin crosslinking enzymes involved in cell wall biosynthesis. RESULTS Here, we present a CRISPR/Cas9 system for Aspergillus niger using a non-integrative plasmid, containing a selection marker, a Cas9 and a sgRNA expression cassette. Combined with selection marker free knockout repair DNA fragments, a set of the seven single knockout strains was obtained through homology directed repair (HDR) with an average efficiency of 90%. Cas9-sgRNA plasmids could effectively be cured by removing selection pressure, allowing the use of the same selection marker in successive transformations. Moreover, we show that either two or even three separate Cas9-sgRNA plasmids combined with marker-free knockout repair DNA fragments can be used in a single transformation to obtain double or triple knockouts with 89% and 38% efficiency, respectively. By employing this technique, a seven-membered crh-gene family knockout strain was acquired in a few rounds of transformation; three times faster than integrative selection marker (pyrG) recycling transformations. An additional advantage of the use of marker-free gene editing is that negative effects of selection marker gene expression are evaded, as we observed in the case of disrupting virtually silent crh family members. CONCLUSIONS Our findings advocate the use of CRISPR/Cas9 to create multiple gene deletions in both a fast and reliable way, while simultaneously omitting possible locus-dependent-side-effects of poor auxotrophic marker expression.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Tim Ernst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ebru Alazi
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present Address: Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter J. Punt
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arthur F. J. Ram
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
49
|
Cell surface display of proteins on filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6949-6972. [PMID: 31359105 DOI: 10.1007/s00253-019-10026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Protein display approaches have been useful to endow the cell surface of yeasts with new catalytic activities so that they can act as enhanced whole-cell biocatalysts. Despite their biotechnological potential, protein display technologies remain poorly developed for filamentous fungi. The lignocellulolytic character of some of them coupled to the cell surface biosynthesis of valuable molecules by a single or a cascade of several displayed enzymes is an appealing prospect. Cell surface protein display consists in the co-translational fusion of a functional protein (passenger) to an anchor one, usually a cell-wall-resident protein. The abundance, spacing, and local environment of the displayed enzymes-determined by the relationship of the anchor protein with the structure and dynamics of the engineered cell wall-are factors that influence the performance of display-based biocatalysts. The development of protein display strategies in filamentous fungi could be based on the field advances in yeasts; however, the unique composition, structure, and biology of filamentous fungi cell walls require the customization of the approach to those microorganisms. In this prospective review, the cellular bases, the design principles, and the available tools to foster the development of cell surface protein display technologies in filamentous fungi are discussed.
Collapse
|
50
|
Ueki A, Takehara T, Ishioka G, Kaku N, Ueki K. Production of β-1,3-glucanase and chitosanase from clostridial strains isolated from the soil subjected to biological disinfestation. AMB Express 2019; 9:114. [PMID: 31338622 PMCID: PMC6650511 DOI: 10.1186/s13568-019-0842-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022] Open
Abstract
Biological soil disinfestation (BSD) or anaerobic (reductive) soil disinfestation (ASD/RSD) is a bioremediation method used to eliminate soil-borne plant pathogens by exploiting the activities of anaerobic bacteria in soil. In this study, two obligate anaerobic bacterial strains isolated from BSD-treated soil and identified as Clostridium beijerinckii were examined for their abilities to suppress the spinach wilt disease pathogen (Fusarium oxysporum f. sp. spinaciae) as a representative soil-borne fungal plant pathogen. Both strains degraded β-1,3-glucan and chitosan, two major polysaccharide components of ascomycetes fungal cell wall, supplemented in the medium. β-1,3-Glucanase was detected in the supernatants of cultures supplemented with different types of glucan. Similarly, chitosanase was detected in cultures supplemented with chitosan. Both the enzyme activities were also detected in cultures containing glucose as a substrate. Live cells of F. oxysporum f. sp. spinaciae that were co-incubated with each anaerobic strain under anaerobic conditions using glucose as a substrate died during incubation. Freeze-dried dead fungal biomass of the pathogen, when added to the culture, supported good growth of both anaerobes and production of both enzymes. Severe and nearly complete degradation of both live and dead fungal cells during incubation with anaerobic bacteria was observed by fluorescence microscopy. When individual anaerobic bacterial strain was co-incubated with live pathogenic fungal cells in wheat bran, a popular material for BSD-treatment, both the strains grew well and killed the fungal pathogen promptly by producing both enzymes. These results indicate that both the bacterial strains attack the fungal cells by releasing extracellular fungal cell wall-degrading enzymes, thereby eliminating the pathogen.
Collapse
|