1
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
2
|
Jia J, Zoeschg M, Barth H, Pulliainen AT, Ernst K. The Chaperonin TRiC/CCT Inhibitor HSF1A Protects Cells from Intoxication with Pertussis Toxin. Toxins (Basel) 2024; 16:36. [PMID: 38251252 PMCID: PMC10819386 DOI: 10.3390/toxins16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.
Collapse
Affiliation(s)
- Jinfang Jia
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Manuel Zoeschg
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Katharina Ernst
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Intiso D, Centra AM, Gravina M, Chiaramonte A, Bartolo M, Di Rienzo F. Botulinum Toxin-A High-Dosage Effect on Functional Outcome and Spasticity-Related Pain in Subjects with Stroke. Toxins (Basel) 2023; 15:509. [PMID: 37624266 PMCID: PMC10467116 DOI: 10.3390/toxins15080509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Stroke patients can develop spasticity and spasticity-related pain (SRP). These disorders are frequent and can contribute to functional limitations and disabling conditions. Many reports have suggested that higher doses than initially recommended of BTX-A can be used effectively and safely, especially in the case of severe spasticity; however, whether the treatment produces any benefit on the functional outcome and SRP is unclear. Studies published between January 1989 and December 2022 were retrieved from MEDLINE/PubMed, Embase, and Cochrane Central Register. Only obabotulinumtoxinA (obaBTX-A), onabotulinumtoxinA, (onaBTX-A), and incobotulinumtoxinA (incoBTX-A) were considered. The term "high dosage" indicates ≥600 U. Nine studies met the inclusion criteria. Globally, 460 subjects were treated with BTX-A high dose, and 301 suffered from stroke. Studies had variable method designs, sample sizes, and aims. Only five (55.5%) reported data about the functional outcome after BTX-A injection. Functional measures were also variable, and the improvement was observed predominantly in the disability assessment scale (DAS). SRP pain was quantified by visual analog scale (VAS) and only three studies reported the BTX-A effect. There is no scientific evidence that this therapeutic strategy unequivocally improves the functionality of the limbs. Although no clear-cut evidence emerges, certain patients with spasticity might obtain goal-oriented improvement from high-dose BTX-A. Likewise, data are insufficient to recommend high BTX dosage in SRP.
Collapse
Affiliation(s)
- Domenico Intiso
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Antonello Marco Centra
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Michele Gravina
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Angelo Chiaramonte
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| | - Michelangelo Bartolo
- Department of Rehabilitation, Neurorehabilitation Unit, HABILITA Zingonia, Ciserano, 24040 Bergamo, Italy;
| | - Filomena Di Rienzo
- Unit of Neuro-Rehabilitation Unit and Rehabilitation Medicine, IRCCS ‘Casa Sollievo della Sofferenza’, Viale dei Cappuccini 1, San Giovanni Rotondo, 71013 Foggia, Italy; (A.M.C.); (M.G.); (A.C.); (F.D.R.)
| |
Collapse
|
4
|
Peñuelas M, Guerrero-Vadillo M, Valdezate S, Zamora MJ, Leon-Gomez I, Flores-Cuéllar Á, Carrasco G, Díaz-García O, Varela C. Botulism in Spain: Epidemiology and Outcomes of Antitoxin Treatment, 1997-2019. Toxins (Basel) 2022; 15:2. [PMID: 36668823 PMCID: PMC9863742 DOI: 10.3390/toxins15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Botulism is a low incidence but potentially fatal infectious disease caused by neurotoxins produced mainly by Clostridium botulinum. There are different routes of acquisition, food-borne and infant/intestinal being the most frequent presentation, and antitoxin is the treatment of choice in all cases. In Spain, botulism is under surveillance, and case reporting is mandatory. METHODS This retrospective study attempts to provide a more complete picture of the epidemiology of botulism in Spain from 1997 to 2019 and an assessment of the treatment, including the relationship between a delay in antitoxin administration and the length of hospitalization using the Cox proportional hazards test and Kruskal-Wallis test, and an approach to the frequency of adverse events, issues for which no previous national data have been published. RESULTS Eight of the 44 outbreaks were associated with contaminated commercial foods involving ≤7 cases/outbreak; preserved vegetables were the main source of infection, followed by fish products; early antitoxin administration significantly reduces the hospital stay, and adverse reactions to the antitoxin affect around 3% of treated cases.
Collapse
Affiliation(s)
- Marina Peñuelas
- Escuela Internacional de Doctorado, Universidad Nacional de Educación a Distancia (UNED), Calle de Bravo Murillo, 38, 28015 Madrid, Spain
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
| | - María Guerrero-Vadillo
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
| | - Sylvia Valdezate
- Laboratorio de Referencia e Investigación en Taxonomía, Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda Km 2.2, 28220 Madrid, Spain
| | - María Jesús Zamora
- Servicio de Microbiología Alimentaria, Centro Nacional de Alimentación, Agencia Española de Seguridad Alimentaria y Nutrición, Ctra. Pozuelo a Majadahonda Km 5.1, 28220 Madrid, Spain
| | - Inmaculada Leon-Gomez
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Ángeles Flores-Cuéllar
- Medicines for Human Use Department, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), C/Campezo 1, Edificio 8, 28022 Madrid, Spain
| | - Gema Carrasco
- Laboratorio de Referencia e Investigación en Taxonomía, Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Pozuelo-Majadahonda Km 2.2, 28220 Madrid, Spain
| | - Oliva Díaz-García
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
| | - Carmen Varela
- Department of Communicable Diseases, National Centre of Epidemiology, Instituto de Salud Carlos III, C/Monforte de Lemos 5, Pabellón 12, 28029 Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
5
|
Ernst K. Requirement of Peptidyl-Prolyl Cis/Trans isomerases and chaperones for cellular uptake of bacterial AB-type toxins. Front Cell Infect Microbiol 2022; 12:938015. [PMID: 35992160 PMCID: PMC9387773 DOI: 10.3389/fcimb.2022.938015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.
Collapse
|
6
|
Byun J, Kwak S, Kwon JH, Shin M, Lee DK, Rhee CH, Kang WH, Oh JW, Cruz DJM. Comparative Pharmacodynamics of Three Different Botulinum Toxin Type A Preparations following Repeated Intramuscular Administration in Mice. Toxins (Basel) 2022; 14:toxins14060365. [PMID: 35737026 PMCID: PMC9227525 DOI: 10.3390/toxins14060365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) causes muscle paralysis by blocking cholinergic signaling at neuromuscular junctions and is widely used to temporarily correct spasticity-related disorders and deformities. The paralytic effects of BoNT/A are time-limited and require repeated injections at regular intervals to achieve long-term therapeutic benefits. Differences in the level and duration of effectivity among various BoNT/A products can be attributed to their unique manufacturing processes, formulation, and noninterchangeable potency units. Herein, we compared the pharmacodynamics of three BoNT/A formulations, i.e., Botox® (onabotulinumtoxinA), Xeomin® (incobotulinumtoxinA), and Coretox®, following repeated intramuscular (IM) injections in mice. Three IM injections of BoNT/A formulations (12 U/kg per dose), 12-weeks apart, were administered at the right gastrocnemius. Local paresis and chemodenervation efficacy were evaluated over 36 weeks using the digit abduction score (DAS) and compound muscle action potential (CMAP), respectively. One week after administration, all three BoNT/A formulations induced peak DAS and maximal reduction of CMAP amplitudes. Among the three BoNT/A formulations, only Coretox® afforded a significant increase in paretic effects and chemodenervation with a prolonged duration of action after repeated injections. These findings suggest that Coretox® may offer a better overall therapeutic performance in clinical settings.
Collapse
Affiliation(s)
- Jaeyoon Byun
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Seongsung Kwak
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Jin-Hee Kwon
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Minhee Shin
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Dong-Kyu Lee
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Chang-Hoon Rhee
- Medytox Osong R&D Center, 102 Osongsaengmyeong 4-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Korea;
| | - Won-ho Kang
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
- Correspondence: (J.-W.O.); (D.J.M.C.); Tel.: +82-2-2049-6271 (J.-W.O.); +82-31-8065-8254 (D.J.M.C.)
| | - Deu John M. Cruz
- Medytox Gwanggyo R&D Center, 114 Central town-ro, Yeongtong-gu, Suwon-si 16506, Korea; (J.B.); (S.K.); (J.-H.K.); (M.S.); (D.-K.L.); (W.-h.K.)
- Correspondence: (J.-W.O.); (D.J.M.C.); Tel.: +82-2-2049-6271 (J.-W.O.); +82-31-8065-8254 (D.J.M.C.)
| |
Collapse
|
7
|
Pirazzini M, Montecucco C, Rossetto O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: an update. Arch Toxicol 2022; 96:1521-1539. [PMID: 35333944 PMCID: PMC9095541 DOI: 10.1007/s00204-022-03271-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 12/27/2022]
Abstract
Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy. .,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.,Centro Interdipartimentale di Ricerca di Miologia, CIR-Myo, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.,Institute of Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
8
|
Gardner A, Tepp WH, Bradshaw M, Barbieri JT, Pellett S. Resolution of Two Steps in Botulinum Neurotoxin Serotype A1 Light Chain Localization to the Intracellular Plasma Membrane. Int J Mol Sci 2021; 22:11115. [PMID: 34681775 PMCID: PMC8539409 DOI: 10.3390/ijms222011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin to humans. BoNT/A light chain (LC/A) cleavage of the membrane-bound SNAP-25 has been well-characterized, but how LC/A traffics to the plasma membrane to target SNAP-25 is unknown. Of the eight BoNT/A subtypes (A1-A8), LC/A3 has a unique short duration of action and low potency that correlate to the intracellular steady state of LC/A, where LC/A1 is associated with the plasma membrane and LC/A3 is present in the cytosol. Steady-state and live imaging of LC/A3-A1 chimeras identified a two-step process where the LC/A N terminus bound intracellular vesicles, which facilitated an internal α-helical-rich domain to mediate LC/A plasma membrane association. The propensity of LC/A variants for membrane association correlated with enhanced BoNT/A potency. Understanding the basis for light chain intracellular localization provides insight to mechanisms underlying BoNT/A potency, which can be extended to applications as a human therapy.
Collapse
Affiliation(s)
- Alexander Gardner
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| |
Collapse
|
9
|
Megighian A, Pirazzini M, Fabris F, Rossetto O, Montecucco C. Tetanus and tetanus neurotoxin: From peripheral uptake to central nervous tissue targets. J Neurochem 2021; 158:1244-1253. [PMID: 33629408 DOI: 10.1111/jnc.15330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Tetanus is a deadly but preventable disease caused by a protein neurotoxin produced by Clostridium tetani. Spores of C. tetani may contaminate a necrotic wound and germinate into a vegetative bacterium that releases a toxin, termed tetanus neurotoxin (TeNT). TeNT enters the general circulation, binds to peripheral motor neurons and sensory neurons, and is transported retroaxonally to the spinal cord. It then enters inhibitory interneurons and blocks the release of glycine or GABA causing a spastic paralysis. This review attempts to correlate the metalloprotease activity of TeNT and its trafficking and localization into the vertebrate body to the nature and sequence of appearance of the symptoms of tetanus.
Collapse
Affiliation(s)
- Aram Megighian
- Dipartimento di scienze Biomediche, Università di Padova, Padova, Italy.,Padova Neuroscience Center, Università di Padova, Padova, Italy
| | - Marco Pirazzini
- Dipartimento di scienze Biomediche, Università di Padova, Padova, Italy
| | - Federico Fabris
- Dipartimento di scienze Biomediche, Università di Padova, Padova, Italy
| | - Ornella Rossetto
- Dipartimento di scienze Biomediche, Università di Padova, Padova, Italy.,Istituto CNR di Neuroscienze, Università di Padova, Padova, Italy
| | - Cesare Montecucco
- Dipartimento di scienze Biomediche, Università di Padova, Padova, Italy.,Istituto CNR di Neuroscienze, Università di Padova, Padova, Italy
| |
Collapse
|
10
|
Ernst K, Sailer J, Braune M, Barth H. Intoxication of mammalian cells with binary clostridial enterotoxins is inhibited by the combination of pharmacological chaperone inhibitors. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:941-954. [PMID: 33284399 PMCID: PMC8102464 DOI: 10.1007/s00210-020-02029-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
Binary enterotoxins Clostridioides difficile CDT toxin, Clostridium botulinum C2 toxin, and Clostridium perfringens iota toxin consist of two separate protein components. The B-components facilitate receptor-mediated uptake into mammalian cells and form pores into endosomal membranes through which the enzymatic active A-components translocate into the cytosol. Here, the A-components ADP-ribosylate G-actin which leads to F-actin depolymerization followed by rounding of cells which causes clinical symptoms. The protein folding helper enzymes Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506 binding protein (FKBP) families are required for translocation of A-components of CDT, C2, and iota toxins from endosomes to the cytosol. Here, we demonstrated that simultaneous inhibition of these folding helpers by specific pharmacological inhibitors protects mammalian, including human, cells from intoxication with CDT, C2, and iota toxins, and that the inhibitor combination displayed an enhanced effect compared to application of the individual inhibitors. Moreover, combination of inhibitors allowed a concentration reduction of the individual compounds as well as decreasing of the incubation time with inhibitors to achieve a protective effect. These results potentially have implications for possible future therapeutic applications to relieve clinical symptoms caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs for their membrane translocation into the cytosol of target cells.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Judith Sailer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Maria Braune
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Daneri-Becerra C, Patiño-Gaillez MG, Galigniana MD. Proof that the high molecular weight immunophilin FKBP52 mediates the in vivo neuroregenerative effect of the macrolide FK506. Biochem Pharmacol 2020; 182:114204. [PMID: 32828804 DOI: 10.1016/j.bcp.2020.114204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
The immunosuppressant drug FK506 (or tacrolimus) is a macrolide that binds selectively to immunophilins belonging to the FK506-binding protein (FKBP) subfamily, which are abundantly expressed proteins in neurons of the peripheral and central nervous systems. Interestingly, it has been reported that FK506 increases neurite outgrowth in cell cultures, implying a potential impact in putative treatments of neurodegenerative disorders and injuries of the nervous system. Nonetheless, the mechanism of action of this compound is poorly understood and remains to be elucidated, with the only certainty that its neurotrophic effect is independent of its primary immunosuppressant activity. In this study it is demonstrated that FK506 shows efficient neurotrophic action in vitro and profound effects on the recovery of locomotor activity, behavioural features, and erectile function of mice that underwent surgical spinal cord injury. The recovery of the locomotor activity was studied in knock-out mice for either immunophilin, FKBP51 or FKBP52. The experimental evidence demonstrates that the neurotrophic actions of FK506 are the consequence of its binding to FKBP52, whereas FK506 interaction with the close-related partner immunophilin FKBP51 antagonises the function of FKBP52. Importantly, our study also demonstrates that other immunophilins do not replace FKBP52. It is concluded that the final biological response is the resulting outcome of the drug binding to both immunophilins, FKBP51 and FKBP52, the latter being the one that commands the dominant neurotrophic action in vivo.
Collapse
Affiliation(s)
| | | | - Mario D Galigniana
- Instituto de Biología y Medicina Experimental (IBYME)/CONICET, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Abstract
How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation. The clostridial neurotoxins (CNTs) comprise tetanus toxin (TT) and botulinum neurotoxin (BoNT [BT]) serotypes (A to G and X) and several recently identified CNT-like proteins, including BT/En and the mosquito BoNT-like toxin Pmp1. CNTs are produced as single proteins cleaved to a light chain (LC) and a heavy chain (HC) connected by an interchain disulfide bond. LC is a zinc metalloprotease (cleaving soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]), while HC contains an N-terminal translocation domain (HCN) and a C-terminal receptor binding domain (HCC). HCN-mediated LC translocation is the least understood function of CNT action. Here, β-lactamase (βlac) was used as a reporter in discovery-based live-cell assays to characterize TT-mediated LC translocation. Directed mutagenesis identified a role for a charged loop (767DKE769) connecting α15 and α16 (cis-loop) within HCN in LC translocation; aliphatic substitution inhibited LC translocation but not other toxin functions such as cell binding, intracellular trafficking, or HCN-mediated pore formation. K768 was conserved among the CNTs. In molecular simulations of the HCN with a membrane, the cis-loop did not bind with the cell membrane. Taken together, the results of these studies implicate the cis-loop in LC translocation, independently of pore formation. IMPORTANCE How protein toxins translocate their catalytic domain across a cell membrane is the least understood step in toxin action. This study utilized a reporter, β-lactamase, that was genetically fused to full-length, nontoxic tetanus toxin (βlac-TT) in discovery-based live-cell assays to study LC translocation. Directed mutagenesis identified a role for K768 in LC translocation. K768 was located between α15 and α16 (termed the cis-loop). Cellular assays showed that K768 did not interfere with other toxin functions, including cell binding, intracellular trafficking, and pore formation. The equivalent K768 is conserved among the clostridial neurotoxin family of proteins as a conserved structural motif. The cis-loop appears to contribute to LC translocation.
Collapse
|
13
|
Rossetto O, Pirazzini M, Lista F, Montecucco C. The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs. Cell Microbiol 2019; 21:e13037. [PMID: 31050145 PMCID: PMC6899712 DOI: 10.1111/cmi.13037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.
Collapse
Affiliation(s)
- Ornella Rossetto
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Marco Pirazzini
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
| | - Florigio Lista
- Sezione di Istologia e Biologia MolecolareCentro di ricerca Medica e Veterinaria del Ministero della DifesaRomeItaly
| | - Cesare Montecucco
- Dipartimento di Scienze BiomedicheUniversità di PadovaPaduaItaly
- Istituto Neuroscienze del CNRUniversità di PadovaPaduaItaly
| |
Collapse
|
14
|
Kellner A, Taylor M, Banerjee T, Britt CB, Teter K. A binding motif for Hsp90 in the A chains of ADP-ribosylating toxins that move from the endoplasmic reticulum to the cytosol. Cell Microbiol 2019; 21:e13074. [PMID: 31231933 PMCID: PMC6744307 DOI: 10.1111/cmi.13074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Cholera toxin (Ctx) is an AB-type protein toxin that acts as an adenosine diphosphate (ADP)-ribosyltransferase to disrupt intracellular signalling in the target cell. It moves by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. The catalytic CtxA1 subunit then dissociates from the rest of the toxin, unfolds, and activates the ER-associated degradation system for export to the cytosol. Translocation occurs through an unusual ratchet mechanism in which the cytosolic chaperone Hsp90 couples CtxA1 refolding with CtxA1 extraction from the ER. Here, we report that Hsp90 recognises two peptide sequences from CtxA1: an N-terminal RPPDEI sequence (residues 11-16) and an LDIAPA sequence in the C-terminal region (residues 153-158) of the 192 amino acid protein. Peptides containing either sequence effectively blocked Hsp90 binding to full-length CtxA1. Both sequences were necessary for the ER-to-cytosol export of CtxA1. Mutagenesis studies further demonstrated that the RPP residues in the RPPDEI motif are required for CtxA1 translocation to the cytosol. The LDIAPA sequence is unique to CtxA1, but we identified an RPPDEI-like motif at the N- or C-termini of the A chains from four other ER-translocating toxins that act as ADP-ribosyltransferases: pertussis toxin, Escherichia coli heat-labile toxin, Pseudomonas aeruginosa exotoxin A, and Salmonella enterica serovar Typhimurium ADP-ribosylating toxin. Hsp90 plays a functional role in the intoxication process for most, if not all, of these toxins. Our work has established a defined RPPDEI binding motif for Hsp90 that is required for the ER-to-cytosol export of CtxA1 and possibly other toxin A chains as well.
Collapse
Affiliation(s)
- Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | | | - Christopher B.T. Britt
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| |
Collapse
|
15
|
Pereira C, Rodrigues IS, Pereira LMG, Lisboa J, Pinto RD, Araújo L, Oliveira P, Benz R, Dos Santos NMS, do Vale A. Role of AIP56 disulphide bond and its reduction by cytosolic redox systems for efficient intoxication. Cell Microbiol 2019; 22:e13109. [PMID: 31454143 DOI: 10.1111/cmi.13109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/08/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.
Collapse
Affiliation(s)
- Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rute D Pinto
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Leonor Araújo
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Chauhan R, Chauhan V, Sonkar P, Dhaked RK. Identification of Inhibitors against Botulinum Neurotoxins: 8-Hydroxyquinolines Hold Promise. Mini Rev Med Chem 2019; 19:1694-1706. [PMID: 31490749 DOI: 10.2174/1389557519666190906120228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic category A biological warfare agents. There is no therapeutics available for BoNT intoxication yet, necessitating the development of a medical countermeasure against these neurotoxins. The discovery of small molecule-based drugs has revolutionized in the last two decades resulting in the identification of several small molecule inhibitors of BoNTs. However, none progressed to clinical trials. 8-Hydroxyquinolines scaffold-based molecules are important 'privileged structures' that can be exploited as inhibitors of a diverse range of targets. In this review, our study of recent reports suggests the development of 8-hydroxyquinoline derived molecules as a potential drug may be on the horizon.
Collapse
Affiliation(s)
- Ritika Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Vinita Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Priyanka Sonkar
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| |
Collapse
|
17
|
Rodrigues IS, Pereira LMG, Lisboa J, Pereira C, Oliveira P, Dos Santos NMS, do Vale A. Involvement of Hsp90 and cyclophilins in intoxication by AIP56, a metalloprotease toxin from Photobacterium damselae subsp. piscicida. Sci Rep 2019; 9:9019. [PMID: 31227743 PMCID: PMC6588550 DOI: 10.1038/s41598-019-45240-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
AIP56 (apoptosis inducing protein of 56 kDa) is a key virulence factor secreted by virulent strains of Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes septicemic infections in several warm water marine fish species. AIP56 is systemically disseminated during infection and induces massive apoptosis of host macrophages and neutrophils, playing a decisive role in the disease outcome. AIP56 is a single-chain AB-type toxin, being composed by a metalloprotease A domain located at the N-terminal region connected to a C-terminal B domain, required for internalization of the toxin into susceptible cells. After binding to a still unidentified surface receptor, AIP56 is internalised through clathrin-mediated endocytosis, reaches early endosomes and translocates into the cytosol through a mechanism requiring endosomal acidification and involving low pH-induced unfolding of the toxin. At the cytosol, the catalytic domain of AIP56 cleaves NF-κB p65, leading to the apoptotic death of the intoxicated cells. It has been reported that host cytosolic factors, including host cell chaperones such as heat shock protein 90 (Hsp90) and peptidyl-prolyl cis/trans isomerases (PPIases), namely cyclophilin A/D (Cyp) and FK506-binding proteins (FKBP) are involved in the uptake of several bacterial AB toxins with ADP-ribosylating activity, but are dispensable for the uptake of other AB toxins with different enzymatic activities, such as Bacillus anthracis lethal toxin (a metalloprotease) or the large glycosylating toxins A and B of Clostridium difficile. Based on these findings, it has been proposed that the requirement for Hsp90/PPIases is a common and specific characteristic of ADP-ribosylating toxins. In the present work, we demonstrate that Hsp90 and the PPIases cyclophilin A/D are required for efficient intoxication by the metalloprotease toxin AIP56. We further show that those host cell factors interact with AIP56 in vitro and that the interactions increase when AIP56 is unfolded. The interaction with Hsp90 was also demonstrated in intact cells, at 30 min post-treatment with AIP56, suggesting that it occurs during or shortly after translocation of the toxin from endosomes into the cytosol. Based on these findings, we propose that the participation of Hsp90 and Cyp in bacterial toxin entry may be more disseminated than initially expected, and may include toxins with different catalytic activities.
Collapse
Affiliation(s)
- Inês S Rodrigues
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Liliana M G Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Johnny Lisboa
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cassilda Pereira
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Oliveira
- EPIUnit, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nuno M S Dos Santos
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Burress H, Kellner A, Guyette J, Tatulian SA, Teter K. HSC70 and HSP90 chaperones perform complementary roles in translocation of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 2019; 294:12122-12131. [PMID: 31221799 DOI: 10.1074/jbc.ra119.008568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/15/2019] [Indexed: 11/06/2022] Open
Abstract
Cholera toxin (CT) travels by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) where the catalytic A1 subunit of CT (CTA1) dissociates from the rest of the toxin, unfolds, and moves through a membrane-spanning translocon pore to reach the cytosol. Heat shock protein 90 (HSP90) binds to the N-terminal region of CTA1 and facilitates its ER-to-cytosol export by refolding the toxin as it emerges at the cytosolic face of the ER membrane. HSP90 also refolds some endogenous cytosolic proteins as part of a foldosome complex containing heat shock cognate 71-kDa protein (HSC70) and the HSC70/HSP90-organizing protein (HOP) linker that anchors HSP90 to HSC70. We accordingly predicted that HSC70 and HOP also function in CTA1 translocation. Inactivation of HSC70 by drug treatment disrupted CTA1 translocation to the cytosol and generated a toxin-resistant phenotype. In contrast, the depletion of HOP did not disrupt CT activity against cultured cells. HSC70 and HSP90 could bind independently to disordered CTA1, even in the absence of HOP. This indicated HSP90 and HSC70 recognize distinct regions of CTA1, which was confirmed by the identification of a YYIYVI-binding motif for HSC70 that spans residues 83-88 of the 192-amino acid CTA1 polypeptide. Refolding of disordered CTA1 occurred in the presence of HSC70 alone, indicating that HSC70 and HSP90 can each independently refold CTA1. Our work suggests a novel translocation mechanism in which sequential interactions with HSP90 and HSC70 drive the N- to C-terminal extraction of CTA1 from the ER.
Collapse
Affiliation(s)
- Helen Burress
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Jessica Guyette
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida 32816
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826.
| |
Collapse
|
19
|
Tikhomirova TS, Galzitskaya OV. Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata. Mol Biol 2018. [DOI: 10.1134/s0026893318050138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Zanetti G, Duregotti E, Locatelli CA, Giampreti A, Lonati D, Rossetto O, Pirazzini M. Variability in venom composition of European viper subspecies limits the cross-effectiveness of antivenoms. Sci Rep 2018; 8:9818. [PMID: 29959358 PMCID: PMC6026201 DOI: 10.1038/s41598-018-28135-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
Medically relevant cases of snakebite in Europe are predominately caused by European vipers of the genus Vipera. Systemic envenoming by European vipers can cause severe pathology in humans and different clinical manifestations are associated with different members of this genus. The most representative vipers in Europe are V. aspis and V. berus and neurological symptoms have been reported in humans envenomed by the former but not by the latter species. In this study we determined the toxicological profile of V. aspis and V. berus venoms in vivo in mice and we tested the effectiveness of two antivenoms, commonly used as antidotes, in counteracting the specific activities of the two venoms. We found that V. aspis, but not V. berus, is neurotoxic and that this effect is due to the degeneration of peripheral nerve terminals at the NMJ and is not neutralized by the two tested antisera. Differently, V. berus causes a haemorrhagic effect, which is efficiently contrasted by the same antivenoms. These results indicate that the effectiveness of different antisera is strongly influenced by the variable composition of the venoms and reinforce the arguments supporting the use polyvalent antivenoms.
Collapse
Affiliation(s)
- Giulia Zanetti
- University of Padova, Department of Biomedical Sciences, Padova, 35131, Italy
| | - Elisa Duregotti
- University of Padova, Department of Biomedical Sciences, Padova, 35131, Italy
- King's College London, Department of Cardiology, James Black Centre, London, SE5 9NU, United Kingdom
| | - Carlo Alessandro Locatelli
- Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, Poison Control Centre and National Toxicology Information Centre - Toxicology Unit, Pavia, 27100, Italy
| | - Andrea Giampreti
- Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, Poison Control Centre and National Toxicology Information Centre - Toxicology Unit, Pavia, 27100, Italy
| | - Davide Lonati
- Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, Poison Control Centre and National Toxicology Information Centre - Toxicology Unit, Pavia, 27100, Italy
| | - Ornella Rossetto
- University of Padova, Department of Biomedical Sciences, Padova, 35131, Italy
| | - Marco Pirazzini
- University of Padova, Department of Biomedical Sciences, Padova, 35131, Italy.
| |
Collapse
|
21
|
Webb RP. Engineering of Botulinum Neurotoxins for Biomedical Applications. Toxins (Basel) 2018; 10:toxins10060231. [PMID: 29882791 PMCID: PMC6024800 DOI: 10.3390/toxins10060231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used as therapeutic agents in the clinical treatment of a wide array of neuromuscular and autonomic neuronal transmission disorders. These toxins contain three functional domains that mediate highly specific neuronal cell binding, internalization and cytosolic delivery of proteolytic enzymes that cleave proteins integral to the exocytosis of neurotransmitters. The exceptional cellular specificity, potency and persistence within the neuron that make BoNTs such effective toxins, also make them attractive models for derivatives that have modified properties that could potentially expand their therapeutic repertoire. Advances in molecular biology techniques and rapid DNA synthesis have allowed a wide variety of novel BoNTs with alternative functions to be assessed as potential new classes of therapeutic drugs. This review examines how the BoNTs have been engineered in an effort to produce new classes of therapeutic molecules to address a wide array of disorders.
Collapse
Affiliation(s)
- Robert P Webb
- The Division of Molecular and Translational Sciences, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
22
|
Surana S, Tosolini AP, Meyer IF, Fellows AD, Novoselov SS, Schiavo G. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 2018; 147:58-67. [DOI: 10.1016/j.toxicon.2017.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
|
23
|
Azarnia Tehran D, Pirazzini M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins (Basel) 2018; 10:E190. [PMID: 29748471 PMCID: PMC5983246 DOI: 10.3390/toxins10050190] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), the etiological agents of botulism, are the deadliest toxins known to humans. Yet, thanks to their biological and toxicological features, BoNTs have become sophisticated tools to study neuronal physiology and valuable therapeutics for an increasing number of human disorders. BoNTs are produced by multiple bacteria of the genus Clostridium and, on the basis of their different immunological properties, were classified as seven distinct types of toxin. BoNT classification remained stagnant for the last 50 years until, via bioinformatics and high-throughput sequencing techniques, dozens of BoNT variants, novel serotypes as well as BoNT-like toxins within non-clostridial species have been discovered. Here, we discuss how the now “booming field” of botulinum neurotoxin may shed light on their evolutionary origin and open exciting avenues for future therapeutic applications.
Collapse
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
24
|
Moga MA, Dimienescu OG, Bălan A, Scârneciu I, Barabaș B, Pleș L. Therapeutic Approaches of Botulinum Toxin in Gynecology. Toxins (Basel) 2018; 10:toxins10040169. [PMID: 29690530 PMCID: PMC5923335 DOI: 10.3390/toxins10040169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Botulinum toxins (BoNTs) are produced by several anaerobic species of the genus Clostridium and, although they were originally considered lethal toxins, today they find their usefulness in the treatment of a wide range of pathologies in various medical specialties. Botulinum neurotoxin has been identified in seven different isoforms (BoNT-A, BoNT-B, BoNT-C, BoNT-D, BoNT-E, BoNT-F, and BoNT-G). Neurotoxigenic Clostridia can produce more than 40 different BoNT subtypes and, recently, a new BoNT serotype (BoNT-X) has been reported in some studies. BoNT-X has not been shown to actually be an active neurotoxin despite its catalytically active LC, so it should be described as a putative eighth serotype. The mechanism of action of the serotypes is similar: they inhibit the release of acetylcholine from the nerve endings but their therapeutically potency varies. Botulinum toxin type A (BoNT-A) is the most studied serotype for therapeutic purposes. Regarding the gynecological pathology, a series of studies based on the efficiency of its use in the treatment of refractory myofascial pelvic pain, vaginism, dyspareunia, vulvodynia and overactive bladder or urinary incontinence have been reported. The current study is a review of the literature regarding the efficiency of BoNT-A in the gynecological pathology and on the long and short-term effects of its administration.
Collapse
Affiliation(s)
- Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Oana Gabriela Dimienescu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Andreea Bălan
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Ioan Scârneciu
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Barna Barabaș
- Department of Fundamental Disciplines and Clinical Prevention, Faculty of Medicine, Transilvania University of Brasov, Brasov 500019, Romania.
| | - Liana Pleș
- Clinical Department of Obstetrics and Gynecology, The Carol Davila University of Medicine and Pharmacy, Bucharest 020021, Romania.
| |
Collapse
|
25
|
Neurophysiological Measures of Efficacy and Safety for Botulinum Toxin Injection in Facial and Bulbar Muscles: Special Considerations. Toxins (Basel) 2017; 9:toxins9110352. [PMID: 29084148 PMCID: PMC5705967 DOI: 10.3390/toxins9110352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/16/2017] [Accepted: 10/27/2017] [Indexed: 12/27/2022] Open
Abstract
Botulinum toxin (BoNT) injections into facial and bulbar muscles are widely and increasingly used as medical treatments for cervical and facial dystonia, facial hemispasm, correction of facial palsy, hyperhidrosis, as well as cosmetic treatment of glabellar lines associated with grief and anger. Although BoNT treatment is generally considered safe, the diffusion of the toxin to surrounding muscles may result in complications, including difficulties swallowing, in a dose-dependent manner. The sensitivity of clinical examination for detecting adverse events after BoNT treatment is limited. Few reports have highlighted the potential effects on other muscles in the facial area due to the spreading of the toxin. The possibilities of spreading and thus unknown pharmacological BoNT effects in non-targeted muscles emphasise the importance of correct administration of BoNT in terms of dose selection, injection points, and appropriate effect surveillance. In this review article, we will focus on novel objective measures of efficacy and safety regarding BoNT treatment of facial muscles and the reasons why this is important.
Collapse
|
26
|
Pirazzini M, Azarnia Tehran D, Zanetti G, Rossetto O, Montecucco C. Hsp90 and Thioredoxin-Thioredoxin Reductase enable the catalytic activity of Clostridial neurotoxins inside nerve terminals. Toxicon 2017; 147:32-37. [PMID: 29111118 DOI: 10.1016/j.toxicon.2017.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
Abstract
Botulinum (BoNTs) and tetanus (TeNT) neurotoxins are the most toxic substances known and form the growing family of Clostridial neurotoxins (CNT), the etiologic agents of botulism and tetanus. CNT are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol, where its substrates, the three SNARE proteins, are localized. L translocation is accompanied by unfolding and, once delivered on the cytosolic side of the endosome membrane, it has to be reduced and reacquire the native fold to be active. The Thioredoxin-Thioredoxin Reductase system (Trx-TrxR) specifically reduces the interchain disulfide bond while the cytosolic chaperone protein Hsp90 mediates L refolding. Both steps are essential for CNT activity and their inhibition efficiently blocks the neurotoxicity in cultured neurons and mice. Trx and its reductase physically interact with Hsp90 and are loosely bound to the cytosolic side of synaptic vesicles, the organelle exploited by CNT to enter nerve terminals and wherefrom L is translocated into the cytosol. Therefore, Trx, TrxR and Hsp90 orchestrate a chaperone-redox molecular machinery that enables the catalytic activity of the L inside nerve terminals. Given the fundamental role of L reduction and refolding, this machinery represents a rational target for the development of mechanism-based antitoxins.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy.
| | - Domenico Azarnia Tehran
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Giulia Zanetti
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy; Istituto CNR di Neuroscienze, Università di Padova, Via U. Bassi 58/B, 35121 Padova, Italy
| |
Collapse
|
27
|
Scheps D, López de la Paz M, Jurk M, Hofmann F, Frevert J. Design of modified botulinum neurotoxin A1 variants with a shorter persistence of paralysis and duration of action. Toxicon 2017; 139:101-108. [PMID: 28918229 DOI: 10.1016/j.toxicon.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/24/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
Botulinum neurotoxins (BoNTs) are classified by their antigenic properties into seven serotypes (A-G) and in addition by their corresponding subtypes. They are further characterized by divergent onset and duration of effect. Injections of low doses of botulinum neurotoxins cause localized muscle paralysis that is beneficial for the treatment of several medical disorders and aesthetic indications. Optimizing the therapeutic properties could offer new treatment opportunities. This report describes a rational design approach to modify the pharmacological properties by mutations in the C-terminus of BoNT/A1 light chain (LC). Toxins with C-terminal modified LC's displayed an altered onset and duration of the paralytic effect in vivo. The level of effect was dependent on the kind of the mutation in the sequence of the C-terminus. A mutant with three mutations (T420E F423M Y426F) revealed a faster onset and a shorter duration than BoNT/A1 wild type (WT). It could be shown that the C-terminus of BoNT/A1-Lc controls both onset and duration of effect. Thus, it is possible to create a mutated BoNT/A1 with different pharmacological properties which might be useful in the therapy of new indications. This strategy opens the way to design BoNT variants with novel and useful properties.
Collapse
Affiliation(s)
- Daniel Scheps
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany
| | | | - Marcel Jurk
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany
| | - Fred Hofmann
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany
| | - Jürgen Frevert
- Merz Pharmaceuticals GmbH, Hermannswerder Haus 15, 14473, Potsdam, Germany.
| |
Collapse
|
28
|
SiMa Cells for a Serotype Specific and Sensitive Cell-Based Neutralization Test for Botulinum Toxin A and E. Toxins (Basel) 2017; 9:toxins9070230. [PMID: 28726719 PMCID: PMC5535177 DOI: 10.3390/toxins9070230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
Botulinum toxins (BoNTs), of which there are seven serotypes, are among the most potent neurotoxins, with serotypes A, B and E causing human botulism. Antitoxins form the first line of treatment for botulism, and functional, highly sensitive in vitro methods for toxin neutralization are needed to replace the current in vivo methods used for determination of antitoxin potency. In this preliminary proof of concept study, we report the development of a neutralization test using the neuroblastoma SiMa cell line. The assay is serotype specific for either BoNT/A or BoNT/E, which both cleave unique sequences on SNAP-25 within SiMa cells. The end point is simple immunodetection of cleaved SNAP-25 from cell lysates with antibodies detecting only the newly exposed sequence on SNAP-25. Neutralizing antibodies prevent the toxin-induced cleavage of SNAP-25. The toxin neutralization assay, with an EC50 of ~2 mIU/mL determined with a standardized reference antiserum, is more sensitive than the mouse bioassays. Relevance was demonstrated with commercial and experimental antitoxins targeting different functional domains, and of known in vivo neutralizing activities. This is the first report describing a simple, specific, in vitro cell-based assay for the detection of neutralizing antibodies against BoNT/A and BoNT/E with a sensitivity exceeding that of the mouse bioassay.
Collapse
|
29
|
Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells. Sci Rep 2017; 7:2724. [PMID: 28578412 PMCID: PMC5457432 DOI: 10.1038/s41598-017-02882-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022] Open
Abstract
Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.
Collapse
|
30
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
31
|
Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov 2017; 12:497-510. [DOI: 10.1080/17460441.2017.1303476] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|