1
|
Corrêa ALT, Mello TJ, Candido CF. Opportunistic sighting of a silky shark (Carcharhinus falciformis) aggregation in the subtropical southwest Atlantic. JOURNAL OF FISH BIOLOGY 2025; 106:654-659. [PMID: 39497356 DOI: 10.1111/jfb.15979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 02/22/2025]
Abstract
Silky shark (Carcharhinus falciformis) populations in the South Atlantic Ocean are listed as vulnerable under the IUCN. In fact, this species is classified as critically endangered in Brazil under the Ministry of the Environment. The present study reports the first opportunistic sighting of an aggregation of 250-300 silky sharks in the Alcatrazes Archipelago Wildlife Refuge. Aggregation sites are important in the life cycle of silky sharks, and identifying these sites is essential for conservation efforts.
Collapse
Affiliation(s)
- Ana Laura Tribst Corrêa
- Aquarela Laboratory, Center of Marine Biology, University of São Paulo, São Sebastião, Brazil
| | - Thayná Jeremias Mello
- Alcatrazes Integrated Management Nucleus, Chico Mendes Institute for Biodiversity Conservation, São Sebastião, Brazil
| | - Carolina Ferreira Candido
- Alcatrazes Integrated Management Nucleus, Chico Mendes Institute for Biodiversity Conservation, São Sebastião, Brazil
| |
Collapse
|
2
|
Grobler DL, Klein JD, Dicken ML, Mmonwa K, Soekoe M, van Staden M, Hagen SB, Maduna SN, Bester‐van der Merwe AE. Seascape Genomics of the Smooth Hammerhead Shark Sphyrna zygaena Reveals Regional Adaptive Clinal Variation. Ecol Evol 2024; 14:e70644. [PMID: 39669504 PMCID: PMC11635309 DOI: 10.1002/ece3.70644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Globally, hammerhead sharks have experienced severe declines owing to continued overexploitation and anthropogenic change. The smooth hammerhead shark Sphyrna zygaena remains understudied compared to other members of the family Sphyrnidae. Despite its vulnerable status, a comprehensive understanding of its genetic landscape remains lacking in many regions worldwide. The present study aimed to conduct a fine-scale genomic assessment of Sphyrna zygaena within the highly dynamic marine environment of South Africa's coastline, using thousands of single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (3RAD). A combination of differentiation-based outlier detection methods and genotype-environment association (GEA) analysis was employed in Sphyrna zygaena. Subsequent assessments of putatively adaptive loci revealed a distinctive south to east genetic cline. Among these, notable correlations between adaptive variation and sea-surface dissolved oxygen and salinity were evident. Conversely, analysis of 111,243 neutral SNP markers revealed a lack of regional population differentiation, a finding that remained consistent across various analytical approaches. These results provide evidence for the presence of differential selection pressures within a limited spatial range, despite high gene flow implied by the selectively neutral dataset. This study offers notable insights regarding the potential impacts of genomic variation in response to fluctuating environmental conditions in the circumglobally distributed Sphyrna zygaena.
Collapse
Affiliation(s)
- D. L. Grobler
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - J. D. Klein
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - M. L. Dicken
- KwaZulu‐Natal Sharks BoardUmhlanga RocksKwaZulu‐NatalSouth Africa
- Institute for Coastal and Marine Research (CMR), ocean Sciences CampusNelson Mandela UniversityGqeberhaSouth Africa
| | - K. Mmonwa
- KwaZulu‐Natal Sharks BoardUmhlanga RocksKwaZulu‐NatalSouth Africa
- The World Wild Fund for Nature (WWF) South Africa, Newlands OfficeNewlands, Cape TownSouth Africa
| | - M. Soekoe
- Division of Marine ResearchReel Science CoalitionCape TownSouth Africa
| | - M. van Staden
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - S. B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research – NIBIOSvanvikNorway
| | - S. N. Maduna
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research – NIBIOSvanvikNorway
| | - A. E. Bester‐van der Merwe
- Molecular Breeding and Biodiversity Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
3
|
Cardeñosa D, Babcock EA, Shea SK, Zhang H, Feldheim KA, Gale SW, Mills D, Chapman DD. Small sharks, big problems: DNA analysis of small fins reveals trade regulation gaps and burgeoning trade in juvenile sharks. SCIENCE ADVANCES 2024; 10:eadq6214. [PMID: 39413170 PMCID: PMC11482325 DOI: 10.1126/sciadv.adq6214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Many shark species have been overexploited for international markets, including fins for shark fin soup in Southeast Asia. Previous studies highlighted the value of large, threatened shark species, regulated under CITES Appendix II. However, sampling biases may have overlooked small shark species. Here, we address this by identifying species from ~4000 small shark fins in Hong Kong. These fins included species not recorded in previous surveys, raising the market's species diversity to 106. Nearly 75% of the small fins came from small shark species and 58.1% of small species were threatened with extinction. We identified an important CITES listing gap: Trade in 19 small, threatened species, especially from the family Triakidae, is unregulated. In addition, a quarter of small fins come from large sharks, indicating that substantial exploitation of juveniles is occurring and may be affecting fisheries sustainability. Enhanced surveillance of small shark fin trade is essential to ensure effective conservation under emerging trade regulations.
Collapse
Affiliation(s)
- Diego Cardeñosa
- Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Elizabeth A. Babcock
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Stanley K. Shea
- BLOOM Association, Central, Hong Kong, Special Administrative Region of China
| | - Huarong Zhang
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong, Special Administrative Region of China
| | - Kevin A. Feldheim
- Pritzker Laboratory for Molecular Systematics and Evolution, The Field Museum, Chicago, IL 60605, USA
| | - Stephan W. Gale
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong, Special Administrative Region of China
| | - DeEtta Mills
- Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Demian D. Chapman
- Center for Shark Research, Mote Marine Laboratory, Sarasota, FL 34236, USA
| |
Collapse
|
4
|
Saigal M, Shueh Yi HN, Rameez NA, van Manen S, Van Anh BT, Arora VP, Han KDM, Lee JQT, Syaddad A, Tan CK, Lim EXY, Wainwright BJ. Beneath the surface: DNA barcoding of shark fins in Singapore. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240532. [PMID: 39233723 PMCID: PMC11371422 DOI: 10.1098/rsos.240532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
The global decline of shark populations, largely driven by overfishing to supply the shark fin trade, poses a significant threat to marine ecosystems. Southeast Asia, and particularly Singapore, is a key hub for the transit and trade of shark fins that contribute to the exploitation of these apex predators. Through the use of DNA barcoding techniques, this study aimed to determine what species of shark are involved in the Singapore shark fin trade. Fins were collected from markets, dried goods shops and traditional Chinese medicine halls throughout Singapore. In total, DNA was extracted from 684 fins collected in January 2024 and PCR amplification targeted a fragment of the mitochondrial COI gene for species identification. Results revealed fins from 24 species across 16 genera, with 19 species listed on CITES Appendices II, and 16 listed as threatened on the IUCN Red List (critically endangered = 2, endangered = 4, vulnerable = 10). The top five most frequently identified species were Carcharhinus falciformis, Galeorhinus galeus, Rhizoprionodon oligolinx, Sphyrna lewini and Rhizoprionodon acutus. Of these, four are listed on CITES Appendix II and four are listed as threatened on the IUCN Red List.
Collapse
Affiliation(s)
- Manisha Saigal
- Yale-NUS College, National University of Singapore, Singapore
| | | | | | - Siebe van Manen
- Yale-NUS College, National University of Singapore, Singapore
- University College Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bui Tr Van Anh
- Yale-NUS College, National University of Singapore, Singapore
- Fulbright University Vietnam, Ho Chi Minh City, Vietnam
| | - Vidhi P. Arora
- Yale-NUS College, National University of Singapore, Singapore
| | | | | | - Adlan Syaddad
- Yale-NUS College, National University of Singapore, Singapore
| | | | - Elisa X. Y. Lim
- Yale-NUS College, National University of Singapore, Singapore
| | - Benjamin J. Wainwright
- Yale-NUS College, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
5
|
Finucci B, Pacoureau N, Rigby CL, Matsushiba JH, Faure-Beaulieu N, Sherman CS, VanderWright WJ, Jabado RW, Charvet P, Mejía-Falla PA, Navia AF, Derrick DH, Kyne PM, Pollom RA, Walls RHL, Herman KB, Kinattumkara B, Cotton CF, Cuevas JM, Daley RK, Dharmadi, Ebert DA, Fernando D, Fernando SMC, Francis MP, Huveneers C, Ishihara H, Kulka DW, Leslie RW, Neat F, Orlov AM, Rincon G, Sant GJ, Volvenko IV, Walker TI, Simpfendorfer CA, Dulvy NK. Fishing for oil and meat drives irreversible defaunation of deepwater sharks and rays. Science 2024; 383:1135-1141. [PMID: 38452078 DOI: 10.1126/science.ade9121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/02/2023] [Indexed: 03/09/2024]
Abstract
The deep ocean is the last natural biodiversity refuge from the reach of human activities. Deepwater sharks and rays are among the most sensitive marine vertebrates to overexploitation. One-third of threatened deepwater sharks are targeted, and half the species targeted for the international liver-oil trade are threatened with extinction. Steep population declines cannot be easily reversed owing to long generation lengths, low recovery potentials, and the near absence of management. Depth and spatial limits to fishing activity could improve conservation when implemented alongside catch regulations, bycatch mitigation, and international trade regulation. Deepwater sharks and rays require immediate trade and fishing regulations to prevent irreversible defaunation and promote recovery of this threatened megafauna group.
Collapse
Affiliation(s)
- Brittany Finucci
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Nathan Pacoureau
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cassandra L Rigby
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jay H Matsushiba
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nina Faure-Beaulieu
- Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
- Wildlands Conservation Trust, Pietermaritzburg, South Africa
| | - C Samantha Sherman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wade J VanderWright
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rima W Jabado
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Elasmo Project, Dubai, United Arab Emirates
| | - Patricia Charvet
- Programa de Pós-Graduação em Sistemática, Uso e Conservação da Biodiversidade (PPGSis), Universidade Federal do Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Paola A Mejía-Falla
- Wildlife Conservation Society, WCS Colombia, Cali, Colombia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas -SQUALUS, Cali, Colombia
| | - Andrés F Navia
- Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas -SQUALUS, Cali, Colombia
| | - Danielle H Derrick
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter M Kyne
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Riley A Pollom
- Species Recovery Program, Seattle Aquarium, Seattle, WA, USA
| | - Rachel H L Walls
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Bineesh Kinattumkara
- Zoological Survey of India, Marine Biology Regional Centre, Chennai, Tamil Nadu, India
| | - Charles F Cotton
- Department of Fisheries, Wildlife, and Environmental Science, State University of New York-Cobleskill, Cobleskill, NY, USA
| | - Juan-Martín Cuevas
- Wildlife Conservation Society Argentina, Buenos Aires, Argentina
- Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ross K Daley
- Horizon Consultancy, Hobart, Tasmania, Australia
| | - Dharmadi
- Research Centre for Fisheries Management and Conservation, Ministry of Marine Affairs and Fisheries, Government of Indonesia, Jakarta, Indonesia
| | - David A Ebert
- Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA, USA
- South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA, USA
| | | | | | - Malcolm P Francis
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | | | - David W Kulka
- Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada
| | - Robin W Leslie
- Fisheries Management Branch, Department of Forestry, Fisheries and the Environment, Cape Town, South Africa
- Department of Ichthyology and Fisheries Sciences, Rhodes University, Grahamstown, South Africa
- MA-RE Institute, University of Cape Town, Cape Town, South Africa
| | - Francis Neat
- Global Ocean Institute, World Maritime University, Malmo, Sweden
| | - Alexei M Orlov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, Tomsk, Russia
| | - Getulio Rincon
- Coordenação do Curso de Engenharia de Pesca, Universidade Federal do Maranhão-UFMA Campus Pinheiro, Pinheiro, Maranhão, Brazil
| | - Glenn J Sant
- TRAFFIC, University of Wollongong, New South Wales, Australia
- ANCORS, University of Wollongong, New South Wales, Australia
| | - Igor V Volvenko
- Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok, Russia
| | - Terence I Walker
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Colin A Simpfendorfer
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
6
|
Glaus K, Gordon L, Vierus T, Marosi ND, Sykes H. Rays in the Shadows: Batoid Diversity, Occurrence, and Conservation Status in Fiji. BIOLOGY 2024; 13:73. [PMID: 38392292 PMCID: PMC10886612 DOI: 10.3390/biology13020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Over recent decades, elasmobranchs (sharks, rays, and skates) have been increasingly recognized among the world's most threatened marine wildlife, leading to heightened scientific attention. However, batoids (rays and skates) are relatively understudied, especially in Large Ocean States of the Pacific. This synthesis compiles insights on batoid diversity and occurrence in Fiji's waters by integrating a literature review, participatory science programs such as the Great Fiji Shark Count (GFSC) Initiative, Projects Abroad Fiji (PA), Manta Project Fiji (MPF), and iNaturalist, along with environmental DNA. Nineteen batoid species from seven families were identified: 19 species from the literature, 12 from participatory science programs, and six from eDNA analysis. Notably, this study provides the first photographic evidence for the bentfin devil ray (Mobula thurstoni, Lloyd, 1908) in Fiji. GFSC data indicated the highest species diversity in the Western Division, with spotted eagle rays (Aetobatus ocellatus, Kuhl, 1823) and maskrays (Neotrygon sp.) being observed most. In-person interviews conducted by PA provided information on the occurrence of wedgefishes and potentially sawfishes. MPF records and iNaturalist uploads were dominated by reef manta rays (M. alfredi, Krefft, 1868), while the pink whipray (Pateobatis fai, Jordan and Seale, 1906) yielded the most DNA sequences. Overall, 68.4% of the species face an elevated extinction risk based on the International Union for the Conservation of Nature Red List criteria. Although caution is warranted with older literature-based records for the giant guitarfish (Glaucostegus typus, Anonymous [Bennett], 1830), giant stingaree (Plesiobatis daviesi, Wallace, 1967), and the lack of sawfish verification, this synthesis highlights the effectiveness of a combined methodological approach in establishing a reference point for the diversity and occurrence of this understudied taxon in Fiji.
Collapse
Affiliation(s)
- Kerstin Glaus
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, SAGEONS, The University of the South Pacific, Laucala Campus, Suva, Fiji
| | | | | | - Natasha D Marosi
- Beqa Adventure Divers, Pacific Harbour, Fiji
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4SB, UK
- Fiji Shark Lab., Pacific Harbour, Fiji
| | | |
Collapse
|
7
|
Selena Shen KL, Cheow JJ, Cheung AB, Koh RJR, Koh Xiao Mun A, Lee YN, Lim YZ, Namatame M, Peng E, Vintenbakh V, Lim EX, Wainwright BJ. DNA barcoding continues to identify endangered species of shark sold as food in a globally significant shark fin trade hub. PeerJ 2024; 12:e16647. [PMID: 38188178 PMCID: PMC10771092 DOI: 10.7717/peerj.16647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Shark fins are a delicacy consumed throughout Southeast Asia. The life history characteristics of sharks and the challenges associated with regulating fisheries and the fin trade make sharks particularly susceptible to overfishing. Here, we used DNA barcoding techniques to investigate the composition of the shark fin trade in Singapore, a globally significant trade hub. We collected 505 shark fin samples from 25 different local seafood and Traditional Chinese Medicine shops. From this, we identified 27 species of shark, three species are listed as Critically Endangered, four as Endangered and ten as Vulnerable by the International Union for Conservation of Nature (IUCN). Six species are listed on CITES Appendix II, meaning that trade must be controlled in order to avoid utilization incompatible with their survival. All dried fins collected in this study were sold under the generic term "shark fin"; this vague labelling prevents accurate monitoring of the species involved in the trade, the effective implementation of policy and conservation strategy, and could unwittingly expose consumers to unsafe concentrations of toxic metals. The top five most frequently encountered species in this study are Rhizoprionodon acutus, Carcharhinus falciformis, Galeorhinus galeus, Sphyrna lewini and Sphyrna zygaena. Accurate labelling that indicates the species of shark that a fin came from, along with details of where it was caught, allows consumers to make an informed choice on the products they are consuming. Doing this could facilitate the avoidance of species that are endangered, and similarly the consumer can choose not to purchase species that are documented to contain elevated concentrations of toxic metals.
Collapse
Affiliation(s)
| | - Jin Jie Cheow
- Yale-NUS College, National University of Singapore, Singapore
| | | | | | | | - Yun Ning Lee
- Yale-NUS College, National University of Singapore, Singapore
| | - Yan Zhen Lim
- Yale-NUS College, National University of Singapore, Singapore
| | - Maya Namatame
- Yale-NUS College, National University of Singapore, Singapore
| | - Eileen Peng
- Yale-NUS College, National University of Singapore, Singapore
- Yale University, New Haven, CT, USA
| | | | - Elisa X.Y. Lim
- Yale-NUS College, National University of Singapore, Singapore
| | - Benjamin John Wainwright
- Yale-NUS College, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
8
|
Klein JD, Maduna SN, Dicken ML, da Silva C, Soekoe M, McCord ME, Potts WM, Hagen SB, Bester‐van der Merwe AE. Local adaptation with gene flow in a highly dispersive shark. Evol Appl 2024; 17:e13628. [PMID: 38283610 PMCID: PMC10810256 DOI: 10.1111/eva.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024] Open
Abstract
Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non-model species, gene-environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome-wide SNPs obtained through a restriction site-associated DNA method (3RAD). A combination of differentiation-based genome-scan (outflank) and genotype-environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation-based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.
Collapse
Affiliation(s)
- Juliana D. Klein
- Molecular Breeding and Biodiversity Research Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| | - Simo N. Maduna
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research—NIBIOSvanvikNorway
| | - Matthew L. Dicken
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- Institute for Coastal and Marine Research (CMR), Ocean Sciences CampusNelson Mandela UniversityGqeberhaSouth Africa
| | - Charlene da Silva
- Department of Forestry, Fisheries and EnvironmentRogge BaySouth Africa
| | - Michelle Soekoe
- Division of Marine ScienceReel Science CoalitionCape TownSouth Africa
| | - Meaghen E. McCord
- South African Shark ConservancyHermanusSouth Africa
- Canadian Parks and Wilderness SocietyVancouverBritish ColumbiaCanada
| | - Warren M. Potts
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Snorre B. Hagen
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy Research—NIBIOSvanvikNorway
| | - Aletta E. Bester‐van der Merwe
- Molecular Breeding and Biodiversity Research Group, Department of GeneticsStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
9
|
Eustache KB, van Loon E, Rummer JL, Planes S, Smallegange I. Spatial and temporal analysis of juvenile blacktip reef shark (Carcharhinus melanopterus) demographies identifies critical habitats. JOURNAL OF FISH BIOLOGY 2024; 104:92-103. [PMID: 37726231 DOI: 10.1111/jfb.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Reef shark species have undergone sharp declines in recent decades, as they inhabit coastal areas, making them an easy target in fisheries (i.e., sharks are exploited globally for their fins, meat, and liver oil) and exposing them to other threats (e.g., being part of by-catch, pollution, and climate change). Reef sharks play a critical role in coral reef ecosystems, where they control populations of smaller predators and herbivorous fishes either directly via predation or indirectly via behavior, thus protecting biodiversity and preventing potential overgrazing of corals. The urgent need to conserve reef shark populations necessitates a multifaceted approach to policy at local, federal, and global levels. However, monitoring programmes to evaluate the efficiency of such policies are lacking due to the difficulty in repeatedly sampling free-ranging, wild shark populations. Over nine consecutive years, we monitored juveniles of the blacktip reef shark (Carcharhinus melanopterus) population around Moorea, French Polynesia, and within the largest shark sanctuary globally, to date. We investigated the roles of spatial (i.e., sampling sites) and temporal variables (i.e., sampling year, season, and month), water temperature, and interspecific competition on shark density across 10 coastal nursery areas. Juvenile C. melanopterus density was found to be stable over 9 years, which may highlight the effectiveness of local and likely federal policies. Two of the 10 nursery areas exhibited higher juvenile shark densities over time, which may have been related to changes in female reproductive behavior or changes in habitat type and resources. Water temperatures did not affect juvenile shark density over time as extreme temperatures proven lethal (i.e., 33°C) in juvenile C. melanopterus might have been tempered by daily variation. The proven efficiency of time-series datasets for reef sharks to identify critical habitats (having the highest juvenile shark densities over time) should be extended to other populations to significantly contribute to the conservation of reef shark species.
Collapse
Affiliation(s)
- Kim B Eustache
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies and the College of Science and Engineering James Cook University, Townsville, Queensland, Australia
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Laboratoire d'Excellence "CORAIL," EPHE, PSL Research University, UPVD, CNRS, UAR 3278 CRIOBE, Papetoai, French Polynesia
| | - Isabel Smallegange
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Nijman V. Illegal Trade in Protected Sharks: The Case of Artisanal Whale Shark Meat Fisheries in Java, Indonesia. Animals (Basel) 2023; 13:2656. [PMID: 37627447 PMCID: PMC10451966 DOI: 10.3390/ani13162656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Illegal, unreported, and unregulated fishing, including that of sharks, poses a significant threat to marine ecosystems and individual species. I use data from the media, tourists, and artisan fishermen to gain insight into the trade in the world's largest fish, the whale shark (Rhincodon typus). I focus on the Indonesian island of Java where, along its south coast, whale sharks are landed and butchered on the beach in view of hundreds of people and local media. Whale sharks are typically caught in fishing nets and dragged alongside boats to the shallows, where they are butchered. The meat and oil (valued at ~USD 2000 per shark) are sold and distributed within the community. I document 58 landings of mainly immature whale sharks (2002-2022). Artisanal fishermen see the landing of whale sharks as a fortuitous event, but the species is protected, and Indonesia is a signatory to various international agreements that preclude the fishing of whale sharks. It is imperative for the conservation of whale sharks that the various parties in Indonesia adhere better to their own rules and regulations protecting this species.
Collapse
Affiliation(s)
- Vincent Nijman
- Oxford Wildlife Trade Research Group, School of Law and Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
11
|
Prasetyo AP, Cusa M, Murray JM, Agung F, Muttaqin E, Mariani S, McDevitt AD. Universal closed-tube barcoding for monitoring the shark and ray trade in megadiverse conservation hotspots. iScience 2023; 26:107065. [PMID: 37389182 PMCID: PMC10300358 DOI: 10.1016/j.isci.2023.107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Trade restrictions for endangered elasmobranch species exist to disincentivise their exploitation and curb their declines. However, trade monitoring is challenging due to product variety and the complexity of import/export routes. We investigate the use of a portable, universal, DNA-based tool which would greatly facilitate in-situ monitoring. We collected shark and ray samples across the Island of Java, Indonesia, and selected 28 commonly encountered species (including 22 CITES-listed species) to test a recently developed real-time PCR single-assay originally developed for screening bony fish. In the absence of a bespoke elasmobranch identification online platform in the original FASTFISH-ID model, we employed a deep learning algorithm to recognize species based on DNA melt-curve signatures. By combining visual and machine-learning assignment methods, we distinguished 25/28 species, 20 of which were CITES-listed. With further refinement, this method can improve monitoring of the elasmobranch trade worldwide, without a lab or species-specific assays.
Collapse
Affiliation(s)
- Andhika P. Prasetyo
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- Centre Fisheries Research, Ministry for Marine Affairs and Fisheries, Jakarta, Indonesia
- Research Centre for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency, Bogor, Indonesia
| | - Marine Cusa
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Joanna M. Murray
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK
| | - Firdaus Agung
- Directorate for Conservation and Marine Biodiversity, Ministry for Marine Affairs and Fisheries, Jakarta, Indonesia
| | - Efin Muttaqin
- Wildlife Conservation Society Indonesia Program, Bogor, Indonesia
| | - Stefano Mariani
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Allan D. McDevitt
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- Department of Natural Resources and Environment, School of Science and Computing, Atlantic Technological University, Galway, Ireland
| |
Collapse
|
12
|
Cardeñosa D, Robles YL, Ussa DA, del Valle CM, Caballero S, Chapman DD. Pre‐export shark fin processing to conceal
CITES
‐listed species: a case‐study from a shark fin seizure in Colombia. Anim Conserv 2023. [DOI: 10.1111/acv.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- D. Cardeñosa
- Department of Biological Sciences Florida International University North Miami FL USA
| | - Y. L. Robles
- Laboratorio de Identificación Genética Forense de Especies Silvestres Dirección de Investigación Criminal e INTERPOL Policía Nacional Bogotá Colombia
| | - D. A. Ussa
- Laboratorio de Identificación Genética Forense de Especies Silvestres Dirección de Investigación Criminal e INTERPOL Policía Nacional Bogotá Colombia
| | - C. M. del Valle
- Laboratorio de Identificación Genética Forense de Especies Silvestres Dirección de Investigación Criminal e INTERPOL Policía Nacional Bogotá Colombia
| | - S. Caballero
- Laboratorio de Ecología Molecular de Vertebrados Acuáticos – LEMVA Departamento de Ciencias Biológicas Universidad de Los Andes Bogotá Colombia
| | - D. D. Chapman
- Sharks and Rays Conservation Program Mote Marine Laboratory & Aquarium Sarasota FL USA
| |
Collapse
|
13
|
Devloo‐Delva F, Burridge CP, Kyne PM, Brunnschweiler JM, Chapman DD, Charvet P, Chen X, Cliff G, Daly R, Drymon JM, Espinoza M, Fernando D, Barcia LG, Glaus K, González‐Garza BI, Grant MI, Gunasekera RM, Hernandez S, Hyodo S, Jabado RW, Jaquemet S, Johnson G, Ketchum JT, Magalon H, Marthick JR, Mollen FH, Mona S, Naylor GJP, Nevill JEG, Phillips NM, Pillans RD, Postaire BD, Smoothey AF, Tachihara K, Tillet BJ, Valerio‐Vargas JA, Feutry P. From rivers to ocean basins: The role of ocean barriers and philopatry in the genetic structuring of a cosmopolitan coastal predator. Ecol Evol 2023; 13:e9837. [PMID: 36844667 PMCID: PMC9944188 DOI: 10.1002/ece3.9837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The Bull Shark (Carcharhinus leucas) faces varying levels of exploitation around the world due to its coastal distribution. Information regarding population connectivity is crucial to evaluate its conservation status and local fishing impacts. In this study, we sampled 922 putative Bull Sharks from 19 locations in the first global assessment of population structure of this cosmopolitan species. Using a recently developed DNA-capture approach (DArTcap), samples were genotyped for 3400 nuclear markers. Additionally, full mitochondrial genomes of 384 Indo-Pacific samples were sequenced. Reproductive isolation was found between and across ocean basins (eastern Pacific, western Atlantic, eastern Atlantic, Indo-West Pacific) with distinct island populations in Japan and Fiji. Bull Sharks appear to maintain gene flow using shallow coastal waters as dispersal corridors, whereas large oceanic distances and historical land-bridges act as barriers. Females tend to return to the same area for reproduction, making them more susceptible to local threats and an important focus for management actions. Given these behaviors, the exploitation of Bull Sharks from insular populations, such as Japan and Fiji, may instigate local decline that cannot readily be replenished by immigration, which can in turn affect ecosystem dynamics and functions. These data also supported the development of a genetic panel to ascertain the population of origin, which will be useful in monitoring the trade of fisheries products and assessing population-level impacts of this harvest.
Collapse
Affiliation(s)
- Floriaan Devloo‐Delva
- Oceans and Atmosphere, CSIROHobartTasmaniaAustralia
- Quantitative Marine Science, Institute for Marine and Antarctic Studies, University of TasmaniaHobartTasmaniaAustralia
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Christopher P. Burridge
- Discipline of Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Peter M. Kyne
- Research Institute for the Environment and LivelihoodsCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | - Demian D. Chapman
- Department of Biological SciencesFlorida International UniversityNorth MiamiFloridaUSA
| | - Patricia Charvet
- Programa de Pós‐graduação em Sistemática, Uso e Conservação da BiodiversidadeUniversidade Federal do Ceará (PPGSis ‐ UFC)FortalezaBrazil
| | - Xiao Chen
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Geremy Cliff
- KwaZulu‐Natal Sharks Board, Umhlanga 4320, South Africa and School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Ryan Daly
- Oceanographic Research Institute, South African Association for Marine Biological Research, PointDurbanSouth Africa
- South African Institute for Aquatic BiodiversityMkhandaSouth Africa
| | - J. Marcus Drymon
- Coastal Research and Extension CenterMississippi State UniversityBiloxiMississippiUSA
- Mississippi‐Alabama Sea Grant ConsortiumOcean SpringsMississippiUSA
| | - Mario Espinoza
- Centro de Investigación en Ciencias del Mar y Limnología & Escuela de BiologíaUniversidad de Costa Rica, San Pedro de Montes de OcaSan JoséCosta Rica
| | | | - Laura Garcia Barcia
- Department of Biological SciencesFlorida International UniversityNorth MiamiFloridaUSA
| | - Kerstin Glaus
- Faculty of Science, Technology and Environment, School of Marine StudiesThe University of the South PacificSuvaFiji
| | | | - Michael I. Grant
- College of Science and Engineering, Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
| | | | - Sebastian Hernandez
- Biomolecular Laboratory, Center for International ProgramsUniversidad VERITASSan JoséCosta Rica
- Sala de Colecciones, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteUniversity of TokyoKashiwa, ChibaJapan
| | - Rima W. Jabado
- College of Science and Engineering, Centre for Sustainable Tropical Fisheries and AquacultureJames Cook UniversityTownsvilleQueenslandAustralia
- Elasmo ProjectDubaiUnited Arab Emirates
| | - Sébastien Jaquemet
- UMR ENTROPIE (Université de La Réunion, Université de Nouvelle‐Calédonie, IRD, CNRS, IFREMER), Faculté des Sciences et TechnologiesUniversité de La RéunionCedex 09, La RéunionFrance
| | - Grant Johnson
- Department of Industry, Tourism and Trade, Aquatic Resource Research UnitDarwinNorthern TerritoryAustralia
| | | | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, Université de Nouvelle‐Calédonie, IRD, CNRS, IFREMER), Faculté des Sciences et TechnologiesUniversité de La RéunionCedex 09, La RéunionFrance
| | - James R. Marthick
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | | | - Stefano Mona
- Institut de Systématique, Evolution, Biodiversité, ISYEB (UMR 7205), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité des AntillesParisFrance
- EPHEPSL Research UniversityParisFrance
| | - Gavin J. P. Naylor
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| | | | - Nicole M. Phillips
- School of Biological, Environmental and Earth SciencesThe University of Southern MississippiHattiesburgMississippiUSA
| | | | - Bautisse D. Postaire
- UMR ENTROPIE (Université de La Réunion, Université de Nouvelle‐Calédonie, IRD, CNRS, IFREMER), Faculté des Sciences et TechnologiesUniversité de La RéunionCedex 09, La RéunionFrance
| | - Amy F. Smoothey
- NSW Department of Primary Industries, Fisheries ResearchSydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Katsunori Tachihara
- Laboratory of Fisheries Biology and Coral Reef Studies, Faculty of ScienceUniversity of Ryukyus, NishiharaOkinawaJapan
| | - Bree J. Tillet
- Translational Research Institute, University of Queensland Diamantina InstituteBrisbaneQueenslandAustralia
| | - Jorge A. Valerio‐Vargas
- Centro de Investigación en Ciencias del Mar y Limnología & Escuela de BiologíaUniversidad de Costa Rica, San Pedro de Montes de OcaSan JoséCosta Rica
| | | |
Collapse
|
14
|
Characterization of 35 new microsatellite markers for the blacktip reef shark (Carcharhinus melanopterus) and cross-species amplification in eight other shark species. Mol Biol Rep 2023; 50:3205-3215. [PMID: 36707491 DOI: 10.1007/s11033-022-08209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Shark species are overfished at a global scale, as they are poached for the finning industry or are caught as bycatch. Efficient conservation measures require fine-scale spatial and temporal studies to characterize shark habitat use, infer migratory habits, analyze relatedness, and detect population genetic differentiation. Gathering these types of data is costly and time-consuming, especially when it requires collection of shark tissue samples. METHODS AND RESULTS Genetic tools, such as microsatellite markers, are the most economical sampling method for collecting genetic data, as they enable the estimation of genetic diversity, population structure and parentage relationships and are thus an efficient way to inform conservation strategies. Here, a set of 45 microsatellite loci was tested on three blacktip reef shark (Carcharhinus melanopterus) populations from three Polynesian islands: Moorea, Morane and Tenararo. The set was composed of 10 previously published microsatellite markers and 35 microsatellite markers that were developed specifically for C. melanopterus as part of the present study. The 35 novel and 10 existing loci were cross-amplified on eight additional shark species (Carcharhinus amblyrhynchos, C. longimanus, C. sorrah, Galeocerdo cuvier, Negaprion acutidens, Prionacea glauca, Rhincodon typus and Sphyrna lewini). These species had an average of 69% of successful amplification, considered if at least 50% of the individual samples being successfully amplified per species and per locus. CONCLUSIONS This novel microsatellite marker set will help address numerous knowledge gaps that remain, concerning genetic stock identification, shark behavior and reproduction via parentage analysis.
Collapse
|
15
|
van Staden M, Ebert DA, da Silva C, Bester-van der Merwe AE. Comparative analyses of the complete mitochondrial genomes of two southern African endemic guitarfish, Acroteriobatus annulatus and A. blochii. Int J Biol Macromol 2022; 223:1094-1106. [PMID: 36372109 DOI: 10.1016/j.ijbiomac.2022.10.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Shark-like rays (order Rhinopristiformes) are among the most threatened cartilaginous fish globally. Despite this, unresolved taxonomic issues still exist within the group. To date, no studies have used complete mitochondrial genomes to assess the phylogenetic placement of Acroteriobatus within the non-monophyletic family Rhinobatidae. The current study reports the first complete mitochondrial genomes for Acroteriobatus annulatus and A. blochii. Similar to other rhinopristiforms, the complete sequences of A. annulatus (16,773 bp) and A. blochii (16,771 bp) were circular molecules with gene organisations identical to that of the typical vertebrate mitogenome. The A + T content was higher than the G + C content, with a bias towards A and C nucleotides observed in all complete mitogenomes. The stem-and-loop secondary structures of the putative origin of light-strand replication were found to have highly conserved synthesis and stem regions, with all substitutions and indels restricted to the loop structure. The ratios of non-synonymous to synonymous substitution rates indicated that purifying selection has been the dominant driver of evolution in rhinopristiform mitogenomes. Phylogenetic reconstructions placed Acroteriobatus as a sister-group to Rhinobatos, confirming its affiliation with the family Rhinobatidae. However, based on its apparent polyphyly with the aforementioned genera, the familial assignment of Pseudobatos is not fully resolved and requires further investigation.
Collapse
Affiliation(s)
- Michaela van Staden
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - David A Ebert
- Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA; South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa; Department of Ichthyology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Charlene da Silva
- Department of Forestry, Fisheries and the Environment, Private Bag X2, Rogge Bay 8012, South Africa
| | | |
Collapse
|