1
|
Taylor R. Aetiology of type 2 diabetes: an experimental medicine odyssey. Diabetologia 2025:10.1007/s00125-025-06428-0. [PMID: 40316731 DOI: 10.1007/s00125-025-06428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 05/04/2025]
Abstract
This review describes a prolonged research endeavour to test the twin cycle hypothesis that type 2 diabetes is caused by fat-induced dysfunction of the liver and pancreas, guided by the happenstance of clinical practice. Testing of the personal fat threshold hypothesis, that individuals exhibit different levels of tolerance to intra-organ fat accumulation, is also described. Both hypotheses predict that type 2 diabetes is potentially reversible by weight loss. The results of the Counterpoint study supported the twin cycle hypothesis, leading to a second study which determined that short-duration diabetes was more likely to remit following the 10-15 kg weight loss. It also confirmed that remission was durable over 6 months on an isoenergetic, normal diet. Subsequently, it was shown that weight loss caused an immediate decrease of pancreas fat only in people with type 2 diabetes and also that postprandial incretin spikes after bariatric surgery had no role in normalising fasting plasma glucose. DiRECT, a 2 year randomised controlled study, demonstrated clinical utility, observing functional beta cell capacity to return almost to normal over 12 months. A small group of participants regained weight and redeveloped type 2 diabetes, allowing observation that the underlying pathophysiological mechanisms during onset of diabetes were as postulated by the twin cycle hypothesis. Major clinical benefit was demonstrated after a further 3 year follow-up in routine care, halving the incidence of serious adverse effect compared with the standard treatment control group. In answer to the question of whether individuals have a personal fat threshold for tolerance of fat, stepwise weight loss in people with type 2 diabetes and BMI in the range 21-27 kg/m2 resulted in remission in 70%, with a wide range of fat thresholds. Type 2 diabetes can be regarded as a condition of homogenous aetiology in genetically heterogenous individuals.
Collapse
Affiliation(s)
- Roy Taylor
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Mostafa EA, Ismail NA, El Din Abd El Baky AMN, ElShaer TF, Ashmawy I, Wahby AA, Wahed MMA, Hamdy Abd El Aziz S. MiR-375: it could be a general biomarker of metabolic changes and inflammation in type 1 diabetes patients and their siblings. J Endocrinol Invest 2025; 48:757-764. [PMID: 39453571 PMCID: PMC11876202 DOI: 10.1007/s40618-024-02474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Type 1 diabetes (T1D) is a chronic autoimmune illness that results in loss of pancreatic beta cells and insulin insufficiency. MicroRNAs (miRNAs) are linked to immune system functions contributing to the pathophysiology of T1D, miRNA-375 is significantly expressed in the human pancreas and its circulatory levels might correspond to beta cell alterations. Pancreatic islet cell antibodies (ICA) and Glutamic acid decarboxylase antibodies (GADA) have roles in autoimmune pathogenesis and are predictive markers of T1D. The aim of this work was to detect serum level changes of miRNA-375, ICA, and GADA in T1D patients, and their siblings compared to healthy controls and correlate them with T1D biochemical parameters. METHODS The study included 66 T1D patients (32 males and 34 females; age range 3-18 years), 22 patients' siblings (13 males and 9 females; age range 4-17 years), and 23 healthy controls (7 males and 16 females; age range 4-17 years). MiRNA-375 levels were measured using quantitative reverse transcription polymerase chain reaction (RT-qPCR), while ICA and GADA levels were measured using enzyme-linked immunosorbent assay (ELISA). Data analysis was done utilizing SPSS-17 software. RESULTS MiR-375 levels were downregulated in T1D patients and further decreased in their siblings when compared to healthy controls. Furthermore, miR-375 exhibited inverse correlations with HbA1c levels but no correlations with Total Insulin Dose, disease duration, or autoantibodies (GADA & ICA). CONCLUSION Our study indicates that miR-375 is significantly downregulated in children with T1D and their siblings, suggesting its potential role as a biomarker for beta-cell function and glycemic control.
Collapse
Affiliation(s)
- Eman A Mostafa
- National Research Center, Department of Pediatrics, El Buhouth St., P. O. 12622, Dokki, Cairo, Egypt.
| | - Nagwa Abdallah Ismail
- National Research Center, Department of Pediatrics, El Buhouth St., P. O. 12622, Dokki, Cairo, Egypt
| | | | - Tarek F ElShaer
- National Research Center, Department of Pediatrics, El Buhouth St., P. O. 12622, Dokki, Cairo, Egypt
| | - Ingy Ashmawy
- National Research Center, Department of Clinical and Chemical Pathology, Cairo, Egypt
| | - Aliaa Ahmed Wahby
- National Research Center, Department of Clinical and Chemical Pathology, Cairo, Egypt
| | - Mai Magdy Abdel Wahed
- National Research Center, Department of Clinical and Chemical Pathology, Cairo, Egypt
| | | |
Collapse
|
3
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
4
|
Root-Bernstein R, Chiles K, Huber J, Ziehl A, Turke M, Pietrowicz M. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098336. [PMID: 37176044 PMCID: PMC10179352 DOI: 10.3390/ijms24098336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
What triggers type 1 diabetes mellitus (T1DM)? One common assumption is that triggers are individual microbes that mimic autoantibody targets such as insulin (INS). However, most microbes highly associated with T1DM pathogenesis, such as coxsackieviruses (COX), lack INS mimicry and have failed to induce T1DM in animal models. Using proteomic similarity search techniques, we found that COX actually mimicked the INS receptor (INSR). Clostridia were the best mimics of INS. Clostridia antibodies cross-reacted with INS in ELISA experiments, confirming mimicry. COX antibodies cross-reacted with INSR. Clostridia antibodies further bound to COX antibodies as idiotype-anti-idiotype pairs conserving INS-INSR complementarity. Ultraviolet spectrometry studies demonstrated that INS-like Clostridia peptides bound to INSR-like COX peptides. These complementary peptides were also recognized as antigens by T cell receptor sequences derived from T1DM patients. Finally, most sera from T1DM patients bound strongly to inactivated Clostridium sporogenes, while most sera from healthy individuals did not; T1DM sera also exhibited evidence of anti-idiotype antibodies against idiotypic INS, glutamic acid decarboxylase, and protein tyrosine phosphatase non-receptor (islet antigen-2) antibodies. These results suggest that T1DM is triggered by combined enterovirus-Clostridium (and possibly combined Epstein-Barr-virus-Streptococcal) infections, and the probable rate of such co-infections approximates the rate of new T1DM diagnoses.
Collapse
Affiliation(s)
| | - Kaylie Chiles
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Huber
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Alison Ziehl
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Miah Turke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Maja Pietrowicz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Pinto C, Sá JR, Lana J, Dualib P, Gabbay M, Dib S. Association of parental cardiovascular risk factors with offspring type 1 diabetes mellitus insulin sensitivity. J Diabetes Complications 2023; 37:108393. [PMID: 36608491 DOI: 10.1016/j.jdiacomp.2022.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
AIM This study aimed to determine whether the insulin resistance (IR) and lipid profiles in Type 1 Diabetes (T1D) offspring are associated with IR and other cardiovascular risk factors in their parents. METHODS This study included 99 T1D patients (19.6 ± 4.0 yrs.), 85 mothers and 60 fathers. Parents' IR was assessed by HOMA-IR, and the insulin sensitivity in T1D patients was assessed by the estimated Glucose Disposal Rate (eGDR). RESULTS The eGDR in the T1D offspring was negatively related to age (p = 0.023), weight (p = 0.004), LDL (p = 0.026), and microalbuminuria (p = 0.019). Maternal Type 2 Diabetes (p < 0.001) and HOMA-IR (p = 0.029) were negatively related to eGDR in their T1D offspring. The maternal HOMA-IR and the proband's eGDR were positively (p = 0.012) and negatively (p = 0.042) associated with the birth weight of the T1D offspring, respectively. We didn't find an association with the fathers' profiles. CONCLUSIONS In a cohort of offspring with T1D the insulin sensitivity was related to the IR, lipid profile, and the presence of T2D only in their mothers. Precocious screening and treatment of these risk factors beyond glycemic control will benefit T1D with this background.
Collapse
Affiliation(s)
- Camila Pinto
- Endocrinology Division, Diabetes Center of Department of Medicine, Escola Paulista Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil
| | - Joao Roberto Sá
- Endocrinology Division, Diabetes Center of Department of Medicine, Escola Paulista Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil
| | - Janaina Lana
- Endocrinology Division, Diabetes Center of Department of Medicine, Escola Paulista Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil
| | - Patricia Dualib
- Endocrinology Division, Diabetes Center of Department of Medicine, Escola Paulista Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil.
| | - Monica Gabbay
- Endocrinology Division, Diabetes Center of Department of Medicine, Escola Paulista Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil
| | - Sergio Dib
- Endocrinology Division, Diabetes Center of Department of Medicine, Escola Paulista Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, São Paulo, SP CEP 04021-001, Brazil
| |
Collapse
|
6
|
Tanoey J, Baechle C, Brenner H, Deckert A, Fricke J, Günther K, Karch A, Keil T, Kluttig A, Leitzmann M, Mikolajczyk R, Obi N, Pischon T, Schikowski T, Schipf SM, Schulze MB, Sedlmeier A, Moreno Velásquez I, Weber KS, Völzke H, Ahrens W, Gastell S, Holleczek B, Jöckel KH, Katzke V, Lieb W, Michels KB, Schmidt B, Teismann H, Becher H. Birth Order, Caesarean Section, or Daycare Attendance in Relation to Child- and Adult-Onset Type 1 Diabetes: Results from the German National Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10880. [PMID: 36078596 PMCID: PMC9517906 DOI: 10.3390/ijerph191710880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: Global incidence of type 1 diabetes (T1D) is rising and nearly half occurred in adults. However, it is unclear if certain early-life childhood T1D risk factors were also associated with adult-onset T1D. This study aimed to assess associations between birth order, delivery mode or daycare attendance and type 1 diabetes (T1D) risk in a population-based cohort and whether these were similar for childhood- and adult-onset T1D (cut-off age 15); (2) Methods: Data were obtained from the German National Cohort (NAKO Gesundheitsstudie) baseline assessment. Self-reported diabetes was classified as T1D if: diagnosis age ≤ 40 years and has been receiving insulin treatment since less than one year after diagnosis. Cox regression was applied for T1D risk analysis; (3) Results: Analyses included 101,411 participants (100 childhood- and 271 adult-onset T1D cases). Compared to "only-children", HRs for second- or later-born individuals were 0.70 (95% CI = 0.50-0.96) and 0.65 (95% CI = 0.45-0.94), respectively, regardless of parental diabetes, migration background, birth year and perinatal factors. In further analyses, higher birth order reduced T1D risk in children and adults born in recent decades. Caesarean section and daycare attendance showed no clear associations with T1D risk; (4) Conclusions: Birth order should be considered in both children and adults' T1D risk assessment for early detection.
Collapse
Affiliation(s)
- Justine Tanoey
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christina Baechle
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Hermann Brenner
- Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Deckert
- Heidelberg Institute of Global Health, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Julia Fricke
- Institute of Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Kathrin Günther
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, 28359 Bremen, Germany
| | - André Karch
- Institute for Epidemiology and Social Medicine, Albert-Schweitzer-Campus 1, Building D3, 48149 Münster, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, 97080 Würzburg, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority, 91058 Erlangen, Germany
| | - Alexander Kluttig
- Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Center for Health Sciences, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Michael Leitzmann
- Department for Epidemiology and Preventive Medicine, Regensburg University Medical Center, 93053 Regensburg, Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics, Interdisciplinary Center for Health Sciences, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| | - Nadia Obi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Pischon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Molecular Epidemiology Research Group, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Biobank Technology Platform, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine—IUF, 40225 Düsseldorf, Germany
| | - Sabine M. Schipf
- Institute for Community Medicine, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Matthias B. Schulze
- German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Anja Sedlmeier
- Department for Epidemiology and Preventive Medicine, Regensburg University Medical Center, 93053 Regensburg, Germany
| | - Ilais Moreno Velásquez
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Molecular Epidemiology Research Group, 13125 Berlin, Germany
| | | | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, 28359 Bremen, Germany
| | - Sylvia Gastell
- German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Bernd Holleczek
- Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry und Epidemiology, Essen University Hospital, 45147 Essen, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, 24105 Kiel, Germany
| | - Karin B. Michels
- Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79110 Freiburg, Germany
| | - Börge Schmidt
- Institute of Medical Informatics, Biometry und Epidemiology, Essen University Hospital, 45147 Essen, Germany
| | - Henning Teismann
- Institute for Epidemiology and Social Medicine, Albert-Schweitzer-Campus 1, Building D3, 48149 Münster, Germany
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
7
|
Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM, Melton DA. Modeling Type 1 Diabetes In Vitro Using Human Pluripotent Stem Cells. Cell Rep 2021; 32:107894. [PMID: 32668238 PMCID: PMC7359783 DOI: 10.1016/j.celrep.2020.107894] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/01/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023] Open
Abstract
Understanding the root causes of autoimmune diseases is hampered by the inability to access relevant human tissues and identify the time of disease onset. To examine the interaction of immune cells and their cellular targets in type 1 diabetes, we differentiated human induced pluripotent stem cells into pancreatic endocrine cells, including β cells. Here, we describe an in vitro platform that models features of human type 1 diabetes using stress-induced patient-derived endocrine cells and autologous immune cells. We demonstrate a cell-type-specific response by autologous immune cells against induced pluripotent stem cell-derived β cells, along with a reduced effect on α cells. This approach represents a path to developing disease models that use patient-derived cells to predict the outcome of an autoimmune response.
Collapse
Affiliation(s)
- Nayara C Leite
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Elad Sintov
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| | - Torsten B Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, 02215 MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - David M Harlan
- Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer MJ, Bain JR, Myer CJ, Bhattacharya SK, Buchwald P, Abdulreda MH. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Biomolecules 2021; 11:383. [PMID: 33806609 PMCID: PMC7999903 DOI: 10.3390/biom11030383] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biomarkers are crucial for detecting early type-1 diabetes (T1D) and preventing significant β-cell loss before the onset of clinical symptoms. Here, we present proof-of-concept studies to demonstrate the potential for identifying integrated biomarker signature(s) of T1D using parallel multi-omics. METHODS Blood from human subjects at high risk for T1D (and healthy controls; n = 4 + 4) was subjected to parallel unlabeled proteomics, metabolomics, lipidomics, and transcriptomics. The integrated dataset was analyzed using Ingenuity Pathway Analysis (IPA) software for disturbances in the at-risk subjects compared to controls. RESULTS The final quadra-omics dataset contained 2292 proteins, 328 miRNAs, 75 metabolites, and 41 lipids that were detected in all samples without exception. Disease/function enrichment analyses consistently indicated increased activation, proliferation, and migration of CD4 T-lymphocytes and macrophages. Integrated molecular network predictions highlighted central involvement and activation of NF-κB, TGF-β, VEGF, arachidonic acid, and arginase, and inhibition of miRNA Let-7a-5p. IPA-predicted candidate biomarkers were used to construct a putative integrated signature containing several miRNAs and metabolite/lipid features in the at-risk subjects. CONCLUSIONS Preliminary parallel quadra-omics provided a comprehensive picture of disturbances in high-risk T1D subjects and highlighted the potential for identifying associated integrated biomarker signatures. With further development and validation in larger cohorts, parallel multi-omics could ultimately facilitate the classification of T1D progressors from non-progressors.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - Ciara J. Myer
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Type 1 diabetes: genes associated with disease development. Cent Eur J Immunol 2021; 45:439-453. [PMID: 33658892 PMCID: PMC7882399 DOI: 10.5114/ceji.2020.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/02/2020] [Indexed: 11/17/2022] Open
Abstract
Type 1 diabetes (T1D) is the third most common autoimmune disease which develops due to genetic and environmental risk factors. Based on the World Health Organization (WHO) report from 2014 the number of people suffering from all types of diabetes ascended to 422 million, compared to 108 million in 1980. It was calculated that this number will double by the end of 2030. In 2015 American Diabetes Association (ADA) announced that 30.3 million Americans (that is 9.4% of the overall population) had diabetes of which only approximately 1.25 million had T1D. Nowadays, T1D represents roughly 10% of adult diabetes cases total. Multiple genetic abnormalities at different loci have been found to contribute to type 1 diabetes development. The analysis of genome-wide association studies (GWAS) of T1D has identified over 50 susceptible regions (and genes within these regions). Many of these regions are defined by single nucleotide polymorphisms (SNPs) but molecular mechanisms through which they increase or lower the risk of diabetes remain unknown. Genetic factors (in existence since birth) can be detected long before the emergence of immunological or clinical markers. Therefore, a comprehensive understanding of the multiple genetic factors underlying T1D is extremely important for further clinical trials and development of personalized medicine for diabetic patients. We present an overview of current studies and information about regions in the human genome associated with T1D. Moreover, we also put forward information about epigenetic modifications, non-coding RNAs and environmental factors involved in T1D development and onset.
Collapse
|
10
|
Duarte L, García-Díaz DF, Pérez-Bravo F. Body fat composition and miR-378 expression profiling in patients with type 1 diabetes. Ann Pediatr Endocrinol Metab 2020; 25:118-125. [PMID: 32615692 PMCID: PMC7336264 DOI: 10.6065/apem.1938088.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/12/2019] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Type 1 diabetes (T1D) is an autoimmune disease that involves genetic, epigenetic, and environmental factors. Change in body composition is a potential mechanism for explaining the increased incidence of T1D. Micro RNA-378 (miRNA-378) is a positive regulator of adipogenesis that has yet to be studied in such patients. This study aims to evaluate the miRNA-378 expression profile in peripheral mononuclear cells of T1D patients and controls and to determine its possible association with levels of body fat, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). METHODS Twenty-four T1D subjects and 20 controls under 18 years of age without autoimmune diseases were studied. miRNA-378 expression profile was determined by TaqMan probes. Body composition was determined by multifrequency bioimpedance. IL-6 and TNF-α serum levels were determined by LUMINEX. AntiGAD65, anti-IA2, and anti-ZnT8 antibodies were quantified in serum by enzyme immunoassays. Statistical significance was considered P<0.05. RESULTS Similar body mass index and body fat (kg) were observed between the T1D and control subjects (P=0.55 and P=0.69, respectively). The miRNA-378 expression profile was significantly higher in T1D patients compared with the controls (P<0.05). Lower miRNA-378 expression in prepubertal controls was observed compared to pubertal controls, prepubertal T1D, and pubertal T1D (P<0.05). AntiGAD65, AntilA2, and AntiZnT8 were positively correlated with miRNA-378 (P=0.002, P=0.053, and P=0.007). No statistically significant correlation was observed between miRNA-378 expression and IL-6, TNF-α, or body fat. CONCLUSION Elevated miRNA-378 expression in T1D patients compared with controls is linked to pubertal stage but is not associated with proinflammatory status or body composition.
Collapse
Affiliation(s)
- Lissette Duarte
- Nutrigenomics Laboratory, Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego F. García-Díaz
- Nutrigenomics Laboratory, Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisco Pérez-Bravo
- Nutrigenomics Laboratory, Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile,Nutrition and Food Technology Institute (INTA), University of Chile, Santiago, Chile,Address for correspondence: Francisco Pérez-Bravo, PhD Nutrigenomics Laboratory, Department of Nutrition, Faculty of Medicine, University of Chile, Av. El Libano 5524, Macul, Santiago, Chile Tel: +56-229781410 Tel: +56-2214030 E-mail:
| |
Collapse
|
11
|
Vojislav C, Natasa R, Milica P, Slobodan A, Radivoj K, Danijela R, Sasa R. Incidence trend of type 1 diabetes mellitus in Serbia. BMC Endocr Disord 2020; 20:34. [PMID: 32151244 PMCID: PMC7063701 DOI: 10.1186/s12902-020-0504-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The incidence of type 1 diabetes mellitus (T1DM) increased worldwide. The objective of the paper was to compare the incidence trend of T1DM in children and adolescents aged 0-19 and in adults under 30 years of age in Serbia from 2006 to 2017. Additional aim was to compare incidence rates of T1DM and type 2 diabetes mellitus (T2DM) among adults aged 20-24 and 25-29 years of age. METHODS Trends and annual percentage change (APC) of the incidence rate with corresponding 95% confidence intervals (CI) were calculated by Joinpoint Regression Analyses. RESULTS We found a significant increase of incidence in children aged 5-9 with the APC of 5.7% (95%CI: 2.3-9.1), and in children aged 10-14 with the APC of 2.1% (95%CI: 0.6-3.6). A significant decrease of incidence was determined in adolescents aged 15-19 with the APC -4.9% (95%CI: - 8.9 to - 0.7) and in adults aged 25-29 with the APC -7.3% (95%CI: - 12.5 to - 1.8). CONCLUSION The increase of incidence in children aged 0-14 and its decrease after 15 years of age showed that T1DM is predominantly a metabolic disease of children in Serbia. A significant increase in incidence was recorded in two age groups, namely 5-9 and 10-14 years of age. The highest increase was in children aged 5-9 and the highest incidence rate was in children aged 10-14. An insignificant increasing of T2DM incidence was observed in young adults aged 25-29. The increase in incidence rates in children, but not in young adults, suggests that the precipitating factors of children-onset disease may differ from those of adult-onset T1DM.
Collapse
Affiliation(s)
- Ciric Vojislav
- University of Niš, Faculty of Medicine Niš, Niš, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center Niš, Niš, Serbia
| | - Rancic Natasa
- University of Niš, Faculty of Medicine Niš, Niš, Serbia.
- Institute for Public Health Niš, Niš, Serbia.
| | - Pesic Milica
- University of Niš, Faculty of Medicine Niš, Niš, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center Niš, Niš, Serbia
| | - Antic Slobodan
- University of Niš, Faculty of Medicine Niš, Niš, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center Niš, Niš, Serbia
| | - Kocic Radivoj
- University of Niš, Faculty of Medicine Niš, Niš, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center Niš, Niš, Serbia
| | - Radojkovic Danijela
- University of Niš, Faculty of Medicine Niš, Niš, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center Niš, Niš, Serbia
| | - Radenkovic Sasa
- University of Niš, Faculty of Medicine Niš, Niš, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Center Niš, Niš, Serbia
| |
Collapse
|
12
|
Tanoey J, Gulati A, Patterson C, Becher H. Risk of Type 1 Diabetes in the Offspring Born through Elective or Non-elective Caesarean Section in Comparison to Vaginal Delivery: a Meta-Analysis of Observational Studies. Curr Diab Rep 2019; 19:124. [PMID: 31712908 DOI: 10.1007/s11892-019-1253-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Caesarean section (CS) has been associated with an increased risk of type 1 diabetes (T1D). The lack of exposure to maternal vaginal and anal microbiome and bypassing the labor process often observed in elective CS may affect neonatal immune system development. This study aims to summarize the effects of elective and non-elective CS on T1D risk in the offspring. METHODS A systematic literature search was conducted online for publications providing data on elective and non-elective CS with T1D diagnosis in children and young adults, followed by a meta-analysis from selected studies. Newcastle-Ottawa Scale and GRADEpro tool were applied for quality analysis. RESULTS Nine observational studies comprising over 5 million individuals fulfilled the inclusion criteria. Crude OR estimates showed a 12% increased T1D risk from elective CS compared to vaginal delivery with significant heterogeneity. Adjusted ORs from seven studies did not show T1D risk differences from either CS category, and heterogeneity was detected between studies. Separate analysis of cohort and case-control studies reduced the heterogeneity and revealed a slight increase in T1D risk associated with elective CS in cohort studies (adjusted OR = 1.12 (1.01-1.24)), and a higher increased risk associated with non-elective CS in case-control studies (adjusted OR = 1.19 (1.06-1.34)). CONCLUSION Summarized crude risk estimates showed a small increased T1D risk in children and young adults born through elective CS compared to vaginal delivery, but with significant heterogeneity. Adjusted risk estimates by study design indicated a slightly increased T1D risks associated with elective or non-elective CS.
Collapse
Affiliation(s)
- Justine Tanoey
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Amit Gulati
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Chris Patterson
- Centre for Public Health, University of Belfast, Grosvenor Road, Belfast, BT12 6BJ, UK
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
13
|
Gonzalez Badillo FE, Zisi Tegou F, Abreu MM, Masina R, Sha D, Najjar M, Wright SH, Bayer AL, Korpos É, Pugliese A, Molano RD, Tomei AA. CCL21 Expression in β-Cells Induces Antigen-Expressing Stromal Cell Networks in the Pancreas and Prevents Autoimmune Diabetes in Mice. Diabetes 2019; 68:1990-2003. [PMID: 31371518 PMCID: PMC6754241 DOI: 10.2337/db19-0239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/21/2019] [Indexed: 12/31/2022]
Abstract
Tumors induce tolerance toward their antigens by producing the chemokine CCL21, leading to the formation of tertiary lymphoid organs (TLOs). Ins2-CCL21 transgenic, nonobese diabetic (NOD) mice express CCL21 in pancreatic β-cells and do not develop autoimmune diabetes. We investigated by which mechanisms CCL21 expression prevented diabetes. Ins2-CCL21 mice develop TLOs by 4 weeks of age, consisting of naive CD4+ T cells compartmentalized within networks of CD45-gp38+CD31- fibroblastic reticular cell (FRC)-like cells. Importantly, 12-week-old Ins2-CCL21 TLOs contained FRC-like cells with higher contractility, regulatory, and anti-inflammatory properties and enhanced expression of β-cell autoantigens compared with nontransgenic NOD TLOs found in inflamed islets. Consistently, transgenic mice harbored fewer autoreactive T cells and a higher proportion of regulatory T cells in the islets. Using adoptive transfer and islet transplantation models, we demonstrate that TLO formation in Ins2-CCL21 transgenic islets is critical for the regulation of autoimmunity, and although the effect is systemic, the induction is mediated locally likely by lymphocyte trafficking through TLOs. Overall, our findings suggest that CCL21 promotes TLOs that differ from inflammatory TLOs found in type 1 diabetic islets in that they resemble lymph nodes, contain FRC-like cells expressing β-cell autoantigens, and are able to induce systemic and antigen-specific tolerance leading to diabetes prevention.
Collapse
Affiliation(s)
- Freddy E Gonzalez Badillo
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Flavia Zisi Tegou
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
| | - Maria M Abreu
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Riccardo Masina
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Divya Sha
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Mejdi Najjar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Shane H Wright
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Éva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion, Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, Miami, FL
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
14
|
Changes in Gene Expression of Selected Genes in Patients with Type 1 Diabetes and Pancreas Transplant in Peripheral Blood. Transplant Proc 2019; 51:2787-2792. [PMID: 31445766 DOI: 10.1016/j.transproceed.2019.04.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Diabetes is an autoimmunologic disease that may have a different background. The aim of our study was to show that type 1 diabetes is accompanied by changes in gene expression in peripheral blood mononuclear cells. We analyzed the genes characteristic of pancreatic islet cells and genes playing a big part in autoimmune diseases and cancer. DESIGN The study included 21 patients and was performed to examine the expression of 9 genes. The patients were divided into 3 research groups: people with type 1 diabetes, people with diabetes after pancreas transplant, and a control group of healthy patients. To assess the level of expression, RNA material was obtained from peripheral blood collected from individuals qualified for the study. RESULTS The results of the study showed many interesting changes in the expression level of the analyzed genes. It was demonstrated that CASR gene expression was significantly higher in transplant patients than in diabetic patients. Differences in the level of activity are also noted in genes that take part in autoimmune diseases. PROPOSAL Profiling gene expression in peripheral blood samples may be a useful and noninvasive diagnostic tool that allows early detection of changes leading to the onset or resumption of diabetes.
Collapse
|
15
|
Alekberzade AV, Krylov NN, Adzhun Z, Laftavi MR, Shakhbazov RO, Zuykova KS. [Current state of the problem of allotransplantation of Langerhans cells (achievements and prospects)]. Khirurgiia (Mosk) 2018:80-88. [PMID: 30531761 DOI: 10.17116/hirurgia201811180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Literature data devoted to transplantation of Langerhans cells have been analyzed. The main stages, indications, dissection of islets, immunosuppressive therapy, complications and data of the latest clinical trials were discussed.
Collapse
Affiliation(s)
- A V Alekberzade
- Sechenov First Moscow State Medical University of Healthcare Ministry of the Russian Federation, Moscow, Russia
| | - N N Krylov
- Sechenov First Moscow State Medical University of Healthcare Ministry of the Russian Federation, Moscow, Russia
| | - Z Adzhun
- Upstate Medical University, Syracuse, NY, USA
| | - M R Laftavi
- Upstate Medical University, Syracuse, NY, USA
| | | | - K S Zuykova
- Sechenov First Moscow State Medical University of Healthcare Ministry of the Russian Federation, Moscow, Russia
| |
Collapse
|
16
|
Abstract
Type 1 diabetes (T1D) is perceived as a chronic immune-mediated disease with a subclinical prodromal period characterized by selective loss of insulin-producing beta cells in the pancreatic islets in genetically susceptible subjects. The incidence of T1D has increased manifold in most developed countries after World War II in parallel with a series of other immune-mediated diseases. T1D results from gene-environmental interactions. The appearance of disease-associated autoantibodies into the peripheral circulation is the first detectable sign of the initiation of the disease process leading to clinical T1D. The first autoantibodies may appear already before the age of 6 months and the seroconversion rate peaks during the second year of life. This implies that exogenous factors involved in the pathogenesis of T1D must be operative in early life, some of them most likely already during pregnancy. Here, we discuss putative endogenous factors that may contribute to the development of T1D during fetal and early postnatal life. Many environmental factors operative in early life have been implicated in the pathogenesis of T1D, but relatively few have been firmly confirmed.
Collapse
|
17
|
Snowhite IV, Allende G, Sosenko J, Pastori RL, Messinger Cayetano S, Pugliese A. Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes. Diabetologia 2017; 60:1409-1422. [PMID: 28500393 PMCID: PMC5839115 DOI: 10.1007/s00125-017-4294-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS MicroRNAs (miRNAs) are key regulators of gene expression and novel biomarkers for many diseases. We investigated the hypothesis that serum levels of some miRNAs would be associated with islet autoimmunity and/or progression to type 1 diabetes. METHODS We measured levels of 93 miRNAs most commonly detected in serum. This retrospective cohort study included 150 autoantibody-positive and 150 autoantibody-negative family-matched siblings enrolled in the TrialNet Pathway to Prevention Study. This was a young cohort (mean age = 11 years), and most autoantibody-positive relatives were at high risk because they had multiple autoantibodies, with 39/150 (26%, progressors) developing type 1 diabetes within an average 8.7 months of follow-up. We analysed miRNA levels in relation to autoantibody status, future development of diabetes and OGTT C-peptide and glucose indices of disease progression. RESULTS Fifteen miRNAs were differentially expressed when comparing autoantibody-positive/negative siblings (range -2.5 to 1.3-fold). But receiver operating characteristic (ROC) analysis indicated low specificity and sensitivity. Seven additional miRNAs were differentially expressed among autoantibody-positive relatives according to disease progression; ROC returned significant AUC values and identified miRNA cut-off levels associated with an increased risk of disease in both cross-sectional and survival analyses. Levels of several miRNAs showed significant correlations (r values range 0.22-0.55) with OGTT outcomes. miR-21-3p, miR-29a-3p and miR-424-5p had the most robust associations. CONCLUSIONS/INTERPRETATION Serum levels of selected miRNAs are associated with disease progression and confer additional risk of the development of type 1 diabetes in young autoantibody-positive relatives. Further studies, including longitudinal assessments, are warranted to further define miRNA biomarkers for prediction of disease risk and progression.
Collapse
Affiliation(s)
- Isaac V Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
| | - Gloria Allende
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
| | - Jay Sosenko
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo L Pastori
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shari Messinger Cayetano
- Department of Epidemiology and Public Health Sciences, Division of Biostatistics, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA.
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA.
- Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
18
|
Abstract
Type 1 diabetes (T1D) patients who receive pancreatic islet transplant experience significant improvement in their quality-of-life. This comes primarily through improved control of blood sugar levels, restored awareness of hypoglycemia, and prevention of serious and potentially life-threatening diabetes-associated complications, such as kidney failure, heart and vascular disease, stroke, nerve damage, and blindness. Therefore, beta cell replacement through transplantation of isolated islets is an important option in the treatment of T1D. However, lasting success of this promising therapy depends on durable survival and efficacy of the transplanted islets, which are directly influenced by the islet isolation procedures. Thus, isolating pancreatic islets with consistent and reliable quality is critical in the clinical application of islet transplantation.Quality of isolated islets is important in pre-clinical studies as well, as efforts to advance and improve clinical outcomes of islet transplant therapy have relied heavily on animal models ranging from rodents, to pigs, to nonhuman primates. As a result, pancreatic islets have been isolated from these and other species and used in a variety of in vitro or in vivo applications for this and other research purposes. Protocols for islet isolation have been somewhat similar across species, especially, in mammals. However, given the increasing evidence about the distinct structural and functional features of human and mouse islets, using similar methods of islet isolation may contribute to inconsistencies in the islet quality, immunogenicity, and experimental outcomes. This may also contribute to the discrepancies commonly observed between pre-clinical findings and clinical outcomes. Therefore, it is prudent to consider the particular features of pancreatic islets from different species when optimizing islet isolation protocols.In this chapter, we explore the structural and functional features of pancreatic islets from mice, pigs, nonhuman primates, and humans because of their prevalent use in nonclinical, preclinical, and clinical applications.
Collapse
|
19
|
Rodriguez-Calvo T, Zapardiel-Gonzalo J, Amirian N, Castillo E, Lajevardi Y, Krogvold L, Dahl-Jørgensen K, von Herrath MG. Increase in Pancreatic Proinsulin and Preservation of β-Cell Mass in Autoantibody-Positive Donors Prior to Type 1 Diabetes Onset. Diabetes 2017; 66:1334-1345. [PMID: 28137793 PMCID: PMC5399615 DOI: 10.2337/db16-1343] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy.
Collapse
Affiliation(s)
| | | | - Natalie Amirian
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Ericka Castillo
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Yasaman Lajevardi
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Novo Nordisk Diabetes Research & Development Center, Seattle, WA
| |
Collapse
|
20
|
Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus. Br J Nutr 2016; 116:1861-1868. [PMID: 27890035 DOI: 10.1017/s0007114516003846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case-control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r -0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.
Collapse
|
21
|
Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J. Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol 2016; 41:317-323. [PMID: 27833451 PMCID: PMC5099390 DOI: 10.5114/ceji.2016.63133] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Heat shock proteins (HSPs) belong to the family of conservative polypeptides with a high homology of the primary structure. The uniqueness of this family lies in their ability to interact with a large number of different proteins and provide protection from cellular and environmental stress factors as molecular chaperones to keep protein homeostasis. While intracellular HSPs play a mainly protective role, extracellular or membrane-bound HSPs mediate immunological functions and immunomodulatory activity. In immune system are subsets of cells including regulatory T cells (Tregs) with suppressive functions. HSPs are implicated in the function of innate and adaptive immune systems, stimulate T lymphocyte proliferation and immunomodulatory functions, increase the effectiveness of cross-presentation of antigens, and induce the secretion of cytokines. HSPs are also important in the induction, proliferation, suppressive function, and cytokine production of Tregs, which are a subset of CD4+ T cells maintaining peripheral tolerance. Together HSPs and Tregs are potential tools for future clinical interventions in autoimmune disease.
Collapse
Affiliation(s)
- Tomasz Koliński
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, Poland
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Poland
| | - Janusz Siebert
- Department of Family Medicine, Medical University of Gdansk, Poland
| |
Collapse
|
22
|
Bruno G, Gruden G, Songini M. Incidence of type 1 diabetes in age groups above 15 years: facts, hypothesis and prospects for future epidemiologic research. Acta Diabetol 2016; 53:339-47. [PMID: 26787492 DOI: 10.1007/s00592-015-0835-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Although onset of type 1 diabetes can occur in adulthood, epidemiological data are scarce, limiting our potential to identify unknown determinants of the disease. Paucity of registries expanding the recruitment of incident cases up to adulthood, atypical clinical features of type 1 diabetes at onset, misclassification of type 1 as type 2 diabetes and little use of markers of β-cell autoimmunity represents major obstacles in studying the risk of type 1 diabetes in adults. New strategies in study design, data collection and analyses may overcome these problems in the future. Population-based surveys and registries including adulthood; use of etiological rather than clinical criteria to define type 1 diabetes; availability of electronic health records as prescription data sources to avoid missing data; and application of proper statistical methods will be instrumental to gain better insight on the epidemiology and natural history of the disease.
Collapse
Affiliation(s)
- G Bruno
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - G Gruden
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | | |
Collapse
|
23
|
Pugliese A, Boulware D, Yu L, Babu S, Steck AK, Becker D, Rodriguez H, DiMeglio L, Evans-Molina C, Harrison LC, Schatz D, Palmer JP, Greenbaum C, Eisenbarth GS, Sosenko JM. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives From Type 1 Diabetes Throughout the Stages of Disease Progression. Diabetes 2016; 65:1109-19. [PMID: 26822082 PMCID: PMC4806662 DOI: 10.2337/db15-1105] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022]
Abstract
The HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype is linked to protection from the development of type 1 diabetes (T1D). However, it is not known at which stages in the natural history of T1D development this haplotype affords protection. We examined a cohort of 3,358 autoantibody-positive relatives of T1D patients in the Pathway to Prevention (PTP) Study of the Type 1 Diabetes TrialNet. The PTP study examines risk factors for T1D and disease progression in relatives. HLA typing revealed that 155 relatives carried this protective haplotype. A comparison with 60 autoantibody-negative relatives suggested protection from autoantibody development. Moreover, the relatives with DRB1*15:01-DQA1*01:02-DQB1*06:02 less frequently expressed autoantibodies associated with higher T1D risk, were less likely to have multiple autoantibodies at baseline, and rarely converted from single to multiple autoantibody positivity on follow-up. These relatives also had lower frequencies of metabolic abnormalities at baseline and exhibited no overall metabolic worsening on follow-up. Ultimately, they had a very low 5-year cumulative incidence of T1D. In conclusion, the protective influence of DRB1*15:01-DQA1*01:02-DQB1*06:02 spans from autoantibody development through all stages of progression, and relatives with this allele only rarely develop T1D.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - David Boulware
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Liping Yu
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Sunanda Babu
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Andrea K Steck
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Dorothy Becker
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Henry Rodriguez
- Department of Pediatrics at the Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Linda DiMeglio
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Carmella Evans-Molina
- Department of Pediatric Endocrinology, Riley Hospital for Children at Indiana University Health, Indianapolis, IN
| | - Leonard C Harrison
- Department of Medicine, Indiana University School of Medicine and the Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Desmond Schatz
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Jerry P Palmer
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Carla Greenbaum
- VA Puget Sound Health Care System and University of Washington, Seattle, WA
| | - George S Eisenbarth
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Jay M Sosenko
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL Benaroya Research Institute, Seattle, WA
| | | |
Collapse
|
24
|
Cabrera SM, Chen YG, Hagopian WA, Hessner MJ. Blood-based signatures in type 1 diabetes. Diabetologia 2016; 59:414-25. [PMID: 26699650 PMCID: PMC4744128 DOI: 10.1007/s00125-015-3843-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes mellitus is one of the most common chronic diseases in childhood. It develops through autoimmune destruction of the pancreatic beta cells and results in lifelong dependence on exogenous insulin. The pathogenesis of type 1 diabetes involves a complex interplay of genetic and environmental factors and has historically been attributed to aberrant adaptive immunity; however, there is increasing evidence for a role of innate inflammation. Over the past decade new methodologies for the analysis of nucleic acid and protein signals have been applied to type 1 diabetes. These studies are providing a new understanding of type 1 diabetes pathogenesis and have the potential to inform the development of new biomarkers for predicting diabetes onset and monitoring therapeutic interventions. In this review we will focus on blood-based signatures in type 1 diabetes, with special attention to both direct transcriptomic analyses of whole blood and immunocyte subsets, as well as plasma/serum-induced transcriptional signatures. Attention will also be given to proteomics, microRNA assays and markers of beta cell death. We will also discuss the results of blood-based profiling in type 1 diabetes within the context of the genetic and environmental factors implicated in the natural history of autoimmune diabetes.
Collapse
Affiliation(s)
- Susanne M Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | | | - Martin J Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children's Research Institute of Children's Hospital of Wisconsin, Milwaukee, WI, USA.
- Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
25
|
Abstract
Diabetes mellitus is a metabolic homeostasis disease that contributes to additional comorbidities such as cardiovascular disease (CVD) and cancer. It has a long undiagnosed latent period during which there can be irreparable damage to the pancreas and cardiovascular tissues. Recent studies have highlighted the roles of several microRNAs in CVD. Determining the microRNAs that link diabetes mellitus and CVD is an important topic to be explored. In the present review, we discuss the microRNAs that contribute to the progression of diabetes mellitus and CVD and focus on the miR-29 family microRNAs whose expression is upregulated by hyperglycemia and proinflammatory cytokines, the hallmarks of diabetes mellitus. Upregulation of miR-29 expression is a key factor in the loss of pancreatic β cells and development of the first stage of type 1 diabetes mellitus (T1DM). Additionally, miR-29-mediated suppression of myeloid cell leukemia 1 (MCL-1), an important prosurvival protein, underlies Marfan's syndrome, abdominal aortic aneurysm, and diabetes mellitus-associated cardiomyocyte disorganization. Suppression of miR-29 expression and subsequent increase in the prosurvival MCL-1, however, promotes tumor development. Therefore, miR-29 mimics that suppress MCL-1 are hailed as tumor suppressors. The critical question is whether an increase in miR-29 levels is well tolerated in conditions of comorbidities in which insulin resistance is an underlying disease. In light of increasing awareness of the interconnection of diabetes mellitus, CVD, and cancer, it is of utmost importance to understand the mechanism of action of current treatment options on all of the comorbidities and careful evaluation of cardiovascular toxicity must accompany any treatment paradigm that increases miR-29 levels.
Collapse
Affiliation(s)
- Anna Ślusarz
- aDepartment of Medicine bDepartment of Biochemistry, University of Missouri cHarry S. Truman Memorial Veterans Affairs Hospital dDepartment of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
26
|
Klemetti MM, Laivuori H, Tikkanen M, Nuutila M, Hiilesmaa V, Teramo K. White's classification and pregnancy outcome in women with type 1 diabetes: a population-based cohort study. Diabetologia 2016; 59:92-100. [PMID: 26474777 DOI: 10.1007/s00125-015-3787-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/24/2015] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Our aim was to examine the association of White's classification with obstetric and perinatal risk factors and outcomes in type 1 diabetic patients. METHODS Obstetric records of a population-based cohort of 1,094 consecutive type 1 diabetic patients with a singleton childbirth during 1988-2011 were studied. The most recent childbirth of each woman was included. RESULTS The prepregnancy and the first trimester HbA1c increased from White's class B to F (p for trend <0.001). Systolic and diastolic blood pressure and pre-eclampsia frequencies increased stepwise from class B to F (p for trends <0.001). Vaginal deliveries decreased and Caesarean sections and deliveries before 37 weeks increased from class B to F (p for trends <0.001). Fetal macrosomia (p for trend=0.003) decreased and small-for-gestational age infants (p for trend=0.002) and neonatal intensive care unit admissions (p for trend=0.001) increased from class B to F. In logistic regression analysis, White's classes were associated with pre-eclampsia but, with the exception of class R (proliferative retinopathy) and F (nephropathy), not with other adverse outcomes when adjusted for first trimester HbA1c ≥7% (≥53 mmol/mol) and blood pressure ≥140/90 mmHg. First trimester HbA1c ≥7% was associated with pre-eclampsia, preterm delivery, fetal macrosomia and neonatal intensive care unit admission. CONCLUSIONS/INTERPRETATION White's classification is useful in estimating the risk of pre-eclampsia in early pregnancy independently of suboptimal glycaemic control and hypertension. However, its utility in predicting adverse perinatal outcomes seems limited when information on first trimester HbA1c, blood pressure and diabetic microvascular complications is available.
Collapse
Affiliation(s)
- Miira M Klemetti
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, 00029, Helsinki, Finland.
- Department of Obstetrics and Gynaecology, South Karelia Central Hospital, Lappeenranta, Finland.
| | - Hannele Laivuori
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, 00029, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Minna Tikkanen
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, 00029, Helsinki, Finland
| | - Mika Nuutila
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, 00029, Helsinki, Finland
| | - Vilho Hiilesmaa
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, 00029, Helsinki, Finland
| | - Kari Teramo
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, 00029, Helsinki, Finland
| |
Collapse
|
27
|
Vendrame F, Hopfner Y, Diamantopoulos S, Virdi SK, Allende G, Snowhite IV, Reijonen HK, Chen L, Ruiz P, Ciancio G, Hutton JC, Messinger S, Burke GW, Pugliese A. Risk Factors for Type 1 Diabetes Recurrence in Immunosuppressed Recipients of Simultaneous Pancreas-Kidney Transplants. Am J Transplant 2016; 16:235-45. [PMID: 26317167 PMCID: PMC5053280 DOI: 10.1111/ajt.13426] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 01/25/2023]
Abstract
Patients with type 1 diabetes (T1D) who are recipients of pancreas transplants are believed to rarely develop T1D recurrence in the allograft if effectively immunosuppressed. We evaluated a cohort of 223 recipients of simultaneous pancreas-kidney allografts for T1D recurrence and its risk factors. With long-term follow-up, recurrence was observed in approximately 7% of patients. Comparing the therapeutic regimens employed in this cohort over time, lack of induction therapy was associated with recurrence, but this occurs even with the current regimen, which includes induction; there was no influence of maintenance regimens. Longitudinal testing for T1D-associated autoantibodies identified autoantibody positivity, number of autoantibodies, and autoantibody conversion after transplantation as critical risk factors. Autoantibodies to the zinc transporter 8 had the strongest and closest temporal association with recurrence, which was not explained by genetically encoded amino acid sequence donor-recipient mismatches for this autoantigen. Genetic risk factors included the presence of the T1D-predisposing HLA-DR3/DR4 genotype in the recipient and donor-recipient sharing of HLA-DR alleles, especially HLA-DR3. Thus, T1D recurrence is not uncommon and is developing in patients treated with current immunosuppression. The risk factors identified in this study can be assessed in the transplant clinic to identify recurrent T1D and may lead to therapeutic advances.
Collapse
Affiliation(s)
- F. Vendrame
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - Y‐Y. Hopfner
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - S. Diamantopoulos
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL,Department of Pediatrics, Leonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - S. K. Virdi
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - G. Allende
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - I. V. Snowhite
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL
| | | | - L. Chen
- Department of Surgery, Division of Transplantation, Leonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - P. Ruiz
- Department of Surgery, Division of Transplantation, Leonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - G. Ciancio
- Department of Surgery, Division of Transplantation, Leonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - J. C. Hutton
- Barbara Davis Center for Childhood DiabetesUniversity of Colorado DenverAuroraCO
| | - S. Messinger
- Department of Epidemiology and Public Health Sciences, Division of Biostatistics, Leonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - G. W. Burke
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL,Department of Surgery, Division of Transplantation, Leonard Miller School of MedicineUniversity of MiamiMiamiFL
| | - A. Pugliese
- Diabetes Research InstituteLeonard Miller School of MedicineUniversity of MiamiMiamiFL,Department of Medicine, Division of Endocrinology and Metabolism, Leonard Miller School of MedicineUniversity of MiamiMiamiFL,Department of Microbiology and ImmunologyLeonard Miller School of MedicineUniversity of MiamiMiamiFL
| |
Collapse
|
28
|
Cabrera SM, Henschel AM, Hessner MJ. Innate inflammation in type 1 diabetes. Transl Res 2016; 167:214-27. [PMID: 25980926 PMCID: PMC4626442 DOI: 10.1016/j.trsl.2015.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay between genetic and environmental factors and has historically been attributed to adaptive immunity, although there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible biobreeding rat. Innate inflammation may be driven by changes in interactions between the host and environment, such as through an altered microbiome, intestinal hyperpermeability, or viral exposures. Special focus is put on the temporal measurement of plasma-induced transcriptional signatures of recent-onset T1D patients and their siblings as well as in the biobreeding rat as it defines the natural history of innate inflammation. These sensitive and comprehensive analyses have also revealed that those who successfully managed T1D risk develop an age-dependent immunoregulatory state, providing a possible mechanism for the juvenile nature of T1D. Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy may be improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, and Department of Pediatrics at the Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
29
|
Michels A, Zhang L, Khadra A, Kushner JA, Redondo MJ, Pietropaolo M. Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes 2015; 16. [PMID: 26202050 PMCID: PMC4592445 DOI: 10.1111/pedi.12299] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the archetypal example of a T cell-mediated autoimmune disease characterized by selective destruction of pancreatic β cells. The pathogenic equation for T1DM presents a complex interrelation of genetic and environmental factors, most of which have yet to be identified. On the basis of observed familial aggregation of T1DM, it is certain that there is a decided heritable genetic susceptibility for developing T1DM. The well-known association of T1DM with certain human histocompatibility leukocyte antigen (HLA) alleles of the major histocompatibility complex (MHC) was a major step toward understanding the role of inheritance in T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects (e.g., HLA) and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3/DQ2) or DRB1*04-DQB1*0302 (DR4/DQ8)]. In addition, the HLA allele DQB1*0602 is associated with dominant protection from T1DM in multiple populations. A concordance rate lower than 100% between monozygotic twins indicates a potential involvement of environmental factors on disease development. The detection of at least two islet autoantibodies in the blood is virtually pre-diagnostic for T1DM. The majority of children who carry these biomarkers, regardless of whether they have an a priori family history of the disease, will develop insulin-requiring diabetes. Facilitating pre-diagnosis is the timing of seroconversion which is most pronounced in the first 2 yr of life. Unfortunately the significant progress in improving prediction of T1DM has not yet been paralleled by safe and efficacious intervention strategies aimed at preventing the disease. Herein we summarize the chequered history of prediction and prevention of T1DM, describing successes and failures alike, and thereafter examine future trends in the exciting, partially explored field of T1DM prevention.
Collapse
Affiliation(s)
- Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC Canada
| | - Jake A. Kushner
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Maria J. Redondo
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Massimo Pietropaolo
- Division of Diabetes, Endocrinology and Metabolism, McNair Medical Institute, Baylor College of Medicine, Houston, Texas,To Whom Correspondence May be Addressed: Massimo Pietropaolo, M.D., Division of Diabetes, Endocrinology and Metabolism, Alkek Building for Biomedical Research, R 609, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| |
Collapse
|
30
|
Abstract
INTRODUCTION Islet transplantation can treat the most severe cases of type 1 diabetes but it currently requires deceased donor pancreata as an islet source and chronic immunosuppression to prevent rejection and recurrence of autoimmunity. Stem cell-derived insulin-producing cells may address the shortage of organ donors, whereas cell encapsulation may reduce or eliminate the requirement for immunosuppression, minimizing the risks associated with the islet transplantation procedure, and potentially prolonging graft survival. AREAS COVERED This review focuses on the design principles for immunoisolation devices and on stem cell differentiation into insulin-producing cell products. The reader will gain understanding of the different types of immunoisolation devices and the key parameters that affect the outcome of the encapsulated graft. Progresses in stem cell differentiation towards mature endocrine islet cells, including the most recent clinical trials and the challenges associated with the application of immunoisolation devices designed for primary islets to stem-cell products, are also discussed. EXPERT OPINION Recent advancements in the field of stem cell-derived islet cell products and immunoisolation strategies hold great promise for type 1 diabetes. However, a combination product including both cells and an immunoisolation strategy still needs to be optimized and tested for safety and efficacy.
Collapse
Affiliation(s)
- Alice Anna Tomei
- University of Miami Miller School of Medicine, Diabetes Research Institute , 1450 NW 10th Avenue, Miami, FL 33136 , USA +1 305 243 3469 ;
| | | | | |
Collapse
|
31
|
Re-engineering islet cell transplantation. Pharmacol Res 2015; 98:76-85. [PMID: 25814189 DOI: 10.1016/j.phrs.2015.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
We are living exciting times in the field of beta cell replacement therapies for the treatment of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel approaches are needed to make cell-based therapies more reproducible and leading to long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain this goal, by targeting immunity, promoting engraftment and sustained functional potency. We discuss herein the emerging technologies applied to this rapidly evolving field.
Collapse
|
32
|
Leal-Lopes C, Velloso FJ, Campopiano JC, Sogayar MC, Correa RG. Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. J Diabetes Res 2015; 2015:284680. [PMID: 26347203 PMCID: PMC4544440 DOI: 10.1155/2015/284680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities.
Collapse
Affiliation(s)
- Camila Leal-Lopes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Fernando J. Velloso
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Julia C. Campopiano
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Ricardo G. Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- *Ricardo G. Correa:
| |
Collapse
|
33
|
Lymphopenia is detrimental to therapeutic approaches to type 1 diabetes using regulatory T cells. Immunol Res 2014; 58:101-5. [PMID: 24371009 DOI: 10.1007/s12026-013-8476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the therapeutic approaches to type 1 diabetes (T1D) focuses on enhancement of regulatory T cell (Treg) activity, either by adoptive transfer or supplementation of supporting cytokines such as interleukin-2 (IL-2). In principle, this therapeutic design would greatly benefit of concomitant reduction in pathogenic cell burden. Experimental evidence indicates that physiological recovery from lymphopenia is dominated by evolution of effector and cytotoxic cells, which abolishes the therapeutic efficacy of Treg cells. Targeted and selective depletion of effector T cells has been achieved with killer Treg using Fas ligand protein and a fusion protein composed of IL-2 and caspase-3, which showed remarkable efficacy in modulating the course of inflammatory insulitis in NOD mice. We emphasize a critical consideration in design of therapeutic approaches to T1D, immunomodulation without lymphoreduction to avoid the detrimental consequences of rebound recovery from lymphopenia.
Collapse
|
34
|
Signals for increase of μ-opioid receptor expression in muscle by hyperglycemia. Neurosci Lett 2014; 582:109-14. [DOI: 10.1016/j.neulet.2014.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
|
35
|
Pugliese A, Vendrame F, Reijonen H, Atkinson MA, Campbell-Thompson M, Burke GW. New insight on human type 1 diabetes biology: nPOD and nPOD-transplantation. Curr Diab Rep 2014; 14:530. [PMID: 25142715 PMCID: PMC4174350 DOI: 10.1007/s11892-014-0530-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Juvenile Diabetes Research Foundation (JDRF) Network for Pancreatic Organ Donors with Diabetes (JDRF nPOD) was established to obtain human pancreata and other tissues from organ donors with type 1 diabetes (T1D) in support of research focused on disease pathogenesis. Since 2007, nPOD has recovered tissues from over 100 T1D donors and distributed specimens to approximately 130 projects led by investigators worldwide. More recently, nPOD established a programmatic expansion that further links the transplantation world to nPOD, nPOD-Transplantation; this effort is pioneering novel approaches to extend the study of islet autoimmunity to the transplanted pancreas and to consent patients for postmortem organ donation directed towards diabetes research. Finally, nPOD actively fosters and coordinates collaborative research among nPOD investigators, with the formation of working groups and the application of team science approaches. Exciting findings are emerging from the collective work of nPOD investigators, which covers multiple aspects of islet autoimmunity and beta cell biology.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL, 33136, USA,
| | | | | | | | | | | |
Collapse
|
36
|
Tracy S, Smithee S, Alhazmi A, Chapman N. Coxsackievirus can persist in murine pancreas by deletion of 5' terminal genomic sequences. J Med Virol 2014; 87:240-7. [PMID: 25111164 DOI: 10.1002/jmv.24039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
Enterovirus infections are generally acute and rapidly cleared by the host immune response. Enteroviruses can at times persist in immunologically intact individuals after the rise of the type-specific neutralizing immune response. The mechanism of enterovirus persistence was shown in group B coxsackieviruses (CVB) to be due to naturally-occurring deletions at the 5' terminus of the genome which variably impact the stem-loop secondary structure called domain I. These deletions result in much slower viral replication and a loss of measurable cytopathic effect when such 5' terminally deleted (TD) viruses are assayed in cell culture. The existence and persistence of CVB-TD long after the acute phase of infection has been documented in hearts of experimentally inoculated mice and naturally infected humans but to date, the existence of TD enteroviral populations have not been documented in any other organ. Enteroviral infections have been shown to impact type 1 diabetes (T1D) onset in humans as well as in the non-obese diabetic mouse model of T1D. The first step to studying the potential impact of CVB-TD on T1D etiology is to determine whether CVB-TD populations can arise in the pancreas. After inoculation of NOD diabetic mice with CVB, viral RNA persists in the absence of cytopathic virus in pancreas weeks past the acute infectious period. Analysis of viral genomic 5' termini by RT-PCR showed CVB-TD populations displace the parental population during persistent replication in murine pancreata.
Collapse
Affiliation(s)
- Steven Tracy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
37
|
Zhao G, Moore DJ, Kim JI, Lee KM, O'Connor M, Yang M, Marshall AF, Lei J, Schuetz C, Markmann JF, Deng S. An immunosufficient murine model for the study of human islets. Xenotransplantation 2014; 21:567-73. [PMID: 25041432 DOI: 10.1111/xen.12126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/30/2014] [Indexed: 01/28/2023]
Abstract
For the sake of therapy of diabetes, it is critical to understand human beta cell function in detail in health and disease. Current studies of human beta cell physiology in vivo are mostly limited to immunodeficient mouse models, which possess significant technical limitations. This study aimed to create a new model for the study of human islets through induction of transplant tolerance in immunosufficient mice. B6 diabetic mice were transplanted with human islets and treated with anti-CD45RB. To assess whether anti-CD45RB-induced transplant tolerance requires B cells, B6 recipients received additional anti-CD20 or B6μMT-/- mice were used. For some anti-CD45RB-treated B6μMT-/- mice, additional anti-CD25 mAb was applied at the early or late stage post-transplant. Immunohistology was performed to show the Foxp3 cells in grafted anti-CD45RB/anti-CD20-treated Foxp3-GFP B6 mice. The results showed that anti-CD45RB alone allowed indefinite graft survival in 26.6% of B6 mice, however 100% of xenografts were accepted in mice treated simultaneously with anti-CD20, and 88.9% of xenografts accepted in anti-CD45RB-treated μMT-/- mice. These μMT-/- mice accepted the islets from another human donor but rejected the islets from baboon. Additional administration of anti-CD25 mAb at the time of transplantation resulted in 100% rejection, whereas 40% of grafts were rejected while the antibody was administrated at days 60 post-transplant. Immunohistologic examination showed Foxp3+ cells accumulated around grafts. We conclude that induction of tolerance to human islets in an immunosufficient mouse model could be generated by targeting murine CD45RB and CD20. This new system will facilitate study of human islets and accelerate the dissection of the critical mechanisms underlying islet health in human disease.
Collapse
Affiliation(s)
- Gaoping Zhao
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Sichuan Provincial Key Laboratory for Translational Medicine of Organ Transplantation, Department of Surgery, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gu T, Falhammar H, Gu HF, Brismar K. Epigenetic analyses of the insulin-like growth factor binding protein 1 gene in type 1 diabetes and diabetic nephropathy. Clin Epigenetics 2014; 6:10. [PMID: 24904693 PMCID: PMC4046502 DOI: 10.1186/1868-7083-6-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background Clinical observations have demonstrated that high levels of circulating insulin-like growth factor binding protein-1 (IGFBP-1) are associated with type 1 diabetes (T1D), whereas low serum IGFBP-1 levels are associated with the risk of type 2 diabetes (T2D). Recently, we reported that increased DNA methylation levels in the IGFBP1 gene were associated with T2D. In the present study, we evaluated the epigenetic changes of IGFBP1 in T1D and diabetic nephropathy (DN). Results In total, 778 Swedish individuals, including T1D patients with or without DN and subjects with the normal glucose tolerance (NGT), were involved in the study. IGFBP1 methylation levels in genomic DNA extracted from peripheral blood were analyzed with bisulfite pyrosequencing. Serum IGFBP-1 levels were measured with radioimmunoassay. We found that DNA methylation levels in the IGFBP1 gene were decreased (15.6% versus 16.9%; P < 0.001), whereas serum IGFBP-1 levels were increased (31 versus 24 μg/L, P = 0.003) in T1D patients compared with NGT subjects. Furthermore, T1D patients with DN had increased circulating IGFBP-1 concentration compared with the patients without DN (52 versus 28 μg/L; P = 0.006). However, no difference of the IGFBP1 DNA methylation levels between T1D patients with and without DN was observed. Conclusions This study shows for the first time that T1D patients had decreased DNA methylation levels in the IGFBP1 gene and further implies that increased circulating IGFBP-1 levels are associated with T1D and DN.
Collapse
Affiliation(s)
- Tianwei Gu
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Falhammar
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Harvest F Gu
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Brismar
- Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
39
|
Collier RJ, Bauman DE. Update on human health concerns of recombinant bovine somatotropin use in dairy cows. J Anim Sci 2014; 92:1800-7. [DOI: 10.2527/jas.2013-7383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- R. J. Collier
- School of Animal and Comparative Biomedical Sciences University of Arizona, Tucson 85719
| | - D. E. Bauman
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
40
|
Harpsøe MC, Basit S, Andersson M, Nielsen NM, Frisch M, Wohlfahrt J, Nohr EA, Linneberg A, Jess T. Body mass index and risk of autoimmune diseases: a study within the Danish National Birth Cohort. Int J Epidemiol 2014; 43:843-55. [PMID: 24609069 DOI: 10.1093/ije/dyu045] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A possible aetiological link between obesity and certain autoimmune diseases (ADs) has been suggested. We investigated the associations between body mass index (BMI, kg/m2) and 43 ADs. METHODS 75,008 women participating in the Danish National Birth Cohort were followed during a median time of 11 years. Diagnoses on ADs were retrieved from the Danish National Patient Register. Cox proportional hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated adjusting for potential confounders (smoking, alcohol, parity and socio-occupational status). RESULTS During follow-up, 2430 women (3.2%) developed a total of 2607 new-onset ADs. Risk of any autoimmune disease was increased in obese women (HR, 1.27; 95% CI, 1.11 to 1.46) compared with normal weight women (18.5-≤25 kg/m2). Obese women (BMI≥30 kg/m2) were at increased risk of sarcoidosis (HR 3.59; 95% CI, 2.31 to 5.57) and type 1 diabetes mellitus (HR 2.67; 95% CI, 1.71 to 4.17). Risk of dermatitis herpetiformis increased by 14% (95% CI, 1% to 30%) per BMI unit. Conversely, risk of celiac disease and Raynaud's phenomenon decreased by 7% (95% CI, 1% to 13%) and 12% (95% CI, 4% to 19%) per BMI unit, respectively. Further associations between BMI and risk of psoriasis, rheumatoid arthritis and Crohn's disease were suggested. CONCLUSIONS BMI was found to be associated with several Ads. This was most pronounced between obesity and risk of sarcoidosis and and risk of type 1 diabetes mellitus. These novel findings need confirmation and the possible role of adipose tissue-derived immunological changes in the development of autoimmune reactions needs consideration.
Collapse
Affiliation(s)
- Maria C Harpsøe
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Saima Basit
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Mikael Andersson
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Nete M Nielsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Morten Frisch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Ellen A Nohr
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Allan Linneberg
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| | - Tine Jess
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, and Department of Obstetrics and Gynaecology, Odense University Hospital, Odense, Denmark and Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
| |
Collapse
|
41
|
Pugliese A, Yang M, Kusmarteva I, Heiple T, Vendrame F, Wasserfall C, Rowe P, Moraski JM, Ball S, Jebson L, Schatz DA, Gianani R, Burke GW, Nierras C, Staeva T, Kaddis JS, Campbell-Thompson M, Atkinson MA. The Juvenile Diabetes Research Foundation Network for Pancreatic Organ Donors with Diabetes (nPOD) Program: goals, operational model and emerging findings. Pediatr Diabetes 2014; 15:1-9. [PMID: 24325575 PMCID: PMC4282794 DOI: 10.1111/pedi.12097] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022] Open
Abstract
nPOD actively promotes a multidisciplinary and unbiased approach toward a better understanding of T1D and identify novel therapeutic targets, through its focus on the study of human samples. Unique to this effort is the coordination of collaborative efforts and real-time data sharing. Studies supported by nPOD are providing direct evidence that human T1D isa complex and heterogeneous disease, in which a multitude of pathogenic factors may be operational and may contribute to the onset of the disease. Importantly, the concept that beta cell destruction is almost completed and that the autoimmune process is almost extinguished soon after diagnosis is being challenged. nPOD investigators are exploring the hypothesis that beta cell dysfunction may also be a significant cause of hyperglycemia, at least around the time of diagnosis, and are uncovering novel molecules and pathways that are linked to the pathogenesis and etiology of human T1D. The validation of therapeutic targets is also a key component of this effort, with recent and future findings providing new strategic direction for clinical trials.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of MedicineMiami, FL, USA,Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Miami Miller School of MedicineMiami, FL, USA,Department of Immunology and Microbiology, University of Miami Miller School of MedicineMiami, FL, USA
| | - Mingder Yang
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Irina Kusmarteva
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Tiffany Heiple
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Francesco Vendrame
- Diabetes Research Institute, University of Miami Miller School of MedicineMiami, FL, USA
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Patrick Rowe
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Jayne M Moraski
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Suzanne Ball
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Les Jebson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Desmond A Schatz
- Department of Pediatrics, The University of Florida College of MedicineGainesville, FL, USA
| | | | - George W Burke
- Department of Surgery, University of Miami Miller School of MedicineMiami, FL, USA
| | | | | | - John S Kaddis
- Department of Information Sciences, City of Hope National Medical CenterDuarte, CA, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of MedicineGainesville, FL, USA,Department of Pediatrics, The University of Florida College of MedicineGainesville, FL, USA
| |
Collapse
|
42
|
Niu CS, Chen LJ, Niu HS. Antihyperglycemic action of rhodiola-aqeous extract in type1-like diabetic rats. Altern Ther Health Med 2014; 14:20. [PMID: 24417880 PMCID: PMC3897963 DOI: 10.1186/1472-6882-14-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/09/2014] [Indexed: 12/21/2022]
Abstract
Background Rhodiola rosea (Rhodiola) is a plant in the Crassulaceae family that grows in cold regions of the world. It is mainly used in clinics as an adaptogen. Recently, it has been mentioned that Rhodiola increases plasma β-endorphin to lower blood pressure. Thus, the present study aims to investigate the antidiabetic action of Rhodiola in relation to opioids in streptozotocin-induced diabetic rats (STZ-diabetic rats). Methods In the present study, the plasma glucose was analyzed with glucose oxidase method, and the determination of plasma β-endorphin was carried out using a commercially available enzyme-linked immunosorbent assay. The adrenalectomy of STZ-diabetic rats was used to evaluate the role of β-endorphin. In addition, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting analysis were performed to investigate mRNA and protein expressions. Results Rhodiola-water extract dose-dependently lowered the plasma glucose in STZ-diabetic rats and this action was reversed by blockade of opioid μ-receptors using cyprodime. An increase of plasma β-endorphin by rhodiola-water extract was also observed in same manner. The plasma glucose lowering action of rhodiola-water extract was attenuated in bilateral adrenalectomized rats. In addition, continuous administration of rhodiola-water extract for 3 days in STZ-diabetic rats resulted in an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle and a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver. These effects were also reversed by blockade of opioid μ-receptors. Conclusions Taken together, rhodiola-water extract improves hyperglycemia via an increase of β-endorphin secretion from adrenal gland to activate opioid μ-receptors in STZ-diabetic rats.
Collapse
|
43
|
Bekkering P, Jafri I, van Overveld FJ, Rijkers GT. The intricate association between gut microbiota and development of Type 1, Type 2 and Type 3 diabetes. Expert Rev Clin Immunol 2014; 9:1031-41. [DOI: 10.1586/1744666x.2013.848793] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Hartemann A, Bensimon G, Payan CA, Jacqueminet S, Bourron O, Nicolas N, Fonfrede M, Rosenzwajg M, Bernard C, Klatzmann D. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2013; 1:295-305. [PMID: 24622415 DOI: 10.1016/s2213-8587(13)70113-x] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND An improper balance of regulatory/effector T (Treg/Teff) cells is central to the development of autoimmune diseases, including type 1 diabetes. We previously showed that low-dose interleukin 2 (IL2) induced Treg cell expansion and activation and clinical improvement in patients with hepatitis-C-virus-induced vasculitis. We aimed to establish which low doses of IL2 would be safe and induce Treg cells in patients with type 1 diabetes, considering that: (1) type 1 diabetes might be linked to alteration of the IL2/IL2R activation pathway; (2) activation of pathogenic Teff cells by IL2 could exacerbate disease; and (3) the safety of low-dose IL2 is not known in type 1 diabetes. METHODS This was a single-centre phase 1/2 study. 24 adult patients (18-55 years) with established insulin-dependent type 1 diabetes and at least one diabetes-related autoantibody were enrolled and randomly assigned (in a 1:1:1:1 ratio, by computer-generated randomisation list, with block size four) to placebo or IL2 at 0.33 MIU/day, 1 MIU/day, or 3 MIU/day for a 5-day course and were followed up for 60 days. All investigators and participants were masked to assignment. The primary outcome was change in Treg cells, measured by flow cytometry, and expressed as a percentage of CD4+ T cells, from day 1 to day 60. This trial is registered with ClinicalTrials.gov, number NCT01353833. FINDINGS Six patients were assigned to each group between June 1, 2011, and Feb 3, 2012. IL2 was well tolerated at all doses, with no serious adverse events. However, there was a dose-response association for non-serious adverse events during the treatment phase (days 1-6); one patient in the placebo group, three patients in the 0.33 MIU group, five patients in the 1 MIU group, and six patients in the 3 MIU group had non-serious adverse events. The most common adverse events in the treatment phase were injection-site reaction (no patients with placebo vs three patients with 0.33 MIU and 1 MIU vs two patients with 3 MIU) and influenza-like syndrome (no patients with placebo vs one patient with 0.33 MIU and 1 MIU vs four patients with 3 MIU). After the treatment phase, adverse events did not differ between groups. IL2 did not induce deleterious changes in glucose-metabolism variables. IL2 induced a dose-dependent increase in the proportion of Treg cells, significant at all doses compared with placebo (placebo mean increase 0.5% [SD 0.4]; 0.33 MIU 2.8% [1.2], p=0.0039; 1 MIU 3.9% [1.8], p=0.0039; 3 MIU 4.8% [1.9] p=0.0039). INTERPRETATION We have defined a well-tolerated and immunologically effective dose range of IL2 for application to type 1 diabetes therapy and prevention, which could be relevant to other disorders in which a Treg cell increase would be desirable.
Collapse
Affiliation(s)
- Agnès Hartemann
- Department of Diabetology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gilbert Bensimon
- Department of Clinical Pharmacology, Hôpital Pitié-Salpêtrière, Paris, France; Pharmacologie, Paris, France
| | - Christine A Payan
- Department of Clinical Pharmacology, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Olivier Bourron
- Department of Diabetology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nathalie Nicolas
- Clinical Investigation Center Paris-Est-CIC-9304, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michèle Fonfrede
- Department of Biochemistry, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michelle Rosenzwajg
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department AP-HP, Hôpital Pitié-Salpêtrière, Paris, France; Immunology-Immunopathology-Immunotherapy UPMC Univ Paris 06, Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy, Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - Claude Bernard
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department AP-HP, Hôpital Pitié-Salpêtrière, Paris, France; Immunology-Immunopathology-Immunotherapy UPMC Univ Paris 06, Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy, Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy, Paris, France
| | - David Klatzmann
- Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department AP-HP, Hôpital Pitié-Salpêtrière, Paris, France; Immunology-Immunopathology-Immunotherapy UPMC Univ Paris 06, Paris, France; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy, Paris, France; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy, Paris, France.
| |
Collapse
|
45
|
Bayer AL, Pugliese A, Malek TR. The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunol Res 2013; 57:197-209. [PMID: 24214027 PMCID: PMC3990437 DOI: 10.1007/s12026-013-8452-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IL-2 plays a critical role in the normal function of the immune system. A trophic factor for lymphocytes, IL-2 is required for mounting and sustaining adaptive T cell responses; however, IL-2 is also critical for immune regulation via its effects on regulatory T cells (Treg cells). Over the years, we have contributed to the understanding of the biology of IL-2 and its signaling through the IL-2 receptor and helped define the key role played by IL-2 in Treg development and function. Our data show that Treg cells have a heightened sensitivity to IL-2, which may create a therapeutic window to promote immune regulation by selective stimulation of Treg cells. We are now developing new efforts to translate this knowledge to the clinical arena, through our focused interest in Type 1 diabetes as a prototypic autoimmune disease. Specifically, we aim at developing IL-2-based therapeutic regimens and incorporate means to enhance antigen-specific Treg responses, for improved and more selective regulation of islet autoimmunity. In parallel, we are pursuing studies in preclinical models of autoimmunity and transplantation to define critical factors for successful adoptive Treg therapy and develop clinically applicable therapeutic protocols.
Collapse
Affiliation(s)
- Allison L. Bayer
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Alberto Pugliese
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Thomas R. Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| |
Collapse
|
46
|
Thomson M, Al-Qattan K, Divya J, Ali M. Ameliorative Actions of Garlic (Allium sativum) and Ginger (Zingiber
officinale) on Biomarkers of Diabetes and Diabetic Nephropathy in Rats:
Comparison to Aspirin. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.501.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Abstract
There is ample evidence that environmental factors are involved in the aetiology of type 1 diabetes, but the nature and timing of the interactions are poorly understood. The intrauterine environment is known to play a role in the later development of type 2 diabetes, and this review considers a possible role in type 1 diabetes. Autoimmune type 1 diabetes is rare in those diagnosed before 6 months of age, but endogenous autoantibodies predictive of future type 1 diabetes may be detectable by 6-12 months of age, suggesting that environmental factors may operate before this age in some cases. Indirect evidence of a protective effect for the intrauterine environment comes from the observation that mothers with type 1 diabetes are less likely than affected fathers to transmit diabetes to their offspring, although the precise role (if any) is unclear. The risk of childhood-onset type 1 diabetes increases with maternal age at delivery, and with high birthweight, but these associations are weak and heterogeneous, and these factors are unlikely to be directly causally related to type 1 diabetes. No firm conclusion can be drawn from studies of maternal enteroviral infection or from various nutritional exposures. The birth process itself may play a role, as suggested by the slightly increased risk in children born by Caesarean section; lack of contact with maternal bacteria is one suggested mechanism. In sum, there is circumstantial evidence, but no proof of principle, that maternal or intrauterine conditions may modulate genetic risk of type 1 diabetes. The disease process culminating in type 1 diabetes typically begins in early life, but it is not clear whether the trail begins before or after birth.
Collapse
Affiliation(s)
- L C Stene
- Division of Epidemiology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway.
| | | |
Collapse
|
48
|
Abstract
Following almost 30 years of intensive research, initiated by the observation that Type 1 diabetes development is associated with a characteristic pancreatic immune cell infiltrate, a picture is emerging of which of the diverse effector arms of the immune system are involved in β-cell destruction. Like any chronic pathology, there is considerable complexity, and our ability to model the disease is hampered by a lack of ready access to the target organ and limited longitudinal analyses. However, it seems that putative pathways can start to be ruled in and out, in part as a result of focused mechanistic studies that make use of new technologies, and in part through analysis of the outcomes of clinical trials of new agents aimed at halting the disease process. The picture that emerges suggests a pathway to prevention that may require combinations of therapeutic agents that target different aspects of the immune system and will need to be used with due attention to their risk-benefit profiles.
Collapse
Affiliation(s)
- M Peakman
- Department of Immunobiology, King's College London, School of Medicine and National Institute of Health Research Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College, London, UK.
| |
Collapse
|