1
|
Kunicki M, Rzewuska N, Sopońska P, Pawłosek A, Sowińska I, Kloska A. Novel serum biomarkers for early diagnosis of gestational diabetes mellitus-a review. Gynecol Endocrinol 2025; 41:2455472. [PMID: 39834324 DOI: 10.1080/09513590.2025.2455472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Gestational diabetes mellitus (GDM) affects 9-25% of pregnancies. Undiagnosed or poorly managed GDM is associated with both short- and long-term complications in the fetus and mother. The pathogenesis of GDM is complex and has not yet been fully elucidated. Several biomarkers found in maternal serum have the potential for the early diagnosis of GDM. The aim of this narrative review was to explore novel biomarkers that have not been comprehensively described in previous reviews. We believe these biomarkers may allow for the detection of GDM in the early stages of pregnancy, enabling timely proper treatment and potentially preventing complications for both the mother and the fetus.
Collapse
Affiliation(s)
- Michał Kunicki
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
- INVICTA Fertility and Reproductive Center, Warsaw, Poland
| | - Natalia Rzewuska
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | | | - Agata Pawłosek
- INVICTA Fertility and Reproductive Center, Wrocław, Poland
| | - Iwona Sowińska
- INVICTA Fertility and Reproductive Center, Gdańsk, Poland
| | - Anna Kloska
- INVICTA Research and Development Center, Sopot, Poland
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Blevins JE, Honeycutt MK, Slattery JD, Goldberg M, Rambousek JR, Tsui E, Dodson AD, Shelton KA, Salemeh TS, Elfers CT, Chichura KS, Ashlaw EF, Zraika S, Doyle RP, Roth CL. The novel chimeric multi-agonist peptide (GEP44) reduces energy intake and body weight in male and female diet-induced obese mice in a glucagon-like peptide-1 receptor-dependent manner. Front Endocrinol (Lausanne) 2024; 15:1432928. [PMID: 39104812 PMCID: PMC11298355 DOI: 10.3389/fendo.2024.1432928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 08/07/2024] Open
Abstract
We recently reported that a novel chimeric peptide (GEP44) targeting both the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2 receptor (Y1R and Y2R) reduced energy intake and body weight (BW) in diet-induced obese (DIO) rats. We hypothesized that GEP44 reduces energy intake and BW primarily through a GLP-1R dependent mechanism. To test this hypothesis, GLP-1R+/+ mice and GLP-1R null (GLP-1R-/-) mice were fed a high fat diet for 4 months to elicit diet-induced obesity prior to undergoing a sequential 3-day vehicle period, 3-day drug treatment (5, 10, 20 or 50 nmol/kg; GEP44 vs the selective GLP-1R agonist, exendin-4) and a 3-day washout. Energy intake, BW, core temperature and activity were measured daily. GEP44 (10, 20 and 50 nmol/kg) reduced BW after 3-day treatment in DIO male GLP-1R+/+ mice by -1.5 ± 0.6, -1.3 ± 0.4 and -1.9 ± 0.4 grams, respectively (P<0.05), with similar effects being observed in female GLP-1R+/+ mice. These effects were absent in male and female DIO GLP-1R-/- mice suggesting that GLP-1R signaling contributes to GEP44-elicited reduction of BW. Further, GEP44 decreased energy intake in both male and female DIO GLP-1R+/+ mice, but GEP44 appeared to produce more consistent effects across multiple doses in males. In GLP-1R-/- mice, the effects of GEP44 on energy intake were only observed in males and not females, suggesting that GEP44 may reduce energy intake, in part, through a GLP-1R independent mechanism in males. In addition, GEP44 reduced core temperature and activity in both male and female GLP-1R+/+ mice suggesting that it may also reduce energy expenditure. Lastly, we show that GEP44 reduced fasting blood glucose in DIO male and female mice through GLP-1R. Together, these findings support the hypothesis that the chimeric peptide, GEP44, reduces energy intake, BW, core temperature, and glucose levels in male and female DIO mice primarily through a GLP-1R dependent mechanism.
Collapse
Affiliation(s)
- James E. Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Mackenzie K. Honeycutt
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Jared D. Slattery
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Matvey Goldberg
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - June R. Rambousek
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Edison Tsui
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Andrew D. Dodson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | - Kyra A. Shelton
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
| | | | | | - Kylie S. Chichura
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - Emily F. Ashlaw
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - Sakeneh Zraika
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, United States
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Robert P. Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Departments of Medicine and Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Christian L. Roth
- Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
3
|
Blevins JE, Honeycutt MK, Slattery JD, Goldberg M, Rambousek JR, Tsui E, Dodson AD, Shelton KA, Salemeh TS, Elfers CT, Chichura KS, Ashlaw EF, Zraika S, Doyle RP, Roth CL. The Novel Chimeric Multi-Agonist Peptide (GEP44) Reduces Energy Intake and Body Weight in Male and Female Diet-Induced Obese Mice in a Glucagon-Like Peptide-1 Receptor-Dependent Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594690. [PMID: 38826286 PMCID: PMC11142068 DOI: 10.1101/2024.05.17.594690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We recently reported that a novel chimeric peptide (GEP44) targeting both the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2 receptor (Y1R and Y2R) reduced energy intake and body weight (BW) in diet-induced obese (DIO) rats. We hypothesized that GEP44 reduces energy intake and BW primarily through a GLP-1R dependent mechanism. To test this hypothesis, GLP-1R +/+ mice and GLP-1R null (GLP-1R -/- ) mice were fed a high fat diet for 4 months to elicit diet-induced obesity prior to undergoing a sequential 3-day vehicle period, 3-day drug treatment (5, 10, 20 or 50 nmol/kg; GEP44 vs the selective GLP-1R agonist, exendin-4) and a 3-day washout. Energy intake, BW, core temperature and activity were measured daily. GEP44 (10, 20 and 50 nmol/kg) reduced BW after 3-day treatment in DIO male GLP-1R +/+ mice by - 1.5±0.6, -1.3±0.4 and -1.9±0.4 grams, respectively ( P <0.05), with similar effects being observed in female GLP-1R +/+ mice. These effects were absent in male and female DIO GLP-1R -/- mice suggesting that GLP-1R signaling contributes to GEP44-elicited reduction of BW. Further, GEP44 decreased energy intake in both male and female DIO GLP-1R +/+ mice, but GEP44 appeared to produce more consistent effects across multiple doses in males. In GLP-1R -/- mice, the effects of GEP44 on energy intake were only observed in males and not females, suggesting that GEP44 may reduce energy intake, in part, through a GLP-1R independent mechanism in males. In addition, GEP44 reduced core temperature and activity in both male and female GLP-1R +/+ mice suggesting that it may also reduce energy expenditure. Lastly, we show that GEP44 reduced fasting blood glucose in DIO male and female mice through GLP-1R. Together, these findings support the hypothesis that the chimeric peptide, GEP44, reduces energy intake, BW, core temperature, and glucose levels in male and female DIO mice primarily through a GLP-1R dependent mechanism.
Collapse
|
4
|
Viggers R, Rasmussen NH, Vestergaard P. Effects of Incretin Therapy on Skeletal Health in Type 2 Diabetes-A Systematic Review. JBMR Plus 2023; 7:e10817. [PMID: 38025038 PMCID: PMC10652182 DOI: 10.1002/jbm4.10817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes poses a significant risk to bone health, with Type 1 diabetes (T1D) having a more detrimental impact than Type 2 diabetes (T2D). The group of hormones known as incretins, which includes gastric inhibitory peptide (GIP) and glucagon-like peptide 1 (GLP-1), play a role in regulating bowel function and insulin secretion during feeding. GLP-1 receptor agonists (GLP-1 RAs) are emerging as the primary treatment choice in T2D, particularly when atherosclerotic cardiovascular disease is present. Dipeptidyl peptidase 4 inhibitors (DPP-4is), although less potent than GLP-1 RAs, can also be used. Additionally, GLP-1 RAs, either alone or in combination with GIP, may be employed to address overweight and obesity. Since feeding influences bone turnover, a relationship has been established between incretins and bone health. To explore this relationship, we conducted a systematic literature review following the PRISMA guidelines. While some studies on cells and animals have suggested positive effects of incretins on bone cells, turnover, and bone density, human studies have yielded either no or limited and conflicting results regarding their impact on bone mineral density (BMD) and fracture risk. The effect on fracture risk may vary depending on the choice of comparison drug and the duration of follow-up, which was often limited in several studies. Nevertheless, GLP-1 RAs may hold promise for people with T2D who have multiple fracture risk factors and poor metabolic control. Furthermore, a potential new area of interest is the use of GLP-1 RAs in fracture prevention among overweight and obese people. Based on this systematic review, existing evidence remains insufficient to support a positive or a superior effect on bone health to reduce fracture risk in people with T2D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rikke Viggers
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| | | | - Peter Vestergaard
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| |
Collapse
|
5
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
6
|
Palmer ES, Irwin N, O’Harte FPM. Potential Therapeutic Role for Apelin and Related Peptides in Diabetes: An Update. Clin Med Insights Endocrinol Diabetes 2022; 15:11795514221074679. [PMID: 35177945 PMCID: PMC8844737 DOI: 10.1177/11795514221074679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an epidemic with an ever-increasing global prevalence. Current treatment strategies, although plentiful and somewhat effective, often fail to achieve desired glycaemic goals in many people, leading ultimately to disease complications. The lack of sustained efficacy of clinically-approved drugs has led to a heightened interest in the development of novel alternative efficacious antidiabetic therapies. One potential option in this regard is the peptide apelin, an adipokine that acts as an endogenous ligand of the APJ receptor. Apelin exists in various molecular isoforms and was initially studied for its cardiovascular benefits, however recent research suggests that it also plays a key role in glycaemic control. As such, apelin peptides have been shown to improve insulin sensitivity, glucose tolerance and lower circulating blood glucose. Nevertheless, native apelin has a short biological half-life that limits its therapeutic potential. More recently, analogues of apelin, particularly apelin-13, have been developed that possess a significantly extended biological half-life. These analogues may represent a promising target for future development of therapies for metabolic disease including diabetes and obesity.
Collapse
Affiliation(s)
- Ethan S Palmer
- Ethan S Palmer, Diabetes Research Group, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK.
| | | | | |
Collapse
|
7
|
Alipanah-Moghadam R, Mehri A, Manafi F, Malekzadeh V, Nemati A, Aghamohammadi V, Mazani M, Cain CTC, Mohammadzadeh-Vardin M. Andrographolide, a novel inducer of apelin gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114487. [PMID: 34352330 DOI: 10.1016/j.jep.2021.114487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (A. paniculata) has been used as a traditional medicine in Asia and Scandinavia for centuries to remedy several illnesses. It has since been shown to possess antibacterial, antifungal, antiviral, anti-neoplasm, hepatoprotective, hypoglycemic, hypocholesterolemic, and energetic effects. AIMS OF THE STUDY This study sought to investigate the effect of Andrographolide on apelin gene expression and serum levels of glucose. MATERIALS AND METHODS In this study, 18 male rats were used. They were divided into three groups of six, including i) negative control group, ii) 3.5 mg/kg Andrographolide group, and iii) 7 mg/kg Andrographolide group. Apelin gene expression was investigated by real-time PCR method. Serum levels of glucose were measured by the photometric method. RESULTS The results of this study revealed that 3.5 and 7 mg doses per kg of body weight of andrographolide, for six days, significantly increased hepatic expression of apelin gene in male Wistar rats, as compared with the control group (p < 0.05). Serum levels of glucose at doses of 3.5 and 7 mg/kg of andrographolide, and in the control group, were 71.5 ± 8.96, 51.5 ± 2.64, and 93.87 ± 14.27 mg/dl, respectively. Andrographolide induced a decrease in serum levels of HDL-c and an increase in LDL-c/HDL-c ratio. CONCLUSIONS Our results suggest that Andrographolide can elicit an increase of hepatic apelin gene expression and a decrease in serum levels of blood glucose.
Collapse
Affiliation(s)
- R Alipanah-Moghadam
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - A Mehri
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - F Manafi
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - V Malekzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - A Nemati
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran.
| | - V Aghamohammadi
- Department of Nutrition, Khalkhal University of Medical Sciences, Khalkhal, Iran.
| | - M Mazani
- Ardabil University of Medical Sciences, Department of Clinical Biochemistry, Ardabil, Iran
| | - C T Clark Cain
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 4FB, UK
| | - M Mohammadzadeh-Vardin
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Yaribeygi H, Maleki M, Atkin SL, Jamialahmadi T, Sahebkar A. Impact of Incretin-Based Therapies on Adipokines and Adiponectin. J Diabetes Res 2021; 2021:3331865. [PMID: 34660808 PMCID: PMC8516550 DOI: 10.1155/2021/3331865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Adipokines are a family of hormones and cytokines with both pro- and anti-inflammatory effects released into the circulation to exert their hormonal effects. Adipokines are closely involved in most metabolic pathways and play an important modulatory role in lipid and carbohydrate homeostasis as they are involved in the pathophysiology of most metabolic disorders. Incretin-based therapy is a newly introduced class of antidiabetic drugs that restores euglycemia through several cellular processes; however, its effect on adipokines expression/secretion is not fully understood. In this review, we propose that incretin-based therapy may function through adipokine modulation that may result in pharmacologic properties beyond their direct antidiabetic effects, resulting in better management of diabetes and diabetes-related complications.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Griffiths PR, Lolait SJ, Paton JFR, O'Carroll AM. Circumventricular Organ Apelin Receptor Knockdown Decreases Blood Pressure and Sympathetic Drive Responses in the Spontaneously Hypertensive Rat. Front Physiol 2021; 12:711041. [PMID: 34421653 PMCID: PMC8373520 DOI: 10.3389/fphys.2021.711041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022] Open
Abstract
The central site(s) mediating the cardiovascular actions of the apelin-apelin receptor (APJ) system remains a major question. We hypothesized that the sensory circumventricular organs (CVOs), interfacing between the circulation and deeper brain structures, are sites where circulating apelin acts as a signal in the central nervous system to decrease blood pressure (BP). We show that APJ gene (aplnr) expression was elevated in the CVOs of spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto (WKY) controls, and that there was a greater mean arterial BP (MABP) decrease following microinjection of [Pyr1]apelin-13 to the CVOs of SHRs compared to WKY rats. Lentiviral APJ-specific-shRNA (LV-APJ-shRNA) was used to knockdown aplnr expression, both collectively in three CVOs and discretely in individual CVOs, of rats implanted with radiotelemeters to measure arterial pressure. LV-APJ-shRNA-injection decreased aplnr expression in the CVOs and abolished MABP responses to microinjection of [Pyr1]apelin-13. Chronic knockdown of aplnr in any of the CVOs, collectively or individually, did not affect basal MABP in SHR or WKY rats. Moreover, knockdown of aplnr in any of the CVOs individually did not affect the depressor response to systemic [Pyr1]apelin-13. By contrast, multiple knockdown of aplnr in the three CVOs reduced acute cardiovascular responses to peripheral [Pyr1]apelin-13 administration in SHR but not WKY rats. These results suggest that endogenous APJ activity in the CVOs has no effect on basal BP but that functional APJ in the CVOs is required for an intact cardiovascular response to peripherally administered apelin in the SHR.
Collapse
Affiliation(s)
- Philip R Griffiths
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stephen J Lolait
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Faculty of Biomedical Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Anne-Marie O'Carroll
- Faculty of Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Wang S, Gao G, He Y, Li Q, Li Z, Tong G. Amidation-Modified Apelin-13 Regulates PPAR γ and Perilipin to Inhibit Adipogenic Differentiation and Promote Lipolysis. Bioinorg Chem Appl 2021; 2021:3594630. [PMID: 34054938 PMCID: PMC8123992 DOI: 10.1155/2021/3594630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
With the adjustment of human diet and lifestyle changes, the prevalence of obesity is increasing year by year. Obesity is closely related to the excessive accumulation of white adipose tissue (WAT), which can synthesize and secrete a variety of adipokines. Apelin is a biologically active peptide in the adipokines family. Past studies have shown that apelin plays an important regulatory role in the pathogenesis and pathophysiology of diseases such as the cardiovascular system, respiratory system, digestive system, nervous system, and endocrine system. Apelin is also closely related to diabetes and obesity. Therefore, we anticipate that apelin-13 has an effect on lipometabolism and intend to explore the effect of apelin-13 on lipometabolism at the cellular and animal levels. In in vitro experiments, amidation-modified apelin-13 can significantly reduce the lipid content; TG content; and the expression of PPARγ, perilipin mRNA, and protein in adipocytes. Animal experiments also show that amidation modification apelin-13 can improve the abnormal biochemical indicators of diet-induced obesity (DOI) rats and can reduce the average diameter of adipocytes in adipose tissue, the concentration of glycerol, and the expression of PPARγ and perilipin mRNA and protein. Our results show that apelin-13 can affect the metabolism of adipose tissue, inhibit adipogenic differentiation of adipocytes, promote lipolysis, and thereby improve obesity. The mechanism may be regulating the expression of PPARγ to inhibit adipogenic differentiation and regulating the expression of perilipin to promote lipolysis. This study helps us understand the role of apelin-13 in adipose tissue and provide a basis for the elucidation of the regulation mechanism of lipometabolism and the development of antiobesity drugs.
Collapse
Affiliation(s)
- Sha Wang
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| | - Guoying Gao
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Yiwei He
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Qiong Li
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| | - Zhan Li
- Department of Cardiology, The First Affiliated Hospital of Changsha Medical University, Changsha, Hunan 410219, China
| | - Guoxiang Tong
- Department of Endocrinology, The First Affiliated Hospital, Changsha Medical University, Changsha, Hunan 410219, China
| |
Collapse
|
11
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
12
|
Mohan S, McCloskey AG, McKillop AM, Flatt PR, Irwin N, Moffett RC. Development and characterisation of novel, enzymatically stable oxytocin analogues with beneficial antidiabetic effects in high fat fed mice. Biochim Biophys Acta Gen Subj 2020; 1865:129811. [PMID: 33309687 DOI: 10.1016/j.bbagen.2020.129811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is growing evidence to support beneficial effects of the hypothalamic synthesised hormone, oxytocin, on metabolism. However, the biological half-life of oxytocin is short and receptor activation profile unspecific. METHODS We have characterised peptide-based oxytocin analogues with structural modifications aimed at improving half-life and receptor specificity. Following extensive in vitro and in vivo characterisation, antidiabetic efficacy of lead peptides was examined in high fat fed (HFF) mice. RESULTS Following assessment of stability against enzymatic degradation, insulin secretory activity, receptor activation profile and in vivo bioactivity, analogues 2 N (Ac-C ˂YIQNC >PLG-NH2) and D7R ((d-C)YIQNCYLG-NH2) were selected as lead peptides. Twice daily injection of either peptide for 22 days reduced body weight, energy intake, plasma glucose and insulin and pancreatic glucagon content in HFF mice. In addition, both peptides reduced total- and LDL-cholesterol, with concomitant elevations of HDL-cholesterol, and D7R also decreased triglyceride levels. The two oxytocin analogues improved glucose tolerance and insulin responses to intraperitoneal, and particularly oral, glucose challenge on day 22. Both oxytocin analogues enhanced insulin sensitivity, reduced HOMA-IR and increased bone mineral density. In terms of pancreatic islet histology, D7R reversed high fat feeding induced elevations of islet and beta cell areas, which was associated with reductions in beta cell apoptosis. Islet insulin secretory responsiveness was improved by 2 N, and especially D7R, treatment. CONCLUSION Novel, enzymatically stable oxytocin analogues exert beneficial antidiabetic effects in HFF mice. GENERAL SIGNIFICANCE These observations emphasise the, yet untapped, therapeutic potential of long-acting oxytocin-based agents for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Shruti Mohan
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Andrew G McCloskey
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Aine M McKillop
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Group, Ulster University, Coleraine, Northern Ireland, UK.
| | | |
Collapse
|
13
|
Tanday N, Irwin N, Moffett RC, Flatt PR, O'Harte FPM. Beneficial actions of a long-acting apelin analogue in diabetes are related to positive effects on islet cell turnover and transdifferentiation. Diabetes Obes Metab 2020; 22:2468-2478. [PMID: 32844576 DOI: 10.1111/dom.14177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
AIM The current study has tested the hypothesis that the positive effects of apelin receptor activation in diabetes are linked to benefits on islet cell apoptosis, proliferation and transdifferentiation using Ins1Cre/+ ;Rosa26-eYFP transgenic mice and induction of diabetes-like syndromes by streptozotocin (STZ) or high-fat feeding. MATERIALS AND METHODS Groups (n = 6-8) of streptozotocin (STZ)-induced diabetic and high-fat diet (HFD)-fed mice received once-daily injection (25 nmol/kg) of the long-acting acylated apelin-13 analogue, pGlu(Lys8 Glu-PAL)apelin-13 amide, for 10 or 12 days, respectively. RESULTS pGlu(Lys8 Glu-PAL)apelin-13 amide treatment partly reversed body weight loss induced by STZ and normalized circulating insulin. There was no effect of pGlu(Lys8 Glu-PAL)apelin-13 amide on these variables in HFD-fed mice, but an increase in pancreatic insulin content was observed. pGlu(Lys8 Glu-PAL)apelin-13 amide also fully, or partially, reversed the detrimental effects of STZ and HFD on plasma and pancreatic glucagon concentrations. In HFD-fed mice, the apelin analogue decreased dietary-induced elevations of islet, β- and α-cell areas, whilst reducing α-cell area in STZ-induced diabetic mice. In terms of islet cell lineage, pGlu(Lys8 Glu-PAL)apelin-13 amide effectively reduced β- to α-cell transdifferentiation and helped maintain β-cell identity, which was linked to elevated Pdx-1 expression. These islet effects were coupled with decreased β-cell apoptosis and α-cell proliferation in both models, and there was an accompanying increase of β-cell proliferation in STZ-induced diabetic mice. CONCLUSION Taken together these data demonstrate, for the first time, that pancreatic islet benefits of sustained APJ receptor activation in diabetes are linked to favourable islet cell transition events, leading to maintenance of β-cell mass.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Nigel Irwin
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - R Charlotte Moffett
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Finbarr P M O'Harte
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
14
|
O'Harte FPM, Parthsarathy V, Flatt PR. Chronic apelin analogue administration is more effective than established incretin therapies for alleviating metabolic dysfunction in diabetic db/db mice. Mol Cell Endocrinol 2020; 504:110695. [PMID: 31904406 DOI: 10.1016/j.mce.2019.110695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/27/2019] [Indexed: 01/24/2023]
Abstract
Stable apelin-13 peptide analogues have shown promising acute antidiabetic effects in mice with diet-induced obesity diabetes. Here the efficacy of (pGlu)apelin-13 amide (apelin amide) and the acylated analogue (pGlu)(Lys8GluPAL)apelin-13 amide (apelin FA), were examined following chronic administration in db/db mice, a genetic model of degenerative diabetes. Groups of 9-week old male db/db mice (n = 8) received twice daily injections (09:00 and 17:00 h; i.p.) or saline vehicle, apelin amide, apelin FA, or the established incretin therapies, exendin-4(1-39) or liraglutide, all at 25 nmol/kg body weight for 21 days. Control C57BL/6J mice were given saline twice daily. No changes in body weight or food intake were observed with either apelin or liraglutide treatments, but exendin-4 showed a reduction in cumulative food intake (p < 0.01) compared with saline-treated db/db mice. Apelin analogues and incretin mimetics induced sustained improvements of glycaemia (p < 0.05 to p < 0.001, from day 9-21), lowered HbA1c at 21 days (p < 0.05) and raised plasma insulin concentrations. The treatments also improved OGTT and ipGTT with enhanced insulin responses compared with saline-treated control db/db mice (p < 0.05 to p < 0.001). Apelin amide was superior to incretin mimetics in lowering plasma triglycerides by 34% (p < 0.05). Apelin analogues unlike both incretin mimetics reduced pancreatic α-cell area (p < 0.05 to p < 0.01) and all peptide treatments enhanced pancreatic insulin content (p < 0.05 to p < 0.01). In conclusion, longer-term administration of apelin-13 analogues, induced similar and in some respects more effective metabolic improvements than incretin mimetics in db/db mice, providing a viable alternative approach for counteracting metabolic dysfunction for mild and more degenerative forms of the disease.
Collapse
Affiliation(s)
- Finbarr P M O'Harte
- The SAAD Centre for Pharmacy & Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Vadivel Parthsarathy
- The SAAD Centre for Pharmacy & Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Peter R Flatt
- The SAAD Centre for Pharmacy & Diabetes, University of Ulster, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
15
|
Apelin-13 attenuates early brain injury following subarachnoid hemorrhage via suppressing neuronal apoptosis through the GLP-1R/PI3K/Akt signaling. Biochem Biophys Res Commun 2019; 513:105-111. [DOI: 10.1016/j.bbrc.2019.03.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022]
|
16
|
Feng J, Zhao H, Du M, Wu X. The effect of apelin-13 on pancreatic islet beta cell mass and myocardial fatty acid and glucose metabolism of experimental type 2 diabetic rats. Peptides 2019; 114:1-7. [PMID: 30954534 DOI: 10.1016/j.peptides.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
Apelin, a new identified adipokine, and its G protein-coupled receptor named APJ are widely expressed in various tissues. Apelin has been found to play important roles in the physiopathology of multiple diseases. Our aim is to assess the effect of long-term apelin treatment on serum insulin level and pancreatic islet beta-cell mass in the late stage of type 2 diabetes without hyperinsulinemia and to investigate the role of apelin in myocardial fatty acid and glucose metabolism. In the present study, the high-fat diet fed-streptozotocin-induced experimental type 2 diabetic rats were given once daily intraperitoneal injection of apelin-13 (0.1 μmol/kg) for 10 weeks. We observed that apelin significantly improved serum insulin reduction and reduced hyperglycemia. Histologic analysis showed that long-term apelin treatment significantly increased pancreatic islet beta cell mass. Exogenous apelin failed to change dyslipidaemia of type 2 diabetic rats. Apelin treatment markedly decreased elevated myocardial FFA and glycogen content. Treatment of type 2 diabetic rats with apelin markedly reduced increased gene expressions of the cardiac fatty acid transporter CD36, CPT-1, and Peroxisome proliferator-activated receptor (PPAR)-α. Whereas the gene levels of citrate synthase and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α), a transcriptional coactivator, mediating mitochondrial biogenesis in heart were unaltered in response to exogenous apelin. Taken together, longer-term apelin treatment prevented pancreatic beta-cell loss or failure in experimental type 2 diabetic rats. Apelin can regulate myocardial metabolism. Apelin reduced myocadial fatty acid uptake and oxidation through inhibiting PPAR-α but did not affect myocardial mitochondrial biogenesis in type 2 diabetic rats.
Collapse
Affiliation(s)
- Jinghui Feng
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Hang Zhao
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Mengze Du
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Xiuping Wu
- Department of Geratology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
17
|
O’Harte FPM, Parthsarathy V, Hogg C, Flatt PR. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One 2018; 13:e0202350. [PMID: 30157220 PMCID: PMC6114795 DOI: 10.1371/journal.pone.0202350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/01/2018] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that modified apelin analogues exhibited enzyme resistance in plasma and improved circulating half-life compared to apelin-13. This study investigated the antidiabetic effects of chronic administration of stable long acting fatty acid modified apelin analogues, namely, (Lys8GluPAL)apelin-13 amide and pGlu(Lys8GluPAL)apelin-13 amide, in high-fat fed obese-diabetic mice. Male NIH Swiss mice (groups n = 8) were maintained either on a high-fat diet (45% fat) from 8 to 28 weeks old, or control mice were fed a normal diet (10% fat). When diet induced obesity-diabetes was established after high-fat feeding, mice were injected i.p. once daily with apelin analogues, liraglutide (25 nmol/kg) or saline (controls). Administration of (Lys8GluPAL)apelin-13 amide and pGlu(Lys8GluPAL)apelin-13 amide for 28 days significantly reduced food intake and decreased body weight. Non-fasting glucose was reduced (p<0.01 to p<0.001) and plasma insulin concentrations increased (p<0.01 to p<0.001). This was accompanied by enhanced insulin responses (p<0.01 to p<0.001) and significant reductions in glucose excursion after oral (p<0.01) or i.p. (p<0.01) glucose challenges and feeding. Apelin analogues also significantly improved HbA1c (p<0.01), enhanced insulin sensitivity (p<0.01), reduced triglycerides (p<0.001), increased HDL-cholesterol (p<0.01) and decreased LDL-cholesterol (p<0.01), compared to high-fat fed saline treated control mice. Cholesterol levels were decreased (p<0.01) by pGlu(Lys8GluPAL)apelin-13 amide and both apelin treated groups showed improved bone mineral content, reduced fat deposits and increased plasma GLP-1. Daily treatment with liraglutide mirrored many of these changes (not on bone or adipose tissue), but unlike apelin analogues increased plasma amylase. Consumption of O2, production of CO2, respiratory exchange ratio and energy expenditure were improved by apelin analogues. These results indicate that long-term treatment with acylated analogues (Lys8GluPAL)apelin-13 amide and particularly pGlu(Lys8GluPAL)apelin-13 amide resulted in similar or enhanced therapeutic responses to liraglutide in high-fat fed mice. Fatty acid derived apelin analogues represent a new and exciting development in the treatment of obesity-diabetes.
Collapse
Affiliation(s)
- Finbarr P. M. O’Harte
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Vadivel Parthsarathy
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Christopher Hogg
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
18
|
Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 2018; 70:76-86. [PMID: 29807653 DOI: 10.1016/j.npep.2018.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high outbreak rates. It is estimated that about 35 million individuals around the world suffered from dementia in 2010. AD is expected to increase twofold every 20 years and, by 2030, approximately 65 million people could suffer from this illness. AD is determined clinically by a cognitive impairment and pathologically by the production of amyloid beta (Aβ), neurofibrillary tangles, toxic free radicals and inflammatory mediators in the brain. There is still no treatment to cure or even alter the progressive course of this disease; however, many new therapies are being investigated and are at various stages of clinical trials. Neuropeptides are signaling molecules used by neurons to communicate with each other. One of the important neuropeptides is apelin, which can be isolated from bovine stomach. Apelin and its receptor APJ have been shown to broadly disseminate in the neurons and oligodendrocytes of the central nervous system. Apelin-13 is known to be the predominant neuropeptide in neuroprotection. It is involved in the processes of memory and learning as well as the prevention of neuronal damage. Studies have shown that apelin can directly or indirectly prevent the production of Aβ and reduce its amounts by increasing its degradation. Phosphorylation and accumulation of tau protein may also be inhibited by apelin. Apelin is considered as an anti-inflammatory agent by preventing the production of inflammatory mediators such as interleukin-1β and tumor necrosis factor alpha. It has been shown that in vivo and in vitro anti-apoptotic effects of apelin have prevented the death of neurons. In this review, we describe the various functions of apelin associated with AD and present an integrated overview of recent findings that, in general, recommend apelin as a promising therapeutic agent in the treatment of this ailment.
Collapse
Affiliation(s)
- Javad Masoumi
- Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abbasloui
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Centre for Pharmaceotical Nanotechnology, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Antushevich H, Wójcik M. Review: Apelin in disease. Clin Chim Acta 2018; 483:241-248. [PMID: 29750964 DOI: 10.1016/j.cca.2018.05.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Apelin, a regulatory peptide, is a ligand of the APJ receptor that belongs to the G protein-coupled receptor family. Apelin and APJ are widely distributed in the body and play potential physiological roles in the cytoprotection of many internal organs. This review article summarizes information about the roles of the apelin/APJ system in neurological, metabolic, hypertension, respiratory, gastrointestinal, hepatic, kidney and cancerous diseases. It is suggested that apelin positively affects the treatment of non-cancerous diseases and may be considered as a therapeutic drug in many illnesses. However, in cancers, apelin appears as a tumour growth stimulator, and its suggested role is as a marker in the diagnosis of tumour cancers in tissues. In summary, apelin has certain therapeutic abilities and can be useful in the treatment of, e.g., insulin resistance, hypertension, etc., but it also can sometimes serve as a negative factor.
Collapse
Affiliation(s)
- Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Genetic Engineering, Instytucka 3, 05-110 Jabłonna, Poland.
| | - Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Genetic Engineering, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|